CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 67 results for author: <span class="mathjax">Lin, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Lin%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Lin, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Lin%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Lin, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lin%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09133">arXiv:2411.09133</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09133">pdf</a>, <a href="https://arxiv.org/format/2411.09133">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Computational metaoptics for imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Roques-Carmes%2C+C">Charles Roques-Carmes</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+Y">Yuanmu Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Majumdar%2C+A">Arka Majumdar</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09133v1-abstract-short" style="display: inline;"> Metasurfaces -- ultrathin structures composed of subwavelength optical elements -- have revolutionized light manipulation by enabling precise control over electromagnetic waves&#39; amplitude, phase, polarization, and spectral properties. Concurrently, computational imaging leverages algorithms to reconstruct images from optically processed signals, overcoming limitations of traditional imaging system&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09133v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09133v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09133v1-abstract-full" style="display: none;"> Metasurfaces -- ultrathin structures composed of subwavelength optical elements -- have revolutionized light manipulation by enabling precise control over electromagnetic waves&#39; amplitude, phase, polarization, and spectral properties. Concurrently, computational imaging leverages algorithms to reconstruct images from optically processed signals, overcoming limitations of traditional imaging systems. This review explores the synergistic integration of metaoptics and computational imaging, &#34;computational metaoptics,&#34; which combines the physical wavefront shaping ability of metasurfaces with advanced computational algorithms to enhance imaging performance beyond conventional limits. We discuss how computational metaoptics addresses the inherent limitations of single-layer metasurfaces in achieving multifunctionality without compromising efficiency. By treating metasurfaces as physical preconditioners and co-designing them with reconstruction algorithms through end-to-end (inverse) design, it is possible to jointly optimize the optical hardware and computational software. This holistic approach allows for the automatic discovery of optimal metasurface designs and reconstruction methods that significantly improve imaging capabilities. Advanced applications enabled by computational metaoptics are highlighted, including phase imaging and quantum state measurement, which benefit from the metasurfaces&#39; ability to manipulate complex light fields and the computational algorithms&#39; capacity to reconstruct high-dimensional information. We also examine performance evaluation challenges, emphasizing the need for new metrics that account for the combined optical and computational nature of these systems. Finally, we identify new frontiers in computational metaoptics which point toward a future where computational metaoptics may play a central role in advancing imaging science and technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09133v1-abstract-full').style.display = 'none'; document.getElementById('2411.09133v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02968">arXiv:2411.02968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02968">pdf</a>, <a href="https://arxiv.org/ps/2411.02968">ps</a>, <a href="https://arxiv.org/format/2411.02968">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Macroscopic quantum teleportation with ensembles of qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chaudhary%2C+M">Manish Chaudhary</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhiyuan Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+S">Shuang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+M">Mohan Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mao%2C+Y">Yuping Mao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ivannikov%2C+V">Valentin Ivannikov</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Byrnes%2C+T">Tim Byrnes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02968v1-abstract-short" style="display: inline;"> We develop methods for performing quantum teleportation of the total spin variables of an unknown state, using quantum nondemolition measurements, spin projection measurements, and classical communication. While theoretically teleportation of high-dimensional states can be attained with the assumption of generalized Bell measurements, this is typically experimentally non-trivial to implement. We i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02968v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02968v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02968v1-abstract-full" style="display: none;"> We develop methods for performing quantum teleportation of the total spin variables of an unknown state, using quantum nondemolition measurements, spin projection measurements, and classical communication. While theoretically teleportation of high-dimensional states can be attained with the assumption of generalized Bell measurements, this is typically experimentally non-trivial to implement. We introduce two protocols and show that, on average, the teleportation succeeds in teleporting the spin variables of a spin coherent state with average zero angular error in the ideal case, beating classical strategies based on quantum state estimation. In a single run of the teleportation, there is an angular error at the level of ~ 0.1 radians for large ensembles. A potential physical implementation for the scheme is with atomic ensembles and quantum nondemolition measurements performed with light. We analyze the decoherence of the protocols and find that the protocol is robust even in the limit of large ensemble sizes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02968v1-abstract-full').style.display = 'none'; document.getElementById('2411.02968v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07731">arXiv:2409.07731</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07731">pdf</a>, <a href="https://arxiv.org/format/2409.07731">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Group delay controlled by the decoherence of a single artificial atom </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+Y+-">Y. -T. Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hsieh%2C+K+-">K. -M. Hsieh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+B+-">B. -Y. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+Z+Q">Z. Q. Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Aziz%2C+F">F. Aziz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+Y+-">Y. -H. Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wen%2C+P+Y">P. Y. Wen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+K+-">K. -T. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Y+-">Y. -H. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J+C">J. C. Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kockum%2C+A+F">A. F. Kockum</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+G+-">G. -D. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z+-">Z. -R. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+Y">Y. Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hoi%2C+I+-">I. -C. Hoi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07731v1-abstract-short" style="display: inline;"> The ability to slow down light at the single-photon level has applications in quantum information processing and other quantum technologies. We demonstrate two methods, both using just a single artificial atom, enabling dynamic control over microwave light velocities in waveguide quantum electrodynamics (waveguide QED). Our methods are based on two distinct mechanisms harnessing the balance betwee&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07731v1-abstract-full').style.display = 'inline'; document.getElementById('2409.07731v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07731v1-abstract-full" style="display: none;"> The ability to slow down light at the single-photon level has applications in quantum information processing and other quantum technologies. We demonstrate two methods, both using just a single artificial atom, enabling dynamic control over microwave light velocities in waveguide quantum electrodynamics (waveguide QED). Our methods are based on two distinct mechanisms harnessing the balance between radiative and non-radiative decay rates of a superconducting artificial atom in front of a mirror. In the first method, we tune the radiative decay of the atom using interference effects due to the mirror; in the second method, we pump the atom to control its non-radiative decay through the Autler--Townes effect. When the half the radiative decay rate exceeds the non-radiative decay rate, we observe positive group delay; conversely, dominance of the non-radiative decay rate results in negative group delay. Our results advance signal-processing capabilities in waveguide QED. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07731v1-abstract-full').style.display = 'none'; document.getElementById('2409.07731v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05335">arXiv:2408.05335</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05335">pdf</a>, <a href="https://arxiv.org/format/2408.05335">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Interlayer Dzyaloshinskii-Moriya interactions induced via non-linear phononics in bilayer van der Waals materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Ze-Xun Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+B">Bowen Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Roberts%2C+W">Wesley Roberts</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rodriguez-Vega%2C+M">Martin Rodriguez-Vega</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fiete%2C+G+A">Gregory A. Fiete</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05335v1-abstract-short" style="display: inline;"> We theoretically study the impact of light-driven structural changes via nonlinear phononics on the magnetic order of untwisted bilayer van der Waals materials. We consider an illustrative example of the AA-stacked bilayer honeycomb lattice and show that high-intensity light in resonance with selected phonons induces large amplitude phonon displacements that modify the magnetic Hamiltonian of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05335v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05335v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05335v1-abstract-full" style="display: none;"> We theoretically study the impact of light-driven structural changes via nonlinear phononics on the magnetic order of untwisted bilayer van der Waals materials. We consider an illustrative example of the AA-stacked bilayer honeycomb lattice and show that high-intensity light in resonance with selected phonons induces large amplitude phonon displacements that modify the magnetic Hamiltonian of the system. We performed a group theory analysis to identify the vibrational modes of the honeycomb bilayer and the nonlinear couplings among them in the strongly driven regime. We find that the structural changes in the strongly driven regime lower the symmetry relative to the equilibrium lattice and produce changes in the magnetic interactions between the local moments. In particular, the lattice symmetry changes permit a non-zero interlayer Dzyaloshinskii-Moriya interaction that induces a magnetic state with canted local moments. Using a spin-wave analysis about the new magnetic configuration we study the corresponding changes in the magnon spectrum and identify a protocol for engineering topological band transitions using a combination of nonlinear phononics and an external magnetic field. Our work suggests a strategy to induce interlayer Dyzaloshinskii-Moriya interactions in a class of layered van der Waals materials, the effect of which is to modify the magnetic ground state, magnon dispersions, and related band geometric properties, including topological invariants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05335v1-abstract-full').style.display = 'none'; document.getElementById('2408.05335v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06620">arXiv:2407.06620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06620">pdf</a>, <a href="https://arxiv.org/ps/2407.06620">ps</a>, <a href="https://arxiv.org/format/2407.06620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.528096">10.1364/OE.528096 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient single-photon directional transfer between waveguides via two giant atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+D">Daqiang Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhirong Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06620v1-abstract-short" style="display: inline;"> We investigate the single-photon transport properties in a double-waveguide quantum electrodynamic system. We force the energy degeneracy of the collective states by adjusting the direct coupling strength between the two giant atoms. Our results indicate that resonant photons can be completely transferred between the two waveguides owing to the scattering interference of eigenstates, which also re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06620v1-abstract-full').style.display = 'inline'; document.getElementById('2407.06620v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06620v1-abstract-full" style="display: none;"> We investigate the single-photon transport properties in a double-waveguide quantum electrodynamic system. We force the energy degeneracy of the collective states by adjusting the direct coupling strength between the two giant atoms. Our results indicate that resonant photons can be completely transferred between the two waveguides owing to the scattering interference of eigenstates, which also results in the directional propagation of resonant photons in the output waveguide. Perfect transfer occurs when the two scattering states degenerate in the energy and decay rates. We further propose a simple scheme to realize the efficient