CINXE.COM

Search results for: waste coconut oil

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: waste coconut oil</title> <meta name="description" content="Search results for: waste coconut oil"> <meta name="keywords" content="waste coconut oil"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="waste coconut oil" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="waste coconut oil"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2839</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: waste coconut oil</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2839</span> Renewable Energy from Local Waste for Producing of Processed Agricultural Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruedee%20Niyomrath">Ruedee Niyomrath</a>, <a href="https://publications.waset.org/abstracts/search?q=Somboon%20Sarasit"> Somboon Sarasit</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaisri%20Tharaswatpipat"> Chaisri Tharaswatpipat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study the potential of local waste material in quantity and quality. The potential for such local forms of waste material used as renewable energy for the production of processed agricultural products. The results of this study are useful to producers of agricultural products to use fuel that in local, reduce production costs, and conservation. The results showed that Samut Songkhram is a small province located in the central Thailand, sea area, and subdivided into 3 districts. This province has a population of 80 percent of farmers and agriculture with 50 percent of the area planted to coconut growing. Productivity of coconut help create value for the primacy of the province. Waste materials from coconut have quantity and quality potentials for processing biomass into charcoal as the renewable energy for the production of processed agricultural products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste" title="waste">waste</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=producing%20of%20product" title=" producing of product"> producing of product</a>, <a href="https://publications.waset.org/abstracts/search?q=processed%20agricultural%20products" title=" processed agricultural products"> processed agricultural products</a> </p> <a href="https://publications.waset.org/abstracts/16430/renewable-energy-from-local-waste-for-producing-of-processed-agricultural-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2838</span> Damage Micromechanisms of Coconut Fibers and Chopped Strand Mats of Coconut Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rios%20A.%20S.">Rios A. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hild%20F."> Hild F.</a>, <a href="https://publications.waset.org/abstracts/search?q=Deus%20E.%20P."> Deus E. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Aimedieu%20P."> Aimedieu P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Benallal%20A."> Benallal A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The damage micromechanisms of chopped strand mats manufactured by compression of Brazilian coconut fiber and coconut fibers in different external conditions (chemical treatment) were used in this study. Mechanical analysis testing uniaxial traction were used with Digital Image Correlation (DIC). The images captured during the tensile test in the coconut fibers and coconut fiber mats showed an uncertainty of measurement in order centipixels. The initial modulus (modulus of elasticity) and tensile strength decreased with increasing diameter for the four conditions of coconut fibers. The DIC showed heterogeneous deformation fields for coconut fibers and mats and the displacement fields showed the rupture process of coconut fiber. The determination of poisson’s ratio of the mat was performed through of transverse and longitudinal deformations found in the elastic region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20fiber" title="coconut fiber">coconut fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=micromechanism" title=" micromechanism"> micromechanism</a> </p> <a href="https://publications.waset.org/abstracts/20660/damage-micromechanisms-of-coconut-fibers-and-chopped-strand-mats-of-coconut-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2837</span> Decarboxylation of Waste Coconut Oil and Comparison of Acid Values</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pabasara%20H.%20Gamage">Pabasara H. Gamage</a>, <a href="https://publications.waset.org/abstracts/search?q=Sisira%20K.%20Weliwegamage"> Sisira K. Weliwegamage</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameera%20R.%20Gunatilake"> Sameera R. Gunatilake</a>, <a href="https://publications.waset.org/abstracts/search?q=Hondamuni%20I.%20C%20De%20Silva"> Hondamuni I. C De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Parakrama%20Karunaratne"> Parakrama Karunaratne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green diesel is an upcoming category of biofuels, which has more practical advantages than biodiesel. Production of green diesel involves production of hydrocarbons from various fatty acid sources. Though green diesel is chemically similar to fossil fuel hydrocarbons, it is more environmentally friendly. Decarboxylation of fatty acid sources is one of green diesel production methods and is less expensive and more energy efficient compared to hydrodeoxygenation. Free fatty acids (FFA), undergo decarboxylation readily than triglycerides. Waste coconut oil, which is a rich source of FFA, can be easily decarboxylated than other oils which have lower FFA contents. These free fatty acids can be converted to hydrocarbons by decarboxylation. Experiments were conducted to carry out decarboxylation of waste coconut oil in a high pressure hastealloy reactor (Toption Goup LTD), in the presence of soda lime and mixtures of soda lime and alumina. Acid value (AV) correlates to the amount of FFA available in a sample of oil. It can be shown that with the decreasing of AV, FFAs have converted to hydrocarbons. First, waste coconut oil was reacted with soda lime alone, at 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure for 2 hours. AVs of products at different temperatures were compared. AV of products decreased with increasing temperature. Thereafter, different mixtures of soda lime and alumina (100% Soda lime, 1:1 soda lime and alumina and 100% alumina) were employed at temperatures 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure. The lowest AV of 2.99±0.03 was obtained when 1:1 soda lime and alumina were employed at 250 °C. It can be concluded with respect to the AV that the amount of FFA decreased when decarboxylation temperature was increased. Soda lime:alumina 1:1 mixture showed the lowest AV among the compositions studied. These findings lead to formulate a method to successfully synthesize hydrocarbons by decarboxylating waste coconut oil in the presence of soda lime and alumina (1:1) at elevated tempertaures such as 250 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20value" title="acid value">acid value</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20fatty%20acids" title=" free fatty acids"> free fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20diesel" title=" green diesel"> green diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20reactor" title=" high pressure reactor"> high pressure reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil" title=" waste coconut oil"> waste coconut oil</a> </p> <a href="https://publications.waset.org/abstracts/41339/decarboxylation-of-waste-coconut-oil-and-comparison-of-acid-values" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2836</span> Processing Methods for Increasing the Yield, Nutritional Value and Stability of Coconut Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archana%20G.%20Lamdande">Archana G. Lamdande</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyam%20R.%20Garud"> Shyam R. Garud</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20M.%20S.