CINXE.COM

Key Engineering Materials Vol. 941 | Scientific.Net

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="This special edition includes articles on research results in materials science and materials processing technologies used in modern production. Technologies of structural metals processing, their wear resistance and strength, powder metallurgy, synthesis methods, properties and applications of iron oxide and ferrites, modern composite materials and materials and technologies in the oil and gas industry are subjects of the publication. This specialised edition will be helpful to many engineers and researchers whose activities are related to industrial production." /> <link rel="canonical" href="https://www.scientific.net/KEM.941" /> <meta property="og:title" content="Key Engineering Materials Vol. 941 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/KEM.941" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Key Engineering Materials Vol. 941 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=BKBihgCkUm340JBGsNjEPtWz8I22CUsubMPC3V1WYzw" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open&#x2B;Sans&#x2B;Condensed:300,700%7COpen&#x2B;Sans:300i,400,400i,600,600i,700&amp;display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FKEM.941" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FKEM.941" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/news/all">News</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/DocuCenter">Downloads</a> <a href="/news/all">News</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/KEM.947" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 947</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.946" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 946</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.945" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 945</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.944" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 944</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.943" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 943</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.942" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 942</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.941" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 941</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.940" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 940</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.939" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 939</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.938" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 938</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.937" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 937</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.936" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 936</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/KEM.935" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Key Engineering Materials <br /> <span class="paper-volume-number">Vol. 935</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/KEM">Key Engineering Materials</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Key Engineering Materials Vol. 941</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Key Engineering Materials Vol. 941</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-j4x41d">https://doi.org/10.4028/v-j4x41d</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/KEM.941/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/KEM.941_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/KEM.941/2">2</a></li><li><a href="/KEM.941/3">3</a></li><li><a href="/KEM.941/4">4</a></li><li class="PagedList-skipToNext"><a href="/KEM.941/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.941.-5">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.941.3">Friction Stir Welding of Dissimilar Materials with Reinforcement of Copper Particulates</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Rahul B. Dhabale, Vijaykumar S. Jatti, Nitin K. Khedkar, Vinaykumar S. Jatti </div> </div> <div id="abstractTextBlock591749" class="volume-info volume-info-text volume-info-description"> Abstract: In this study, the controlled input parameters namely welding speed and spindle speed were optimized by Taguchi method for reinforcement of copper particulates in aluminium alloy (AA6061-AA6063-T6). High carbon and high chromium steel i.e. tool steel D2 type material is used as a friction stir welding tool. Subsequently, the effects of the process parameters were investigated. The signal-to-noise ratios and analysis of variance were applied for statistical analysis. The outcome shows welding speed is the significant parameter than spindle speed. Under the optimum process parameters, 1400 rpm with 16 mm/min were shown best values such as 61.60 MPa for ultimate tensile strength and 91 hardness values. It means moderate spindle speed and lower welding speed develop higher heat. Subsequently, it is also shown that the feasibility of signal-to-noise ratio is responsible to improve welding quality after reinforcement. </div> <div> <a data-readmore="{ block: '#abstractTextBlock591749', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 3 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.941.11">Simulation of Commencement and Size of the Hot Spot in Permanent Mould Casting</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Samir Chakravarti, Swarnendu Sen </div> </div> <div id="abstractTextBlock593401" class="volume-info volume-info-text volume-info-description"> Abstract: The foundry casting process is complex and takes various stages to produce the desired component; as a result, simulation is necessary before manufacturing. Hot spots are areas that become thermally isolated and take the longest to cool, resulting in cavities during the solidification of the casting. So it is important to know about the hot spot location and size so that any casting designer can identify the hot spot behaviours before the casting. To predict the initiation of the hot spot, a 3D aluminium permanent mould casting model has been developed by Ansys Fluent. The suitable boundary and initial conditions such as temperature, pressure, convectional heat transfer coefficient, etc. are reasonably established in the simulation of Ansys Fluent. The simulation has been performed for varied pouring parameters i.e. pouring velocity and pouring temperature, to examine the beginning of hot spots. This study can predict the position and approximate size of the hot spots for various pouring conditions and it is found that a hot spot is commonly located below the riser. </div> <div> <a