CINXE.COM

Search results for: ornamental plants

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ornamental plants</title> <meta name="description" content="Search results for: ornamental plants"> <meta name="keywords" content="ornamental plants"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ornamental plants" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ornamental plants"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2566</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ornamental plants</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2566</span> The Role of Phytoremediation in Reclamation of Soil Pollution and Suitability of Certain Ornamental Plants to Phytoremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahriye%20G%C3%BClg%C3%BCn">Bahriye Gülgün</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6khan%20Balik"> Gökhan Balik</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9E%C3%BCkr%C3%BC%20Dursun"> Şükrü Dursun</a>, <a href="https://publications.waset.org/abstracts/search?q=K%C3%BCbra%20Yazici"> Kübra Yazici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main reasons such as economic growth of society increase of the world population and rapid changes of industrialization cause the amount and the types of pollutants to increase over time. Soil pollution is the typical side effect of industrial activities. As a result of industrial activities, there are large amounts of heavy metal emission every year. Heavy metals are one of the highest pollution sources according to the soil pollution aspect. The usage of hyperaccumulator plants to clean heavy metal polluted soils and the selection of plants for phytoremediation gain importance recently. There are limited numbers of researches on the ornamental plant types of phytoremediation thus; researches on this subject are important. This research is prepared based on the ornamental plant types with phytoremediation abilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title="phytoremediation">phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental%20plants" title=" ornamental plants"> ornamental plants</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape%20reclamation" title=" landscape reclamation"> landscape reclamation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20reclamation" title=" soil reclamation"> soil reclamation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title=" environmental pollution"> environmental pollution</a> </p> <a href="https://publications.waset.org/abstracts/38735/the-role-of-phytoremediation-in-reclamation-of-soil-pollution-and-suitability-of-certain-ornamental-plants-to-phytoremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2565</span> Recommendations of Plant and Plant Composition Which Can Be Used in Visual Landscape Improvement in Urban Spaces in Cold Climate Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feran%20Asur">Feran Asur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In cities, plants; with its visual and functional effects, it helps to provide balance between human and environmental system. It is possible to develop alternative solutions to eliminate visual pollution by evaluating the potential properties of plant materials with other inanimate materials such as color, texture, form, size, etc. characteristics and other inanimate materials such as highlighter, background forming, harmonizing and concealer. In cold climates, the number of ornamental plant species that grow in warmer climates is less. For this reason, especially in the landscaping works of urban spaces, it is difficult to create the desired visuality with aesthetically qualified plants that are suitable for the ecology of the area, without creating monotony, with color variety. In this study, the importance of plant and plant compositions in the solution of visual problems in urban environments in cold climatic conditions is emphasized. The potential of ornamental plants that can be used for this purpose in preventing visual pollution is given. It has been shown how to use prominent features of these ornamental plants such as size, form, texture, vegetation periods to improve visual landscape in urban spaces in a long time. In addition to the design group disciplines that have activity on planning or application basis in the city and its surroundings, landscape architecture discipline can provide visual improvement of the studies to be carried out in detail in terms of planting design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residential%20landscape" title="residential landscape">residential landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=planting" title=" planting"> planting</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20space" title=" urban space"> urban space</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20improvement" title=" visual improvement"> visual improvement</a> </p> <a href="https://publications.waset.org/abstracts/109924/recommendations-of-plant-and-plant-composition-which-can-be-used-in-visual-landscape-improvement-in-urban-spaces-in-cold-climate-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2564</span> Obtaining Triploid Plants of Sprekelia formosissima by Artificial Hybridization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Manuel%20Rodriguez-Dominguez">Jose Manuel Rodriguez-Dominguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Barba-Gonzalez"> Rodrigo Barba-Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Tapia-Campos"> Ernesto Tapia-Campos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sprekelia formosissima (L.) Herbert is a bulbous ornamental species of the monocotyledonous Amaryllidaceae family, and it is a perennial, herbaceous monotypic plant commonly known as ‘Aztec Lily’ or ‘Jacobean Lily’; it is distributed through Mexico and Guatemala. Its scarlet flowers with curved petals have made it an exceptional ornamental pot plant. Cytogenetic studies in this species have shown differences in chromosome number (2n=60, 120, 150, 180) with a basic number x=30. Different reports have shown a variable ploidy level (diploid, tetraploid, pentaploid and hexaploid); however, triploid plants have not been reported. In this work, triploid plants of S. formosissima were obtained by crossing tetraploid (2n=4x=120) with diploid (2n=2x=60) genotypes of this species; the seeds obtained from the crosses were placed in pots with a moist substrate made of Peat Moss: Vermiculite (7:3) for germination. Root tips were collected, and metaphasic chromosome preparations were performed. For chromosome counting, the best five metaphases obtained were photographed with a Leica DMRA2 microscope (Leica Microsystems, Germany) microscopy coupled to an Evolution QEI camera under phase contrast (Media-Cybernetics). Chromosomes counting in root-tip cells showed that 100% of the plants were triploid (2n=3x=90). Although tetraploid or pentaploid plants of S. formosissima are highly appreciated, they usually have lower growth rates than related diploid ones. For this reason, it is important to obtain triploid plants, which have advantages such as higher growth rates than tetraploid and pentaploid, larger flowers than those of the diploid plants and they are expected to not be able to produce seeds because their gametes are aneuploids. Furthermore, triploids may become very important for genomic research in the future, creating opportunities for discovering and monitoring genomic and transcriptomic changes in unbalanced genomes, hence the importance of this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amaryllidaceae" title="Amaryllidaceae">Amaryllidaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=cytogenetics" title=" cytogenetics"> cytogenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental" title=" ornamental"> ornamental</a>, <a href="https://publications.waset.org/abstracts/search?q=ploidy%20level" title=" ploidy level"> ploidy level</a> </p> <a href="https://publications.waset.org/abstracts/137085/obtaining-triploid-plants-of-sprekelia-formosissima-by-artificial-hybridization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2563</span> In Vitro Micropropagation of Rosa damascena Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asghar%20Ebrahimzadeh">Asghar Ebrahimzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sattar%20Malekian"> Sattar Malekian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Aazami"> Mohammad Ali Aazami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bagher%20Hassanpouraghdam"> Mohammad Bagher Hassanpouraghdam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Roses are of main ornamental flowers worldwide. Rosa damascena Mill., besides being an ornamental plant, has major pharmaceutical, cosmetic and fragrance applications. Traditional propagation methods of the plant are using suckers, cutting and grafting. In the present experiment, we used the different explants (leaf section, petioles and nodal cutting) for the optimization of this high-valued ornamental from a native clonal plant. Diverse explants were acquired from mature plants during the growing season and were planted on MS medium supplemented with different hormonal combinations. 