%20Raghavarao"> K. S. M. S. Raghavarao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coconut has two edible parts, that is, a white kernel (solid endosperm) and coconut water (liquid endosperm). The white kernel is generally used in fresh or dried form for culinary purposes. Coconut testa, is the brown skin, covering the coconut kernel. It is removed by paring of wet coconut and obtained as a by-product in coconut processing industries during the production of products such as desiccated coconut, coconut milk, whole coconut milk powder and virgin coconut oil. At present, it is used as animal feed component after drying and recovering the residual oil (by expelling). Experiments were carried out on expelling of coconut milk for shredded coconut with and without testa removal, in order to explore the possibility of increasing the milk yield and value addition in terms of increased polyphenol content. The color characteristics of coconut milk obtained from the grating without removal of testa were observed to be L* 82.79, a* 0.0125, b* 6.245, while that obtained from grating with removal of testa were L* 83.24, a* -0.7925, b* 3.1. A significant increase was observed in total phenol content of coconut milk obtained from the grating with testa (833.8 µl/ml) when compared to that from without testa (521.3 µl/ml). However, significant difference was not observed in protein content of coconut milk obtained from the grating with and without testa (4.9 and 5.0% w/w, respectively). Coconut milk obtained from grating without removal of testa showed higher milk yield (62% w/w) when compared to that obtained from grating with removal of testa (60% w/w). The fat content in coconut milk was observed to be 32% (w/w), and it is unstable due to such a high fat content. Therefore, several experiments were carried out for examining its stability by adjusting the fat content at different levels (32, 28, 24, and 20% w/w). It was found that the coconut milk was more stable with a fat content of 24 % (w/w). Homogenization and ultrasonication and their combinations were used for exploring the possibility of increasing the stability of coconut milk. The microscopic study was carried out for analyzing the size of fat globules and the degree of their uniform distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20milk" title="coconut milk">coconut milk</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization" title=" homogenization"> homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=testa" title=" testa"> testa</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonication" title=" ultrasonication"> ultrasonication</a> </p> <a href="https://publications.waset.org/abstracts/65342/processing-methods-for-increasing-the-yield-nutritional-value-and-stability-of-coconut-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2835</span> Analysis of Performance-Emission Characteristics of a Single Cylinder Diesel Engine Fueled with Coconut Oil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Purna%20Singh">Purna Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Tripathi"> Vaibhav Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20Kalluri"> Vinayak Kalluri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Roy"> Sumit Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experimental work was carried out to investigate performance and emission characteristics of single cylinder diesel engine operating under dual-fuel mode with coconut oil blended with diesel. Coconut oil is one of the edible oil which is abundant in tropical countries and has properties like diesel. To this end, performance and emission parameters of diesel-coconut oil blends were reported in the current study. The results were drawn at different load steps of engine operation with 10% and 20% of coconut oil linearly blended with diesel. From the results, it was evident that coconut oil can be successfully replaced up to 20% of diesel without hampering the performance-emission characteristics of the existing diesel engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20oil" title="coconut oil">coconut oil</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuel" title=" alternative fuel"> alternative fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-fuel" title=" dual-fuel"> dual-fuel</a> </p> <a href="https://publications.waset.org/abstracts/101439/analysis-of-performance-emission-characteristics-of-a-single-cylinder-diesel-engine-fueled-with-coconut-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2834</span> Partial Replacement for Cement and Coarse Aggregate in Concrete by Using Egg Shell Powder and Coconut Shell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Jain">A. K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Paliwal"> M. C. Paliwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of cement leads to the emission of large amounts of carbon-dioxide gas into the atmosphere which is a major contributor for the greenhouse effect and the global warming; hence it is mandatory either to quest for another material or partly replace it with some other material. According to the practical demonstrations and reports, Egg Shell Powder (ESP) can be used as a binding material for different field applications as it contains some of the properties of lime. It can partially replace the cement and further; it can be used in different proportion for enhancing the performance of cement. It can be used as a first-class alternative, for material reuse and waste recycling practices. Eggshell is calcium rich and analogous to limestone in chemical composition. Therefore, use of eggshell waste for partial replacement of cement in concrete is feasible. Different studies reveal that plasticity index of the soil can be improved by adding eggshell wastes in all the clay soil and it has wider application in construction projects including earth canals and earthen dams. The scarcity of aggregates is also increasing nowadays. Utilization of industrial waste or secondary materials is increasing in different construction applications. Coconut shell was successfully used in the construction industry for partial or full replacement for coarse aggregates. The use of coconut shell gives advantage of using waste material to partially replace the coarse aggregate. Studies carried on coconut shell indicate that it can partially replace the aggregate. It has good strength and modulus properties along with the advantage of high lignin content. It absorbs relatively low moisture due to its low cellulose content. In the paper, study carried out on eggshell powder and coconut shell will be discussed. Optimum proportions of these materials to be used for partial replacement of cement and aggregate will also be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title="greenhouse">greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=egg%20shell%20powder" title=" egg shell powder"> egg shell powder</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20material" title=" binding material"> binding material</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregates" title=" aggregates"> aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20shell" title=" coconut shell"> coconut shell</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20aggregates" title=" coarse aggregates"> coarse aggregates</a> </p> <a href="https://publications.waset.org/abstracts/71041/partial-replacement-for-cement-and-coarse-aggregate-in-concrete-by-using-egg-shell-powder-and-coconut-shell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2833</span> The Study of Spray Drying Process for Skimmed Coconut Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaruwan%20Duangchuen">Jaruwan Duangchuen</a>, <a href="https://publications.waset.org/abstracts/search?q=Siwalak%20Pathaveerat"> Siwalak Pathaveerat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coconut (Cocos nucifera) belongs to the family Arecaceae. Coconut juice and meat are consumed as food and dessert in several regions of the world. Coconut juice contains low proteins, and arginine is the main amino acid content. Coconut meat is the endosperm of coconut that has nutritional value. It composes of carbohydrate, protein and fat. The objective of this study is utilization of by-products from the virgin coconut oil extraction process by using the skimmed coconut milk as a powder. The skimmed coconut milk was separated from the coconut milk in virgin coconut oil extraction process that consists approximately of protein 6.4%, carbohydrate 7.2%, dietary fiber 0.27 %, sugar 6.27%, fat 3.6 % and moisture content of 86.93%. This skimmed coconut milk can be made to powder for value - added product by using spray drying. The factors effect to the yield and properties of dry skimmed coconut milk in spraying process are inlet, outlet air temperature and the maltodextrin concentration. The percentage of maltodextrin content (15, 20%), outlet air temperature (80 ºC, 85 ºC, 90 ºC) and inlet air temperature (190 ºC, 200 ºC, 210 ºC) were conducted to the skimmed coconut milk spray drying process. The spray dryer was kept air flow rate (0.2698 m3 /s). The result that shown 2.22 -3.23% of moisture content, solubility, bulk density (0.4-0.67g/mL), solubility, wettability (4.04 -19.25 min) for solubility in the water, color, particle size were analyzed for the powder samples. The maximum yield (18.00%) of spray dried coconut milk powder was obtained at 210 °C of temperature, 80°C of outlet temperature and 20% maltodextrin for 27.27 second for drying time. For the amino analysis shown that the high amino acids are Glutamine (16.28%), Arginine (10.32%) and Glycerin (9.59%) by using HPLP method (UV detector). