CINXE.COM
Search results for: methanol conversion efficiency
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: methanol conversion efficiency</title> <meta name="description" content="Search results for: methanol conversion efficiency"> <meta name="keywords" content="methanol conversion efficiency"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="methanol conversion efficiency" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="methanol conversion efficiency"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7893</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: methanol conversion efficiency</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7893</span> Methanol Steam Reforming with Heat Recovery for Hydrogen-Rich Gas Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Horng-Wen%20Wu">Horng-Wen Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Chao"> Yi Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong-Fang%20Horng"> Rong-Fang Horng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is to develop a methanol steam reformer with a heat recovery zone, which recovers heat from exhaust gas of a diesel engine, and to investigate waste heat recovery ratio at the required reaction temperature. The operation conditions of the reformer are reaction temperature (200 °C, 250 °C, and 300 °C), steam to carbonate (S/C) ratio (0.9, 1.1, and 1.3), and N2 volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min). Finally, the hydrogen concentration, the CO, CO2, and N2 concentrations are measured and recorded to calculate methanol conversion efficiency, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio. The heat source of this reformer comes from electric heater and waste heat of exhaust gas from diesel engines. The objective is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial for the reformer to enhance the methanol conversion efficiency and hydrogen-rich gas production. Experimental results show that the highest hydrogen flow rate exists at N2 of the volume rate 40 cm3/min and reforming reaction temperature of 300 °C and the value is 19.6 l/min. With the electric heater and heat recovery from exhaust gas, the maximum heat recovery ratio is 13.18 % occurring at water-methanol (S/C) ratio of 1.3 and the reforming reaction temperature of 300 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20recovery" title="heat recovery">heat recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen-rich%20production" title=" hydrogen-rich production"> hydrogen-rich production</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20steam%20reformer" title=" methanol steam reformer"> methanol steam reformer</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency" title=" methanol conversion efficiency"> methanol conversion efficiency</a> </p> <a href="https://publications.waset.org/abstracts/14202/methanol-steam-reforming-with-heat-recovery-for-hydrogen-rich-gas-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7892</span> Hydrogenation of CO2 to Methanol over Copper-Zinc Oxide-Based Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20H.%20Tasfy">S. F. H. Tasfy</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20M.%20Zabidi"> N. A. M. Zabidi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Shaharun"> M. S. Shaharun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide is highly thermochemical stable molecules where it is very difficult to activate the molecule and achieve higher catalytic conversion into alcohols or other hydrocarbon compounds. In this paper, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were systematically prepared via impregnation technique with different Cu: Zn ratio for hydrogenation of CO<sub>2</sub> to methanol. The synthesized catalysts were characterized by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and surface area determination was also performed. All catalysts were tested with respect to the hydrogenation of CO<sub>2</sub> to methanol in microactivity fixed-bed reactor at 250<sup>o</sup>C, 2.25 MPa, and H<sub>2</sub>/CO<sub>2</sub> ratio of 3. The results demonstrate that the catalytic structure, activity, and methanol selectivity was strongly affected by the ratio between Cu: Zn, Where higher catalytic activity of 14 % and methanol selectivity of 92 % was obtained over Cu/ZnO-SBA-15 catalyst with Cu:Zn ratio of 7:3 wt. %. Comparing with the single catalyst, the synergetic between Cu and Zn provides additional active sites to adsorb more H<sub>2</sub> and CO<sub>2</sub> and accelerate the CO<sub>2</sub> conversion, resulting in higher methanol production under mild reaction conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogenation%20of%20carbon%20dioxide" title="hydrogenation of carbon dioxide">hydrogenation of carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20synthesis" title=" methanol synthesis"> methanol synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%2FZnO-based%20catalyst" title=" Cu/ZnO-based catalyst"> Cu/ZnO-based catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20silica%20%28SBA-15%29" title=" mesoporous silica (SBA-15)"> mesoporous silica (SBA-15)</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ratio" title=" metal ratio"> metal ratio</a> </p> <a href="https://publications.waset.org/abstracts/59554/hydrogenation-of-co2-to-methanol-over-copper-zinc-oxide-based-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7891</span> Preparation and Characterization of Photocatalyst for the Conversion of Carbon Dioxide to Methanol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Reddy%20Prasad">D. M. Reddy Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Sabrina%20Binti%20Rahmat"> Nur Sabrina Binti Rahmat</a>, <a href="https://publications.waset.org/abstracts/search?q=Huei%20Ruey%20Ong"> Huei Ruey Ong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20Kui%20Cheng"> Chin Kui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Maksudur%20Rahman%20Khan"> Maksudur Rahman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sathiyamoorthy"> D. Sathiyamoorthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide (CO<sub>2</sub>) emission to the environment is inevitable which is responsible for global warming. Photocatalytic reduction of CO<sub>2</sub> to fuel, such as methanol, methane etc. is a promising way to reduce greenhouse gas CO<sub>2</sub> emission. In the present work, Bi<sub>2</sub>S<sub>3</sub>/CdS was synthesized as an effective visible light responsive photocatalyst for CO<sub>2</sub> reduction into methanol. The Bi<sub>2</sub>S<sub>3</sub>/CdS photocatalyst was prepared by hydrothermal reaction. The catalyst was characterized by X-ray diffraction (XRD) instrument. The photocatalytic activity of the catalyst has been investigated for methanol production as a function of time. Gas chromatograph flame ionization detector (GC-FID) was employed to analyze the product. The yield of methanol was found to increase with higher CdS concentration in Bi<sub>2</sub>S<sub>3</sub>/CdS and the maximum yield was obtained for 45 wt% of Bi<sub>2</sub>S<sub>3</sub>/CdS under visible light irradiation was 20 <em>μ</em>mole/g. The result establishes that Bi<sub>2</sub>S<sub>3</sub>/CdS is favorable catalyst to reduce CO<sub>2</sub> to methanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title="photocatalyst">photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20reduction" title=" CO2 reduction"> CO2 reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light" title=" visible light"> visible light</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-FID" title=" GC-FID"> GC-FID</a> </p> <a href="https://publications.waset.org/abstracts/43005/preparation-and-characterization-of-photocatalyst-for-the-conversion-of-carbon-dioxide-to-methanol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7890</span> Catalytic Study of Methanol-to-Propylene Conversion over Nano-Sized HZSM-5</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianwen%20Li">Jianwen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Weixin%20Qian"> Weixin Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanol-to-propylene