70% alcohol and sodium hypochloride were utilized for the surface sterilization. For proliferation, BAP and BA (1-5 mg L-1) and NAA (1-2 mg L-1) were tested. The highest proliferation rate was afforded from MS medium supplemented with 1.5 mg L-1 BA and 5 mg L-1 BAP. Callogenesis from leaf samples and petioles was the best with 1/2 MS medium enriched with 1mg L-1 BAP and 4 mg L-1 2,4-D. Rooting was occurred with the highest frequency in a medium containing 0.1 mg L-1 IBA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosa%20damascene" title="Rosa damascene">Rosa damascene</a>, <a href="https://publications.waset.org/abstracts/search?q=micropropagation" title=" micropropagation"> micropropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=petiole" title=" petiole"> petiole</a>, <a href="https://publications.waset.org/abstracts/search?q=IBA" title=" IBA"> IBA</a>, <a href="https://publications.waset.org/abstracts/search?q=BAP" title=" BAP"> BAP</a> </p> <a href="https://publications.waset.org/abstracts/35255/in-vitro-micropropagation-of-rosa-damascena-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2562</span> Use of Plant Growth Regulators in the Amaryllis Production (Hippeastrum X Hybridum Hort. CV Orange Souvereign)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maximiliano%20K.%20Pagliarini">Maximiliano K. Pagliarini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Carolina%20T.%20Malavolta"> Ana Carolina T. Malavolta</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabela%20M.%20Morita"> Isabela M. Morita</a>, <a href="https://publications.waset.org/abstracts/search?q=Regina%20Maria%20M.%20Castilho"> Regina Maria M. Castilho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the ornamental plants, the Amaryllis (Hippeastrum X hybridum Hort.) is one of the most cultivated plants in Brazil because of their large and showy flowers. Thus, the consumer market wants better quality plants or to flourish more in less time. One of the devices that can make such improvements or accelerate the flowering process is the use of growth regulators. The objective of this research was to evaluate the use of different Stimulate® growth regulator doses and its constituents separately in the development and flowering of Hippeastrum X hybridum Hort. Cv Orange Souvereign. The experiment was conducted in a Pad & Fan greenhouse at UNESP, São Paulo State, Brazil from August to October 2014. The bulbs were placed in black vases of 1.2 L filled with commercial substrate and divided into 9 treatments: T1 – 10 mL L-1 of Stimulate®, T2 – 5 mL L-1 of Stimulate®, T3 – 0.5 mg L-1 of gibberellic acid (GA), T4 – 0.25 mg L-1 of GA, T5 – 0.45 mg L-1 of kinetin, T6 – 0.9 mg L-1 of kinetin, T7 – 0.5 mg L-1 of indolbutiric acid (IBA), T8 – 0.25 mg L-1 of IBA and T9 – distilled water (control). All treatments were diluted in water. The used design was completely randomized with six repetitions and two vessels, totalling 12 vessels per treatment. The evaluated characteristics were: number of leaves, length of leaf, number of rods, maximum height of rods, maximum diameter of rods, maximum number of flowers, beginning of flowering, flowering duration, and weight of bulbs. The results showed that the Stimulate® was not efficient in the conducted experiment conditions. However, the best treatment was 0.5 mg L-1 of IBA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulbs" title="bulbs">bulbs</a>, <a href="https://publications.waset.org/abstracts/search?q=gibberellic%20acid" title=" gibberellic acid"> gibberellic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=indolbutiric%20acid" title=" indolbutiric acid"> indolbutiric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetin" title=" kinetin"> kinetin</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental%20plants" title=" ornamental plants"> ornamental plants</a> </p> <a href="https://publications.waset.org/abstracts/25291/use-of-plant-growth-regulators-in-the-amaryllis-production-hippeastrum-x-hybridum-hort-cv-orange-souvereign" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2561</span> Effect of Substrate Type on Pollutant Removal and Greenhouse Gases Emissions in Constructed Wetlands with Ornamental Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20E.%20Hernnadez">Maria E. Hernnadez</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Ramos"> Elizabeth Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Ortiz"> Claudia Ortiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollutant removal (N-NH4, COD, S-SO4, N-NO3 and P-PO4) and greenhouse gases (methane and nitrous oxide) emissions were investigated in constructed wetlands CW mesocosms with four types of substrate (gravel (G) zeolite (Z), Gravel+Plastic (GP) and zeolite+plastic), all planted with the ornamental plant lily (Lilium sp). Significantly higher N-NH4 removal was found in the CW-Z (97%) and CW-ZP (85%) compared with CW-G (61%) and CW-GP (17%), also significantly lower emissions of nitrous oxide were found in CW-Z (2.2 µgm-2min-1) and CW-ZP (2.5 µgm-2min-1) compared with CW-G(7.4 µgm-2min-1 ) and CW-GP (6.30 µgm-2min-1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane" title="methane">methane</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrous%20oxide" title=" nitrous oxide"> nitrous oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=lily" title=" lily"> lily</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/47510/effect-of-substrate-type-on-pollutant-removal-and-greenhouse-gases-emissions-in-constructed-wetlands-with-ornamental-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2560</span> Plant Genetic Diversity in Home Gardens and Its Contribution to Household Economy in Western Part of Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bedilu%20Tafesse">Bedilu Tafesse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Home gardens are important social and cultural spaces where knowledge related to agricultural practice is transmitted and through which households may improve their income and livelihood. High levels of inter- and intra-specific plant genetic diversity are preserved in home gardens. Plant diversity is threatened by rapid and unplanned urbanization, which increases environmental problems such as heating, pollution, loss of habitats and ecosystem disruption. Tropical home gardens have played a significant role in conserving plant diversity while providing substantial benefits to households. This research aimed to understand the relationship between household characteristics and plant diversity in western Ethiopia home gardens and the contributions of plants to the household economy. Plant diversity and different uses of plants were studied in a random sample of 111 suburban home gardens in the Ilu Ababora, Jima and Wellega suburban area, western Ethiopia, based on complete garden inventories followed by household surveys on socio-economic status during 2012. A total of 261 species of plants were observed, of which 41% were ornamental plants, 36% food plants, and 22% medicinal plants. Of these 16% were sold commercially to produce income. Avocado, bananas, and other fruits produced in excess. Home gardens contributed the equivalent of 7% of total annual household income in terms of food and commercial sales. Multiple regression analysis showed that education, time spent in gardening, land for cultivation, household expenses, primary conservation practices, and uses of special techniques explained 56% of the total plant diversity. Food, medicinal and commercial plant species had significant positive relationships with time spent gardening and land area for gardening. Education and conservation practices significantly affected food and medicinal plant diversity. Special techniques used in gardening showed significant positive relations with ornamental and commercial plants. Reassessments in different suburban and urban home gardens and proper documentation using same methodology is essential to build a firm policy for enhancing plant diversity and related values to households and surroundings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20genetic%20diversity" title="plant genetic diversity">plant genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=suburban%20home%20gardens" title=" suburban home gardens"> suburban home gardens</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a> </p> <a href="https://publications.waset.org/abstracts/9909/plant-genetic-diversity-in-home-gardens-and-its-contribution-to-household-economy-in-western-part-of-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2559</span> Life Cycle Datasets for the Ornamental Stone Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isabella%20Bianco">Isabella Bianco</a>, <a href="https://publications.waset.org/abstracts/search?q=Gian%20Andrea%20Blengini"> Gian Andrea Blengini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental impact related to ornamental stones (such as marbles and granites) is largely debated. Starting from the industrial revolution, continuous improvements of machineries led to a higher exploitation of this natural resource and to a more international interaction between markets. As a consequence, the environmental impact of the extraction and processing of stones has increased. Nevertheless, if compared with other building materials, ornamental stones are generally more