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skimmed%20coconut%20milk" title="skimmed coconut milk">skimmed coconut milk</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a>, <a href="https://publications.waset.org/abstracts/search?q=virgin%20coconut%20oil%20process%20%28VCO%29" title=" virgin coconut oil process (VCO)"> virgin coconut oil process (VCO)</a>, <a href="https://publications.waset.org/abstracts/search?q=maltodextrin" title=" maltodextrin"> maltodextrin</a> </p> <a href="https://publications.waset.org/abstracts/68999/the-study-of-spray-drying-process-for-skimmed-coconut-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2832</span> Utilization of Coconut Husk and Sugarcane Bagasse as a Natural Component in Making Water Resistance Tote Bags</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Mae%20B.%20Mationg">Cyril Mae B. Mationg</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexa%20T.%20Belizar"> Alexa T. Belizar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vethany%20B.%20Bellen"> Vethany B. Bellen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine the use of coconut husks and sugarcane bagasse as natural components in making water-resistant tote bags. The study consists of three concentrations: 70% Coconut Husk - 30% Sugarcane Bagasse, 70% cellulose, and 30% cellulose. The results of these tests revealed that, out of the three concentration concentrations, the one consisting of 70% Coconut Husk and 30% sugarcane bagasse exhibited superior performance in breaking capacity and water penetration. During tensile strength testing, the coconut husk and sugarcane bagasse withstood a force of 207.7 Newtons (N) in the machine direction and 216.5 N in the cross-machine direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20husk" title="coconut husk">coconut husk</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse" title=" sugarcane bagasse"> sugarcane bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=tote%20bags" title=" tote bags"> tote bags</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resistance" title=" water resistance"> water resistance</a> </p> <a href="https://publications.waset.org/abstracts/182732/utilization-of-coconut-husk-and-sugarcane-bagasse-as-a-natural-component-in-making-water-resistance-tote-bags" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2831</span> Biodegradable Drinking Straws Made From Naturally Dried and Fallen Coconut Leaves: Impact on Rural Circular Economy and Environmental Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saji%20Varghese">Saji Varghese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Naturally dried and fallen coconut leaves and found in abundance in India and other coconut growing regions of the world. These fallen coconut leaves are usually burnt by farmers in landfills and open kitchens, leading to CO2 and particulate emissions. The innovation of biodegradable drinking straws from naturally dried and fallen coconut leaves by this researcher and his team has opened up opportunities to create value out of this agri-waste leading to i. prevention of burning of these discarded leaves ii. income generating opportunities to women in rural areas of coconut growing regions iii. an alternative to single use plastic straws. The team has developed five special purpose machines, which are deployed in the three villages on a pilot basis where 36 women are employed. The women are trained in the use of these machines, and the straws which are in good demand are sold globally. The present paper analyses the prospective impact of this innovation on the incomes of women working at the straw production centres and the consequent impact on their standards of living, The paper also analyses the impact of this innovation in the reduction of CO2 and particulate emissions and makes a case for support from Govt and Non Govt organizations in coconut growing regions to set up straw production centres to boost rural circular economy and to reduce carbon footprint and eliminate plastic pollution <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drinking%20straws" title="drinking straws">drinking straws</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20leaves" title=" coconut leaves"> coconut leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/151896/biodegradable-drinking-straws-made-from-naturally-dried-and-fallen-coconut-leaves-impact-on-rural-circular-economy-and-environmental-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2830</span> Production Process of Coconut-Shell Product in Amphawa District</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wannee%20Sutthachaidee">Wannee Sutthachaidee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the production process of coconut-shell product in Amphawa, Samutsongkram Province is objected to study the pattern of the process of coconut-shell product by focusing in the 3 main processes which are inbound logistics process, production process and outbound process. The result of the research: There were 4 main results from the study. Firstly, most of the manufacturer of coconut-shell product is usually owned by a single owner and the quantity of the finished product is quite low and the main labor group is local people. Secondly, the production process can be divided into 4 stages which are pre-production process, production process, packaging process and distribution process. Thirdly, each 3 of the logistics process of coconut shell will find process which may cause the problem to the business but the process which finds the most problem is the production process because the production process needs the skilled labor and the quantity of the labor does not match with the demand from the customers. Lastly, the factors which affect the production process of the coconut shell can be founded in almost every process of the process such as production design, packaging design, sourcing supply and distribution management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production%20process" title="production process">production process</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut-shell%20product" title=" coconut-shell product"> coconut-shell product</a>, <a href="https://publications.waset.org/abstracts/search?q=Amphawa%20District" title=" Amphawa District"> Amphawa District</a>, <a href="https://publications.waset.org/abstracts/search?q=inbound%20logistics%20process" title=" inbound logistics process"> inbound logistics process</a> </p> <a href="https://publications.waset.org/abstracts/14646/production-process-of-coconut-shell-product-in-amphawa-district" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2829</span> Comparative Study of the Effects of Process Parameters on the Yield of Oil from Melon Seed (Cococynthis citrullus) and Coconut Fruit (Cocos nucifera)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ndidi%20F.%20Amulu">Ndidi F. Amulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20E.%20Amulu"> Patrick E. Amulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordian%20O.%20Mbah"> Gordian O. Mbah</a>, <a href="https://publications.waset.org/abstracts/search?q=Callistus%20N.