conversion was carried out in a continuous-flow fixed-bed reactor over nano-sized HZSM-5 zeolites. The HZSM-5 catalysts were synthesized with different Si/Al ratio and silicon sources, and treated with NaOH. The structural property, morphology, and acidity of catalysts were measured by XRD, N<sub>2</sub> adsorption, FE-SEM, TEM, and NH<sub>3</sub>-TPD. The results indicate that the increment of Si/Al ratio decreased the acidity of catalysts and then improved propylene selectivity, while silicon sources had slight impact on the acidity but affected the product distribution. The desilication after alkali treatment could increase intracrystalline mesopores and enhance propylene selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20treatment" title="alkali treatment">alkali treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=HZSM-5" title=" HZSM-5"> HZSM-5</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol-to-propylene" title=" methanol-to-propylene"> methanol-to-propylene</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis%20condition" title=" synthesis condition"> synthesis condition</a> </p> <a href="https://publications.waset.org/abstracts/86788/catalytic-study-of-methanol-to-propylene-conversion-over-nano-sized-hzsm-5" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7889</span> Exergy: An Effective Tool to Quantify Sustainable Development of Biodiesel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Karimi">Mahmoud Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Golmohammad%20Khoobbakht"> Golmohammad Khoobbakht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the exergy flow analysis in the transesterification of waste cooking oil with methanol to decrease the consumption of materials and energy and promote the use of renewable resources. The exergy analysis performed is based on the thermodynamic performance parameters namely exergy destruction and exergy efficiency to investigate the effects of variable parameters on renewability of transesterification. The experiment variables were methanol to WCO ratio, catalyst concentration and reaction temperature in the transesterification reaction. The optimum condition with yield of 90.2% and exergy efficiency of 95.2% was obtained at methanol to oil molar ratio of 8:1, 1 wt.% of KOH, at 55 °C. In this condition, the total waste exergy was found to be 45.4 MJ for 1 kg biodiesel production. However high yield in the optimal condition resulted high exergy efficiency in the transesterification of WCO with methanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20analysis" title=" thermodynamic analysis"> thermodynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20cooking%20oil" title=" waste cooking oil"> waste cooking oil</a> </p> <a href="https://publications.waset.org/abstracts/91280/exergy-an-effective-tool-to-quantify-sustainable-development-of-biodiesel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7888</span> Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al): A Density Functional Theory Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Wei%20Yeh">Chun-Wei Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhanamoorthi%20Nachimuthu"> Santhanamoorthi Nachimuthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Chiang%20Jiang"> Jyh-Chiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing greenhouse gases or converting them into fuels and chemicals with added value is vital for the environment. Given the enhanced techniques for hydrocarbon extraction in this context, the catalytic conversion of methane to methanol is particularly intriguing for future applications as vehicle fuels and/or bulk chemicals. Metal-organic frameworks (MOFs) have received much attention recently for the oxidation of methane to methanol. In addition, biomimetic material, particulate methane monooxygenase (pMMO), has been reported to convert methane using copper oxide clusters as active sites. Inspired by these, in this study, we considered the well-known MIL-53(Al) MOF as support for copper oxide clusters (Cu2Ox, Cu3Ox) to investigate their reactivity towards methane oxidation using Density Functional Theory (DFT) calculations. The copper oxide clusters (Cu2O2, Cu3O2) are modeled by oxidizing copper clusters (Cu2, Cu3) with two oxidizers, O2 and N2O. The initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are 0.70 eV and 0.64 eV, respectively, and are the rate-determining steps in the overall methane conversion to methanol reactions. The desorption energy of the methanol over the Cu2O/MIL-53(Al) and Cu3O/MIL-53(Al) is 0.71eV and 0.75 eV, respectively. Furthermore, to explore the prospect of catalyst reusability, we considered the different oxidants and proposed the different reaction pathways for completing the reaction cycle and regenerating the active copper oxide clusters. To know the reason for the difference between bi-copper and tri-cooper systems, we also did an electronic analysis. Finally, we calculate the Microkinetic Simulation. The result shows that the reaction can happen at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT%20study" title="DFT study">DFT study</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide%20cluster" title=" copper oxide cluster"> copper oxide cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=MOFs" title=" MOFs"> MOFs</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20conversion" title=" methane conversion"> methane conversion</a> </p> <a href="https://publications.waset.org/abstracts/160069/methane-oxidation-to-methanol-catalyzed-by-copper-oxide-clusters-supported-in-mil-53al-a-density-functional-theory-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7887</span> Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sankha%20Chakrabortty">Sankha Chakrabortty</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajit%20Ruj"> Biswajit Ruj</a>, <a href="https://publications.waset.org/abstracts/search?q=Parimal%20Pal"> Parimal Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20capture" title=" CO₂ capture"> CO₂ capture</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20conversion" title=" photocatalytic conversion"> photocatalytic conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a> </p> <a href="https://publications.waset.org/abstracts/98415/synthesis-of-methanol-through-photocatalytic-conversion-of-co2-a-green-chemistry-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7886</span> The Photocatalytic Approach for the Conversion of Polluted Seawater CO₂ into Renewable Source of Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasar%20N.%20Kavil">Yasar N. Kavil</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20A.%20Shaban"> Yasser A. Shaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Radwan%20K.%20Al%20Farawati"> Radwan K. Al Farawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20I.%20Orif"> Mohamed I. Orif</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahed%20U.%20M.%20Khanc"> Shahed U. M. Khanc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photocatalytic way of reduction of CO₂ in polluted seawater into chemical fuel, methanol, was successfully gained over Cu/C-co-doped TiO₂ nanoparticles under UV and natural sunlight. A homemade stirred batch annular reactor was used to carry out the photocatalytic reduction experiments. Photocatalysts with various Cu loadings (0, 0.5, 1, 3, 5 and 7 wt.%) were synthesized by the sol-gel procedure and were characterized by XRD, SEM, UV–Vis, FTIR, and XPS. The photocatalytic production of methanol was promoted by the co-doping with C and Cu into TiO₂. This improvement was attributed to the modification of bandgap energy and the hindrance of the charges recombination. The polluted seawater showing the yield depended on its background hydrographic parameters. We assessed two types of polluted seawater system, the observed yield was 2910 and 990 µmol g⁻¹ after 5 h of illumination under UV and natural sunlight respectively in system 1 and the corresponding yield in system 2 was 2250 and 910 µmol g⁻¹ after 5 h of illumination. The production of methanol in the case of oxygen-depleted water was low, this is mainly attributed to the competition of methanogenic bacteria over methanol production. The results indicated that the methanol yield produced by Cu-C/TiO₂ was much higher than those of carbon-modified titanium oxide (C/TiO₂) and Degussa (P25-TiO₂). Under the current experimental condition, the optimum loading was achieved by the doping of 3 wt % of Cu. The highest methanol yield was obtained over 1 g L-1 of 3wt% Cu/C-TiO₂. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20photoreduction" title="CO₂ photoreduction">CO₂ photoreduction</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%2FC-co-doped%20TiO%E2%82%82" title=" Cu/C-co-doped TiO₂"> Cu/C-co-doped TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater" title=" seawater"> seawater</a> </p> <a href="https://publications.waset.org/abstracts/74488/the-photocatalytic-approach-for-the-conversion-of-polluted-seawater-co2-into-renewable-source-of-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7885</span> Effect of Hydrogen on the Performance of a Methanol SI-Engine at City Driving Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Bin%20Aamir">Junaid Bin Aamir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Fanhua"> Ma Fanhua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanol is one of the most suitable alternative fuels for replacing gasoline in present and future spark-ignited engines. However, for pure methanol engines, cold start problems and misfires are observed under certain operating conditions. Hydrogen provides a solution for such problems. This paper experimentally investigated the effect of hydrogen on the performance of a pure methanol SI-engine at city driving conditions (1500 rpm speed and 1.18 excess air ratio). Hydrogen was used as a part of methanol reformed syngas (67% hydrogen by volume). 4% by mass of the total methanol converted to hydrogen and other constituent gases, was used in each cycle. Port fuel injection was used to inject methanol and hydrogen-rich syngas into the 4-cylinder engine. The results indicated an increase in brake thermal efficiency up to 5% with the addition of hydrogen, a decrease in brake specific fuel consumption up to 200 g/kWh, and a decrease in exhaust gas temperature by 100°C for all mean effective pressures. Hydrogen addition also decreased harmful exhaust emissions significantly. There was a reduction in THC emissions up to 95% and CO emissions up to 50%. NOx emissions were slightly increased (up to 15%), but they can be reduced to zero by lean burn strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuels" title="alternative fuels">alternative fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engines" title=" spark ignition engines"> spark ignition engines</a> </p> <a href="https://publications.waset.org/abstracts/74911/effect-of-hydrogen-on-the-performance-of-a-methanol-si-engine-at-city-driving-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7884</span> The Effect of Hydrogen on Performance and Emissions of a Methanol Si-Engine at Part Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Bin%20Aamir">Junaid Bin Aamir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Fanhua"> Ma Fanhua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanol and hydrogen are the most suitable alternative fuel resources for the existing and future internal combustion engines. This paper experimentally examined the effects of hydrogen addition on the performance and emission characteristics of a spark-ignition engine fueled with methanol at part load conditions. The experiments were carried out for various engine speeds and loads. Hydrogen-rich syngas was used to enhance the performance of the test engine. It was formed by catalytic dissociation of methanol itself, and volumetric hydrogen fraction in syngas was about 67%. A certain amount of syngas dissociated from methanol was injected into the intake manifold in each engine cycle, and the low heating value (LHV) of hydrogen-rich syngas used was 4% of methanol in each cycle. Both the fuels were injected separately using port fuel injectors. The results showed that brake thermal efficiency of the engine was enhanced by 3-5% with hydrogen addition, while brake specific fuel consumption and exhaust gas temperature were reduced. There was a significant reduction (90-95%) in THC and (35-50%) in CO emissions at the exhaust. NOx emissions from hydrogen blended methanol increased slightly (10-15%), but they can be reduced by using lean fuel-air mixture to keep the cylinder temperature low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuel" title=" alternative fuel"> alternative fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engines" title=" spark ignition engines"> spark ignition engines</a> </p> <a href="https://publications.waset.org/abstracts/123060/the-effect-of-hydrogen-on-performance-and-emissions-of-a-methanol-si-engine-at-part-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7883</span> Highly Selective Conversion of CO2 to CO on Cu Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rauf%20Razzaq">Rauf Razzaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaiwu%20Dong"> Kaiwu Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sharif"> Muhammad Sharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralf%20Jackstell"> Ralf Jackstell</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Beller"> Matthias Beller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide (CO2), a key greenhouse gas produced from both anthropogenic and natural sources, has been recently considered to be an important C1 building-block for the synthesis of many industrial fuels and chemicals. Catalytic hydrogenation of CO2 using a heterogeneous system is regarded as an efficient process for CO2 valorization. In this regard CO2 reduction to CO via the reverse water gas shift reaction (RWGSR) has attracted much attention as a viable process for large scale commercial CO2 utilization. This process can generate syn-gas (CO+H2) which can provide an alternative route to direct CO2 conversion to methanol and/or liquid HCs from FT reaction. Herein, we report a highly active and selective silica supported copper catalyst with efficient CO2 reduction to CO in a slurry-bed batch autoclave reactor. The reactions were carried out at 200°C and 60 bar initial pressure with CO2/H2 ratio of 1:3 with varying temperature, pressure and fed-gas ratio. The gaseous phase products were analyzed using FID while the liquid products were analyzed by using FID detectors. It was found that Cu/SiO2 catalyst prepared using novel ammonia precipitation-urea gelation method achieved 26% CO2 conversion with a CO and methanol selectivity of 98 and 2% respectively. The high catalytic activity could be attributed to its strong metal-support interaction with highly dispersed and stabilized Cu+ species active for RWGSR. So, it can be concluded that reduction of CO2 to CO via RWGSR could address the problem of using CO2 gas in C1 chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20reduction" title="CO2 reduction">CO2 reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20reactor" title=" slurry reactor"> slurry reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis%20gas" title=" synthesis gas"> synthesis gas</a> </p> <a href="https://publications.waset.org/abstracts/70058/highly-selective-conversion-of-co2-to-co-on-cu-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7882</span> Production Process for Diesel Fuel Components Polyoxymethylene Dimethyl Ethers from Methanol and Formaldehyde Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangjun%20Li">Xiangjun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaiyuan%20Tian"> Huaiyuan Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Wujie%20Zhang"> Wujie Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dianhua%20Liu"> Dianhua Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyoxymethylene dimethyl ethers (PODE<sub>n</sub>) as clean diesel additive can improve the combustion efficiency and