CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;22 of 22 results for author: <span class="mathjax">Tomii, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Tomii%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tomii, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tomii%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tomii, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20590">arXiv:2410.20590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20590">pdf</a>, <a href="https://arxiv.org/format/2410.20590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The long-distance window of the hadronic vacuum polarization for the muon g-2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">T. Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">P. A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">M. Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chakraborty%2C+B">B. Chakraborty</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Erben%2C+F">F. Erben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=G%C3%BClpers%2C+V">V. G眉lpers</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hackl%2C+A">A. Hackl</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hermansson-Truedsson%2C+N">N. Hermansson-Truedsson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hill%2C+R+C">R. C. Hill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">T. Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">L. Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">C. Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">C. Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=McKeon%2C+J">J. McKeon</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">A. S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">M. Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tsang%2C+J+T">J. T. Tsang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tuo%2C+X+-">X. -Y. Tuo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20590v1-abstract-short" style="display: inline;"> We provide the first ab-initio calculation of the Euclidean long-distance window of the isospin symmetric light-quark connected contribution to the hadronic vacuum polarization for the muon $g-2$ and find $a_渭^{\rm LD,iso,conn,ud} = 411.4(4.3)(2.4) \times 10^{-10}$. We also provide the currently most precise calculation of the total isospin symmetric light-quark connected contribution,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20590v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20590v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20590v1-abstract-full" style="display: none;"> We provide the first ab-initio calculation of the Euclidean long-distance window of the isospin symmetric light-quark connected contribution to the hadronic vacuum polarization for the muon $g-2$ and find $a_渭^{\rm LD,iso,conn,ud} = 411.4(4.3)(2.4) \times 10^{-10}$. We also provide the currently most precise calculation of the total isospin symmetric light-quark connected contribution, $a_渭^{\rm iso,conn,ud} = 666.2(4.3)(2.5) \times 10^{-10}$, which is more than 4$蟽$ larger compared to the data-driven estimates of Boito et al. 2022 and 1.7$蟽$ larger compared to the lattice QCD result of BMW20. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20590v1-abstract-full').style.display = 'none'; document.getElementById('2410.20590v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06781">arXiv:2306.06781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06781">pdf</a>, <a href="https://arxiv.org/format/2306.06781">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.094517">10.1103/PhysRevD.108.094517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $螖I = 3/2$ and $螖I = 1/2$ channels of $K\to蟺蟺$ decay at the physical point with periodic boundary conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoying%2C+D">Daniel Hoying</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06781v3-abstract-short" style="display: inline;"> We present a lattice calculation of the $K\to蟺蟺$ matrix elements and amplitudes with both the $螖I = 3/2$ and 1/2 channels and $\varepsilon&#39;$, the measure of direct $CP$ violation. We use periodic boundary conditions (PBC), where the correct kinematics of $K\to蟺蟺$ can be achieved via an excited two-pion final state. To overcome the difficulty associated with the extraction of excited states, our pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06781v3-abstract-full').style.display = 'inline'; document.getElementById('2306.06781v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06781v3-abstract-full" style="display: none;"> We present a lattice calculation of the $K\to蟺蟺$ matrix elements and amplitudes with both the $螖I = 3/2$ and 1/2 channels and $\varepsilon&#39;$, the measure of direct $CP$ violation. We use periodic boundary conditions (PBC), where the correct kinematics of $K\to蟺蟺$ can be achieved via an excited two-pion final state. To overcome the difficulty associated with the extraction of excited states, our previous work \cite{Bai:2015nea,RBC:2020kdj} successfully employed G-parity boundary conditions, where pions are forced to have non-zero momentum enabling the $I=0$ two-pion ground state to express the on-shell kinematics of the $K\to蟺蟺$ decay. Here instead we overcome the problem using the variational method which allows us to resolve the two-pion spectrum and matrix elements up to the relevant energy where the decay amplitude is on-shell. In this paper we report an exploratory calculation of $K\to蟺蟺$ decay amplitudes and $\varepsilon&#39;$ using PBC on a coarser lattice size of $24^3\times64$ with inverse lattice spacing $a^{-1}=1.023$ GeV and the physical pion and kaon masses. The results are promising enough to motivate us to continue our measurements on finer lattice ensembles in order to improve the precision in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06781v3-abstract-full').style.display = 'none'; document.getElementById('2306.06781v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys,Rev,D.,108,094517 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.03313">arXiv:2304.03313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.03313">pdf</a>, <a href="https://arxiv.org/format/2304.03313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Isospin 0 and 2 two-pion scattering at physical pion mass using distillation with periodic boundary conditions in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoying%2C+D">Daniel Hoying</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.03313v1-abstract-short" style="display: inline;"> The two pion channel in Lattice QCD has long been a primary testing ground for studying multiparticle scattering in finite volume QCD. With the development of sophisticated techniques such as distillation, it is possible to carefully study two-pion scattering in order to constrain associated low-energy constants. In this work, correlation functions with multiparticle interpolating operators are co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03313v1-abstract-full').style.display = 