CINXE.COM

Search results for: green building envelope

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: green building envelope</title> <meta name="description" content="Search results for: green building envelope"> <meta name="keywords" content="green building envelope"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="green building envelope" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="green building envelope"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6064</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: green building envelope</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6064</span> Sustainable User Comfort Using Building Envelope Design; From Traditional Methods to Innovative Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soufi%20Saylam">Soufi Saylam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental concerns, rising consumption of energy, and the high cost of mechanical systems have all contributed to increased interest in building energy efficiency and passive thermal design in recent years. This study attempts to make an evaluation of building envelope components and associated retrofits in terms of their impact on energy efficiency and occupant comfort in a sustainable context. The design of the building envelope, as a critical component of the building, has a significant impact on the organization of interior space and user comfort. In this regard, in order to achieve maximum comfort and energy savings, the design of the building envelope should include a thermal comfort system that adapts to climatic variables. This system should be developed in harmony with the environmental features, building shape, and materials used. The aim of this study is to investigate the role of the building envelope in sustainable architecture by integrating traditional envelope design principles and strategies with technological techniques, as well as to examine its role in providing physical and psychological comfort to users in the interior space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=envelope%20design" title="envelope design">envelope design</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20needs" title=" functional needs"> functional needs</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20comfort" title=" physiological comfort"> physiological comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture" title=" sustainable architecture"> sustainable architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20techniques" title=" traditional techniques"> traditional techniques</a> </p> <a href="https://publications.waset.org/abstracts/194794/sustainable-user-comfort-using-building-envelope-design-from-traditional-methods-to-innovative-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6063</span> The Impact of Green Building Envelopes on the Urban Microclimate of the Urban Canopy-Case Study: Fawzy Moaz Street, Alexandria, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amany%20Haridy">Amany Haridy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elseragy"> Ahmed Elseragy</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahd%20Omar"> Fahd Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The issue of temperature increase in the urban microclimate has been at the center of attention recently, especially in dense urban areas, such as the City of Alexandria in Egypt, where building surfaces have become the dominant element (more than green areas and streets). Temperatures have been rising during daytime as well as nighttime, however, the research focused on the rise of air temperature at night, a phenomenon known as the urban heat island. This phenomenon has many effects on ecological life, as well as human health. This study provided evidence of the possibility of reducing the urban heat island by using a green building envelope (green wall and green roof) in Alexandria, Egypt. This City has witnessed a boom in growth in its urban fabric and population. A simulation analysis using the Envi-met software to find the ratio of air temperature reduction was performed. The simulation depended on the orientation of the green areas and their density, which was defined through a process of climatic analysis made by the Diva plugin using the Grasshopper software. Results showed that the reduction in air temperature varies from 0.8–2.0 °C, increasing with the increasing density of green areas. Many systems of green wall and green roof can be found in the local market. However, treating an existing building requires a careful choice of system to fit the building construction load and the surrounding nature. Among the systems of choice, there was the ‘geometric system’ of vertical greening that can be fixed on a light aluminum structure for walls and the extensive green system for roofs. Finally, native plants were the best choice in the long term because they fare well in the local climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=envi-met" title="envi-met">envi-met</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope" title=" green building envelope"> green building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20heat%20island" title=" urban heat island"> urban heat island</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20microclimate" title=" urban microclimate"> urban microclimate</a> </p> <a href="https://publications.waset.org/abstracts/92785/the-impact-of-green-building-envelopes-on-the-urban-microclimate-of-the-urban-canopy-case-study-fawzy-moaz-street-alexandria-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6062</span> Sustainable Building Law - The Legal Issues Abound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20J.%20Sobelsohn">Richard J. Sobelsohn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green Building and Sustainable Development help fight climate change, and protects the ozone, animal habitats, air quality, and ground water. The myriad of reasons to go Green has multiplied to the point that a developer that is building a ground-up or renovating/retrofitting a property has a plethora of choices to get to the green goal post. Sustainability not affects the bottom line but satisfies corporate mandates (ESG), consumer demand, market requirements, and the many laws dictating green building practices. The good news is that there are many paths a property owner can take to become green. The bad news is that there are many paths a property owner can take to become green, and they need to choose which direction to take. Certification of a building used to be the highest achievement in the Green building world. Now there are so many variables and laws with which a property owner must comply, and the legal analysis has mushroomed. Operation and Maintenance have also become one of the most important functions for a prudent Green Building owner. So adding to the “development/retrofit” parties involved in the sustainable building legal world, we now need to include all those people who keep the building green, and there are a lot of them! <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20issues" title=" legal issues"> legal issues</a>, <a href="https://publications.waset.org/abstracts/search?q=greenwashing" title=" greenwashing"> greenwashing</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20cleaning" title=" green cleaning"> green cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=compliance" title=" compliance"> compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=ESQ" title=" ESQ"> ESQ</a> </p> <a href="https://publications.waset.org/abstracts/154541/sustainable-building-law-the-legal-issues-abound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6061</span> Embodied