data-readmore="{ block: '#abstractTextBlock593401', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 11 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.941.19">Effect of Process Parameters on Material Removal Rate and Surface Characteristics in WEDM Machining of Titanium Grade 7 Alloy</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: H.R. Basavaraju, R. Suresh, S.S Manjunatha </div> </div> <div id="abstractTextBlock594400" class="volume-info volume-info-text volume-info-description"> Abstract: Wire Electrical Discharge Machining (WEDM) is a modern machining technique. WEDM is electro-thermal non-conventional machining processes follow to cut very hard materials. WEDM is non-traditional material cutting operation employed to machine complex geometries and shapes. The present paper attempts to study surface and sub-surface variations during WEDM of titanium grade 7 alloy with Brass wire coated with Zn. This paper presents experimental studies with varying three key process parameters viz. pulse ON time (TON), pulse OFF time (TOFF), peak current (IP). The investigation is focused on assessment of material removal rate, surface roughness as well as recast layer. Scanning electron Microscope (SEM) examinations are carried out on surface textures and are discussed in the article. The obtained results indicated that the stretched pulse time discharges more energy causes rough surface finish. The MRR is also strongly influenced by T<sub>ON</sub>. </div> <div> <a data-readmore="{ block: '#abstractTextBlock594400', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 19 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.941.29">Application of Taguchi’s Orthogonal Array and S/N Ratio on Surface Roughness Optimization</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Sanjib Kr Rajbongshi </div> </div> <div id="abstractTextBlock594473" class="volume-info volume-info-text volume-info-description"> Abstract: Surface finish plays an important role in making quality products in the manufacturing sector. A turning experiment is conducted by cutting tool of nose radii (1 mm and 0.65 mm) to find its influence on surface roughness. Eight experiments were performed with Taguchi’s Orthogonal Array (OA) technique. The prime objective was to investigate the tool nose radius effects in the prediction of the optimum value of surface roughness. Cutting speed (V), feed (F), depth of cut (D), and tool nose radius (NR) were selected for the experimental work having two levels each. To find out the influential parameters analysis of variance (ANOVA) was carried out. Signal to noise ratio and average performance graph was analyzed to obtain optimum response values. The results concluded that the large nose radius develops a superior finish in comparison to the smaller one. </div> <div> <a data-readmore="{ block: '#abstractTextBlock594473', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 29 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.941.37">Simulation Based Fluidity and Solidification Analysis of Aluminium-Copper Sand Cast Alloy</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Sasmita Tripathy, Goutam Sutradhar </div> </div> <div id="abstractTextBlock595365" class="volume-info volume-info-text volume-info-description"> Abstract: Aluminium-copper alloys are known for their very good strength at high temperature .Addition of copper improves the strength at high temperatures due to precipitation strengthening. Fluidity in casting is the major factor which affects the cast quality of the final components. Addition of Silicon with copper in Aluminium improves fluidity and finally quality of the cast components. But presence of Silicon adversely affects the strength at high temperature. In the present work cooling curve analysis of Al-Cu alloy (without Silicon) is done for different wt% of copper addition. The current study for Al-Cu alloy is based on sand casting method as it is one of the cost effective manufacturing method. Cooling curve obtained from the simulation results used to predict the fluidity, microstructure of the alloy when copper wt% is varied. Predicted microstructure and grain structure from the cooling curve goes well with the microstructure studied from shop floor casting .In the present work “Z-cast” casting simulation software is used for casting simulation. Among three different alloy composition studied aluminium with 8% copper gives the best results when compared on the basis of grain size .But fluidity analysis reveal poor fluidity for the alloy having 8 wt% of copper. The current analysis helps to study the optimum aluminium –copper alloy composition that can be used in high temperature applications. </div> <div> <a data-readmore="{ block: '#abstractTextBlock595365', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 37 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.941.47">Sensitivity Analysis of Gas Tungsten Arc Welding Process Variables for Angular Distortion in Chromium Manganese Stainless Steel Using Design Thinking Approach</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: R. Sudhakaran, P.S. Sivasakthivel, K.M. Eazhil, S. Narayanan, B. Balamurali </div> </div> <div id="abstractTextBlock595404" class="volume-info volume-info-text volume-info-description"> Abstract: An approach to problem solving that is solution-based is provided by the design methodology known as Design Thinking (DT). To address complicated problems, the five stages of design thinking can be applied. This research article focuses on using the DT method, which includes empathising, defining, and coming up with ideas, to produce high-quality weld joints. The selection of welding process parameters plays a vital role in determining the quality of weld. The weld should be free from weld defects to ensure good performance. One of the major defects that affect the weld quality is angular distortion. During welding the rapid heating and cooling of the work piece results in uneven expansion and contraction in all directions. This results in the work piece getting distorted. It becomes imperative to predict distortion in the work piece so that it can be reduced by providing initial angular distortion in the negative direction. Through empathy, it has been found that the welding process parameters such as welding current (I), welding gun angle (θ), shielding gas flow rate (Q), plate length (L), and welding speed (V), significantly contribute to angular distortion of the weld joint. From the ideation process the following suggestions were arrived to predict angular distortion and identify the factor that has significant effect on angular distortion. A statistical prediction model was developed correlating