'inline'; document.getElementById('2304.03313v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.03313v1-abstract-full" style="display: none;"> The two pion channel in Lattice QCD has long been a primary testing ground for studying multiparticle scattering in finite volume QCD. With the development of sophisticated techniques such as distillation, it is possible to carefully study two-pion scattering in order to constrain associated low-energy constants. In this work, correlation functions with multiparticle interpolating operators are constructed to compute pion scattering phase shifts and scattering lengths in the isospin 0 and 2 channels with both sea and valence quarks at physical mass. Contamination from vacuum and thermal contributions are explicitly quantified with dedicated calculations and the results obtained after subtracting these nuisance terms are compared with the traditional correlator time series subtraction method. Two physical point ensembles with different lattice actions are used, and our finest ensemble gives results for scattering lengths and phase shifts consistent with phenomenology to within the reported statistical uncertainty. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.03313v1-abstract-full').style.display = 'none'; document.getElementById('2304.03313v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-847250-DRAFT </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.09286">arXiv:2301.09286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.09286">pdf</a>, <a href="https://arxiv.org/format/2301.09286">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094512">10.1103/PhysRevD.107.094512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isospin 0 and 2 two-pion scattering at physical pion mass using all-to-all propagators with periodic boundary conditions in lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoying%2C+D">Daniel Hoying</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meyer%2C+A+S">Aaron S. Meyer</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.09286v2-abstract-short" style="display: inline;"> A study of two-pion scattering for the isospin channels, $I=0$ and $I=2$, using lattice QCD is presented. M枚bius domain wall fermions on top of the Iwasaki-DSDR gauge action for gluons with periodic boundary conditions are used for the lattice computations which are carried out on two ensembles of gauge field configurations generated by the RBC and UKQCD collaborations with physical masses, invers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09286v2-abstract-full').style.display = 'inline'; document.getElementById('2301.09286v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.09286v2-abstract-full" style="display: none;"> A study of two-pion scattering for the isospin channels, $I=0$ and $I=2$, using lattice QCD is presented. M枚bius domain wall fermions on top of the Iwasaki-DSDR gauge action for gluons with periodic boundary conditions are used for the lattice computations which are carried out on two ensembles of gauge field configurations generated by the RBC and UKQCD collaborations with physical masses, inverse lattice spacings of 1.023 and 1.378 GeV, and spatial extents of $L=4.63$ and 4.58 fm, respectively. The all-to-all propagator method is employed to compute a matrix of correlation functions of two-pion operators. The generalized eigenvalue problem (GEVP) is solved for a matrix of correlation functions to extract phase shifts with multiple states, two pions with a non-zero relative momentum as well as two pions at rest. Our results for phase shifts for both $I=0$ and $I=2$ channels are consistent with and the Roy Equation and chiral perturbation theory, though at this preliminary stage our errors for $I=0$ are large. An important outcome of this work is that we are successful in extracting two-pion excited states, which are useful for studying $K\to蟺蟺$ decay, on physical-mass ensembles using GEVP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09286v2-abstract-full').style.display = 'none'; document.getElementById('2301.09286v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.13107">arXiv:2211.13107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.13107">pdf</a>, <a href="https://arxiv.org/ps/2211.13107">ps</a>, <a href="https://arxiv.org/format/2211.13107">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.114515">10.1103/PhysRevD.107.114515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-mode Renormalization for Tensor Network with Stochastic Noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Arai%2C+E">Erika Arai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ohki%2C+H">Hiroshi Ohki</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Takeda%2C+S">Shinji Takeda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.13107v2-abstract-short" style="display: inline;"> In usual (non-stochastic) tensor network calculations, the truncated singular value decomposition (SVD) is often used for approximating a tensor, and it causes systematic errors. By introducing stochastic noise in the approximation, however, one can avoid such systematic errors at the expense of statistical errors which can be straightforwardly controlled. Therefore in principle, exact results can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13107v2-abstract-full').style.display = 'inline'; document.getElementById('2211.13107v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.13107v2-abstract-full" style="display: none;"> In usual (non-stochastic) tensor network calculations, the truncated singular value decomposition (SVD) is often used for approximating a tensor, and it causes systematic errors. By introducing stochastic noise in the approximation, however, one can avoid such systematic errors at the expense of statistical errors which can be straightforwardly controlled. Therefore in principle, exact results can be obtained even at finite bond dimension up to the statistical errors. A previous study of the unbiased method implemented in tensor renormalization group (TRG) algorithm, however, showed that the statistical errors for physical quantity are not negligible, and furthermore the computational cost is linearly proportional to a system volume. In this paper, we introduce a new way of stochastic noise such that the statistical error is suppressed, and moreover, in order to reduce the computational cost we propose common noise method whose cost is proportional to the logarithm of volume. We find that the method provides better accuracy for the free energy compared with the truncated SVD when applying to TRG for Ising model on square lattice. Although the common noise method introduces systematic error originated from a correlation of noises, we show that the error can be described by a simple functional form in terms of the number of noises, thus the error can be straightforwardly controlled in an actual analysis. We also apply the method to the graph independent local truncation algorithm and show that the accuracy is further improved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13107v2-abstract-full').style.display = 'none'; document.getElementById('2211.13107v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 