Carbon Footprint of Existing Malaysian Green Homes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahanim%20Abdul%20Rashid">Fahanim Abdul Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Azzam%20Ismail"> Muhammad Azzam Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Part and parcel of building green homes (GHs) with favorable thermal comfort (TC) is to design and build with reduced carbon footprint (CF) from embodied energy in the building envelope and reduced operational CF overall. Together, the environmental impact of GHs can be reduced significantly. Nevertheless, there is still a need to identify the base CF value for Malaysian GHs and this can be done by assessing existing ones which can then be compared to conventional and vernacular houses which are built differently with different building materials. This paper underlines the research design and introduces the case studies. For now, the operational CF of the case studies is beyond the scope of this study. Findings from this research could identify the best building material and construction technique combination to build GHs depending on the available skills, financial constraints and the condition of the immediate environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon%20footprint" title="embodied carbon footprint">embodied carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysian%20green%20homes" title=" Malaysian green homes"> Malaysian green homes</a> </p> <a href="https://publications.waset.org/abstracts/1539/embodied-carbon-footprint-of-existing-malaysian-green-homes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6060</span> Green Construction in EGYPT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Anwar">Hanan A. Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces green building construction in Egypt with different concepts and practices. The following study includes green building applied definition, guidelines, regulations and Standards. Evaluation of cost/benefit of green construction methods and green construction rating systems are presented. Relevant case studies will be reviewed. Four sites will be included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20construction" title="green construction">green construction</a>, <a href="https://publications.waset.org/abstracts/search?q=ecofreindly" title=" ecofreindly"> ecofreindly</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficient%20town" title=" self-sufficient town"> self-sufficient town</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20neutral%20atmosphere" title=" carbon neutral atmosphere"> carbon neutral atmosphere</a> </p> <a href="https://publications.waset.org/abstracts/21630/green-construction-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6059</span> A Comparative Analysis of Thermal Performance of Building Envelope Types over Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aram%20Yeretzian">Aram Yeretzian</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Abunnasr"> Yaser Abunnasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahraa%20Makki"> Zahraa Makki</a>, <a href="https://publications.waset.org/abstracts/search?q=Betina%20Abi%20Habib"> Betina Abi Habib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developments in architectural building typologies that are informed by prevalent construction techniques and socio-cultural practices generate different adaptations in the building envelope. While different building envelope types exhibit different climate responsive passive strategies, the individual and comparative thermal performance analysis resulting from these technologies is yet to be understood. This research aims to develop this analysis by selecting three building envelope types from three distinct building traditions by measuring the heat transmission in the city of Beirut. The three typical residential buildings are selected from the 1920s, 1940s, and 1990s within the same street to ensure similar climatic and urban conditions. Climatic data loggers are installed inside and outside of the three locations to measure indoor and outdoor temperatures, relative humidity, and heat flow. The analysis of the thermal measurements is complemented by site surveys on window opening, lighting, and occupancy in the three selected locations and research on building technology from the three periods. Apart from defining the U-value of the building envelopes, the collected data will help evaluate the indoor environments with respect to the thermal comfort zone. This research, thus, validates and contextualizes the role of building technologies in relation to climate responsive design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture" title="architecture">architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20construction" title=" wall construction"> wall construction</a>, <a href="https://publications.waset.org/abstracts/search?q=envelope%20performance" title=" envelope performance"> envelope performance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/87466/a-comparative-analysis-of-thermal-performance-of-building-envelope-types-over-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6058</span> A Review on the Necessities of Green Building in Bangladesh and Its Construction Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Afsana%20Azad">Syeda Afsana Azad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change, due to the release of greenhouse gases into the atmosphere has been recognized as one of the biggest threats to the present world. The condition of the earth is getting worse day by day due to climate change. Bangladesh is considered to be one of the most vulnerable countries to climate change due to large population, sharp urbanization, etc. Construction of green building is a very good solution to reduce the greenhouse effect. Green building technology refers to that kind of structures which are environmentally friendly and resource-efficient throughout a building’s service life. This technology can provide at least 50% energy saving opportunity to the nation. The necessity of the construction of structures in an environment-friendly way is increasing now. This study shows the scenario of rapid population growth, urbanization, necessity of green building in Bangladesh and also discusses the construction process of green building. As the present climate condition of Bangladesh is not friendly, construction of green building is very much needed. To battle climate change, it is mandatory to construct green building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title="Bangladesh">Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20house%20effect" title=" green house effect"> green house effect</a> </p> <a href="https://publications.waset.org/abstracts/83938/a-review-on-the-necessities-of-green-building-in-bangladesh-and-its-construction-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6057</span> An Assessment of the Factors Affecting Green Building Technology (GBT) Adoption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuruddeen%20Usman">Nuruddeen Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Mohammed%20Gidado"> Usman Mohammed Gidado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A construction and post construction activity in buildings contributes to environmental degradation, because of the generation of solid waste during construction to the production of carbon dioxide by the occupants during utilization. These problems were caused as a result of lack of adopting green building technology during and after construction. However, this study aims at conceptualizing the factors that are affecting the adoption of green building