%20Ude"> Callistus N. Ude</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparative analysis of the properties of melon seed, coconut fruit and their oil yield were evaluated in this work using standard analytical technique AOAC. The results of the analysis carried out revealed that the moisture contents of the samples studied are 11.15% (melon) and 7.59% (coconut). The crude lipid content are 46.10% (melon) and 55.15% (coconut).The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant difference (p < 0.05) in yield between the samples, with melon oil seed flour having a higher percentage range of oil yield (41.30 – 52.90%) and coconut (36.25 – 49.83%). The physical characterization of the extracted oil was also carried out. The values gotten for refractive index are 1.487 (melon seed oil) and 1.361 (coconut oil) and viscosities are 0.008 (melon seed oil) and 0.002 (coconut oil). The chemical analysis of the extracted oils shows acid value of 1.00mg NaOH/g oil (melon oil), 10.050mg NaOH/g oil (coconut oil) and saponification value of 187.00mg/KOH (melon oil) and 183.26mg/KOH (coconut oil). The iodine value of the melon oil gave 75.00mg I2/g and 81.00mg I2/g for coconut oil. A standard statistical package Minitab version 16.0 was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to optimize the leaching process. Both samples gave high oil yield at the same optimal conditions. The optimal conditions to obtain highest oil yield ≥ 52% (melon seed) and ≥ 48% (coconut seed) are solute - solvent ratio of 40g/ml, leaching time of 2hours and leaching temperature of 50oC. The two samples studied have potential of yielding oil with melon seed giving the higher yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coconut" title="Coconut">Coconut</a>, <a href="https://publications.waset.org/abstracts/search?q=Melon" title=" Melon"> Melon</a>, <a href="https://publications.waset.org/abstracts/search?q=Optimization" title=" Optimization"> Optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Processing" title=" Processing"> Processing</a> </p> <a href="https://publications.waset.org/abstracts/18345/comparative-study-of-the-effects-of-process-parameters-on-the-yield-of-oil-from-melon-seed-cococynthis-citrullus-and-coconut-fruit-cocos-nucifera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2828</span> Use of Green Coconut Pulp as Cream, Milk, Stabilizer and Emulsifier Replacer in Germinated Brown Rice Ice Cream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naruemon%20Prapasuwannakul">Naruemon Prapasuwannakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Supitcha%20Boonchai"> Supitcha Boonchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Nawapat%20Pengpengpit"> Nawapat Pengpengpit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine physicochemical and sensory properties of germinated brown rice ice cream as affected by replacement of cream, milk, stabilizer, and emulsifier with green coconut pulp. Five different formulations of ice cream were performed. Regular formulation of ice cream consisted of GBR juice, milk cream, milk powder, stabilizer, emulsifier, sucrose and salt. Replacing of cream, milk, stabilizer, and emulsifier with coconut pulp resulted in an increase in viscosity and overrun, but a decrease in hardness, melting rate, lightness (l*) and redness (a*). However, there was no significant difference among all formulations on any sensory attributes. The results also showed that the ice cream with replacement of coconut pulp contained less fat and protein than those of the regular ice cream. The findings suggested that green coconut pulp can be used as alternative ingredient to replace fat, milk stabilizer and emulsifier even in a high carbohydrate ice cream formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20cream" title="ice cream">ice cream</a>, <a href="https://publications.waset.org/abstracts/search?q=germinated%20brown%20rice" title=" germinated brown rice"> germinated brown rice</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20pulp" title=" coconut pulp"> coconut pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=cream" title=" cream"> cream</a> </p> <a href="https://publications.waset.org/abstracts/8201/use-of-green-coconut-pulp-as-cream-milk-stabilizer-and-emulsifier-replacer-in-germinated-brown-rice-ice-cream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2827</span> Effects of Process Parameters on the Yield of Oil from Coconut Fruit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ndidi%20F.%20Amulu">Ndidi F. Amulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Godian%20O.%20Mbah"> Godian O. Mbah</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwel%20I.%20Onyiah"> Maxwel I. Onyiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Callistus%20N.%20Ude"> Callistus N. Ude</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash, and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35, and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P˂0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05 Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26 mgKOH-1 g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2 hrs, leaching temperature of 50 oC and solute/solvent ratio of 0.05 g/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut" title="coconut">coconut</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-extraction" title=" oil-extraction"> oil-extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate" title=" proximate"> proximate</a> </p> <a href="https://publications.waset.org/abstracts/16056/effects-of-process-parameters-on-the-yield-of-oil-from-coconut-fruit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2826</span> Influence of Organic Supplements on Shoot Multiplication Efficiency of Phaius tankervilleae var. alba</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Punjansing">T. Punjansing</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nakkuntod"> M. Nakkuntod</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Homchan"> S. Homchan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Inthima"> P. Inthima</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kongbangkerd"> A. Kongbangkerd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of organic supplements on growth and multiplication efficiency of <em>Phaius tankervilleae </em>var. <em>alba</em> seedlings was investigated. 12 week-old seedlings were cultured on half-strength semi-solid Murashige and Skoog (MS) medium supplemented with 30 g/L sucrose, 8 g/L agar and various concentrations of coconut water (0, 50, 100, 150 and 200 mL/L) combined with potato extract (0, 25 and 50 g/L) and the pH was adjusted to 5.8 prior to autoclaving. The cultures were then kept under constant photoperiod (16 h light: 8 h dark) at 25 &plusmn; 2 &deg;C for 12 weeks. The highest number of shoots (3.0 shoots/explant) was obtained when cultured on the medium added with 50 ml/L coconut water and 50 g/L potato extract whereas the highest number of leaves (5.9 leaves/explant) and roots (6.1 roots/explant) could receive on the medium supplemented with 150 ml/L coconut water and 50 g/L potato extract. with 150 ml/L coconut water and 50 g/L potato extract. Additionally, plantlets of<em> P</em>. <em>tankervilleae </em>var. <em>alba</em> were transferred to grow into seven different substrates i.e. soil, sand, coconut husk chip, soil-sand mix (1: 1), soil-coconut husk chip mix (1: 1), sand-coconut husk chip mix (1: 1) and soil-sand-coconut husk chip mix (1: 1: 1) for four weeks. The results found that acclimatized plants showed 100% of survivals when sand, coconut husk chip and sand-coconut husk chip mix are used as substrates. The number of leaves induced by sand-coconut husk chip mix was significantly higher than that planted in other substrates (<em>P</em> &gt; 0.05). Meanwhile, no significant difference in new shoot formation among these substrates was observed (<em>P</em> &lt; 0.05). This precursory developing protocol was likely to be applied for more large scale of plant production as well as conservation of germplasm of this orchid species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20supplements" title="organic supplements">organic supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=acclimatization" title=" acclimatization"> acclimatization</a>, <a href="https://publications.waset.org/abstracts/search?q=Phaius%20tankervilleae%20var.