19 figures, 2 tables, version published in Phys.Rev.D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KANAZAWA-22-06 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 107 (2023) 11, 114515 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07641">arXiv:2207.07641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07641">pdf</a>, <a href="https://arxiv.org/format/2207.07641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Lattice QCD and Particle Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Kronfeld%2C+A+S">Andreas S. Kronfeld</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bhattacharya%2C+T">Tanmoy Bhattacharya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=DeTar%2C+C">Carleton DeTar</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Edwards%2C+R">Robert Edwards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hasenfratz%2C+A">Anna Hasenfratz</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mukherjee%2C+S">Swagato Mukherjee</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Orginos%2C+K">Konstantinos Orginos</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Brower%2C+R">Richard Brower</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cirigliano%2C+V">Vincenzo Cirigliano</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Davoudi%2C+Z">Zohreh Davoudi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=J%C3%B3o%2C+B">B谩lint J贸o</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Meinel%2C+S">Stefan Meinel</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Neil%2C+E+T">Ethan T. Neil</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Petreczky%2C+P">Peter Petreczky</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Richards%2C+D+G">David G. Richards</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bazavov%2C+A">Alexei Bazavov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Catterall%2C+S">Simon Catterall</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Dudek%2C+J+J">Jozef J. Dudek</a>, <a href="/search/hep-lat?searchtype=author&amp;query=El-Khadra%2C+A+X">Aida X. El-Khadra</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07641v2-abstract-short" style="display: inline;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07641v2-abstract-full" style="display: none;"> Contribution from the USQCD Collaboration to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07641v2-abstract-full').style.display = 'none'; document.getElementById('2207.07641v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pp. main text, 4 pp. appendices, 29 pp. references, 1 p. index</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-531-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10998">arXiv:2203.10998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.10998">pdf</a>, <a href="https://arxiv.org/ps/2203.10998">ps</a>, <a href="https://arxiv.org/format/2203.10998">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovering new physics in rare kaon decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P">Peter Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N">Norman Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Erben%2C+F">Felix Erben</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Feng%2C+X">Xu Feng</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Guelpers%2C+V">Vera Guelpers</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hill%2C+R">Ryan Hill</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hodgson%2C+R">Raoul Hodgson</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoying%2C+D">Danel Hoying</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jang%2C+Y">Yong-Chull Jang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Karpie%2C+J">Joe Karpie</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Portelli%2C+A">Antonin Portelli</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C">Christopher Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+B">Bigeng Wang</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+T">Tianle Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10998v1-abstract-short" style="display: inline;"> The decays and mixing of $K$ mesons are remarkably sensitive to the weak interactions of quarks and leptons at high energies. They provide important tests of the standard model at both first and second order in the Fermi constant $G_F$ and offer a window into possible new phenomena at energies as high as 1,000 TeV. These possibilities become even more compelling as the growing capabilities of latt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10998v1-abstract-full').style.display = 'inline'; document.getElementById('2203.10998v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10998v1-abstract-full" style="display: none;"> The decays and mixing of $K$ mesons are remarkably sensitive to the weak interactions of quarks and leptons at high energies. They provide important tests of the standard model at both first and second order in the Fermi constant $G_F$ and offer a window into possible new phenomena at energies as high as 1,000 TeV. These possibilities become even more compelling as the growing capabilities of lattice QCD make high-precision standard model predictions possible. Here we discuss and attempt to forecast some of these capabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10998v1-abstract-full').style.display = 'none'; document.getElementById('2203.10998v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to the Rare Processes and Precision, Theory and Computational Frontiers for the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02320">arXiv:2201.02320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.02320">pdf</a>, <a href="https://arxiv.org/format/2201.02320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> $K\to蟺蟺$ decay matrix elements at the physical point with periodic boundary conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoying%2C+D">Daniel Hoying</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Izubuchi%2C+T">Taku Izubuchi</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">Amarjit Soni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02320v1-abstract-short" style="display: inline;"> We calculate $K\to蟺蟺$ matrix elements using periodic boundary conditions as an independent calculation from our previous study with G-parity boundary conditions. We present our preliminary results for $K\to蟺蟺$ three-point functions and matrix elements on a $24^3, a^{-1} = 1$~GeV, $2+1$-flavor M枚bius DWF ensemble at physical pion and kaon masses generated by the RBC and UKQCD collaborations and dis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02320v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02320v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02320v1-abstract-full" style="display: none;"> We calculate $K\to蟺蟺$ matrix elements using periodic boundary conditions as an independent calculation from our previous study with G-parity boundary conditions. We present our preliminary results for $K\to蟺蟺$ three-point functions and matrix elements on a $24^3, a^{-1} = 1$~GeV, $2+1$-flavor M枚bius DWF ensemble at