quality of diesel fuel and alleviate the problem of atmospheric pollution. Considering synthetic routes, PODE production from methanol and formaldehyde is regarded as the most economical and promising synthetic route. However, methanol used for synthesizing PODE can produce water, which causes the loss of active center of catalyst and hydrolysis of PODE<sub>n</sub> in the production process. Macroporous strong acidic cation exchange resin catalyst was prepared, which has comparative advantages over other common solid acid catalysts in terms of stability and catalytic efficiency for synthesizing PODE. Catalytic reactions were carried out under 353 K, 1 MPa and 3mL·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup> in a fixed bed reactor. Methanol conversion and PODE<sub>3-6</sub> selectivity reached 49.91% and 23.43%, respectively. Catalyst lifetime evaluation showed that resin catalyst retained its catalytic activity for 20 days without significant changes and catalytic activity of completely deactivated resin catalyst can basically return to previous level by simple acid regeneration. The acid exchange capacities of original and deactivated catalyst were 2.5191 and 0.0979 mmol·g<sup>-1</sup>, respectively, while regenerated catalyst reached 2.0430 mmol·g<sup>-1</sup>, indicating that the main reason for resin catalyst deactivation is that Brønsted acid sites of original resin catalyst were temporarily replaced by non-hydrogen ion cations. A separation process consisting of extraction and distillation for PODE<sub>3-6</sub> product was designed for separation of water and unreacted formaldehyde from reactive mixture and purification of PODE<sub>3-6</sub>, respectively. The concentration of PODE<sub>3-6</sub> in final product can reach up to 97%. These results indicate that the scale-up production of PODE<sub>3-6</sub> from methanol and formaldehyde solution is feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inactivation" title="inactivation">inactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=polyoxymethylene%20dimethyl%20ethers" title=" polyoxymethylene dimethyl ethers"> polyoxymethylene dimethyl ethers</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20process" title=" separation process"> separation process</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonic%20cation%20exchange%20resin" title=" sulfonic cation exchange resin"> sulfonic cation exchange resin</a> </p> <a href="https://publications.waset.org/abstracts/93194/production-process-for-diesel-fuel-components-polyoxymethylene-dimethyl-ethers-from-methanol-and-formaldehyde-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7881</span> Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Azadi">M. Azadi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tahouni"> N. Tahouni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Panjeshahi"> M. H. Panjeshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title="energy saving">energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generation" title=" power generation"> power generation</a> </p> <a href="https://publications.waset.org/abstracts/13263/efficient-use-of-energy-through-incorporation-of-a-gas-turbine-in-methanol-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7880</span> Photocapacitor Integrating Solar Energy Conversion and Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihuai%20Wu">Jihuai Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyu%20Song"> Zeyu Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lan"> Zhang Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Liuxue%20Sun"> Liuxue Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=joule%20efficiency" title="joule efficiency">joule efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite%20solar%20cell" title=" perovskite solar cell"> perovskite solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=photocapacitor" title=" photocapacitor"> photocapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20solar%20cell" title=" silicon solar cell"> silicon solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/168790/photocapacitor-integrating-solar-energy-conversion-and-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7879</span> Optimization of Bio-Diesel Production from Rubber Seed Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawit%20Tangviroon">Pawit Tangviroon</a>, <a href="https://publications.waset.org/abstracts/search?q=Apichit%20Svang-Ariyaskul"> Apichit Svang-Ariyaskul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rubber seed oil is an attractive alternative feedstock for biodiesel production because it is not related to food-chain plant. Rubber seed oil contains large amount of free fatty acids, which causes problem in biodiesel production. Free fatty acids can react with alkaline catalyst in biodiesel production. Acid esterification is used as pre-treatment to convert unwanted compound to desirable biodiesel. Phase separation of oil and methanol occurs at low ratio of methanol to oil and causes low reaction rate and conversion. Acid esterification requires large excess of methanol in order to increase the miscibility of methanol in oil and accordingly, it is a more expensive separation process. In this work, the kinetics of esterification of rubber seed oil with methanol is developed from available experimental results. Reactive distillation process was designed by using Aspen Plus program. The effects of operating parameters such as feed ratio, molar reflux ratio, feed temperature, and feed stage are investigated in order to find the optimum conditions. Results show that the reactive distillation process is proved to be better than conventional process. It consumes less feed methanol and less energy while yielding higher product purity than the conventional process. This work can be used as a guideline for further development to industrial scale of biodiesel production using reactive distillation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20distillation" title=" reactive distillation"> reactive distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20seed%20oil" title=" rubber seed oil"> rubber seed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/8267/optimization-of-bio-diesel-production-from-rubber-seed-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7878</span> Synergistic Effect of Zr-Modified Cu-ZnO-Al₂O₃ and Bio-Templated HZSM-5 Catalysts in CO₂ Hydrogenation to Methanol and DME</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abrar%20Hussain">Abrar Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuen-Song%20Lin"> Kuen-Song Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Maeen%20Badshah"> Sayed Maeen Badshah</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Hussain"> Jamshid Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conversion of CO₂ into versatile, useful compounds such as fuels and other chemicals remains a challenging frontier in research, demanding the innovation of increasingly effective catalysts. In the present work, a catalyst-incorporating zirconium (Zr) modification within CuO–ZnO–Al₂O₃ (CZA) was synthesized via a co-precipitation method to convert CO₂ into methanol. Furthermore, bio-HZSM-5 was used to promote methanol dehydration to produce dimethyl ether (DME). We prepared the porous hierarchy bio-HZSM-5 with remarkable pore connectivity by utilizing an economical loofah sponge and rice husks as biotemplates. The synthesized catalysts were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), X–ray diffraction (XRD), N₂ adsorption (BET), temperature-programmed desorption (NH₃-TPD) and thermogravimetric analysis (TGA). The Zr addition improved the performance of the CZZA catalyst as a structural promoter, leading to increased DME selectivity and total carbon conversion by enhancing active sites, surface area, and the synergistic interfaces between CuO and ZnO. The presence of silicon in the biomass, notably from the loofah sponge (0.016 wt %) and rice husks (8.3 wt %), also performed a pivotal role in the preparation of bio-HZSM-5. Furthermore, contrasted to