durable, natural, and recyclable. From the scientific point of view, studies on stone life cycle sustainability have been carried out, but these are often partial or not very significant because of the high percentage of approximations and assumptions in calculations. This is due to the lack, in life cycle databases (e.g. Ecoinvent, Thinkstep, and ELCD), of datasets about the specific technologies employed in the stone production chain. For example, databases do not contain information about diamond wires, chains or explosives, materials commonly used in quarries and transformation plants. The project presented in this paper aims to populate the life cycle databases with specific data of specific stone processes. To this goal, the methodology follows the standardized approach of Life Cycle Assessment (LCA), according to the requirements of UNI 14040-14044 and to the International Reference Life Cycle Data System (ILCD) Handbook guidelines of the European Commission. The study analyses the processes of the entire production chain (from-cradle-to-gate system boundaries), including the extraction of benches, the cutting of blocks into slabs/tiles and the surface finishing. Primary data have been collected in Italian quarries and transformation plants which use technologies representative of the current state-of-the-art. Since the technologies vary according to the hardness of the stone, the case studies comprehend both soft stones (marbles) and hard stones (gneiss). In particular, data about energy, materials and emissions were collected in marble basins of Carrara and in Beola and Serizzo basins located in the province of Verbano Cusio Ossola. Data were then elaborated through an appropriate software to build a life cycle model. The model was realized setting free parameters that allow an easy adaptation to specific productions. Through this model, the study aims to boost the direct participation of stone companies and encourage the use of LCA tool to assess and improve the stone sector environmental sustainability. At the same time, the realization of accurate Life Cycle Inventory data aims at making available, to researchers and stone experts, ILCD compliant datasets of the most significant processes and technologies related to the ornamental stone sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA%20datasets" title=" LCA datasets"> LCA datasets</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental%20stone" title=" ornamental stone"> ornamental stone</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20environmental%20impact" title=" stone environmental impact"> stone environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/60723/life-cycle-datasets-for-the-ornamental-stone-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2558</span> Standardization of Propagation Techniques in Selected Native Plants of Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laila%20Almulla">Laila Almulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayana%20Bhat"> Narayana Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Majda%20Suleiman"> Majda Suleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheena%20Jacob"> Sheena Jacob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiversity conservation has become one of the challenging priorities to combat species extinction for many countries, including the state of Kuwait. Since native plants are better adapted to the local environment, can endure long spells of drought, withstand high soil salinity levels and provide a more natural effect to landscape projects, their use will both conserve natural resources and produce sustainable greenery. When native plants are properly blended with naturalized exotic ornamental plants in a landscape, they can improve social and cultural benefits. Screening of exotic and native plants in Kuwait during the past two decades has led to the selection of some very promising plants. Continuation of evaluation of additional native and exotic plants is essential to increase diversity of plant resources for greenery projects. Therefore, an effort was made to evaluate further native plants for their suitability for greenery applications. In the present study, various treatments were used to mass multiply selected plants using seeds to secure maximum germination. Seeds were subjected to nine treatments, and each treatment was replicated five times with ten seeds per treatment unit. After the treatment, the seeds of Zygophyllum qatarense were incubated at 30 °C, three lights for 12 h, at 40% humidity; where as the seeds of Haloxylon salicornicum were incubated at 22 °C with continuous light, at 40% humidity. Soaking in 250-ppm GA3 resulted in highest germination percentage of 20% in Zygophyllum qatarense and, Soaking in 500-ppm GA3 resulted in 6% germination in Haloxylon salicornicum. Germination of the viable seeds is influenced by various external and internal factors, seed must not be in a state of dormancy and the environmental requirements for germination of that seed must be met, before germination can occur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landscape" title="landscape">landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20plants" title=" native plants"> native plants</a>, <a href="https://publications.waset.org/abstracts/search?q=revegetation" title=" revegetation"> revegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a> </p> <a href="https://publications.waset.org/abstracts/51035/standardization-of-propagation-techniques-in-selected-native-plants-of-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2557</span> Improving Indoor Air Quality by Increasing Bio-Based Negative Air Ion Release</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuye%20Jiang">Shuye Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ma"> Ali Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasan%20Ramachandran"> Srinivasan Ramachandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor air quality could be improved through traditional air purifiers. However, they may not be environmental products. Here, a bio-based method was employed to improve indoor air quality by increasing negative air ion (NAI) release from ornamental plants. A total of 60 plant species has been screened by evaluating their ability to release NAIs, from which four candidates were selected to further study. All of them are from the Dracaena or fabids clade. These four candidates were then subjected to survey their ability to reduce the concentration of particulate matter with diameter of 2.5 or 10 microns (PM2.5 and PM10) in the growth chamber. High concentrations of PM2.5 and PM10 were artificially generated by burning a stick of incense for 2 minutes in the closed growth chamber (80cm length × 80cm width × 80cm height), in which the PM2.5 and PM10 concentration were generally around 500 µg/m3 and 1500 µg/m3, respectively. Both PM2.5 and PM10 were naturally reduced to 410 and 670, respectively after two hours in case that no plants were placed inside the chamber. Interestingly, these two sizes of particulars were reduced to 170 µg/m3 and 210 µg/m3, respectively after two hours when plants were placed to the chamber. It took 4 hours for the plants to reduce particular concentration to acceptable level at less than 55 µg/m3 for both PM2.5 and PM10, respectively. However, the PM2.5 and PM10 concentration were still above 200 µg/m3 and 300 µg/m3, respectively after 4 hours in the growth chamber without any plants. These results suggest the contribution of plants to the particulate deposition. However, all of these data are preliminary and the results may be updated by further studies. In addition, the roles of plants in absorbing indoor formaldehyde have also been explored and their absorbing ability is being improved by optimizing their growth conditions and treating with various exogenous agents. Thus, our preliminary studies provide an alternative strategy to improve indoor air quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-based%20method" title="bio-based method">bio-based method</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air" title=" indoor air"> indoor air</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20air%20ion" title=" negative air ion"> negative air ion</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/77395/improving-indoor-air-quality-by-increasing-bio-based-negative-air-ion-release" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2556</span> The Background of Ornamental Design Practice: Theory and Practice Based Research on Ornamental Traditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenna%20Pyorala">Jenna Pyorala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research looks at the principles and purposes ornamental design has served in the field of textile design. Ornamental designs are characterized by richness of details, abundance of elements, vegetative motifs and organic forms that flow harmoniously in complex compositions. Research on ornamental design is significant, because ornaments have been overlooked and considered as less meaningful and aesthetically pleasing than minimalistic, modern designs. This is despite the fact that in many parts of the world ornaments have been an important part of the cultural identification and expression