physical pion and kaon masses generated by the RBC and UKQCD collaborations and discuss the prospect for high-precision computation of $\varepsilon&#39;$ with periodic boundary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02320v1-abstract-full').style.display = 'none'; document.getElementById('2201.02320v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the 38th International Symposium on Lattice Field Theory (Lattice 2021), July 26-30, 2021, Zoom/Gather@MIT</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11921">arXiv:2110.11921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.11921">pdf</a>, <a href="https://arxiv.org/format/2110.11921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Hybrid stochastic method for the tensor renormalization group </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ohki%2C+H">Hiroshi Ohki</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Arai%2C+E">Erika Arai</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11921v1-abstract-short" style="display: inline;"> We propose a hybrid stochastic method for the tensor renormalization group (TRG) approach. TRG is known as a powerful tool to study the many-body systems and quantum field theory on the lattice. It is based on a low-rank approximation of the tensor using the truncated singular value decomposition (SVD), whose computational cost increases as the bond dimension increases, so that efficient cost redu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11921v1-abstract-full').style.display = 'inline'; document.getElementById('2110.11921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11921v1-abstract-full" style="display: none;"> We propose a hybrid stochastic method for the tensor renormalization group (TRG) approach. TRG is known as a powerful tool to study the many-body systems and quantum field theory on the lattice. It is based on a low-rank approximation of the tensor using the truncated singular value decomposition (SVD), whose computational cost increases as the bond dimension increases, so that efficient cost reduction techniques are highly demanded. We use noise vectors for the low-rank approximation with the truncated SVD, by which the truncation error is replaced with a statistical error due to noise, and an error estimation could be improved. We test this method in the classical Ising model and observe a better accuracy than TRG. We also discuss a cross contamination issue in a multiple use of the same noise vectors, and to remove this systematic error we consider position-dependent noise vectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11921v1-abstract-full').style.display = 'none'; document.getElementById('2110.11921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, poster presented at the 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021 Zoom/Gather@Massachusetts Institute of Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.09440">arXiv:2004.09440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.09440">pdf</a>, <a href="https://arxiv.org/format/2004.09440">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.054509">10.1103/PhysRevD.102.054509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct CP violation and the $螖I=1/2$ rule in $K\to蟺蟺$ decay from the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Abbott%2C+R">Ryan Abbott</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Blum%2C+T">Thomas Blum</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyle%2C+P+A">Peter A. Boyle</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Bruno%2C+M">Mattia Bruno</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hoying%2C+D">Daniel Hoying</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Jung%2C+C">Chulwoo Jung</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kelly%2C+C">Christopher Kelly</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lehner%2C+C">Christoph Lehner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mawhinney%2C+R+D">Robert D. Mawhinney</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Murphy%2C+D+J">David J. Murphy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sachrajda%2C+C+T">Christopher T. Sachrajda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Soni%2C+A">Amarjit Soni</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Wang%2C+T">Tianle Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.09440v2-abstract-short" style="display: inline;"> We present a lattice QCD calculation of the $螖I=1/2$, $K\to蟺蟺$ decay amplitude $A_0$ and $\varepsilon&#39;$, the measure of direct CP-violation in $K\to蟺蟺$ decay, improving our 2015 calculation of these quantities. Both calculations were performed with physical kinematics on a $32^3\times 64$ lattice with an inverse lattice spacing of $a^{-1}=1.3784(68)$ GeV. However, the current calculation includes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09440v2-abstract-full').style.display = 'inline'; document.getElementById('2004.09440v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.09440v2-abstract-full" style="display: none;"> We present a lattice QCD calculation of the $螖I=1/2$, $K\to蟺蟺$ decay amplitude $A_0$ and $\varepsilon&#39;$, the measure of direct CP-violation in $K\to蟺蟺$ decay, improving our 2015 calculation of these quantities. Both calculations were performed with physical kinematics on a $32^3\times 64$ lattice with an inverse lattice spacing of $a^{-1}=1.3784(68)$ GeV. However, the current calculation includes nearly four times the statistics and numerous technical improvements allowing us to more reliably isolate the $蟺蟺$ ground-state and more accurately relate the lattice operators to those defined in the Standard Model. We find ${\rm Re}(A_0)=2.99(0.32)(0.59)\times 10^{-7}$ GeV and ${\rm Im}(A_0)=-6.98(0.62)(1.44)\times 10^{-11}$ GeV, where the errors are statistical and systematic, respectively. The former agrees well with the experimental result ${\rm Re}(A_0)=3.3201(18)\times 10^{-7}$ GeV. These results for $A_0$ can be combined with our earlier lattice calculation of $A_2$ to obtain ${\rm Re}(\varepsilon&#39;/\varepsilon)=21.7(2.6)(6.2)(5.0) \times 10^{-4}$, where the third error represents omitted isospin breaking effects, and Re$(A_0)$/Re$(A_2) = 19.9(2.3)(4.4)$. The first agrees well with the experimental result of ${\rm Re}(\varepsilon&#39;/\varepsilon)=16.6(2.3)\times 10^{-4}$. A comparison of the second with the observed ratio Re$(A_0)/$Re$(A_2) = 22.45(6)$, demonstrates the Standard Model origin of this &#34;$螖I = 1/2$ rule&#34; enhancement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09440v2-abstract-full').style.display = 'none'; document.getElementById('2004.09440v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated to published version. 