the CZZA/com-ZSM-5 catalyst, the integration of CZZA with bio-HZSM-5-L bifunctional catalyst achieved the highest DME yield (12.1 %), DME selectivity (58.6%), CO₂ conversion (22.5%) at 280 °C and 30 bar. The payback time for 5 and 10-tons per day (5 and10-TPD) DME formation using the catalytic process of CO₂ from petrochemical refinery plant waste gas emissions was 2.98 and 2.44 years, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cost%20assessment" title="Cost assessment">Cost assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimethyl%20ether" title=" Dimethyl ether"> Dimethyl ether</a>, <a href="https://publications.waset.org/abstracts/search?q=low-cost%20bio-HZSM-5" title=" low-cost bio-HZSM-5"> low-cost bio-HZSM-5</a>, <a href="https://publications.waset.org/abstracts/search?q=CZZA%20catalyst" title=" CZZA catalyst"> CZZA catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20hydrogenation" title=" CO₂ hydrogenation"> CO₂ hydrogenation</a> </p> <a href="https://publications.waset.org/abstracts/194172/synergistic-effect-of-zr-modified-cu-zno-al2o3-and-bio-templated-hzsm-5-catalysts-in-co2-hydrogenation-to-methanol-and-dme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7877</span> Monitoring Synthesis of Biodiesel through Online Density Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnaldo%20G.%20de%20Oliveira">Arnaldo G. de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr"> Jr</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthieu%20Tubino"> Matthieu Tubino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transesterification process of triglycerides with alcohols that occurs during the biodiesel synthesis causes continuous changes in several physical properties of the reaction mixture, such as refractive index, viscosity and density. Amongst them, density can be an useful parameter to monitor the reaction, in order to predict the composition of the reacting mixture and to verify the conversion of the oil into biodiesel. In this context, a system was constructed in order to continuously determine changes in the density of the reacting mixture containing soybean oil, methanol and sodium methoxide (30 % w/w solution in methanol), stirred at 620 rpm at room temperature (about 27 °C). A polyethylene pipe network connected to a peristaltic pump was used in order to collect the mixture and pump it through a coil fixed on the plate of an analytical balance. The collected mass values were used to trace a curve correlating the mass of the system to the reaction time. The density variation profile versus the time clearly shows three different steps: 1) the dispersion of methanol in oil causes a decrease in the system mass due to the lower alcohol density followed by stabilization; 2) the addition of the catalyst (sodium methoxide) causes a larger decrease in mass compared to the first step (dispersion of methanol in oil) because of the oil conversion into biodiesel; 3) the final stabilization, denoting the end of the reaction. This density variation profile provides information that was used to predict the composition of the mixture over the time and the reaction rate. The precise knowledge of the duration of the synthesis means saving time and resources on a scale production system. This kind of monitoring provides several interesting features such as continuous measurements without collecting aliquots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20measurements" title=" density measurements"> density measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20continuous%20monitoring" title=" online continuous monitoring"> online continuous monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/34647/monitoring-synthesis-of-biodiesel-through-online-density-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7876</span> Esterification Reaction of Stearic Acid with Methanol Over Surface Functionalised PAN Fibrous Solid Acid Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rawaz%20A.%20Ahmed">Rawaz A. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Katherine%20Huddersman"> Katherine Huddersman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-lipid Fats, Oils and Grease (FOGs) from wastewater are underutilized despite their potential for conversion into valuable fuels; this work describes a surface-functionalized fibrous Polyacrylonitrile (PAN) mesh as a novel heterogeneous acid catalyst for the conversion of free fatty acids (FFAs), via a catalytic esterification process into biodiesel. The esterification of stearic acid (SA) with methanol was studied over an acidified PAN solid acid catalyst. Disappearance of the carboxylic acid (C=O) peak of the stearic acid at 1696 cm-1 in the FT-IR spectrum with the associated appearance of the ester (C=O) peak at 1739 cm-1 confirmed the production of the methyl stearate. This was further supported by 1H NMR spectra with the appearance of the ester (-CH₂OCOR) at 3.60-3.70 ppm. Quantitate analysis by GC-FID showed the catalyst has excellent activity with >95 % yield of methyl stearate (MS) at 90 ◦C after 3 h and a molar ratio of methanol to SA of 35:1. To date, to our best knowledge, there is no research in the literature on the esterification reaction for biodiesel production using a modified PAN mesh as a catalyst. It is noteworthy that this acidified PAN mesh catalyst showed comparable activity to conventional Brönsted acids, namely H₂SO₄ and p-TSA, as well as exhibiting higher activity than various other heterogeneous catalysts such as zeolites, ion-exchange resins and acid clay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fats%20oil%20and%20greases%20%28FOGs%29" title="fats oil and greases (FOGs)">fats oil and greases (FOGs)</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20fatty%20acid" title=" free fatty acid"> free fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=esterification%20reaction" title=" esterification reaction"> esterification reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20ester" title=" methyl ester"> methyl ester</a>, <a href="https://publications.waset.org/abstracts/search?q=PAN" title=" PAN"> PAN</a> </p> <a href="https://publications.waset.org/abstracts/148009/esterification-reaction-of-stearic-acid-with-methanol-over-surface-functionalised-pan-fibrous-solid-acid-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7875</span> Carbon Dioxide Hydrogenation to Methanol over Cu/ZnO-SBA-15 Catalyst: Effect of Metal Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20H.%20Tasfy">S. F. H. Tasfy</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20M.%20Zabidi"> N. A. M. Zabidi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.-S.%20Shaharun"> M.-S. Shaharun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilization of CO2 as a carbon source to produce valuable chemicals is one of the important ways to reduce the global warming caused by increasing CO2 in the atmosphere. Supported metal catalysts are crucial for the production of clean and renewable fuels and chemicals from the stable CO2 molecules. The catalytic conversion of CO2 into methanol is recently under increased scrutiny as an opportunity to be used as a low-cost carbon source. Therefore, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were synthesized via impregnation technique with different total metal loading and tested in the catalytic hydrogenation of CO2 to methanol. The morphological and textural properties of the synthesized catalysts were determined by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and N2-adsorption. The CO2 hydrogenation reaction was performed in microactivity fixed-bed system at 250 °C, 2.25 MPa, and H2/CO2 ratio of 3. Experimental results showed that the catalytic structure and performance was strongly affected by the loading of the active site. Where, the catalytic activity, methanol selectivity as well as the space-time yield increased with increasing the metal loading until it reaches the maximum values at a metal loading of 15 wt% while further addition of metal inhibits the catalytic performance. The higher catalytic activity of 14 % and methanol selectivity of 92 % were obtained over Cu/ZnO-SBA-15 catalyst with total bimetallic loading of 15 wt%. The excellent performance of 15 wt% Cu/ZnO-SBA-15 catalyst is attributed to the presence of well disperses active sites with small particle size, higher Cu surface area, and lower catalytic reducibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogenation%20of%20carbon%20dioxide" title="hydrogenation of carbon dioxide">hydrogenation of carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20synthesis" title=" methanol synthesis"> methanol synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20loading" title=" metal loading"> metal loading</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%2FZnO-SBA-15%20catalyst" title=" Cu/ZnO-SBA-15 catalyst"> Cu/ZnO-SBA-15 catalyst</a> </p> <a href="https://publications.waset.org/abstracts/59596/carbon-dioxide-hydrogenation-to-methanol-over-cuzno-sba-15-catalyst-effect-of-metal-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7874</span> Enhancing Power Conversion Efficiency of P3HT/PCBM Polymer Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nidal%20H.