technology with a view to suggest better ways for its successful adoption in the construction industry through developing a green building technology model. Thus, the research findings show that: Economic, social, cultural, and technological progresses are the factors affecting Green Building Technology Adoption. Therefore, identifying these factors and developing the model might help in the successful adoption of green building technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building%20technology" title="green building technology">green building technology</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20construction" title=" post construction"> post construction</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a> </p> <a href="https://publications.waset.org/abstracts/17350/an-assessment-of-the-factors-affecting-green-building-technology-gbt-adoption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">661</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6056</span> Classification of Opaque Exterior Walls of Buildings from a Sustainable Point of View</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20S%C3%A1nchez%20de%20Le%C3%B3n%20Brajkovich">Michelle Sánchez de León Brajkovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuria%20Mart%C3%AD%20Audi"> Nuria Martí Audi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The envelope is one of the most important elements when one analyzes the operation of the building in terms of sustainability. Taking this into consideration, this research focuses on setting a classification system of the envelopes opaque systems, crossing the knowledge and parameters of construction systems with requirements in terms of sustainability that they may have, to have a better understanding of how these systems work with respect to their sustainable contribution to the building. Therefore, this paper evaluates the importance of the envelope design on the building sustainability. It analyses the parameters that make the construction systems behave differently in terms of sustainability. At the same time it explains the classification process generated from this analysis that results in a classification where all opaque vertical envelope construction systems enter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable" title="sustainable">sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=exterior%20walls" title=" exterior walls"> exterior walls</a>, <a href="https://publications.waset.org/abstracts/search?q=envelope" title=" envelope"> envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=facades" title=" facades"> facades</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20systems" title=" construction systems"> construction systems</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a> </p> <a href="https://publications.waset.org/abstracts/13071/classification-of-opaque-exterior-walls-of-buildings-from-a-sustainable-point-of-view" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6055</span> Conceptual Perimeter Model for Estimating Building Envelope Quantities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ka%20C.%20Lam">Ka C. Lam</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwafunmibi%20S.%20Idowu"> Oluwafunmibi S. Idowu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building girth is important in building economics and mostly used in quantities take-off of various cost items. Literature suggests that the use of conceptual quantities can improve the accuracy of cost models. Girth or perimeter of a building can be used to estimate conceptual quantities. Hence, the current paper aims to model the perimeter-area function of buildings shapes for use at the conceptual design stage. A detailed literature review on existing building shape indexes was carried out. An empirical approach was used to study the relationship between area and the shortest length of a four-sided orthogonal polygon. Finally, a mathematical approach was used to establish the observed relationships. The empirical results obtained were in agreement with the mathematical model developed. A new equation termed &ldquo;conceptual perimeter equation&rdquo; is proposed. The equation can be used to estimate building envelope quantities such as external wall area, external finishing area and scaffolding area before sketch or detailed drawings are prepared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20shape%20index" title=" building shape index"> building shape index</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20quantities" title=" conceptual quantities"> conceptual quantities</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20modelling" title=" cost modelling"> cost modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=girth" title=" girth"> girth</a> </p> <a href="https://publications.waset.org/abstracts/75405/conceptual-perimeter-model-for-estimating-building-envelope-quantities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6054</span> Comparison of Traditional and Green Building Designs in Egypt: Energy Saving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hala%20M.%20Abdel%20Mageed">Hala M. Abdel Mageed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20I.%20Omar"> Ahmed I. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shady%20H.%20E.%20Abdel%20Aleem"> Shady H. E. Abdel Aleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m<sup>2</sup> area while the envelope area is 1400 m<sup>2</sup>. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m<sup>2</sup>. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m<sup>2</sup>.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design &ldquo;LEED&rdquo;) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=leadership%20in%20energy%20and%20environmental%20design" title=" leadership in energy and environmental design"> leadership in energy and environmental design</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/62477/comparison-of-traditional-and-green-building-designs-in-egypt-energy-saving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6053</span> Sustainable Design for Building Envelope in Hot Climates: A Case Study for the Role of the Dome as a Component of an Envelope in Heat Exchange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akeel%20Noori%20Almulla%20Hwaish">Akeel Noori Almulla Hwaish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Architectural design is influenced by the actual thermal behaviour of building components, and this in turn depends not only on their steady and periodic thermal characteristics, but also on exposure effects, orientation, surface colour, and climatic fluctuations at the given location. Design data and environmental parameters should be produced in an accurate way for specified locations, so that architects and engineers can confidently apply them in their design calculations that enable precise evaluation of the influence of various parameters relating to each component of the envelope, which indicates overall thermal performance of building. The present paper will be carried out with an objective of thermal behaviour assessment and characteristics of the opaque and transparent parts of one of the very unique components used as a symbolic distinguished element of building envelope, its thermal behaviour under the impact of solar temperatures, and its role in heat exchange related to a specific U-value of specified construction materials alternatives. The research method will consider the specified Hot-Dry weather and new mosque in Baghdad, Iraq as a case study. Also, data will be presented in light of the criteria of indoor thermal comfort in terms of design parameters and thermal assessment for