photon transfer with directional control. This study has potential applications in quantum networks and integrated photonic circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06620v1-abstract-full').style.display = 'none'; document.getElementById('2407.06620v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages,5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Express 32(15), 26470-26477 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13582">arXiv:2405.13582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13582">pdf</a>, <a href="https://arxiv.org/format/2405.13582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dual-Capability Machine Learning Models for Quantum Hamiltonian Parameter Estimation and Dynamics Prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=An%2C+Z">Zheng An</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J">Jiahui Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zidong Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xiaobo Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+K">Keren Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+B">Bei Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13582v1-abstract-short" style="display: inline;"> Recent advancements in quantum hardware and classical computing simulations have significantly enhanced the accessibility of quantum system data, leading to an increased demand for precise descriptions and predictions of these systems. Accurate prediction of quantum Hamiltonian dynamics and identification of Hamiltonian parameters are crucial for advancements in quantum simulations, error correcti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13582v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13582v1-abstract-full" style="display: none;"> Recent advancements in quantum hardware and classical computing simulations have significantly enhanced the accessibility of quantum system data, leading to an increased demand for precise descriptions and predictions of these systems. Accurate prediction of quantum Hamiltonian dynamics and identification of Hamiltonian parameters are crucial for advancements in quantum simulations, error correction, and control protocols. This study introduces a machine learning model with dual capabilities: it can deduce time-dependent Hamiltonian parameters from observed changes in local observables within quantum many-body systems, and it can predict the evolution of these observables based on Hamiltonian parameters. Our model&#39;s validity was confirmed through theoretical simulations across various scenarios and further validated by two experiments. Initially, the model was applied to a Nuclear Magnetic Resonance quantum computer, where it accurately predicted the dynamics of local observables. The model was then tested on a superconducting quantum computer with initially unknown Hamiltonian parameters, successfully inferring them. Our approach aims to enhance various quantum computing tasks, including parameter estimation, noise characterization, feedback processes, and quantum control optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13582v1-abstract-full').style.display = 'none'; document.getElementById('2405.13582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05975">arXiv:2405.05975</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05975">pdf</a>, <a href="https://arxiv.org/format/2405.05975">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0216271">10.1063/5.0216271 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep-learning design of graphene metasurfaces for quantum control and Dirac electron holography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Han%2C+C">Chen-Di Han</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+L">Li-Li Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zin Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kovanis%2C+V">Vassilios Kovanis</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lai%2C+Y">Ying-Cheng Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05975v1-abstract-short" style="display: inline;"> Metasurfaces are sub-wavelength patterned layers for controlling waves in physical systems. In optics, meta-surfaces are created by materials with different dielectric constants and are capable of unconventional functionalities. We develop a deep-learning framework for Dirac-material metasurface design for controlling electronic waves. The metasurface is a configuration of circular graphene quantu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05975v1-abstract-full').style.display = 'inline'; document.getElementById('2405.05975v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05975v1-abstract-full" style="display: none;"> Metasurfaces are sub-wavelength patterned layers for controlling waves in physical systems. In optics, meta-surfaces are created by materials with different dielectric constants and are capable of unconventional functionalities. We develop a deep-learning framework for Dirac-material metasurface design for controlling electronic waves. The metasurface is a configuration of circular graphene quantum dots, each created by an electric potential. Employing deep convolutional neural networks, we show that the original scattering wave can be reconstructed with fidelity over 95$\%$, suggesting the feasibility of Dirac electron holography. Additional applications such as plane wave generation, designing broadband, and multi-functionality graphene metasurface systems are illustrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05975v1-abstract-full').style.display = 'none'; document.getElementById('2405.05975v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09700">arXiv:2402.09700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.09700">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of topology transition in Floquet non-Hermitian skin effects in silicon photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhiyuan Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+W">Wange Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+L">Li-Wei Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xin%2C+H">Haoran Xin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+J">Jiacheng Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+S">Shengjie Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+C">Chunyu Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+S">Shining Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+J">Jian-Hua Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09700v1-abstract-short" style="display: inline;"> Non-Hermitian physics has greatly enriched our understanding of nonequilibrium phenomena and uncovered novel effects such as the non-Hermitian skin effect (NHSE) that has profoundly revolutionized the field. NHSE is typically predicted in systems with nonreciprocal couplings which, however, are difficult to realize in experiments. Without nonreciprocal couplings, the NHSE can also emerge in system&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09700v1-abstract-full').style.display = 'inline'; document.getElementById('2402.09700v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09700v1-abstract-full" style="display: none;"> Non-Hermitian physics has greatly enriched our understanding of nonequilibrium