%20Abu-Zahra">Nidal H. Abu-Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Algazzar"> Mahmoud Algazzar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, n-dodecylthiol was added to P3HT/PC70BM polymer solar cells to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. The improved crystallinity of P3HT/PC70BM doped with 0-5% by volume of n-dodecylthiol resulted in improving the power conversion efficiency of polymer solar cells by 33%. In addition, thermal annealing of the P3HT/PC70MB/n-dodecylthiolcompound showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2nm, after annealing at 150°C for 30 minutes under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=n-dodecylthiol" title="n-dodecylthiol">n-dodecylthiol</a>, <a href="https://publications.waset.org/abstracts/search?q=congugated%20PSC" title=" congugated PSC"> congugated PSC</a>, <a href="https://publications.waset.org/abstracts/search?q=P3HT%2FPCBM" title=" P3HT/PCBM"> P3HT/PCBM</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20solar%20cells" title=" polymer solar cells"> polymer solar cells</a> </p> <a href="https://publications.waset.org/abstracts/3778/enhancing-power-conversion-efficiency-of-p3htpcbm-polymer-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7873</span> Simultaneous Esterification and Transesterification of High FFA Jatropha Oil Using Reactive Distillation for Biodiesel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Dewi%20Kusumaningtyas">Ratna Dewi Kusumaningtyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Prima%20Astuti%20Handayani"> Prima Astuti Handayani</a>, <a href="https://publications.waset.org/abstracts/search?q=Arief%20Budiman"> Arief Budiman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reactive Distillation (RD) is a multifunctional reactor which integrates chemical reaction with in situ separation to shift the equilibrium towards the product formation. Thus, it is suitable for equilibrium limited reaction such as esterification and transesterification to enhance the reaction conversion. In this work, the application of RD for high FFA oil esterification-transterification for biodiesel production using sulphuric acid catalyst has been studied. Crude Jatropha Oil with FFA content of 30.57% was utilized as the feedstock. Effects of the catalyst concentration and molar ratio of the alcohol to oils were also investigated. It was revealed that best result was obtained with sulphuric acid catalyst (reaction conversion of 94.71% and FFA content of 1.62%) at 60C, molar ratio of methanol to FFA of 30:1, and catalyst loading of 3%. After undergoing esterification reaction, jatropha oil was then transesterified to produce biodiesel. Transesterification reaction was performed in the presence of NaOH catalyst in RD column at 60C, molar ratio of methanol to oil of 6:1, and catalyst concentration of 1%. It demonstrated that biodiesel produced in this work agreed with the Indonesian National and ASTM standard of fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactive%20distillation" title="reactive distillation">reactive distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=esterification" title=" esterification"> esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/9418/simultaneous-esterification-and-transesterification-of-high-ffa-jatropha-oil-using-reactive-distillation-for-biodiesel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7872</span> Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sue-Yi%20Chen">Sue-Yi Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Chun%20Hsu"> Wei-Chun Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jon-Yiew%20Gan"> Jon-Yiew Gan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-efficiency%20solar%20cells" title="high-efficiency solar cells">high-efficiency solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20selection" title=" material selection"> material selection</a>, <a href="https://publications.waset.org/abstracts/search?q=Si-based%20double-junction%20solar%20cells" title=" Si-based double-junction solar cells"> Si-based double-junction solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Tandem%20solar%20cells" title=" Tandem solar cells"> Tandem solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics." title=" photovoltaics."> photovoltaics.</a> </p> <a href="https://publications.waset.org/abstracts/147639/practical-evaluation-of-high-efficiency-si-based-tandem-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7871</span> Toluene Methylation with Methanol Using Synthesized HZSM-5 Catalysts Modified by Silylation and Dealumination </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weerachit%20Pulsawas">Weerachit Pulsawas</a>, <a href="https://publications.waset.org/abstracts/search?q=Thirasak%20Rirksomboon"> Thirasak Rirksomboon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to its abundance from catalytic reforming and thermal cracking of naphtha, toluene could become more value-added compound if it is converted into xylenes, particularly p-xylene, via toluene methylation. Attractively, toluene methylation with methanol is an alternative route to produce xylenes in the absence of other hydrocarbon by-products for which appropriate catalyst would be utilized. In this study, HZSM-5 catalysts with Si/Al molar ratio of 100 were synthesized via hydrothermal treatment and modified by either chemical liquid deposition using tetraethyl-orthosilicate or dealumination with steam. The modified catalysts were characterized by several techniques and tested for their catalytic activity in a continuous down-flow fixed bed reactor. Various operating conditions including WHSV’s of 5 to 20 h-1, reaction temperatures of 400 to 500 °C, and toluene-to-methanol molar ratios (T/M) of 1 to 4 were investigated for attaining possible highest p-xylene selectivity. As a result, the catalytic activity of parent HZSM-5 with temperature of 400 °C, T/M of 4 and WHSV of 24 h-1 showed 65.36% in p-xylene selectivity and 11.90% in toluene conversion as demonstrated for 4 h on stream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toluene%20methylaion" title="toluene methylaion">toluene methylaion</a>, <a href="https://publications.waset.org/abstracts/search?q=HZSM-5" title=" HZSM-5"> HZSM-5</a>, <a href="https://publications.waset.org/abstracts/search?q=silylation" title=" silylation"> silylation</a>, <a href="https://publications.waset.org/abstracts/search?q=dealumination" title=" dealumination"> dealumination</a> </p> <a href="https://publications.waset.org/abstracts/66371/toluene-methylation-with-methanol-using-synthesized-hzsm-5-catalysts-modified-by-silylation-and-dealumination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7870</span> Lithium Ion Supported on TiO2 Mixed Metal Oxides as a Heterogeneous Catalyst for Biodiesel Production from Canola Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Alsharifi">Mariam Alsharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Znad"> Hussein