a“model dome”. Design alternatives and considerations of energy conservation, will be discussed as well using comparative computer simulations. Findings will be incorporated to outline the conclusions clarifying the important role of the dome in heat exchange of the whole building envelope for approaching an indoor thermal comfort level and further research in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20design" title=" sustainable design"> sustainable design</a>, <a href="https://publications.waset.org/abstracts/search?q=dome%20impact" title=" dome impact"> dome impact</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-climates" title=" hot-climates"> hot-climates</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchange" title=" heat exchange"> heat exchange</a> </p> <a href="https://publications.waset.org/abstracts/27249/sustainable-design-for-building-envelope-in-hot-climates-a-case-study-for-the-role-of-the-dome-as-a-component-of-an-envelope-in-heat-exchange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6052</span> Investigation on the Physical Conditions of Façade Systems of Campus Buildings by Infrared Thermography Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20T%C3%BCrkmeno%C4%9Flu%20Bayraktar">N. Türkmenoğlu Bayraktar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kishal%C4%B1"> E. Kishalı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Campus buildings are educational facilities where various amount of energy consumption for lighting, heating, cooling and ventilation occurs. Some of the new universities in Turkey, where this investigation takes place, still continue their educational activities in existing buildings primarily designed for different architectural programs and converted to campus buildings via changes of function, space organizations and structural interventions but most of the time without consideration of appropriate micro climatic conditions. Reducing energy consumption in these structures not only contributes to the national economy but also mitigates the negative effects on environment. Furthermore, optimum thermal comfort conditions should be provided during the refurbishment of existing campus structures and their building envelope. Considering this issue, the first step is to investigate the climatic performance of building elements regarding refurbishment process. In the context of the study Kocaeli University, Faculty of Design and Architecture building constructed in 1980s in Anıtpark campus located in the central part of Kocaeli, Turkey was investigated. Climatic factors influencing thermal conditions; the deteriorations on building envelope; temperature distribution; heat losses from fa&ccedil;ade elements observed by thermography were presented in order to improve strategies for retrofit process for the building envelope. Within the scope of the survey, refurbishment strategies towards providing optimum climatic comfort conditions, increasing energy efficiency of building envelope were proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=IRT" title=" IRT"> IRT</a>, <a href="https://publications.waset.org/abstracts/search?q=refurbishment" title=" refurbishment"> refurbishment</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20test" title=" non-destructive test"> non-destructive test</a> </p> <a href="https://publications.waset.org/abstracts/63785/investigation-on-the-physical-conditions-of-facade-systems-of-campus-buildings-by-infrared-thermography-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6051</span> Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinwooung%20Kim">Jinwooung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hwan%20Jung"> Jae-Hwan Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Jun%20Kim"> Seong-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ah%20Kim"> Sung-Ah Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20metal" title=" perforated metal"> perforated metal</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-factor%20optimization" title=" multi-factor optimization"> multi-factor optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=fa%C3%A7ade" title=" façade"> façade</a> </p> <a href="https://publications.waset.org/abstracts/81902/multi-factor-optimization-method-through-machine-learning-in-building-envelope-design-focusing-on-perforated-metal-facade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6050</span> A New Perspective: The Use of Low-Cost Phase Change Material in Building Envelope System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20A.%20Chernousov">Andrey A. Chernousov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Y.%20B.%20Chan"> Ben Y. B. Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of the low-cost paraffinic phase change material can be rather effective in smart building envelopes in the South China region. Particular attention has to be paid to the PCM optimization as an exploitation conditions and the envelope insulation changes its thermal characteristics. The studied smart building envelope consists of a reinforced aluminum exterior, polymeric insulation foam, phase change material and reinforced interior gypsum board. A prototype sample was tested to validate the numerical scheme using EnergryPlus software. Three scenarios of insulation thermal resistance loss (ΔR/R = 0%, 25%, 50%) were compared with the different PCM thicknesses (tP=0, 1, 2.5, 5 mm). The comparisons were carried out for a west facing enveloped office building (50 storey). PCM optimization was applied to find the maximum efficiency for the different ΔR/R cases. It was found, during the optimization, that the PCM is an important smart component, lowering the peak energy demand up to 2.7 times. The results are not influenced by the insulation aging in terms of ΔR/R during long-term exploitation. In hot and humid climates like Hong Kong, the insulation core of the smart systems is recommended to be laminated completely. This can be very helpful in achieving an acceptable payback period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20building%20envelope" title="smart building envelope">smart building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20sandwich%20panel" title=" large-scale sandwich panel"> large-scale sandwich panel</a> </p> <a href="https://publications.waset.org/abstracts/29976/a-new-perspective-the-use-of-low-cost-phase-change-material-in-building-envelope-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">730</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6049</span> Tuning of the Thermal Capacity of an Envelope for Peak Demand Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isha%20Rathore">Isha Rathore</a>, <a href="https://publications.waset.org/abstracts/search?q=Peeyush%20Jain"> Peeyush Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Elangovan%20Rajasekar"> Elangovan Rajasekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal capacity of the envelope impacts the cooling and heating demand of a building and modulates the peak electricity demand. This paper presents the thermal capacity tuning of a building envelope to minimize peak electricity demand for space cooling. We consider a 40 m² residential testbed located in Hyderabad, India (Composite Climate). An EnergyPlus model is validated using real-time data. A Parametric simulation framework for thermal capacity tuning is created using the Honeybee plugin. Diffusivity, Thickness, layer position, orientation and fenestration size of the exterior envelope are parametrized considering a five-layered wall system. A total of 1824 parametric runs are performed and the optimum wall configuration leading to minimum peak cooling demand