%20alba" title=" Phaius tankervilleae var. alba"> Phaius tankervilleae var. alba</a>, <a href="https://publications.waset.org/abstracts/search?q=orchid" title=" orchid"> orchid</a> </p> <a href="https://publications.waset.org/abstracts/95318/influence-of-organic-supplements-on-shoot-multiplication-efficiency-of-phaius-tankervilleae-var-alba" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2825</span> Extraction of Dye from Coconut Husk and Its Application on Wool and Silk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepali%20Rastogi">Deepali Rastogi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural dyes are considered to be eco-friendly as they cause no pollution and are safe to use. With the growing interest in natural dyes, new sources of natural dyes are being explored. Coconut (Cocos nucifera) is native to tropical eastern region. It is abundantly available in Asia, Africa and South America. While coconut has tremendous commercial value in food, oil, pharmaceutical and cosmetic industry, the most important use of coconut husk has been as coir which is used for making mats, ropes, etc. In the present study an attempt has been made to extract dye from the coconut husk and study its application on wool and silk. Dye was extracted from coconut husk in an aqueous medium at three different pH. The coconut husk fibres were boiled in water at different pH of 4, 7 and 9 for one hour. On visual inspection of the extracted dye solution, maximum colour was found to be extracted at pH 9. The solution was obtained in neutral medium whereas, no dye was extracted in acidic medium. Therefore, alkaline medium at pH 9 was selected for the extraction of dye from coconut husk. The extracted dye was applied on wool and silk at three different pH, viz., 4, 7 and 9. The effect of pre- and post- mordanting with alum and ferrous sulphate on the colour value of coconut husk dye was also studied. The L*a*b*/L*c*h* values were measured to see the effect of the mordants on the colour values of all the dyed and mordanted samples. Bright golden brown to dark brown colours were obtained at pH 4 on both wool and silk. The colour yield was not very good at pH 7 and 9. Mordanting with alum resulted in darker and brighter shades of brown, whereas mordanting with ferrous sulphate resulted in darker and duller shades. All the samples were tested for colourfastness to light, rubbing, washing and perspiration. Both wool and silk dyed with dye extracted from coconut husk exhibited good to excellent wash, rub and perspiration fastness. Fastness to light was moderate to good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20husk" title="coconut husk">coconut husk</a>, <a href="https://publications.waset.org/abstracts/search?q=wool" title=" wool"> wool</a>, <a href="https://publications.waset.org/abstracts/search?q=silk" title=" silk"> silk</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dye" title=" natural dye"> natural dye</a>, <a href="https://publications.waset.org/abstracts/search?q=mordants" title=" mordants"> mordants</a> </p> <a href="https://publications.waset.org/abstracts/124938/extraction-of-dye-from-coconut-husk-and-its-application-on-wool-and-silk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2824</span> Study of Coconut and Babassu Oils with High Acid Content and the Fatty Acids (C6 to C16) Obtained from These Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fl%C3%A1vio%20A.%20F.%20da%20Ponte">Flávio A. F. da Ponte</a>, <a href="https://publications.waset.org/abstracts/search?q=Jackson%20Q.%20Malveira"> Jackson Q. Malveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20%20A.%20S.%20Ramos%20Filho"> José A. S. Ramos Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20C.%20G.%20Albuquerque"> Monica C. G. Albuquerque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vegetable oils have many applications in industrial processes and due to this potential have constantly increased the demand for the use of low-quality oils, mainly in the production of biofuel. This work aims to the physicochemical evaluation of babassu oil (Orbinya speciosa) and coconut (Cocos nucifera) of low quality, as well the obtaining the free fatty acids 6 to 16 carbon atoms, with intention to be used as raw material for the biofuels production. The babassu oil and coconut low quality, as well the fatty acids obtained from these oils were characterized as their physicochemical properties and fatty acid composition (using gas chromatography coupled to mass). The NMR technique was used to assess the efficiency of fractional distillation under reduced pressure to obtain the intermediate carbonic chain fatty acids. The results showed that the bad quality in terms of physicochemical evaluation of babassu oils and coconut oils interfere directly in industrial application. However the fatty acids of intermediate carbonic chain (C6 to C16) may be used in cosmetic, pharmaceutical and particularly as the biokerosene fuel. The chromatographic analysis showed that the babassu oil and coconut oil have as major fatty acids are lauric acid (57.5 and 38.6%, respectively), whereas the top phase from distillation of coconut oil showed caprylic acid (39.1%) and major fatty acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=babassu%20oil%20%28Orbinya%20speciosa%29" title="babassu oil (Orbinya speciosa)">babassu oil (Orbinya speciosa)</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20oil%20%28Cocos%20nucifera%29" title=" coconut oil (Cocos nucifera)"> coconut oil (Cocos nucifera)</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/48733/study-of-coconut-and-babassu-oils-with-high-acid-content-and-the-fatty-acids-c6-to-c16-obtained-from-these-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2823</span> Chemical and Mechanical Characterization of Composites Reinforced with Coconut Fiber in the Polymeric Matrix of Recycled PVC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luiz%20C.%20G.%20Pennafort%20Jr.">Luiz C. G. Pennafort Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20de%20S.%20Rios"> Alexandre de S. Rios</a>, <a href="https://publications.waset.org/abstracts/search?q=Enio%20P.%20de%20Deus"> Enio P. de Deus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the search for materials that replace conventional polymers in order to preserve natural resources, combined with the need to minimize the problems arising from environmental pollution generated by plastic waste, comes the recycled materials biodegradable, especially the composites reinforced with natural fibers. However, such materials exhibit properties little known, requiring studies of manufacturing methods and characterization of these composites. This article shows informations about preparation and characterization of a composite produced by extrusion, which consists of recycled PVC derived from the recycling of materials discarded, added of the micronized coconut fiber. The recycled PVC with 5% of micronized fiber were characterized by X-ray diffraction, thermogravimetric, differential scanning calorimetry, mechanical analysis and optical microscopy. The use of fiber in the composite caused a decrease in its specific weight, due to the lower specific weight of fibers and the appearance of porosity, in addition to the decrease of mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20PVC" title="recycled PVC">recycled PVC</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20fiber" title=" coconut fiber"> coconut fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/27634/chemical-and-mechanical-characterization-of-composites-reinforced-with-coconut-fiber-in-the-polymeric-matrix-of-recycled-pvc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2822</span> The Effect of Coconut Oil on Anthropometric Measurements and Irisin Levels in Overweight Individuals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilge%20Meral%20Koc">Bilge Meral Koc</a>, <a href="https://publications.waset.org/abstracts/search?q=Elvan%20Yilmaz%20Akyuz"> Elvan Yilmaz Akyuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tugce%20Ozlu"> Tugce Ozlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to discover the effects of coconut oil intake and diet therapy on anthropometric measurements, biochemical findings and irisin levels in overweight individuals. Materials and Methods: Overweight individuals (n=44, 19-30 years) without any chronic disease were included. In this randomized controlled crossover study, the participants were divided into two groups (Group 1: 23 people, Group 2: 21 people). In the first phase, Group 1 received diet therapy to lose 0.5-1 kg of weight per week and 20 mL of coconut oil/day, while Group 2 only received diet therapy. In the second phase, Group 1 received diet therapy while Group 2 received diet therapy and 20 mL of coconut oil/day. Anthropometric measurements were taken four times. Irisin