95 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2020-058, MIT-CTP/5197 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 054509 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.04107">arXiv:1901.04107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.04107">pdf</a>, <a href="https://arxiv.org/format/1901.04107">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Towards non-perturbative matching of three/four-flavor Wilson coefficients with a position-space procedure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.04107v1-abstract-short" style="display: inline;"> We propose a strategy to non-perturbatively match the Wilson coefficients in the three- and four-flavor theories, which uses two-point Green&#39;s functions of the corresponding four-quark operators at long distances. The idea is refined by combining with the spherical averaging technique, which enables us to convert two-point functions calculated on the lattice into continuous functions of the distan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04107v1-abstract-full').style.display = 'inline'; document.getElementById('1901.04107v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.04107v1-abstract-full" style="display: none;"> We propose a strategy to non-perturbatively match the Wilson coefficients in the three- and four-flavor theories, which uses two-point Green&#39;s functions of the corresponding four-quark operators at long distances. The idea is refined by combining with the spherical averaging technique, which enables us to convert two-point functions calculated on the lattice into continuous functions of the distance $|x-y|$ between two operators. We also show the result for an exploratory calculation of two-point functions of the $螖S=1$ operators $Q_7$ and $Q_8$ that are in the $(8_L,8_R)$ representation of ${\rm SU(3)}_L\times{\rm SU(3)}_R$ and mix with each other. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04107v1-abstract-full').style.display = 'none'; document.getElementById('1901.04107v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, Proceedings of the 36th International Symposium on Lattice Field Theory (Lattice 2018), July 22-28, 2018, East Lancing, USA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.11238">arXiv:1811.11238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.11238">pdf</a>, <a href="https://arxiv.org/format/1811.11238">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.014515">10.1103/PhysRevD.99.014515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $O(4)$-symmetric position-space renormalization of lattice operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Christ%2C+N+H">Norman H. Christ</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.11238v1-abstract-short" style="display: inline;"> We extend the position-space renormalization procedure, where renormalization factors are calculated from Green&#39;s functions in position space, by introducing a technique to take the average of Green&#39;s functions over spheres. In addition to reducing discretization errors, this technique enables the resulting position-space correlators to be evaluated at any physical distance, making them continuous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11238v1-abstract-full').style.display = 'inline'; document.getElementById('1811.11238v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.11238v1-abstract-full" style="display: none;"> We extend the position-space renormalization procedure, where renormalization factors are calculated from Green&#39;s functions in position space, by introducing a technique to take the average of Green&#39;s functions over spheres. In addition to reducing discretization errors, this technique enables the resulting position-space correlators to be evaluated at any physical distance, making them continuous functions similar to the $O(4)$-symmetric position-space Green&#39;s functions in the continuum theory but with a residual dependence on a regularization parameter, the lattice spacing $a$. We can then take the continuum limit of these renormalized quantities calculated at the same physical renormalization scale $|x|$ and investigate the resulting $|x|$-dependence to identify the appropriate renormalization window. As a numerical test of the spherical averaging technique, we determine the renormalized light and strange quark masses by renormalizing the scalar current. We see a substantial reduction of discretization effects on the scalar current correlator and an enhancement of the renormalization window. The numerical simulation is carried out with $2+1$-flavor domain-wall fermions at three lattice cutoffs in the range 1.79--3.15~GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11238v1-abstract-full').style.display = 'none'; document.getElementById('1811.11238v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 014515 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.09396">arXiv:1712.09396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.09396">pdf</a>, <a href="https://arxiv.org/format/1712.09396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201817513009">10.1051/epjconf/201817513009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dispersion relation and unphysical poles of M枚bius domain-wall fermions in free field theory at finite $L_s$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.09396v1-abstract-short" style="display: inline;"> We investigate the dispersion relation of M枚bius domain-wall fermions in free field theory at finite $L_s$. We find that there are $L_s-1$ extra poles of M枚bius domain-wall fermions in addition to the pole which realizes the physical mode in the continuum limit. The unphysical contribution of these extra poles could be significant when we introduce heavy quarks. We show in this report the fundamen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09396v1-abstract-full').style.display = 'inline'; document.getElementById('1712.09396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.09396v1-abstract-full" style="display: none;"> We investigate the dispersion relation of M枚bius domain-wall fermions in free field theory at finite $L_s$. We find that there are $L_s-1$ extra poles of M枚bius domain-wall fermions in addition to the pole which realizes the physical mode in the continuum limit. The unphysical contribution of these extra poles could be significant when we introduce heavy quarks. We show in this report the fundamental properties of these unphysical poles and discuss the optimal choice of M枚bius parameters to minimize their contribution to four-dimensional physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09396v1-abstract-full').style.display = 'none'; document.getElementById('1712.09396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, Proceedings of the 35th International Symposium on Lattice Field Theory (Lattice 2017)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.03099">arXiv:1706.03099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.03099">pdf</a>, <a href="https://arxiv.org/format/1706.03099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.074504">10.1103/PhysRevD.96.074504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unphysical poles and dispersion relations for M枚bius domain-wall fermions in free field theory at finite $L_s$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.03099v2-abstract-short" style="display: inline;"> We find that the quark propagator constructed from the domain-wall fermion operator has $L_s-1$ extra poles as well as the pole that realizes the physical quark in the continuum limit. We show the energy-momentum dispersion relation for the physical and unphysical poles of M枚bius domain-wall fermions in free field theory at finite $L_s$. The dependence of extra pole energies on the M枚bius paramete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03099v2-abstract-full').style.display = 'inline'; document.getElementById('1706.03099v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.03099v2-abstract-full" style="display: none;"> We find that the quark propagator constructed from the domain-wall fermion operator has $L_s-1$ extra poles as well as the pole that realizes the physical quark in the continuum limit. We show the energy-momentum dispersion relation for the physical and unphysical poles of M枚bius domain-wall fermions in free field theory at finite $L_s$. The dependence of extra pole energies on the M枚bius parameter $b-c$ and on the domain-wall height $M_5$ is investigated. Our result suggests that small values of $b-c$ set a large lower bound on the unphysical pole masses and the contribution of these poles could be suppressed well by calculating with small $b-c$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03099v2-abstract-full').style.display = 'none'; document.getElementById('1706.03099v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 074504 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.06249">arXiv:1703.06249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.06249">pdf</a>, <a href="https://arxiv.org/ps/1703.06249">ps</a>, <a href="https://arxiv.org/format/1703.06249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.054511">10.1103/PhysRevD.96.054511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice calculation of coordinate-space vector and axial-vector current correlators in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=JLQCD+collaboration"> JLQCD collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">M. Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cossu%2C+G">G. Cossu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fahy%2C+B">B. Fahy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fukaya%2C+H">H. Fukaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hashimoto%2C+S">S. Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaneko%2C+T">T. Kaneko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Noaki%2C+J">J. Noaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.06249v2-abstract-short" style="display: inline;"> We study the vector and axial-vector current correlators in perturbative and non-perturbative regimes of QCD. The correlators in Euclidean coordinate space are calculated on the lattice using the M枚bius domain-wall fermion formulation at three lattice spacings covering 0.044--0.080~fm. The dynamical quark effects of $2+1$ light flavors are included. The sum $V+A$ and the difference $V-A$ of the ve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06249v2-abstract-full').style.display = 'inline'; document.getElementById('1703.06249v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.06249v2-abstract-full" style="display: none;"> We study the vector and axial-vector current correlators in perturbative and non-perturbative regimes of QCD. The correlators in Euclidean coordinate space are calculated on the lattice using the M枚bius domain-wall fermion formulation at three lattice spacings covering 0.044--0.080~fm. The dynamical quark effects of $2+1$ light flavors are included. The sum $V+A$ and the difference $V-A$ of the vector ($V$) and axial-vector ($A$) current correlators calculated on the lattice after extrapolating to the physical point agree with those converted from the ALEPH experimental data of hadronic $蟿$ decays. The level of the agreement in the $V+A$ channel is about $1.3蟽$ or smaller in the region of $|x|\ge0.4$~fm, while that in the $V-A$ channel is about $1.8蟽$ at $|x|=0.74$~fm and smaller at other distances. We also extract the hiral condensate from the short-distance correlators on the lattice using the PCAC relation. Its result extrapolated to the chiral and continuum limit is compatible with other estimates at low energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.06249v2-abstract-full').style.display = 'none'; document.getElementById('1703.06249v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> OU-HET-924, KEK-CP-356 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 054511 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.01496">arXiv:1702.01496</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.01496">pdf</a>, <a href="https://arxiv.org/ps/1702.01496">ps</a>, <a href="https://arxiv.org/format/1702.01496">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Current correlators in the coordinate space at short distances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fukaya%2C+H">Hidenori Fukaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hashimoto%2C+S">Shoji Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaneko%2C+T">Takashi Kaneko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.01496v1-abstract-short" style="display: inline;"> We calculate the vector and axial-vector current correlators in the coordinate space and compare them with the experimental information obtained through the spectral functions of hadronic tau decays measured by ALEPH. Lattice data are obtained with 2+1 Mobius domain-wall fermions at three lattice spacings 0.044, 0.055 and 0.080 fm and the continuum limit is taken. The correlators calculated on the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01496v1-abstract-full').style.display = 'inline'; document.getElementById('1702.01496v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.01496v1-abstract-full" style="display: none;"> We calculate the vector and axial-vector current correlators in the coordinate space and compare them with the experimental information obtained through the spectral functions of hadronic tau decays measured by ALEPH. Lattice data are obtained with 2+1 Mobius domain-wall fermions at three lattice spacings 0.044, 0.055 and 0.080 fm and the continuum limit is taken. The correlators calculated on the lattice after extrapolating to the physical point agree with those converted from the ALEPH data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.01496v1-abstract-full').style.display = 'none'; document.getElementById('1702.01496v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures; talk presented at Lattice 2016 -- 34th International Symposium on Lattice Field Theory, 24-30 July 2016, University of Southampton, UK</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> OU-HET-922, KEK-CP-352 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.08702">arXiv:1604.08702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.08702">pdf</a>, <a href="https://arxiv.org/ps/1604.08702">ps</a>, <a href="https://arxiv.org/format/1604.08702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.054504">10.1103/PhysRevD.94.054504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Renormalization of domain-wall bilinear operators with short-distance current correlators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=JLQCD+collaboration"> JLQCD collaboration</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">M. Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cossu%2C+G">G. Cossu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fahy%2C+B">B. Fahy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fukaya%2C+H">H. Fukaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hashimoto%2C+S">S. Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaneko%2C+T">T. Kaneko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Noaki%2C+J">J. Noaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.08702v1-abstract-short" style="display: inline;"> We determine the renormalization constants for flavor non-singlet fermion bilinear operators of M枚bius domain-wall fermions. The renormalization condition is imposed on the correlation functions in the coordinate space, such that the non-perturbative lattice calculation reproduces the perturbatively calculated counterpart at short distances. The perturbative expansion is precise as the coefficient&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.08702v1-abstract-full').style.display = 'inline'; document.getElementById('1604.08702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.08702v1-abstract-full" style="display: none;"> We determine the renormalization constants for flavor non-singlet fermion bilinear operators of M枚bius domain-wall fermions. The renormalization condition is imposed on the correlation functions in the coordinate space, such that the non-perturbative lattice calculation reproduces the perturbatively calculated counterpart at short distances. The perturbative expansion is precise as the coefficients are available up to $O(伪_s^4)$. We employ $2+1$-flavor lattice ensembles at three lattice spacings in the range 0.044--0.080~fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.08702v1-abstract-full').style.display = 'none'; document.getElementById('1604.08702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-CP-344, OU-HET-894 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 94, 054504 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.08599">arXiv:1512.08599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.08599">pdf</a>, <a href="https://arxiv.org/ps/1512.08599">ps</a>, <a href="https://arxiv.org/format/1512.08599">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Decay constants and spectroscopy of mesons in lattice QCD using domain-wall fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fahy%2C+B">B. Fahy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cossu%2C+G">G. Cossu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hashimoto%2C+S">S. Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kaneko%2C+T">T. Kaneko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Noaki%2C+J">J. Noaki</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">M. Tomii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.08599v1-abstract-short" style="display: inline;"> We report results of masses and decay constants of light and charmed pseudo-scalar mesons using lattice QCD with M枚bius domain-wall fermions. Using this formulation we are able to compute pseudo-scalar decay constants through the pseudo-scalar density operator as well as with the axial-vector current. Results are shown from several lattice spacings and pion masses between 230 MeV and 500 MeV. We p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08599v1-abstract-full').style.display = 'inline'; document.getElementById('1512.08599v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.08599v1-abstract-full" style="display: none;"> We report results of masses and decay constants of light and charmed pseudo-scalar mesons using lattice QCD with M枚bius domain-wall fermions. Using this formulation we are able to compute pseudo-scalar decay constants through the pseudo-scalar density operator as well as with the axial-vector current. Results are shown from several lattice spacings and pion masses between 230 MeV and 500 MeV. We present an analysis of these results at different quark masses to show the chiral properties of the light mesons masses and decay constants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08599v1-abstract-full').style.display = 'none'; document.getElementById('1512.08599v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, Proceedings of the 33rd International Symposium on Lattice Field Theory (Lattice 2015)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-CP-340 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.09170">arXiv:1511.09170</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.09170">pdf</a>, <a href="https://arxiv.org/ps/1511.09170">ps</a>, <a href="https://arxiv.org/format/1511.09170">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Analysis of short-distance current correlators using OPE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">M. Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cossu%2C+G">G. Cossu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fahy%2C+B">B. Fahy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fukaya%2C+H">H. Fukaya</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hashimoto%2C+S">S. Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Noaki%2C+J">J. Noaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.09170v1-abstract-short" style="display: inline;"> We investigate the correlators of flavor non-singlet bilinear operators calculated on the lattice at short distances. In the continuum theory, non-perturbative effects are encoded in the form of the operator product expansion (OPE). We test the prediction of OPE by comparing lattice results with those in the continuum theory. We also determine the renormalization factors of quark currents. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.09170v1-abstract-full" style="display: none;"> We investigate the correlators of flavor non-singlet bilinear operators calculated on the lattice at short distances. In the continuum theory, non-perturbative effects are encoded in the form of the operator product expansion (OPE). We test the prediction of OPE by comparing lattice results with those in the continuum theory. We also determine the renormalization factors of quark currents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.09170v1-abstract-full').style.display = 'none'; document.getElementById('1511.09170v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-CP-338, OH-HET-879 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.6726">arXiv:1411.6726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.6726">pdf</a>, <a href="https://arxiv.org/ps/1411.6726">ps</a>, <a href="https://arxiv.org/format/1411.6726">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Non-perturbative renormalization of bilinear operators with M枚bius domain-wall fermions in the coordinate space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">M. Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Cossu%2C+G">G. Cossu</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hashimoto%2C+S">S. Hashimoto</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Noaki%2C+J">J. Noaki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.6726v1-abstract-short" style="display: inline;"> We study the non-perturbative determination of the renormalization constants of flavor non-singlet quark bilinear operators on the lattice. The renormalization condition is imposed on correlation functions of bilinear operators in the coordinate space. The results are converted to the value at 2 GeV in the $\rm\overline{MS}$ scheme by a perturbative matching. The calculation is carried out on gaug&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.6726v1-abstract-full').style.display = 'inline'; document.getElementById('1411.6726v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.6726v1-abstract-full" style="display: none;"> We study the non-perturbative determination of the renormalization constants of flavor non-singlet quark bilinear operators on the lattice. The renormalization condition is imposed on correlation functions of bilinear operators in the coordinate space. The results are converted to the value at 2 GeV in the $\rm\overline{MS}$ scheme by a perturbative matching. The calculation is carried out on gauge configurations generated with the Mobius domain-wall fermions at two lattice spacings $a^{-1} = 2.4$ GeV and $a^{-1} = 3.6$ GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.6726v1-abstract-full').style.display = 'none'; document.getElementById('1411.6726v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures; talk presented at Lattice 2014 -- 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University New York, NY</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-CP-315 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.0099">arXiv:1311.0099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.0099">pdf</a>, <a href="https://arxiv.org/ps/1311.0099">ps</a>, <a href="https://arxiv.org/format/1311.0099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice study on chiral dynamics of two-color six-flavors QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">Masaaki Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Hayakawa%2C+M">Masashi Hayakawa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ishikawa%2C+K">Ken-Ichi Ishikawa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Takeda%2C+S">Shinji Takeda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yamada%2C+N">Norikazu Yamada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.0099v2-abstract-short" style="display: inline;"> The electroweak symmetry breaking and origin of masses may be attributed to the breakdown of chiral symmetry due to a strong gauge dynamics. Among several candidates of such gauge systems, we focus on two-color QCD with $N_f=6$ massless Dirac fermions in the fundamental representation, and study on whether the dynamics of this gauge system trigger chiral symmetry breaking or not by simulating with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.0099v2-abstract-full').style.display = 'inline'; document.getElementById('1311.0099v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.0099v2-abstract-full" style="display: none;"> The electroweak symmetry breaking and origin of masses may be attributed to the breakdown of chiral symmetry due to a strong gauge dynamics. Among several candidates of such gauge systems, we focus on two-color QCD with $N_f=6$ massless Dirac fermions in the fundamental representation, and study on whether the dynamics of this gauge system trigger chiral symmetry breaking or not by simulating with Wilson fermions on lattices up to $L/a=32$. We show the result for the quark mass dependence and the volume dependence of some quantities such as the mass of the lightest pseudoscalar meson, decay constant, and give the three evidences supporting the absence of chiral symmetry breaking in the six-flavor theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.0099v2-abstract-full').style.display = 'none'; document.getElementById('1311.0099v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures, Proceedings of 31st International Symposium on Lattice Field Theory - LATTICE 2013, July 29 - August 3, 2013, Mainz, Germany</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-CP-296 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.6696">arXiv:1307.6696</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.6696">pdf</a>, <a href="https://arxiv.org/ps/1307.6696">ps</a>, <a href="https://arxiv.org/format/1307.6696">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.094506">10.1103/PhysRevD.88.094506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Study on quantum-mechanical dynamics of two-color QCD with six light flavors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Hayakawa%2C+M">M. Hayakawa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ishikawa%2C+K+-">K. -I. Ishikawa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Takeda%2C+S">S. Takeda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tomii%2C+M">M. Tomii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Yamada%2C+N">N. Yamada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.6696v2-abstract-short" style="display: inline;"> We investigate the chiral properties of SU(2) gauge theory with six flavors, i.e. six light Dirac fermions in the fundamental representations by lattice simulation, and point out that the spontaneous breakdown of chiral symmetry does not occur in this system. The quark mass dependence of the mesonic spectrum provides an evidence for such a possibility. The decay constant tends to be increased by t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.6696v2-abstract-full').style.display = 'inline'; document.getElementById('1307.6696v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.6696v2-abstract-full" style="display: none;"> We investigate the chiral properties of SU(2) gauge theory with six flavors, i.e. six light Dirac fermions in the fundamental representations by lattice simulation, and point out that the spontaneous breakdown of chiral symmetry does not occur in this system. The quark mass dependence of the mesonic spectrum provides an evidence for such a possibility. The decay constant tends to be increased by the finite size effect, which is opposite to the behavior predicted by chiral perturbation theory and indicates that the long distance dynamics in the six-flavor theory could be different from the theory with chiral symmetry breaking. The subtracted chiral condensate, whose utility is demonstrated by the simulation of two-flavor theory, is shown to vanish in the chiral limit within the precision of available data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.6696v2-abstract-full').style.display = 'none'; document.getElementById('1307.6696v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 33 figures, 17 tables, typos corrected, references changed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KANAZAWA-13-09, HUPD-1308, KEK-CP-290 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 88, 094506 (2013) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10