for centuries. Ornament has been claimed to be superficial and merely used as a decorative way to hide the faults of designs. Such generalization is an incorrect interpretation of the real purposes of ornament. Many ornamental patterns tell stories, present mythological scenes or convey symbolistic meanings. Historically, ornamental decorations have been representing ideas and characteristics such as abundance, wealth, power and personal magnificence. The production of fine ornaments required refined skill, eye for intricate detail and perseverance while compiling complex elements into harmonious compositions. For this reason, ornaments have played an important role in the advancement of craftsmanship. Even though it has been claimed that people in the western design world have lost the relationship to ornament, the relation to it has merely changed from the practice of a craftsman to conceptualisation of a designer. With the help of new technological tools the production of ornaments has become faster and more efficient, demanding less manual labour. Designers who commit to this style of organic forms and vegetative motifs embrace and respect nature by representing its organically growing forms and by following its principles. The complexity of the designs is used as a way to evoke a sense of extraordinary beauty and stimulate intellect by freeing the mind from the predetermined interpretations. Through the study of these purposes it can be demonstrated that complex and richer design styles are as valuable a part of the world of design as more modern design approaches. The study highlights the meaning of ornaments by presenting visual examples and literature research findings. The practice based part of the project is the visual analysis of historical and cultural ornamental traditions such as Indian Chikan embroidery, Persian carpets, Art Nouveau and Rococo according to the rubric created for the purpose. The next step is the creation of ornamental designs based on the key elements in different styles. Theoretical and practical parts are woven together in this study that respects respect the long traditions of ornaments and highlight the importance of these design approaches to the field, in contrast to the more commonly preferred styles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultural%20design%20traditions" title="cultural design traditions">cultural design traditions</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental%20design" title=" ornamental design"> ornamental design</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20forms%20from%20nature" title=" organic forms from nature"> organic forms from nature</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20design" title=" textile design"> textile design</a> </p> <a href="https://publications.waset.org/abstracts/95562/the-background-of-ornamental-design-practice-theory-and-practice-based-research-on-ornamental-traditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2555</span> Decorative Plant Motifs in Traditional Art and Craft Practices: Pedagogical Perspectives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geetanjali%20Sachdev">Geetanjali Sachdev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the decorative uses of plant motifs and symbols in traditional Indian art and craft practices in order to assess their pedagogical significance within the context of plant study in higher education in art and design. It examines existing scholarship on decoration and plants in Indian art and craft practices. The impulse to elaborate upon an existing form or surface is an intrinsic part of many Indian traditional art and craft traditions where a deeply ingrained love for decoration exists. Indian craftsmen use an array of motifs and embellishments to adorn surfaces across a range of practices, and decoration is widely seen in textiles, jewellery, temple sculptures, vehicular art, architecture, and various other art, craft, and design traditions. Ornamentation in Indian cultural traditions has been attributed to religious and spiritual influences in the lives of India’s art and craft practitioners. Through adornment, surfaces and objects were ritually transformed to function both spiritually and physically. Decorative formations facilitate spiritual development and attune our minds to concepts that support contemplation. Within practices of ornamentation and adornment, there is extensive use of botanical motifs as Indian art and craft practitioners have historically been drawn towards nature as a source of inspiration. This is due to the centrality of agriculture in the lives of Indian people as well as in religion, where plants play a key role in religious rituals and festivals. Plant representations thus abound in two-dimensional and three-dimensional surface designs and patterns where the motifs range from being realistic, highly stylized, and curvilinear forms to geometric and abstract symbols. Existing scholarship reveals that these botanical embellishments reference a wide range of plants that include native and non-indigenous plants, as well as imaginary and mythical plants. Structural components of plant anatomy, such as leaves, stems, branches and buds, and flowers, are part of the repertoire of design motifs used, as are plant forms indicating different stages of growth, such as flowering buds and flowers in full bloom. Symmetry is a characteristic feature, and within the decorative register of various practices, plants are part of border zones and bands, connecting corners and all-over patterns, used as singular motifs and floral sprays on panels, and as elements within ornamental scenes. The results of the research indicate that decoration as a mode of inquiry into plants can serve as a platform to learn about local and global biodiversity and plant anatomy and develop artistic modes of thinking symbolically, metaphorically, imaginatively, and relationally about the plant world. The conclusion is drawn that engaging with ornamental modes of plant representation in traditional Indian art and craft practices is pedagogically significant for two reasons. Decoration as a mode of engagement cultivates both botanical and artistic understandings of plants. It also links learners with the indigenous art and craft traditions of their own culture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=art%20and%20design%20pedagogy" title="art and design pedagogy">art and design pedagogy</a>, <a href="https://publications.waset.org/abstracts/search?q=decoration" title=" decoration"> decoration</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20motifs" title=" plant motifs"> plant motifs</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20art%20and%20craft" title=" traditional art and craft"> traditional art and craft</a> </p> <a href="https://publications.waset.org/abstracts/160969/decorative-plant-motifs-in-traditional-art-and-craft-practices-pedagogical-perspectives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2554</span> Development of Ornamental Seedlings and Cuttings for Hydroponics Using Different Substrates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20A.%20Fadel">Moustafa A. Fadel</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Al%20Shehhi"> Omar Al Shehhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Al%20Mussabi"> Mohsin Al Mussabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al%20Ameri"> Abdullah Al Ameri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydroponics represents an extraordinary promising technique if used efficiently in arid regions where water resources are extremely scarce where a great portion of the used water should be recycled and saved. Available research publications studying the production of seedlings for such purpose are limited. This research paper focuses on investigating the effect of using various substrate materials on the development of seedlings for ornamental plants. Bermuda grass, Petunia (Compacta Enana Rosa) and Epipremnum aureum are used widely in landscape design. Bermuda is used as a turf grass; Petunia is used as a flowering plant and Epipremnum aureum as an indoor ornamental plant in hydroponics. Three substrate materials were used to germinate and propagate the first two and the cuttings of the third one. Synthetic sponge (Polyurethane sponge), Rockwool and sterilized cotton were used as the substrate material in each case where an experimental water-circulating apparatus was designed and installed to execute the test. An experimental setup of closed hydroponic apparatus was developed to carry out the experiment equipped with water recycling circuit and an aeration mechanism pumping air in reservoir in order to increase oxygen levels in the recycled water. Water pumping was programmed in different regimes to allow better aeration for seeds and cuttings under investigation. Results showed that Bermuda grass germinated in Rockwool reached a germination rate of 70% while it did not exceed 50% when sponge and medically treated cotton were used after 15 days. On the other hand the highest germination rate of Petunia was observed when treated cotton was used where it recorded about 30% while it was 22%, and 7% after 20 days where Rockwool and sponge were utilized respectively. Cuttings propagation of Epipremnum aureum developed the highest number of shoots when treated cotton was used where it gave 10 shoots after 10 days while it gave just 7 shoots when Rockwool and sponge were used as the propagation substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroponics" title="hydroponics">hydroponics</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=seedlings" title=" seedlings"> seedlings</a>, <a href="https://publications.waset.org/abstracts/search?q=cuttings" title=" cuttings"> cuttings</a> </p> <a href="https://publications.waset.org/abstracts/30550/development-of-ornamental-seedlings-and-cuttings-for-hydroponics-using-different-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2553</span> Genotypic Characterization of Gram-Positive Bacteria Isolated on Ornamental Animals Feed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Miranda">C. Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Soares"> R. Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cunha"> S. Cunha</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ferreira"> L. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Igrejas"> G. Igrejas</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Poeta"> P. Poeta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different animal species, including ornamental animals, are reported as potential reservoirs of antibiotic resistance genes. Consequently, these resistances can be disseminated in the environment and transferred to humans. Moreover, multidrug-resistant bacteria reduce the efficacy of antibiotics, as the case of vancomycin-resistant enterococci. Enterococcus faecalis and E. faecium are described as the main nosocomial pathogens. In this line, the aim of this study was to characterize resistance and virulence genes of enterococci species isolated from samples of food supplied to ornamental animals during 2020. The 29 enterococci isolates (10 E. faecalis and 19 E. faecium) were tested for the presence of the resistance genes for the following antibiotics: erythromicyn (ermA, ermB and ermC), tetracycline (tetL, tetM, tetK and tetO), quinupristin/dalfopristin (vatD and vatE), gentamicin (aac(6’)-aph(2’’)-Ia), chloramphenicol (catA), streptomycin (ant(6)-Ia) and vancomycin (vanA and vanB). The same isolates were also tested for 10 virulence factors genes (esp, ace, gelE, agg, fsr, cpd, cylA, cylB, cylM and cylLL). The resistance and virulence genes were performed by PCR, using specific primers and conditions. Negative and positive controls were used in all PCR assays. The most prevalent resistance genes detected in both enterococci species were ermB (n=15, 52%), ermC (n=7, 24%), tetK (n=8, 28%) and vatE (n=4, 14%). Resistance genes for vancomycin were found in ten (34%) E. faecalis and ten (34%) E. faecium isolates. Only E. faecium isolates showed the presence of ermA (n=2, 7%), tetL (n=13, 45%) and ant(6)-Ia gene (n=4, 14%). A total of nine (31%) enterococci isolates were classified as multidrug-resistant bacteria (3 E. faecalis and 6 E. faecium). In three E. faecalis and one E. faecium were not detected resistance genes. The virulence genes detected in both species were agg (n=6, 21%) and cylLL (n=11, 38%). In general, each isolate showed only one of these virulence genes. Five E. faecalis and eleven E. faecium isolates were negative for all analyzed virulence genes. These preliminary results showed the presence of multidrug-resistant enterococci in food supplied to ornamental animals, in particular vancomycin-resistant enterococci. This genotypic characterization reinforces the relevance to public health in the control of antibiotic-resistant bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=enterococci" title=" enterococci"> enterococci</a>, <a href="https://publications.waset.org/abstracts/search?q=feed" title=" feed"> feed</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental%20animals" title=" ornamental animals"> ornamental animals</a> </p> <a href="https://publications.waset.org/abstracts/140449/genotypic-characterization-of-gram-positive-bacteria-isolated-on-ornamental-animals-feed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2552</span> [Keynote Speech]: Competitive Evaluation of Power Plants in Energy Policy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beril%20Tu%C4%9Frul">Beril Tuğrul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical energy is the most important form of energy and electrical power plants have highest impact factor in energy policy. This study is in relation with evaluation of various power plants including fossil fuels, nuclear and renewable energy based power plants. The power plants evaluated with regard to their overall impact that considered for establishing of the plants. Both positive and negative impacts of power plant operation are compared view of different arguments. Then calculate the impact factor by using variation linear extrapolation for each argument. With this study, power plants assessed with the different point of view and clarified objectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/64864/keynote-speech-competitive-evaluation-of-power-plants-in-energy-policy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2551</span> Enhanced Phytoremediation Using Endophytic Microbes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Oriebe%20Anyasi">Raymond Oriebe Anyasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Harrison%20Atagana"> Harrison Atagana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of a plant in the detoxification of several toxin is been known to be enhanced by various microbial endophytes which have been reported to be contained in plants growing in any contaminated soil. Plants in their natural state are mostly colonized by endophytes which in the process forms symbiotic associations with the host plants. These benefits that the endophytes offer to the plants include amongst others to: Enhance plants growth through the production of various phytohormones; increase in the resistance of environmental stresses; produce important bioactive metabolites; help in the fixing of nitrogen in the plants organelles; help in the metal translocation and accumulation in plants; assist in the production of enzymes involves the degradation of organic contaminants. Therefore recognizing these natural processes of the microbes will enable the understanding of the effective mechanism for enhanced phytoremediation. The aim of this study was to survey the progressiveness in the study involving endophyte-assisted phytoremediation of contaminants; highlighting various pollutants, the plants used, the endophytes studied as well as the type of interaction between the plants and the microbes so as to proffer a better future prospect for the technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title="phytoremediation">phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=endophytes" title=" endophytes"> endophytes</a>, <a href="https://publications.waset.org/abstracts/search?q=microbes" title=" microbes"> microbes</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20management" title=" environmental management"> environmental management</a>, <a href="https://publications.waset.org/abstracts/search?q=plants" title=" plants"> plants</a> </p> <a href="https://publications.waset.org/abstracts/29046/enhanced-phytoremediation-using-endophytic-microbes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2550</span> Indirect Regeneration and Somatic Embryogenesis from Leaf and Stem Explants of Crassula ovata 42-45 (Mill.) Druce: An Ornamental Medicinal Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20A.%20Ahmed">A. B. A. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20I.%20Amar"> D. I. Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Taha"> R. M. Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to investigate callus induction, somatic embryogenesis and indirect plant regeneration of Crassula ovata (Mill.) Druce – the famous ornamental plant. Experiment no.1: Callus induction was obtained from leaf and stem explants on Murashige and Skoog (MS) medium supplemented with various plant growth regulators (PGRs). Effects of different PGRs, plant regeneration and subsequent plantlet conversion were also assessed. Indirect plant regeneration was achieved from the callus of stem explants by the addition of 1.5 mg/L Kinetin (KN) alone. Best shoot induction was achieved (6.5 shoots/per explant) after 60 days. For successful rooting, regenerated plantlets were sub-cultured on the same MS media supplemented with 1.5 mg/L KN alone. The rooted plantlets were acclimatized and the survival rate was 90%. Experiment no.2: Results revealed that 0.5 mg/L 2,4-D alone and in combination with 1.0 mg/L 6-Benzyladenine (BA) gave 89.8% callus from the stem explants as compared to leaf explants. Callus proliferation and somatic embryo formation were also evaluated by ‘Double Staining Method’ and different stages of somatic embryogenesis were revealed by scanning electron microscope. Full Strength MS medium produced the highest number (49.6%) of cotyledonary stage somatic embryos (SEs). Mature cotyledonary stage SEs developed into plantlets after 12 weeks of culture. Well-rooted plantlets were successfully acclimatized at the survival rate of 85%. Indirectly