was measured four times by enzyme-linked immunosorbent (ELISA) method and other biochemical findings were measured twice. Statistical analysis was made on SPSS 20. Results: The irisin level decreased significantly when the participants only took coconut oil (p≤0.05). There was a significant decrease in the participants' body weight, body mass index (BMI) level and body fat percentage (p≤0.01). Insulin, total cholesterol, low density lipoproteins (LDL) cholesterol, and triglyceride (TG) levels of all participants decreased significantly (p≤0.05). There was no significant difference in irisin level due to body weight loss (p≤0.05); coconut oil provided a significant decrease in irisin level (p≤0.05). Conclusion: Diet therapy and weight loss did not have an effect on irisin level, but coconut oil alone was found to reduce irisin level. Coconut oil had no impact on anthropometric and biochemical findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20oil" title="coconut oil">coconut oil</a>, <a href="https://publications.waset.org/abstracts/search?q=diet%20therapy" title=" diet therapy"> diet therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=irisin" title=" irisin"> irisin</a>, <a href="https://publications.waset.org/abstracts/search?q=overweight" title=" overweight"> overweight</a> </p> <a href="https://publications.waset.org/abstracts/150976/the-effect-of-coconut-oil-on-anthropometric-measurements-and-irisin-levels-in-overweight-individuals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2821</span> Efficacy of Coconut Shell Pyrolytic Oil Distillate in Protecting Wood Against Bio-Deterioration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Shiny">K. S. Shiny</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sundararaj"> R. Sundararaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coconut trees (Cocos nucifera L.) are grown in many parts of India and world because of its multiple utilities. During pyrolysis, coconut shells yield oil, which is a dark thick liquid. Upon simple distillation it produces a more or less colourless liquid, termed coconut shell pyrolytic oil distillate (CSPOD). This manuscript reports and discusses the use of coconut shell pyrolytic oil distillate as a potential wood protectant against bio-deterioration. Since botanical products as ecofriendly wood protectant is being tested worldwide, the utilization of CPSOD as wood protectant is of great importance. The efficacy of CSPOD as wood protectant was evaluated as per Bureau of Indian Standards (BIS) in terms of its antifungal, antiborer, and termiticidal activities. Specimens of Rubber wood (Hevea brasiliensis) in six replicate each for two treatment methods namely spraying and dipping (48hrs) were employed. CSPOD was found to impart total protection against termites for six months compared to control under field conditions. For assessing the efficacy of CSPOD against fungi, the treated blocks were subjected to the attack of two white rot fungi Tyromyces versicolor (L.) Fr. and Polyporus sanguineus (L.) G. Mey and two brown rot fungi, Polyporus meliae (Undrew.) Murrill. and Oligoporus placenta (Fr.) Gilb. & Ryvarden. Results indicated that treatment with CSPOD significantly protected wood from the damage caused by the decay fungi. Efficacy of CSPOD against wood borer Lyctus africanus Lesne was carried out using six pairs of male and female beetles and it gave promising results in protecting the treated wood blocks when compared to control blocks. As far as the treatment methods were concerned, dip treatment was found to be more effective when compared to spraying. The results of the present investigation indicated that CSPOD is a promising botanical compound which has the potential to replace synthetic wood protectants. As coconut shell, pyrolytic oil is a waste byproduct of coconut shell charcoal industry, its utilization as a wood preservative will expand the economic returns from such industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20shell%20pyrolytic%20oil%20distillate" title="coconut shell pyrolytic oil distillate">coconut shell pyrolytic oil distillate</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20wood%20protection" title=" eco-friendly wood protection"> eco-friendly wood protection</a>, <a href="https://publications.waset.org/abstracts/search?q=termites" title=" termites"> termites</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20borers" title=" wood borers"> wood borers</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20decay%20fungi" title=" wood decay fungi"> wood decay fungi</a> </p> <a href="https://publications.waset.org/abstracts/26771/efficacy-of-coconut-shell-pyrolytic-oil-distillate-in-protecting-wood-against-bio-deterioration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2820</span> Energy Saving Stove for Stew Coconut Sugar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruedee%20Niyomrath">Ruedee Niyomrath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purposes of this research is aim to build the energy saving stove for stew coconut sugar. The research started from explores ceramic raw materials in local area, create the appropriate mixture of ceramic raw materials for construction material of stove, and make it by ceramic process. It includes design and build the energy saving stove, experiment the efficiency of energy saving stove as to thermal efficiency, energy saving, performance of time, and energy cost efficiency, transfer the knowledge for community, stove manufacturers, and technicians. The findings must be useful to the coconut sugar enterprises producing, to reduce the cost of production, preserve natural resources, and environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20raw%20material" title="ceramic raw material">ceramic raw material</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving%20stove" title=" energy saving stove"> energy saving stove</a>, <a href="https://publications.waset.org/abstracts/search?q=stove%20design" title=" stove design"> stove design</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20of%20stove" title=" performance of stove"> performance of stove</a>, <a href="https://publications.waset.org/abstracts/search?q=stove%20for%20stew%20coconut%20sugar" title=" stove for stew coconut sugar "> stove for stew coconut sugar </a> </p> <a href="https://publications.waset.org/abstracts/4131/energy-saving-stove-for-stew-coconut-sugar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2819</span> Study of Hot Press Molding Method of Biodegradable Composite, Polypropylene Reinforced Coconut Coir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Herman%20Ruswan%20Suwarman">Herman Ruswan Suwarman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rivai"> Ahmad Rivai</a>, <a href="https://publications.waset.org/abstracts/search?q=Mochamad%20Saidiman"> Mochamad Saidiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuncoro%20Diharjo"> Kuncoro Diharjo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dody%20Ariawan"> Dody Ariawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of biodegradable composite to solve ecological and environmental problems has currently risen as a trend. With the increasing use of biodegradable composite comes an increasing need to fabricate it properly. Yet this understanding has remained a challenge for the design engineer. Therefore, this study aims to explore how to combine coconut coir as a reinforcing material and polypropylene (PP) as a biodegradable polymer matrix. By using Hotpress Molding, two methods were developed and compared. The difference between these two methods is not only the step of fabrication but also the raw material. The first method involved a PP sheet and the second used PP pellets directly. Based on the results, it can be concluded that PP pellets yield better results, where the composite was produced in a shorter time, with an evenly distributed coconut coir and a smaller number of voids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20coir" title=" coconut coir"> coconut coir</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20press%20molding" title=" hot press molding"> hot press molding</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a> </p> <a href="https://publications.waset.org/abstracts/146760/study-of-hot-press-molding-method-of-biodegradable-composite-polypropylene-reinforced-coconut-coir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2818</span> Adsorption Studies of Lead from Aqueos Solutions on Cocount Shell Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20E.