is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20capacity" title="thermal capacity">thermal capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=tuning" title=" tuning"> tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20demand%20reduction" title=" peak demand reduction"> peak demand reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20analysis" title=" parametric analysis"> parametric analysis</a> </p> <a href="https://publications.waset.org/abstracts/143562/tuning-of-the-thermal-capacity-of-an-envelope-for-peak-demand-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6048</span> Effective Thermal Retrofitting Methods to Improve Energy Efficiency of Existing Dwellings in Sydney</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claire%20Far">Claire Far</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Wilkinson"> Sara Wilkinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Deborah%20Ascher%20Barnstone"> Deborah Ascher Barnstone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy issues have been a growing concern in current decades. Limited energy resources and increasing energy consumption from one side and environmental pollution and waste of resources from the other side have substantially affected the future of human life. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Therefore, employing sustainable design principles and effective use of construction materials for building envelope can play crucial role in the improvement of energy efficiency of existing dwellings and enhancement of thermal comfort of the occupants. The energy consumption for heating and cooling normally is determined by the quality of the building envelope. Building envelope is the part of building which separates the habitable areas from exterior environment. Building envelope consists of external walls, external doors, windows, roof, ground and the internal walls that separate conditioned spaces from non-condition spaces. The energy loss from the building envelope is the key factor. Heat loss through conduction, convection and radiation from building envelope. Thermal performance of the building envelope can be improved by using different methods of retrofitting depending on the climate conditions and construction materials. Based on the available studies, the importance of employing sustainable design principles has been highlighted among the Australian building professionals. However, the residential building sector still suffers from a lack of having the best practice examples and experience for effective use of construction materials for building envelope. As a result, this study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of existing dwellings in Sydney, the most populated city in Australia. Based on the research findings, the best thermal retrofitting methods for increasing thermal comfort and energy efficiency of existing residential dwellings as well as reducing their environmental impact and footprint have been identified and proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title="thermal comfort">thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20dwellings" title=" residential dwellings"> residential dwellings</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20design%20principles" title=" sustainable design principles"> sustainable design principles</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20retrofit" title=" thermal retrofit"> thermal retrofit</a> </p> <a href="https://publications.waset.org/abstracts/74410/effective-thermal-retrofitting-methods-to-improve-energy-efficiency-of-existing-dwellings-in-sydney" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6047</span> Factors Influencing the Use of Green Building Practices in the South African Residential Apartment Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mongezi%20Nene">Mongezi Nene</a>, <a href="https://publications.waset.org/abstracts/search?q=Emma%20Ayesu-Koranteng"> Emma Ayesu-Koranteng</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Amoah"> Christopher Amoah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayo%20Adeniran"> Ayo Adeniran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although its use has been criticized over the years as being unencouraging, the green building concept is quickly overtaking other concepts, particularly in the construction of commercial properties. The goal of the study is to identify the variables influencing the use of green building practices when developing residential structures. A qualitative methodology, using interviews with semi-structured open-ended questions to 35 property practitioners operating residential apartments in Bloemfontein, South Africa, was used to collect primary data which was analysed using thematic content analysis. The findings show that while respondents have a good understanding of green building principles, they are not being used in the construction of residential buildings in South Africa due to issues with green building approval procedures, the potential for tenant rent increases, the cost of materials, technical issues, contractual issues, and a lack of awareness, among others. This paper recommends among others an urgent need to implement measures by stakeholders towards enhancing the adoption of green building concepts in the construction of residential buildings as well as incentivising its construction through lowered property rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20apartments" title=" residential apartments"> residential apartments</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/161017/factors-influencing-the-use-of-green-building-practices-in-the-south-african-residential-apartment-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6046</span> Integration of a Self-Cooling Photobioreactor to Building Envelop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mirabbasi">Amin Mirabbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This review focuses on the integration of self-cooling photobioreactors into building envelopes as an approach to sustainable architecture. We emphasize the urgency for eco-friendly design advancements and explore the incorporation of plants, particularly microalgae photobioreactors, into building facades. This entails a discussion of the building envelope's components and definition, challenges posed by algal technology in architecture, and adaptations for varied structures such as skyscrapers, residences, and townhouses. We further evaluate the influence of geographic factors, with a spotlight on warm and temperate regions like Western Australia. Concluding, we analyse the cost-effectiveness and practicality of this integration, focusing on its potential application in the upcoming Harry Butler Science Centre building. Through comprehensive literature scrutiny, we aim to shed light on the prospects and obstacles of embedding self-cooling photobioreactors in pursuit of an eco-aware architectural future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae%20photobioreactors" title="microalgae photobioreactors">microalgae photobioreactors</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title=" building envelope"> building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture" title=" sustainable architecture"> sustainable architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20design%20advancements." title=" eco-friendly design advancements."> eco-friendly design advancements.</a> </p> <a href="https://publications.waset.org/abstracts/173161/integration-of-a-self-cooling-photobioreactor-to-building-envelop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6045</span> Thermal Simulation for Urban Planning in Early Design Phases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20A.