the welding process parameters with angular distortion. Central Composite Rotatable Design with five factor and five levels was used to develop mathematical models. The experiments were conducted on Chromium Manganese Stainless Steel Grade AISI 202 in GTAW process. Optimization of process parameters was done using Simulated Annealing algorithm. From the sensitivity analysis it was found that the lower values of welding current, welding gun angle and higher values of welding speed, shielding gas flow rate and plate length resulted in minimum angular distortion. </div> <div> <a data-readmore="{ block: '#abstractTextBlock595404', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 47 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.941.67">Analysis of Inclined Crack in Aluminium Alloy Plate Subjected to Three-Point Bending Load Repaired with Carbon Fiber Reinforced Polymer</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Shahid Tamboli, Chand Pandey, Chandrakant Sonawane, Chand Shaikh </div> </div> <div id="abstractTextBlock593445" class="volume-info volume-info-text volume-info-description"> Abstract: If the attention is not paid to the crack in a structure, then it could suddenly propagate at a rapid rate and rip apart the structures. A small crack needs urgent attention and repair since replacing the parts with a small crack is not economically feasible at all the time. Repairs were used to be carried out through rivets, welding and nut-bolts, but recently composite materials are showing promising results in this field. Since composite material are anisotropic in nature their application needs careful study about the loading pattern on the repaired structure. In this study, Carbon Fiber Reinforced Polymer (CFRP) was used as a composite material to repair Aluminium alloy specimens. These specimen were subjected to a three-point bending load to investigate the effectiveness of CFRP. By using innovative ply drop technique and design of experiment a configuration was selected to sustain three-point bending load. To suppress the CFRP’s peeling off tendency, attention was given to the interfacial shear stress rather than to the fracture toughness parameter. </div> <div> <a data-readmore="{ block: '#abstractTextBlock593445', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 67 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.941.83">Microstructure Evolution and Fracture Toughness Behaviour of Cryorolled LM6 Al Alloy</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Aakash Kumar Singh, Amit Joshi, Ravi Kant Ravi, Pawan Kumar Pant, Manoj Kumar Pathak, K.K. Yogesha </div> </div> <div id="abstractTextBlock594419" class="volume-info volume-info-text volume-info-description"> Abstract: In the present work, the effect of cryo-rolling on the processed LM6 alloy samples has been studied. The solution treated (ST) sample of LM6 alloy has been processed through cryo-rolling with reduction of its thickness with values such as 30%, 40%, and 75%. One of the key material properties i.e., fracture toughness has been studied and equivalent energy fracture toughness ( ) is being evaluated according to the ASTM E 992 standard. The microstructure evolution after processing through cryorolling (CR) has been carried out with the help of optical microscopy and Scanning Electron Microscopy (SEM). Then, the calculated values of fracture toughness parameter i.e., equivalent energy fracture toughness ( is being correlated with the microstructure evolution after processing of LM6 alloy. It was found out that there is an improvement in equivalent energy fracture toughness ( ) as the reduction values increases. The 75% CR sample showed great increment of 67% as compared to ST alloy sample. The microstructure evolution also signifies the mix-mode fracture visualized through Scanning Electron Microscopy (SEM) and as the reduction values increase, the ductile fracture zone dominance increases on brittle fracture zone indicating there is improvement in fracture toughness of the ultra-fined grain LM6 alloy due to the grain refinement, dislocation strengthening and grain boundary strengthening. </div> <div> <a data-readmore="{ block: '#abstractTextBlock594419', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 83 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/KEM.941.91">Evaluating the Lifetime of Quarto Stand Rolls on the Basis of the Contact Fatigue Criterion</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Aleksey V. Antsupov, Artem A. Fedulov, Viktor F. Antsupov, Alexander V. Antsupov </div> </div> <div id="abstractTextBlock586002" class="volume-info volume-info-text volume-info-description"> Abstract: One of the principal failures of the supporting and working rolls on the Quarto rolling system is the spalling of their surfaces due to the gradual accumulation of defects in contact volumes of a material. Nowadays to prevent such kind of degradation failures it is necessary to check out the stationary condition of the contact strength, which doesn’t answer to the question of the duration of the roll staying in the working state, i.e., its resource (lifetime). In the article a new physical-analytical model of the roll’s failure is suggested by the criterion of the surface layer fracture and the corresponding methodology of the expected resource calculation. The approach is based on the kinetic concept of damage of solid bodies, the energy (thermodynamic) condition of fracture of solid bodies and the fundamentals of reliability forecasting for technical objects. The feature of the suggested methodology is that the definition of the failure moment for the supporting or working rolls of the Quarto system derived from the condition of the current density of defects in surface layer of a material reaching the critical value, which is the function of the enthalpy of a material melting.. </div> <div> <a data-readmore="{ block: '#abstractTextBlock586002', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 91 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 40 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/KEM.941/2">2</a></li><li><a href="/KEM.941/3">3</a></li><li><a href="/KEM.941/4">4</a></li><li class="PagedList-skipToNext"><a href="/KEM.941/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy &amp; Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/read-and-publish-agreements">Read &amp; Publish Agreements</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> &#169; 2024 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=BtSq2PJEHRTW2PekpQGgIQKs7-OSPiKhsoI9rMs6kTU"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=KEM&volumeBegin=941&volumeEnd=941', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10