regenerated plants did not show any detectable variation in morphological and growth characteristics when compared with the donor plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=callus%20induction" title="callus induction">callus induction</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20plant%20regeneration" title=" indirect plant regeneration"> indirect plant regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20staining" title=" double staining"> double staining</a>, <a href="https://publications.waset.org/abstracts/search?q=somatic%20embryogenesis" title=" somatic embryogenesis"> somatic embryogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Crassula%20ovata" title=" Crassula ovata"> Crassula ovata</a> </p> <a href="https://publications.waset.org/abstracts/13777/indirect-regeneration-and-somatic-embryogenesis-from-leaf-and-stem-explants-of-crassula-ovata-42-45-mill-druce-an-ornamental-medicinal-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2549</span> Aromatic and Medicinal Plants in Morocco: Diversity and Socio-Economic Role</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sghir%20Taleb">Mohammed Sghir Taleb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Morocco is characterized by a great richness and diversity in aromatic and medicinal plants and it has an ancestral knowledge in the use of plants for medicinal and cosmetic purposes. In effect, the poverty of riparian, specially, mountain populations have greatly contributed to the development of traditional pharmacopoeia in Morocco. The analysis of the bibliographic data showed that a large number of plants in Morocco are exploited for aromatic and medicinal purposes and several of them are commercialized internationally. However, these potentialities of aromatic and medicinal plants are currently subjected to climate change and strong human pressures: Collecting fruits, agriculture development, harvesting plants, urbanization, overgrazing... <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic" title="aromatic">aromatic</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal" title=" medicinal"> medicinal</a>, <a href="https://publications.waset.org/abstracts/search?q=plant" title=" plant"> plant</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a> </p> <a href="https://publications.waset.org/abstracts/68413/aromatic-and-medicinal-plants-in-morocco-diversity-and-socio-economic-role" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2548</span> Influence of Pseudomonas japonica on Growth and Metal Tolerance of Celosia cristata L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umair%20Mushtaq">Muhammad Umair Mushtaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameena%20Iqbal"> Ameena Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Aqib%20Hassan%20Ali%20Khan"> Muhammad Aqib Hassan Ali Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismat%20Nawaz"> Ismat Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohail%20Yousaf"> Sohail Yousaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazhar%20Iqbal"> Mazhar Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals are one of the priority pollutants as they pose serious health and environmental threats. They can be removed by various physiochemical methods but are costly and responsible for additional environmental problems. Bioremediation that exploits plants and their associated microbes have been referred as cost effective and environmental friendly technique. In this study, a pot experiment was conducted in a greenhouse to evaluate the potential of Celosia cristata and effects of bacteria, Pseudomonas japonica, and organic amendment moss/compost on tolerating/accumulating heavy metals. Two weeks old seedlings were transferred to soil in pots, and after four weeks they were inoculated with bacterial strain, while after growth of six weeks they were watered with a metal containing synthetic wastewater and were harvested after a growth period of nine weeks. After harvesting, morphological and physiological parameters and metal content of plants were measured. The results showed highest plant growth and biomass production in case of organic amendments while highest metal uptake has been found in non-amended pots. Positive controls have shown highest Pb uptake of 2900 mg/kg DW, while P. japonica amended pots have shown highest Cd, Cr, Ni and Cu uptake of 963.53, 1481.17, 1022.01 and 602.17 mg/kg DW, respectively. In conclusion organic amendments have strong impacts on growth enhancement while P. japonica enhances metal translocation and accumulation to aerial parts with little significant involvement in plant growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ornamental%20plants" title="ornamental plants">ornamental plants</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20microbe%20interaction" title=" plant microbe interaction"> plant microbe interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=amendments" title=" amendments"> amendments</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a> </p> <a href="https://publications.waset.org/abstracts/71841/influence-of-pseudomonas-japonica-on-growth-and-metal-tolerance-of-celosia-cristata-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2547</span> Influence of Different Light Levels in Amaryllis (Hippeastrum X hybridum Hort.) Development and Flowering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Regina%20Maria%20M.%20Castilho">Regina Maria M. Castilho</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabela%20M.%20Morita"> Isabela M. Morita</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Carolina%20T.%20Malavolta"> Ana Carolina T. Malavolta</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximiliano%20K.%20Pagliarini"> Maximiliano K. Pagliarini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An essential factor for flower production is solar radiation, which is part of plant vital processes. As excess as shortage of light can harm the development of the culture leading to loss in product quality, Unfeasible or decreasing their commercial value. The objective of this research was to evaluate different light levels and their influence on Amaryllis (Hippeastrum X hybridum Hort.) development and flowering. The experiment was conducted at UNESP, São Paulo State, Brazil from August to October 2014. The bulbs were placed in black vases of 1.2 L filled with commercial substrate and divided into 4 different lighting environments (treatments): T1–greenhouse, T2–greenhouse with shade cloth (50%), T3–low lights indoor (until 500 lx) and T4–medium lights indoor (between 500–1000 lx). The used design was completely randomized with ten repetitions and three vessels (bulbs), totalling 30 vessels (bulbs) per treatment. The evaluated characteristics were: Chlorophyll content, number of leaves, length of leaf, number of simultaneous rods, rod length, rod diameter, number of flowers, flowers diameter, beginning of flowering and flowering duration. The results showed that in greenhouse provided Amaryllis better quality plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=a%C3%A7ucena" title="açucena">açucena</a>, <a href="https://publications.waset.org/abstracts/search?q=bulbs" title=" bulbs"> bulbs</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental%20plants" title=" ornamental plants"> ornamental plants</a> </p> <a href="https://publications.waset.org/abstracts/25296/influence-of-different-light-levels-in-amaryllis-hippeastrum-x-hybridum-hort-development-and-flowering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2546</span> Water-Sensitive Landscaping in Desert-Located Egyptian Cities through Sheer Reductions of Turfgrass and Efficient Water Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20M.%20Asar">Sarah M. Asar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabeel%20M.%20Elhady"> Nabeel M. Elhady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Egypt’s current per capita water share indicates that the country suffers and has been suffering from water poverty. The abundant utilization of turfgrass in Egypt’s new urban settlements, the reliance on freshwater for irrigation, and the inadequate plant selection increase the water demand in such settlements. Decreasing the surface area of turfgrass by using alternative landscape features such as mulching, using ornamental low-maintenance plants, increasing pathways, etc., could significantly decrease the water demand of urban landscapes. The use of Ammochloa palaestina, Cenchrus crientalis (Oriental Fountain Grass), and Cistus parviflorus (with water demands of approximately 0.005m³/m²/day) as alternatives for Cynodon dactylon (0.01m³/m²/day), which is the most commonly used grass species in Egypt’s landscape, could decrease an area’s water demand by approximately 40-50%. Moreover, creating hydro-zones of similar water demanding plants would enable irrigation facilitation rather than the commonly used uniformed irrigation. Such a practice could further reduce water consumption by 15-20%. These results are based on a case-study analysis of one of Egypt’s relatively new urban settlements, Al-Rehab. Such results emphasize the importance of utilizing native, drought-tolerant vegetation in the urban landscapes of Egypt to reduce irrigation demands. Furthermore, proper