%20Romero%20Espinosa">Diego A. Romero Espinosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal simulations are used to evaluate comfort and energy consumption of buildings. However, the performance of different urban forms cannot be assessed precisely if an environmental control system and user schedules are considered. The outcome of such analysis would lead to conclusions that combine the building use, operation, services, envelope, orientation and density of the urban fabric. The influence of these factors varies during the life cycle of a building. The orientation, as well as the surroundings, can be considered a constant during the lifetime of a building. The structure impacts the thermal inertia and has the largest lifespan of all the building components. On the other hand, the building envelope is the most frequent renovated component of a building since it has a great impact on energy performance and comfort. Building services have a shorter lifespan and are replaced regularly. With the purpose of addressing the performance, an urban form, a specific orientation, and density, a thermal simulation method were developed. The solar irradiation is taken into consideration depending on the outdoor temperature. Incoming irradiation at low temperatures has a positive impact increasing the indoor temperature. Consequently, overheating would be the combination of high outdoor temperature and high irradiation at the façade. On this basis, the indoor temperature is simulated for a specific orientation of the evaluated urban form. Thermal inertia and building envelope performance are considered additionally as the materiality of the building. The results of different thermal zones are summarized using the 'Degree day method' for cooling and heating. During the early phase of a design process for a project, such as Masterplan, conclusions regarding urban form, density and materiality can be drawn by means of this analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=masterplanning" title=" masterplanning"> masterplanning</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20form" title=" urban form"> urban form</a> </p> <a href="https://publications.waset.org/abstracts/93163/thermal-simulation-for-urban-planning-in-early-design-phases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6044</span> Worth of Sick Building Syndrome and Enhance the Quality of Life in Green Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamyar%20Kabirifar">Kamyar Kabirifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Azarniush"> Majid Azarniush</a>, <a href="https://publications.waset.org/abstracts/search?q=Behbood%20Maashkar"> Behbood Maashkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A proper house is a suitable residential area which provides comfort, proper accessibility, security, stability and permanence of structure, enough lighting, Proper initial infrastructures and ventilation for its inhabitants and the most important of all, it should be proportional to the family’s financial power. Saving energy and making optimal usage of it and also taking advantage of stable energies are the bases of green buildings. Making green building will help the health of a person living in it and in its surrounding. It will support the people and provoke their satisfaction. Not only it will bring about the raise of level of the quality of life for building inhabitants, but also it will cause the promotion of quality level of life of the people living in the surrounding area and the society. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title="quality of life">quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20pollution" title=" environment pollution"> environment pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=sick%20building" title=" sick building"> sick building</a> </p> <a href="https://publications.waset.org/abstracts/3205/worth-of-sick-building-syndrome-and-enhance-the-quality-of-life-in-green-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6043</span> Identification of Factors Influencing Costs in Green Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazirah%20Zainul%20Abidin">Nazirah Zainul Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Zahirah%20Mokhtar%20Azizi"> Nurul Zahirah Mokhtar Azizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cost has always been the leading concern in green building development. The perception that construction cost for green building is higher than conventional buildings has only made the discussion of green building cost more difficult. Understanding the factors that will influence the cost of green construction is expected to shed light into what makes green construction more or at par with conventional projects, or perhaps, where cost can be optimised. This paper identifies the elements of cost before shifting the attention to the influencing factors. Findings from past studies uncovered various factors related to cost which are grouped into five focal themes i.e. awareness, knowledge, financial, technical, and government support. A conceptual framework is produced in a form of a flower diagram indicating the cost influencing factors of green building development. These factors were found to be both physical and non-physical aspects of a project. The framework provides ground for the next stage of research that is to further explore how these factors influence the project cost and decision making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20project" title="green project">green project</a>, <a href="https://publications.waset.org/abstracts/search?q=factors%20influencing%20cost" title=" factors influencing cost"> factors influencing cost</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20cost" title=" hard cost"> hard cost</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20cost" title=" soft cost"> soft cost</a> </p> <a href="https://publications.waset.org/abstracts/49827/identification-of-factors-influencing-costs-in-green-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6042</span> BIM-Based Tool for Sustainability Assessment and Certification Documents Provision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taki%20Eddine%20Seghier">Taki Eddine Seghier</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hamdan%20Ahmad"> Mohd Hamdan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaik-Wah%20Lim"> Yaik-Wah Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Opeyemi%20Williams"> Samuel Opeyemi Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building%20rating%20system" title="green building rating system">green building rating system</a>, <a href="https://publications.waset.org/abstracts/search?q=GBRS" title=" GBRS"> GBRS</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modeling" title=" building information modeling"> building information modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=BIM" title=" BIM"> BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20programming" title=" visual programming"> visual programming</a>, <a href="https://publications.waset.org/abstracts/search?q=VP" title=" VP"> VP</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20assessment" title=" sustainability assessment"> sustainability assessment</a> </p> <a href="https://publications.waset.org/abstracts/58825/bim-based-tool-for-sustainability-assessment-and-certification-documents-provision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6041</span> The Survey Research and Evaluation of Green Residential Building Based on the Improved Group Analytical Hierarchy Process Method in