Znad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Ang"> Ming Ang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the environmental issues and the shortage in the conventional fossil fuel sources, biodiesel has gained a promising solution to shift away from fossil based fuel as one of the sustainable and renewable energy. It is synthesized by transesterification of vegetable oils or animal fats with alcohol (methanol or ethanol) in the presence of a catalyst. This study focuses on synthesizing a high efficient Li/TiO2 heterogeneous catalyst for biodiesel production from canola oil. In this work, lithium immobilized onto TiO2 by the simple impregnation method. The catalyst was evaluated by transesterification reaction in a batch reactor under moderate reaction conditions. To study the effect of Li concentrations, a series of LiNO3 concentrations (20, 30, 40 wt. %) at different calcination temperatures (450, 600, 750 ºC) were evaluated. The Li/TiO2 catalysts are characterized by several spectroscopic and analytical techniques such as XRD, FT-IR, BET, TG-DSC and FESEM. The optimum values of impregnated Lithium nitrate on TiO2 and calcination temperature are 30 wt. % and 600 ºC, respectively, along with a high conversion to be 98 %. The XRD study revealed that the insertion of Li improved the catalyst efficiency without any alteration in structure of TiO2 The best performance of the catalyst was achieved when using a methanol to oil ratio of 24:1, 5 wt. % of catalyst loading, at 65◦C reaction temperature for 3 hours of reaction time. Moreover, the experimental kinetic data were compatible with the pseudo-first order model and the activation energy was (39.366) kJ/mol. The synthesized catalyst Li/TiO2 was applied to trans- esterify used cooking oil and exhibited a 91.73% conversion. The prepared catalyst has shown a high catalytic activity to produce biodiesel from fresh and used oil within mild reaction conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=canola%20oil" title=" canola oil"> canola oil</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalyst" title=" heterogeneous catalyst"> heterogeneous catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=impregnation%20method" title=" impregnation method"> impregnation method</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/72028/lithium-ion-supported-on-tio2-mixed-metal-oxides-as-a-heterogeneous-catalyst-for-biodiesel-production-from-canola-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7869</span> Preparation and Characterization of CuFe2O4/TiO2 Photocatalyst for the Conversion of CO2 into Methanol under Visible Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Maksudur%20Rahman%20Khan">Md. Maksudur Rahman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahim%20Uddin"> M. Rahim Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidah%20Abdullah"> Hamidah Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaykobad%20Md.%20Rezaul%20Karim"> Kaykobad Md. Rezaul Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Yousuf"> Abu Yousuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20Kui%20Cheng"> Chin Kui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Huei%20Ruey%20Ong"> Huei Ruey Ong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A systematic study was conducted to explore the photocatalytic reduction of carbon dioxide (CO<sub>2</sub>) into methanol on TiO<sub>2</sub> loaded copper ferrite (CuFe<sub>2</sub>O<sub>4</sub>) photocatalyst under visible light irradiation. The phases and crystallite size of the photocatalysts were characterized by X-ray diffraction (XRD) and it indicates CuFe<sub>2</sub>O<sub>4</sub> as tetragonal phase incorporation with anatase TiO<sub>2</sub> in CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> hetero-structure. The XRD results confirmed the formation of spinel type tetragonal CuFe<sub>2</sub>O<sub>4 </sub>phases along with predominantly anatase phase of TiO<sub>2</sub> in the CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> hetero-structure. UV-Vis absorption spectrum suggested the formation of the hetero-junction with relatively lower band gap than that of TiO<sub>2</sub>. Photoluminescence (PL) technique was used to study the electron–hole (e<sup>−</sup>/h<sup>+</sup>) recombination process. PL spectra analysis confirmed the slow-down of the recombination of electron–hole (e<sup>−</sup>/h<sup>+</sup>) pairs in the CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> hetero-structure. The photocatalytic performance of CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> was evaluated based on the methanol yield with varying amount of TiO<sub>2 </sub>over CuFe<sub>2</sub>O<sub>4</sub> (0.5:1, 1:1, and 2:1) and changing light intensity. The mechanism of the photocatalysis was proposed based on the fact that the predominant species of CO<sub>2</sub> in aqueous phase were dissolved CO<sub>2 </sub>and HCO<sub>3</sub><sup>- </sup>at pH ~5.9. It was evident that the CuFe<sub>2</sub>O<sub>4</sub> could harvest the electrons under visible light irradiation, which could further be injected to the conduction band of TiO<sub>2</sub> to increase the life time of the electron and facilitating the reactions of CO<sub>2</sub> to methanol. The developed catalyst showed good recycle ability up to four cycles where the loss of activity was ~25%. Methanol was observed as the main product over CuFe<sub>2</sub>O<sub>4</sub>, but loading with TiO<sub>2</sub> remarkably increased the methanol yield. Methanol yield over CuFe<sub>2</sub>O<sub>4</sub>/TiO<sub>2</sub> was found to be about three times higher (651 μmol/g<sub>cat </sub>L) than that of CuFe<sub>2</sub>O<sub>4 </sub>photocatalyst. This occurs because the energy of the band excited electrons lies above the redox potentials of the reaction products CO<sub>2</sub>/CH<sub>3</sub>OH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=CuFe2O4%2FTiO2" title=" CuFe2O4/TiO2"> CuFe2O4/TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=band-gap%20energy" title=" band-gap energy"> band-gap energy</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a> </p> <a href="https://publications.waset.org/abstracts/53671/preparation-and-characterization-of-cufe2o4tio2-photocatalyst-for-the-conversion-of-co2-into-methanol-under-visible-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7868</span> Water Heating System with Solar Energy from Solar Panel as Absorber to Reduce the Reduction of Efficiency Solar Panel Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mas%20Aji%20Rizki%20Widjayanto">Mas Aji Rizki Widjayanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizka%20Yunita"> Rizka Yunita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building which has an efficient and low-energy today followed by the developers. It’s not because trends on the building nowaday, but rather because of its positive effects in the long term, where the cost of energy per month to be much cheaper, along with the high price of electricity. The use of solar power (Photovoltaic System) becomes one source of electrical energy for the apartment so that will efficiently use energy, water, and other resources in the operations of the apartment. However, more than 80% of the solar radiation is not converted into electrical energy, but reflected and converted into heat energy. This causes an increase on the working temperature of solar panels and consequently decrease the efficiency of conversion to electrical energy. The high temperature solar panels work caused by solar radiation can be used as medium heat exchanger or heating water for the apartments, so that the working temperature of the solar panel can be lowered to reduce the reduction on the efficiency of conversion to electrical energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20system" title="photovoltaic system">photovoltaic system</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient" title=" efficient"> efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20energy" title=" heat energy"> heat