implementation, monitoring, and maintenance of automated irrigation systems could be an important factor in a space’s efficient water use. As most new urban settlements in Egypt adopt sprinkler and drip irrigation systems, the lack of maintenance leads to the manual operation of such systems, and, thereby, excessive irrigation occurs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20landscape" title="alternative landscape">alternative landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20plants" title=" native plants"> native plants</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient%20irrigation" title=" efficient irrigation"> efficient irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20water%20demand" title=" low water demand"> low water demand</a> </p> <a href="https://publications.waset.org/abstracts/173623/water-sensitive-landscaping-in-desert-located-egyptian-cities-through-sheer-reductions-of-turfgrass-and-efficient-water-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2545</span> Antioxidants: Some Medicinal Plants in Indian System of Medicine Work as Anti-cervical Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamini%20Kaushal">Kamini Kaushal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medicinal plants of Ayurveda are effective in the treatment of cervical cancer. The aim of this paper is to assess anti cancerous activities of these medicinal plants against cancer. Most of the medicinal plants in Ayurveda are using to treat cervical cancer as name of disease as treatment of YONI VYAPADA. The selected plants has been studied scientifically in India and evidence based written since Vedic era. The compilation results showed potential anti cervical cancer activity of the tested plants. There plants are remaining under the dark due to lack of awareness, lack of popularity and barrier of language. Now this is the time to eye opener regarding the classical text and clinical evidences, so that we can give the hope to world's affected women from this disease. World is waiting for such type of remedy which is having zero side effects, low cost and effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti%20cancerous" title="anti cancerous">anti cancerous</a>, <a href="https://publications.waset.org/abstracts/search?q=cervical%20cancer" title=" cervical cancer"> cervical cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=ayurveda" title=" ayurveda"> ayurveda</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20study" title=" scientific study"> scientific study</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20text" title=" classical text"> classical text</a> </p> <a href="https://publications.waset.org/abstracts/36552/antioxidants-some-medicinal-plants-in-indian-system-of-medicine-work-as-anti-cervical-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2544</span> Anatolian Geography: Traditional Medicine and Its Herbs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H%C3%BCseyin%20Bi%C3%A7er">Hüseyin Biçer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are more than a thousand endemic plants growing in Turkey. On the other hand, apart from these plantsAnatolia is home to more plant diversitythan the neighboring countries due to its transitional zone. These plants become a part of traditional medicine in the hope of curing the people with whom they have lived for thousands of years. No matter how important the climate is for the plant, the diseases of the region have an important place in the plant's life. While the plants used for tea are in the foreground in regions with heavy winters, the use of raw plants and fruits is common in some gastrointestinal problems. The aim of this study is explaining using the area of endemic plants in Anatolia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anatolian%20traditional%20medicine" title="anatolian traditional medicine">anatolian traditional medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20medicine" title=" traditional medicine"> traditional medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=anatolian%20medicine" title=" anatolian medicine"> anatolian medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=herbs" title=" herbs"> herbs</a> </p> <a href="https://publications.waset.org/abstracts/143916/anatolian-geography-traditional-medicine-and-its-herbs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2543</span> Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rade%20M.%20Ciric">Rade M. Ciric</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikola%20L.%20J.%20Rajakovic"> Nikola L. J. Rajakovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title="distributed generation">distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title=" energy policy"> energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=curriculum" title=" curriculum"> curriculum</a> </p> <a href="https://publications.waset.org/abstracts/44109/concept-modules-and-objectives-of-the-syllabus-course-small-power-plants-and-renewable-energy-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2542</span> Exploring People’s Perceptions of Indoor Plants through the Lens of Para-Social Relationships Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivashkina%20Elizaveta">Ivashkina Elizaveta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite significant research on the positive effects of houseplants on human life, we know almost nothing about how people perceive plants and their attitudes toward them. The following study seeks to fill this void by applying para-social relationships (PSRs) theory to analyze individuals’ perceptions of houseplants. We reveal how people form and maintain PSRs with indoor plants using 15 semi-structured in-depth interviews with Russian-speaking university students who had a close bond with their indoor plants when the study was conducted. The findings indicate that the process of forming PSRs is influenced by factors such as exposure and homophily. Students develop a sense of companionship with their indoor plants, which contributes to establishing a PSR. Participants reported engaging in various activities, such as regular care, communication, and interaction with their plants. The insights gained from this research have implications for horticultural therapy, environmental psychology, and indoor gardening practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=para-social%20relationships" title="para-social relationships">para-social relationships</a>, <a href="https://publications.waset.org/abstracts/search?q=plants" title=" plants"> plants</a>, <a href="https://publications.waset.org/abstracts/search?q=people-plant%20interaction" title=" people-plant interaction"> people-plant interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20plants" title=" indoor plants"> indoor plants</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative%20research" title=" qualitative research"> qualitative research</a> </p> <a href="https://publications.waset.org/abstracts/175220/exploring-peoples-perceptions-of-indoor-plants-through-the-lens-of-para-social-relationships-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2541</span> A Way to Recognize Origin of Soil Conditioners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Santagostini">Laura Santagostini</a>, <a href="https://publications.waset.org/abstracts/search?q=Vittoria%20Guglielmi"> Vittoria Guglielmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The meaning of the word 'Nature' (literally 'that which is about to be born') has accompanied researchers throughout their study of the environment and has led to the design of technical means to improve the properties of the soil, modifying its structure and/or consistency, thus favouring the emergence and growth of plants. These include soil improvers, i.e. any substance, natural or synthetic, mineral or organic, capable of modifying and improving the chemical, physical, biological and mechanical properties and characteristics of the soil. In particular, GCSCs (Green Composted Soil Conditioners) are soil conditioners produced through a controlled process of transforming selected organic green waste materials, such as clippings from the maintenance of ornamental greenery, crop residues and other plant waste. The use of GCSC in horticulture, fruit growing, industrial cultivation and nursery gardening is an active way to return organic carbon to the soil, thus limiting CO2 emissions and the production of greenhouse gases, and also to limit the environmental impact of peat extraction, which is normally used in these areas of application. With a view to distinguish between GCSC and peats and to assess what further contributions GCSC can provide to the soil and growing plants, we studied the behaviour of the two substrates by chromatographic techniques. After treating the individual soil improvers with different solvents, used individually or by applying a polarity gradient, the extracts obtained were analysed by HPLC and LCMS in order to assess their composition mainly from a qualitative point of view. Data obtained show in GCSC the presence of polyphenolic derivatives attributable to the degradation of plant material and potentially useful for the development and growth of young plants, while commercial peat-based products only sporadically showed the presence of recognisable molecules, confirming the lower complexity of the matrix under analysis. These results allowed us to distinguish the two different types of soil conditioner based on their chromatographic profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromatographic%20profile" title="chromatographic profile">chromatographic profile</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20conditioners" title=" soil conditioners"> soil conditioners</a> </p> <a href="https://publications.waset.org/abstracts/164094/a-way-to-recognize-origin-of-soil-conditioners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2540</span> Risk Allocation in Public-Private Partnership (PPP) Projects for Wastewater Treatment Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Capintero">Samuel Capintero</a>, <a href="https://publications.waset.org/abstracts/search?q=Ole%20H.