Yinchuan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yun-na%20Wu">Yun-na Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhen%20Wang"> Zhen Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the economic downturn and the deterioration of the living environment, the development of residential buildings as high energy consuming building is gradually changing from &ldquo;extensive&rdquo; to green building in China. So, the evaluation system of green building is continuously improved, but the current evaluation work has the following problems: (1) There are differences in the cost of the actual investment and the purchasing power of residents, also construction target of green residential building is single and lacks multi-objective performance development. (2) Green building evaluation lacks regional characteristics and cannot reflect the different regional residents demand. (3) In the process of determining the criteria weight, the experts&rsquo; judgment matrix is difficult to meet the requirement of consistency. Therefore, to solve those problems, questionnaires which are about the green residential building for Ningxia area are distributed, and the results of questionnaires can feedback the purchasing power of residents and the acceptance of the green building cost. Secondly, combined with the geographical features of Ningxia minority areas, the evaluation criteria system of green residential building is constructed. Finally, using the improved group AHP method and the grey clustering method, the criteria weight is determined, and a real case is evaluated, which is located in Xing Qing district, Ningxia. A conclusion can be obtained that the professional evaluation for this project and good social recognition is basically the same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaluation" title="evaluation">evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20residential%20building" title=" green residential building"> green residential building</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20clustering%20method" title=" grey clustering method"> grey clustering method</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20AHP" title=" group AHP"> group AHP</a> </p> <a href="https://publications.waset.org/abstracts/61444/the-survey-research-and-evaluation-of-green-residential-building-based-on-the-improved-group-analytical-hierarchy-process-method-in-yinchuan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6040</span> Simplified 3R2C Building Thermal Network Model: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Mahbobur%20Rahman">S. M. Mahbobur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control.&nbsp; Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the &ldquo;Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program&rdquo;, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASHRAE%20case%20study" title="ASHRAE case study">ASHRAE case study</a>, <a href="https://publications.waset.org/abstracts/search?q=clear%20sky%20solar%20radiation%20model" title=" clear sky solar radiation model"> clear sky solar radiation model</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20modeling" title=" energy modeling"> energy modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20network%20model" title=" thermal network model"> thermal network model</a> </p> <a href="https://publications.waset.org/abstracts/106581/simplified-3r2c-building-thermal-network-model-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6039</span> Study on the Key Stakeholders&#039; Perception and Establishment of Sustainability Goals in the Green Building Projects: The Case of Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Kalsum%20M.%20Isa">Nor Kalsum M. Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Yazid%20M.%20Yunos"> Mohd Yazid M. Yunos</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuar%20Alias"> Anuar Alias</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazdi%20Marzuki"> Mazdi Marzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamarul%20Ismail"> Kamarul Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20H.%20Ibrahim"> Mohd H. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green building is an emerging concept with the ultimate target to achieve sustainable development by integrating sustainability goals and principles into project development. Basically, a green building is a building that is designed, constructed and operated to boost environmental, economic, health and productivity performance over conventional buildings. The buildings have been proven to be successful in contributing towards sustainability and project success. The purpose of this study was to determine the benefits of sustainability application in building projects, looking towards project success from the perspective of Malaysian key project stakeholders. The study also aimed to explore the establishment of sustainability goals in the green building projects in Malaysia. The Triple Bottom Line (TBL) Concept of Sustainability was used as the foundation theoretical framework. Surveys, interviews and multiple case study methods were employed. A sample of 188 Malaysian building project stakeholders was selected for questionnaire surveys, and 15 stakeholders from three award-winning green building projects in Malaysia were involved in the interviews. The study found that the majority of the respondents were less aware that the sustainability integration in the building project can significantly affect cost reduction, schedule effectiveness and stakeholders’ satisfaction with the performance of buildings as at the same level as the quality performance. Of the four sustainability goals, the environmental aspect was given more priority than others in the development of the green building projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20stakeholders" title=" project stakeholders"> project stakeholders</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/30421/study-on-the-key-stakeholders-perception-and-establishment-of-sustainability-goals-in-the-green-building-projects-the-case-of-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6038</span> Valuation of Green Commercial Office Building: A Preliminary Study of Malaysian Valuers&#039; Insight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tuti%20Haryati%20Jasimin">Tuti Haryati Jasimin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hishamuddin%20Mohd%20Ali"> Hishamuddin Mohd Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaysia’s green building development is gaining momentum and green buildings have become a key focus area especially within the commercial sector with the encouragement of government legislation and policy. Due to the emerging awareness among the market players’ views of the benefits associated with the ownership of green buildings in Malaysia, there is a need for valuers to incorporate consideration of sustainability into their assessments of property market value to ensure the green buildings continue to increase in the market. This paper analyses the valuers’ current perception on the valuation practices with regard to the green issues in Malaysia. The study was based on a survey of registered real estate valuers and the experts whose work related to valuation in the Klang Valley area to rate their view regarding the perception on valuation of green building. The findings present evidence that even though Malaysian valuers have limited knowledge of green buildings, they recognize the importance of incorporating the green features in the valuation process. The inclusion of incorporating the green features in valuations in practice was hindered by the inadequacy of sufficient transactional data in the market. Furthermore, valuers experienced difficulty in identifying