energy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20of%20conversion" title=" efficiency of conversion"> efficiency of conversion</a> </p> <a href="https://publications.waset.org/abstracts/23179/water-heating-system-with-solar-energy-from-solar-panel-as-absorber-to-reduce-the-reduction-of-efficiency-solar-panel-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7867</span> One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma">Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingchuan%20Zhou"> Mingchuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactor" title="reactor">reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20reforming" title=" steam reforming"> steam reforming</a> </p> <a href="https://publications.waset.org/abstracts/86646/one-dimensional-reactor-modeling-for-methanol-steam-reforming-to-hydrogen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7866</span> The Study of γ- Radiolysis of 1.2.4-Trichlorobenzene in Methanol Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Karimov">Samir Karimov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elshad%20Abdullayev"> Elshad Abdullayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Muslum%20Gurbanov"> Muslum Gurbanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As one of the γ-radiolysis products of hexachlorocyclohexane and hexachlorobenzene, the study of 1.4 g/L concentrated 1,2,4-trichlorobenzene (TCB) in methanol solution has been irradiated at 0-209.3 kGy dose of γ-radiation and the results have been studied via GC-MS. At maximum radiation dose of 209.3 kGy 91.38% of TCB has converted into different organic compounds, such as 1,4-, 1,3- and 1,2- dichlorobenzenes (DCB), chlorobenzene, toluene, benzene and other chlorinated and non-chlorinated compounds. The variation of compounds formed by γ-radiolysis depends on the nature of solvent and radiation dose. One of the frequently identified radiolysis products of TCB in different organic solvents - 1,4-DCB studied quantitatively with external standard. The concentration of DCB increases by increasing absorbed radiation dose to approximately 131.8 kGy, then at higher doses with its conversion into chlorobenzene, it decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-radiolysis" title="γ-radiolysis">γ-radiolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorinated%20pesticides" title=" chlorinated pesticides"> chlorinated pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a>, <a href="https://publications.waset.org/abstracts/search?q=dechlorination" title=" dechlorination"> dechlorination</a> </p> <a href="https://publications.waset.org/abstracts/155160/the-study-of-gh-radiolysis-of-124-trichlorobenzene-in-methanol-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7865</span> The Combined Effect of Methane and Methanol on Growth and PHB Production in the Alphaproteobacterial Methanotroph Methylocystis Sp. Rockwell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lazic%20Marina">Lazic Marina</a>, <a href="https://publications.waset.org/abstracts/search?q=Sugden%20Scott"> Sugden Scott</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharma%20Kanta%20Hem"> Sharma Kanta Hem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sauvageau%20Dominic"> Sauvageau Dominic</a>, <a href="https://publications.waset.org/abstracts/search?q=Stein%20Lisa"> Stein Lisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methane is a highly potent greenhouse gas mostly released through anthropogenic activities. Methane represents a low-cost and sustainable feedstock used for the biological production of value-added compounds by bacteria known as methanotrophs. In addition to methane, these organisms can utilize methanol, another cheap carbon source that is a common industrial by-product. Alphaproteobacteria methanotrophs can utilize both methane and methanol to produce the biopolymer polyhydroxybutyrate. The goal of this study was to examine the effect of methanol on polyhydroxybutyrate production in Methylocystis sp. Rockwell and to identify the optimal methane: methanol ratio that will improve PHB without reducing biomass production. Three methane: methanol ratios (4, 2.5., and 0.5) and three nitrogen source (ammonium or nitrate) concentrations (10 mM, 1 mM, and 0.1 mM) were combined to generate 18 growing conditions (9 per carbon source). The production of polyhydroxybutyrate and biomass was analyzed at the end of growth. Overall, the methane: methanol ratios that promoted polyhydroxybutyrate synthesis without reducing biomass were 4 and 2.5 and the optimal nitrogen concentration was 1 mM for both ammonium and nitrate. The physiological mechanism behind the beneficial effect of combining methane and methanol as carbon sources remain to be discovered. One possibility is that methanol has a dual role as a carbon source at lower concentrations and as a stringent response trigger at higher concentrations. Nevertheless, the beneficial effect of methanol and optimal nitrogen concentration for PHB production was confirmed, providing a basis for future physiological analysis and conditions for process scale-up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane" title="methane">methane</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=methanotrophs" title=" methanotrophs"> methanotrophs</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhydroxybutyrate" title=" polyhydroxybutyrate"> polyhydroxybutyrate</a>, <a href="https://publications.waset.org/abstracts/search?q=methylocystis%20sp.%20rockwell" title=" methylocystis sp. rockwell"> methylocystis sp. rockwell</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20carbon%20bioconversions" title=" single carbon bioconversions"> single carbon bioconversions</a> </p> <a href="https://publications.waset.org/abstracts/155467/the-combined-effect-of-methane-and-methanol-on-growth-and-phb-production-in-the-alphaproteobacterial-methanotroph-methylocystis-sp-rockwell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7864</span> Wavelength Conversion of Dispersion Managed Solitons at 100 Gbps through Semiconductor Optical Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kadam%20Bhambri">Kadam Bhambri</a>, <a href="https://publications.waset.org/abstracts/search?q=Neena%20Gupta"> Neena Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All optical wavelength conversion is essential in present day optical networks for transparent interoperability, contention resolution, and wavelength routing. The incorporation of all optical wavelength convertors leads to better utilization of the network resources and hence improves the efficiency of optical networks. Wavelength convertors that can work with Dispersion Managed (DM) solitons are attractive due to their superior transmission capabilities. In this paper, wavelength conversion for dispersion managed soliton signals was demonstrated at 100 Gbps through semiconductor optical amplifier and an optical filter. The wavelength conversion was achieved for a 1550 nm input signal to1555nm output signal. The output signal was measured in terms of BER, Q factor and system margin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all%20optical%20wavelength%20conversion" title="all optical wavelength conversion">all optical wavelength conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20managed%20solitons" title=" dispersion managed solitons"> dispersion managed solitons</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20optical%20amplifier" title=" semiconductor optical amplifier"> semiconductor optical amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20gain%20modultation" title=" cross gain modultation"> cross gain modultation</a> </p> <a href="https://publications.waset.org/abstracts/46267/wavelength-conversion-of-dispersion-managed-solitons-at-100-gbps-through-semiconductor-optical-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency&page=263">263</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency&page=264">264</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methanol%20conversion%20efficiency&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>