%20Petersen"> Ole H. Petersen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the utilization of public-private partnerships for the building and operation of wastewater treatment plants. Our research focuses on risk allocation in this kind of projects. Our analysis builds on more than hundred wastewater treatment plants built and operated through PPP projects in Aragon (Spain). The paper illustrates the consequences of an inadequate management of construction risk and an unsuitable transfer of demand risk in wastewater treatment plants. It also shows that the involvement of many public bodies at local, regional and national level further increases the complexity of this kind of projects and make time delays more likely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20plants" title=" treatment plants"> treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=PPP" title=" PPP"> PPP</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a> </p> <a href="https://publications.waset.org/abstracts/25863/risk-allocation-in-public-private-partnership-ppp-projects-for-wastewater-treatment-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">649</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2539</span> Exploring the Traditional Uses of Aromatic Plants in Indonesian Culture, Medicine, and Spirituality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aida%20Humaira">Aida Humaira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aromatic plants hold an honored place in Indonesian culture, where they are deeply intertwined with everyday customs, rituals, and ceremonies. From the fragrant herbs and spices used in cooking to the aromatic incense burned in temples and homes, aromatic plants play multifaceted roles in enhancing well-being and fostering spiritual connections. These plants are valued not only for their pleasant aromas but also for their medicinal properties and symbolic meanings. This article aims to summarize the role of aromatic plants in Indonesian traditional culture, medicine, spirituality, and how it shifted to a modern version of aromatherapy. Traditional Indonesian medicine, known as Jamu, relies heavily on aromatic plants for their therapeutic benefits. Herbalists and traditional healers use a wide array of aromatic herbs, roots, barks, and resins to treat various ailments, ranging from digestive disorders and respiratory infections to skin conditions and reproductive issues. In conclusion, aromatic plants represent a cultural treasure with multifaceted uses and significance deeply rooted in Indonesia’s tradition. From their medicinal properties to their spiritual symbolism, these plants embody the interconnection of culture, nature, and well-being. Further research and collaboration are needed to document and preserve traditional knowledge surrounding Indonesian aromatic plants and ensure their continued recognition and sustainable utilization in the face of modernization and environmental challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20plants" title="aromatic plants">aromatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=indonesia" title=" indonesia"> indonesia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamu" title=" Jamu"> Jamu</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20medicine" title=" traditional medicine"> traditional medicine</a> </p> <a href="https://publications.waset.org/abstracts/184586/exploring-the-traditional-uses-of-aromatic-plants-in-indonesian-culture-medicine-and-spirituality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2538</span> An Evaluation of Edible Plants for Remediation of Contaminated Soil- Can Edible Plants Be Used to Remove Heavy Metals on Soil? </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Celia%20Marilia%20Martins">Celia Marilia Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20I.%20V.%20Guilundo"> Sonia I. V. Guilundo</a>, <a href="https://publications.waset.org/abstracts/search?q=Iris%20M.%20Victorino"> Iris M. Victorino</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20O.%20Quilambo"> Antonio O. Quilambo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Mozambique rapid industrialization (mining, aluminium and cement activities) and urbanization processes has led to the incorporation of heavy metals on soil, thus degrading not only the quality of the environment, but also affecting plants, animals and human healthy. Several methods have been used to remediate contaminated soils, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals from contaminated soil. Phytoremediation is the use of plants to clean up a contamination from soils, sediments, and water. This technology is environmental friendly and potentially cost effective. The present investigation summarised the potential of edible vegetable to grow under the high level of heavy metals such as lead and zinc. The plants used in these studies include Tomatoes, lettuce and Soya beans. The studies have shown that edible plants can be grown under the high level of heavy metals on the soil. Further investigations are identifying mechanisms used by plants to ensure a safe and sustainable use for remediation of contaminated soils by heavy metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminated%20soil" title="contaminated soil">contaminated soil</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20plants" title=" edible plants"> edible plants</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a> </p> <a href="https://publications.waset.org/abstracts/35927/an-evaluation-of-edible-plants-for-remediation-of-contaminated-soil-can-edible-plants-be-used-to-remove-heavy-metals-on-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2537</span> Performance Study of PV Power plants in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razika%20Ihaddadene">Razika Ihaddadene</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabila%20Ihaddadene"> Nabila Ihaddadene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to highlight the importance of the application of the IEC 61724 standard in the study of the performance analysis of photovoltaic power plants on a monthly and annual scale. Likewise, the comparison of two photovoltaic power plants with two different climates was carried out in order to determine the effect of climatic parameters on the analysis of photovoltaic performances. All data from the Ain Skhouna and Adrar photovoltaic power plants for 2018 and the data from the Saida1 field for one month in 2019 were used. The results of the performance analysis according to the indicated standard show that the Saida PV power plant performs better than the Adrar PV power plant, which is due to the effect of increasing the ambient temperature. Increasing ambient temperature increases losses decreases system efficiency and performance ratio. It presents a key element in the proper functioning of PV plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pv%20power%20plants" title="pv power plants">pv power plants</a>, <a href="https://publications.waset.org/abstracts/search?q=IEC%2061724%20norm" title=" IEC 61724 norm"> IEC 61724 norm</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20connected%20pv" title=" grid connected pv"> grid connected pv</a>, <a href="https://publications.waset.org/abstracts/search?q=algeria" title=" algeria"> algeria</a> </p> <a href="https://publications.waset.org/abstracts/173398/performance-study-of-pv-power-plants-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ornamental%20plants&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ornamental%20plants&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ornamental%20plants&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ornamental%20plants&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ornamental%20plants&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ornamental%20plants&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ornamental%20plants&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ornamental%20plants&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ornamental%20plants&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ornamental%20plants&amp;page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ornamental%20plants&amp;page=86">86</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ornamental%20plants&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10