what are the various input parameters of green building and how to adjust it in order to reflect the benefit of sustainability features correctly in the valuation process. This paper focuses on the present challenges confronted by Malaysian valuers with regards to incorporating the green features in their valuation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20commercial%20office%20building" title="green commercial office building">green commercial office building</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=valuers%E2%80%99%20perception" title=" valuers’ perception"> valuers’ perception</a>, <a href="https://publications.waset.org/abstracts/search?q=valuation" title=" valuation"> valuation</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial%20sector" title=" commercial sector"> commercial sector</a> </p> <a href="https://publications.waset.org/abstracts/29619/valuation-of-green-commercial-office-building-a-preliminary-study-of-malaysian-valuers-insight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6037</span> Sky Farming: The Alternative Concept of Green Building Using Vertical Landscape Model in Urban Area as an Effort to Achieve Sustainable Development </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadiah%20Yola%20Putri">Nadiah Yola Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesia%20Putri%20Sharfina"> Nesia Putri Sharfina</a>, <a href="https://publications.waset.org/abstracts/search?q=Traviata%20Prakarti"> Traviata Prakarti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a literature review presented descriptively to review the concept of green building to face the challenge of sustainable development and food in urban areas. In this paper, researchers initiated the concept of green building with sky farming method. Sky farming use vertical landscape system in order to realizing food self-sufficient green city. Sky farming relying on plantings and irrigation system efficiency in the building which is adopted the principles of green building. Planting system is done by applying hydroponic plants with <em>Nutrient Film Technique </em>(NFT) using energy source of solar cell and grey water from the processing of waste treatment plant. The application of sky farming in urban areas can be a recommendation for the design of environmental-friendly construction. In order to keep the land and distance efficiency, this system is a futuristic idea that would be the connector of human civilization in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20area" title=" urban area"> urban area</a>, <a href="https://publications.waset.org/abstracts/search?q=sky%20farming" title=" sky farming"> sky farming</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20landscape" title=" vertical landscape"> vertical landscape</a> </p> <a href="https://publications.waset.org/abstracts/31688/sky-farming-the-alternative-concept-of-green-building-using-vertical-landscape-model-in-urban-area-as-an-effort-to-achieve-sustainable-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6036</span> Green Building Delivery: Exploring Lessons and the State of Practice in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayodele%20E.%20Ikudayisi">Ayodele E. Ikudayisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yomi%20M.%20D.%20Adedeji"> Yomi M. D. Adedeji</a>, <a href="https://publications.waset.org/abstracts/search?q=Olumuyiwa%20B.%20Adegun"> Olumuyiwa B. Adegun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The level of adoption of green building (GB) schemes in Nigeria is low. The prevailing focus on economic development has overshadowed sustainability concerns. Despite these, few project cases exist in Nigeria in which sustainability goals have been achieved. This study aims to draw lessons from these in order to understand the project attributes, certification status, and the delivery process. Through an exploratory case study approach, fifteen project cases across five cities in Nigeria were examined. These represent the first-generation of green buildings in Nigeria, a verifiable reference for future initiatives in Sub-Saharan Africa. From the result, three categories of green buildings were identified, namely certified projects, demonstration projects, and potential projects with varying delivery attributes. Then, it is concluded by setting research and practice agenda towards aligning Nigeria’s building industry with the global trends in sustainable building delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LEED" title="LEED">LEED</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20attributes" title=" project attributes"> project attributes</a> </p> <a href="https://publications.waset.org/abstracts/114534/green-building-delivery-exploring-lessons-and-the-state-of-practice-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6035</span> Using Building Information Modeling in Green Building Design and Performance Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moataz%20M.%20Hamed">Moataz M. Hamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20S.%20M.%20Al%20Hagla"> Khalid S. M. Al Hagla</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyad%20El%20Sayad"> Zeyad El Sayad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thinking in design energy-efficiency and high-performance green buildings require a different design mechanism and design approach than conventional buildings to achieve more sustainable result. By reasoning about specific issues at the correct time in the design process, the design team can minimize negative impacts, maximize building performance and keep both first and operation costs low. This paper attempts to investigate and exploit the sustainable dimension of building information modeling (BIM) in designing high-performance green buildings that require less energy for operation, emit less carbon dioxide and provide a conducive indoor environment for occupants through early phases of the design process. This objective was attained by a critical and extensive literature review that covers the following issues: the value of considering green strategies in the early design stage, green design workflow, and BIM-based performance analysis. Then the research proceeds with a case study that provides an in-depth comparative analysis of building performance evaluation between an office building in Alexandria, Egypt that was designed by the conventional design process with the same building if taking into account sustainability consideration and BIM-based sustainable analysis integration early through the design process. Results prove that using sustainable capabilities of building information modeling (BIM) in early stages of the design process side by side with green design workflow promote buildings performance and sustainability outcome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BIM" title="BIM">BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20performance%20analysis" title=" building performance analysis"> building performance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=BIM-based%20sustainable%20analysis" title=" BIM-based sustainable analysis"> BIM-based sustainable analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building%20design" title=" green building design"> green building design</a> </p> <a href="https://publications.waset.org/abstracts/76735/using-building-information-modeling-in-green-building-design-and-performance-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope&amp;page=202">202</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope&amp;page=203">203</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20building%20envelope&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10