%20Sharaf%20El-Deen">G. E. Sharaf El-Deen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20A.%20Sharaf%20El-Deen"> S. E. A. Sharaf El-Deen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon was prepared from coconut shell (ACS); a discarded agricultural waste was used to produce bioadsorbent through easy and environmental friendly processes. This activated carbon based biosorbent was evaluated for adsorptive removal of lead from water. The characterisation results showed this biosorbent had very high specific surface area and functional groups. The adsorption equilibrium data was well described by Langmuir, whilst kinetics data by pseudo-first order, pseudo-second order and Intraparticle diffusion models. The adsorption process could be described by the pseudo-second order kinetic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20shell" title="coconut shell">coconut shell</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherm%20and%20kinetics" title=" adsorption isotherm and kinetics"> adsorption isotherm and kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20removal" title=" lead removal"> lead removal</a> </p> <a href="https://publications.waset.org/abstracts/38679/adsorption-studies-of-lead-from-aqueos-solutions-on-cocount-shell-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2817</span> Effect of Mercerization on Coconut Fiber Surface Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sphiwe%20Simelane">Sphiwe Simelane</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Madyira"> Daniel Madyira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of natural fibers requires that they should be treated in preparation for their use in Natural Fiber-reinforced polymer composites. This paper reports on the effects of sodium hydroxide (NaOH) treatment on the surface of coconut fibers. The fibers were subjected to 5%, 10%, 15% and 20% NaOH concentrations and soaked for 4 hours and thoroughly rinsed and allowed to dry in the open air for seven days, after which time they were dried in an oven for 30 minutes. Untreated and treated coconut fibers were observed under the Scanning Electron Microscope and it was noted that the surface structure of the fibers was modified differently by the different NaOH concentrations, and the resultant colour of the treated fibers got darker as the solution concentration increased, and the texture felt rougher to the touch as a result of the erosion of the fiber surface. Further, the increase in alkali concentration striped the surface of more constituents, thus exposing “pits” and other surface components rendering the surface rough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20fiber" title="coconut fiber">coconut fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a> </p> <a href="https://publications.waset.org/abstracts/138059/effect-of-mercerization-on-coconut-fiber-surface-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2816</span> Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Ferreira">R. C. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20C.%20De%20Lima"> H. H. C. De Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20C%C3%A2ndido"> A. A. Cândido</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Couto%20Junior"> O. M. Couto Junior</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Arroyo"> P. A. Arroyo</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Q%20De%20Carvalho"> K. Q De Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20F.%20Gauze"> G. F. Gauze</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20S.%20D.%20Barros"> M. A. S. D. Barros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of the widespread used drug paracetamol from water was investigated using activated carbon originated from dende coconut mesocarp and babassu coconut mesocarp. Kinetic and equilibrium data were obtained at different values of pH. Babassu activated carbon showed higher efficiency due to its acidity and higher microporosity. Pseudo-second order model was better adjusted to the kinetic results. Equilibrium data may be represented by Langmuir equation. Lower solution pH provided better removal efficiency as the carbonil groups may be attracted by the positively charged carbon surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=babassu" title=" babassu"> babassu</a>, <a href="https://publications.waset.org/abstracts/search?q=dende" title=" dende"> dende</a> </p> <a href="https://publications.waset.org/abstracts/23917/adsorption-of-paracetamol-using-activated-carbon-of-dende-and-babassu-coconut-mesocarp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2815</span> Coconut Shells as the Alternative Equipment for Foot Reflexology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nichanant%20Sermsri">Nichanant Sermsri</a>, <a href="https://publications.waset.org/abstracts/search?q=Chananchida%20Yuktirat"> Chananchida Yuktirat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was the experimental research. Its purpose was to find out how coconut shells can be adapted to be equipment for foot and calf reflexology. The sample group was 58 female street vendors in Thewet Market, Dusit District, Bangkok, selected by selection criteria and voluntary. The data collecting tool in this research was the Visual Analogue Scale. The massaging tool made from coconut shells (designed and produced by the research team) was the key equipment for this research. The duration of the research was 1 month. The research team assessed the level of exhaustion and heart rate among sample group before and after the massage, then analyzed the data by mean, standard deviation and paired sample t-test. We found out from the research that 1) The level of exhaustion decreased 4.529 levels after the massage. The standard deviation was 1.6195. The heart rates went down 11.67 times/minute. The standard deviation was 6.742. 2) The level of exhaustion and heart rate after the massage decreased with the statistically significance at 0.01. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foot%20reflexology" title="foot reflexology">foot reflexology</a>, <a href="https://publications.waset.org/abstracts/search?q=massaging%20plate" title=" massaging plate"> massaging plate</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20shells" title=" coconut shells"> coconut shells</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20sciences" title=" ecological sciences"> ecological sciences</a> </p> <a href="https://publications.waset.org/abstracts/6686/coconut-shells-as-the-alternative-equipment-for-foot-reflexology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2814</span> Hydrogen Storage in Carbonized Coconut Meat (Kernel)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viney%20Dixit">Viney Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20R.%20Shahi"> Rohit R. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Bhatnagar"> Ashish Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Jain"> P. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Yadav"> T. P. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20N.%20Srivastava"> O. N. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20kernel" title="coconut kernel">coconut kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonization" title=" carbonization"> carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=KCl" title=" KCl"> KCl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg" title=" Mg"> Mg</a>, <a href="https://publications.waset.org/abstracts/search?q=Ca" title=" Ca"> Ca</a> </p> <a href="https://publications.waset.org/abstracts/12194/hydrogen-storage-in-carbonized-coconut-meat-kernel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2813</span> Utilizing Quicklime (Calcium Oxide) for Self-Healing Properties in Innovation of Coconut Husk Fiber Bricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Gabriel%20Mariveles">Christian Gabriel Mariveles</a>, <a href="https://publications.waset.org/abstracts/search?q=Darelle%20Jay%20Gallardo"> Darelle Jay Gallardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Leslie%20Dayaoen"> Leslie Dayaoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurenz%20Paul%20Diaz"> Laurenz Paul Diaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> True experimental research with descriptive analysis was conducted. Utilizing Quicklime (Calcium Oxide) for self-healing properties of coconut husk fibre concrete brick. There are 2 setups established: the first one has the 1:1:2 ratio of calcium oxide, cement and sand, and the second one has a 2:1:2 ratio of the same variables. The bricks are made from the residences along Barangay Greater Lagro. The mixture of sand and cement is mixed with coconut husk fibers and then molded with different ratios in the molder. After the drying of cement, the researchers tested the bricks in the laboratory for compressive strength. The brick with the highest PSI is picked by the researchers to drop into freefall testing, and it makes remarkable remarks as it is deformed after dropping to different heights with a maximum of 20 feet. Unfortunately, the self-healing capabilities were not observed during the 12 weeks of monitoring. However, the brick was weighed after 12 weeks of monitoring, and it increased in weight by 0.030 kg. from 1.833 kg. to 1.863 kg. meaning that this ratio 2 has the potential to self-heal, but 12 weeks of monitoring by the researchers is not enough to conclude that it has a significant difference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self%20healing" title="self healing">self healing</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20husk%20bricks" title=" coconut husk bricks"> coconut husk bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=research" title=" research"> research</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20oxide" title=" calcium oxide"> calcium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=utilizing%20quicklime" title=" utilizing quicklime"> utilizing quicklime</a> </p> <a href="https://publications.waset.org/abstracts/184457/utilizing-quicklime-calcium-oxide-for-self-healing-properties-in-innovation-of-coconut-husk-fiber-bricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2812</span> Analysis of Bio-Oil Produced by Pyrolysis of Coconut Shell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Fardhyanti">D. S. Fardhyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Damayanti"> A. Damayanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio-oil. Bio-oil is a liquid which is produced by steam condensation process from the pyrolysis of coconut shells. The composition of a coconut shell e.g. hemicellulose, cellulose and lignin will be oxidized to phenolic compounds as the main component of the bio-oil. The phenolic compounds in bio-oil are corrosive; they cause various difficulties in the combustion system because of a high viscosity, low calorific value, corrosiveness, and instability. Phenolic compounds are very valuable components which phenol has used as the main component for the manufacture of antiseptic, disinfectant (known as Lysol) and deodorizer. The experiments typically occurred at the atmospheric pressure in a pyrolysis reactor at temperatures ranging from 300 <sup>o</sup>C to 350 <sup>o</sup>C with a heating rate of 10 <sup>o</sup>C/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the bio-oil components. The obtained bio-oil has the viscosity of 1.46 cP, the density of 1.50 g/cm<sup>3</sup>, the calorific value of 16.9 MJ/kg, and the molecular weight of 1996.64. By GC-MS, the analysis of bio-oil showed that it contained phenol (40.01%), ethyl ester (37.60%), 2-methoxy-phenol (7.02%), furfural (5.45%), formic acid (4.02%), 1-hydroxy-2-butanone (3.89%), and 3-methyl-1,2-cyclopentanedione (2.01%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-oil" title="bio-oil">bio-oil</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20shell" title=" coconut shell"> coconut shell</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography-mass%20spectroscopy" title=" gas chromatography-mass spectroscopy"> gas chromatography-mass spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/67250/analysis-of-bio-oil-produced-by-pyrolysis-of-coconut-shell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2811</span> Ferric Sulphate Catalyzed Esterification of High Free Fatty Acids Content Used Coconut Oil for Biodiesel Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Maheshika">G. N. Maheshika</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20R.%20H.%20Wijerathna"> J. A. R. H. Wijerathna</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20P.%20Gunawardena"> S. H. P. Gunawardena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feedstock with high free fatty acids (FFAs) content can be successfully employed for biodiesel synthesis once the high FFA content is reduced to the desired levels. In the present study, the applicability of ferric sulphate as the solid acid catalyst for esterification of FFA in used coconut oil was evaluated at varying catalyst concentration and methanol:oil molar ratios. 1.25, 2.5, 3.75 and 5.0% w/w Fe2(SO4)3 on oil basis was used at methanol:oil ratios of 3:1, 4.5:1, and 6:1 and at the reaction temperature of 60 0C. The FFA reduction increased with the increase in catalyst and methanol:oil molar ratios while the time requirement to reach the esterification equilibrium reduced. Satisfactory results for esterification could be obtained within a small reaction period in the presence of only a small amount of Fe2(SO4)3 catalyst concentration and at low reaction temperature, which then can be subjected for trans-esterification process. At the end of the considering reaction period the solid Fe2(SO4)3 catalyst could be separated from the reaction system. The economics of the Fe2(SO4)3 catalyzed esterification of high FFA content used coconut oil for biodiesel is at favorable conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=esterification" title=" esterification"> esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=ferric%20sulphate" title=" ferric sulphate"> ferric sulphate</a>, <a href="https://publications.waset.org/abstracts/search?q=Free%20fatty%20acids" title=" Free fatty acids"> Free fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=used%20coconut%20oil" title=" used coconut oil"> used coconut oil</a> </p> <a href="https://publications.waset.org/abstracts/17941/ferric-sulphate-catalyzed-esterification-of-high-free-fatty-acids-content-used-coconut-oil-for-biodiesel-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2810</span> Electrochemical Study of Al-Doped K₂CO₃ Activated Coconut Husk Carbon-Based Composite Anode Material for Battery Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alpha%20Matthew">Alpha Matthew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Composites of Al-Doped K₂CO₃ activated coconut husk carbon, Al₀.₁:(K₂CO₃C)₀.₉ and AI₀.₃:(K₂CO₃C)₀.₇, were prepared using the hydrothermal method and drop casting deposition technique. The electrochemical performance of the Al-doped K₂CO₃ activated coconut husk carbon composite as a promising anode material for lithium-ion batteries was characterised by cyclic voltammetry analysis, electrochemical impedance spectroscopy, and galvanostatic charge discharge analysis. The charges that are retained in the anode material during charging showed a linear decline in charge capacity as the charging current intensity increased. Ionic polarisation was the reason for the observed drop in the charge and discharge capabilities at the current density of 5 A/g. Having greater specific capacitance and energy density, the composite Al₀.₁:(K₂CO₃C)₀.₉ is a better anode material for electrochemical applications compared to AI₀.₃:(K₂CO₃C)₀.₇, also its comparatively higher power density at a scan rate of 5 mV/s is mostly explained by its lower equivalent series resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20carbon%20husk" title="coconut carbon husk">coconut carbon husk</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20density" title=" power density"> power density</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20density" title=" energy density"> energy density</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=anode%20electrode" title=" anode electrode"> anode electrode</a> </p> <a href="https://publications.waset.org/abstracts/192345/electrochemical-study-of-al-doped-k2co3-activated-coconut-husk-carbon-based-composite-anode-material-for-battery-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil&amp;page=94">94</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil&amp;page=95">95</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10