phenomena and uncovered novel effects such as the non-Hermitian skin effect (NHSE) that has profoundly revolutionized the field. NHSE is typically predicted in systems with nonreciprocal couplings which, however, are difficult to realize in experiments. Without nonreciprocal couplings, the NHSE can also emerge in systems with coexisting gauge fields and loss or gain (e.g., in Floquet non-Hermitian systems). However, such Floquet NHSE remains largely unexplored in experiments. Here, we realize the Floquet NHSEs in periodically modulated optical waveguides integrated on a silicon photonics platform. By engineering the artificial gauge fields induced by the periodical modulation, we observe various Floquet NHSEs and unveil their rich topological transitions. Remarkably, we discover the transitions between the normal unipolar NHSEs and an unconventional bipolar NHSE which is accompanied by the directional reversal of the NHSEs. The underlying physics is revealed by the band winding in complex quasienergy space which undergoes a topology change from isolated loops with the same winding to linked loops with opposite windings. Our work unfolds a new route toward Floquet NHSEs originating from the interplay between gauge fields and dissipation effects and offers fundamentally new ways for steering light and other waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09700v1-abstract-full').style.display = 'none'; document.getElementById('2402.09700v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10697">arXiv:2401.10697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.10697">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Reconfigurable entanglement distribution network based on pump management of spontaneous four-wave mixing source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Jingyuan Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+D">Dongning Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+Z">Zhanping Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhihao Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=You%2C+L">Lixing You</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Feng%2C+X">Xue Feng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+F">Fang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+K">Kaiyu Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+Y">Yidong Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10697v1-abstract-short" style="display: inline;"> Leveraging the unique properties of quantum entanglement, quantum entanglement distribution networks support multiple quantum information applications and are essential to the development of quantum networks. However, its practical implementation poses significant challenges to network scalability and flexibility. In this work, we propose a novel reconfigurable entanglement distribution network ba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10697v1-abstract-full').style.display = 'inline'; document.getElementById('2401.10697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10697v1-abstract-full" style="display: none;"> Leveraging the unique properties of quantum entanglement, quantum entanglement distribution networks support multiple quantum information applications and are essential to the development of quantum networks. However, its practical implementation poses significant challenges to network scalability and flexibility. In this work, we propose a novel reconfigurable entanglement distribution network based on tunable multi-pump excitation of a spontaneous four-wave mixing (SFWM) source and a time-sharing method. We characterize the two-photon correlation under different pump conditions to demonstrate the effect of pump degenerate and pump non-degenerate SFWM processes on the two-photon correlation, and its tunability. Then as a benchmark application, a 10-user fully-connected quantum key distribution (QKD) network is established in a time-sharing way with triple pump lights. Each user receives one frequency channel thus it shows a linear scaling between the number of frequency channels and the user number in despite of the network topology. Our results thus provide a promising networking scheme for large-scale entanglement distribution networks owing to its scalability, functionality, and reconfigurability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10697v1-abstract-full').style.display = 'none'; document.getElementById('2401.10697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08632">arXiv:2312.08632</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08632">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-45887-8">10.1038/s41467-024-45887-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring entanglement entropy and its topological signature for phononic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhi-Kang Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Y">Yao Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+B">Bin Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+B">Bing-Quan Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Li-Mei Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+X">Xiao-Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+L">Li-Wei Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+P">Peng Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+J">Jian-Hua Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08632v1-abstract-short" style="display: inline;"> Entanglement entropy is a fundamental concept with rising importance in different fields ranging from quantum information science, black holes to materials science. In complex materials and systems, entanglement entropy provides insight into the collective degrees of freedom that underlie the systems&#39; complex behaviours. As well-known predictions, the entanglement entropy exhibits area laws for sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08632v1-abstract-full').style.display = 'inline'; document.getElementById('2312.08632v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08632v1-abstract-full" style="display: none;"> Entanglement entropy is a fundamental concept with rising importance in different fields ranging from quantum information science, black holes to materials science. In complex materials and systems, entanglement entropy provides insight into the collective degrees of freedom that underlie the systems&#39; complex behaviours. As well-known predictions, the entanglement entropy exhibits area laws for systems with gapped excitations, whereas it follows the Gioev-Klich-Widom scaling law in gapless fermion systems. Furthermore, the entanglement spectrum provides salient characterizations of topological phases and phase transitions beyond the conventional paradigms. However, many of these fundamental predictions have not yet been confirmed in experiments due to the difficulties in measuring entanglement entropy in physical systems. Here, we report the experimental verification of the above predictions by probing the nonlocal correlations in phononic systems. From the pump-probe responses in phononic crystals, we obtain the entanglement entropy and entanglement spectrum for phononic systems with the fermion filling analog. With these measurements, we verify the Gioev-Klich-Widom scaling law of entanglement entropy for various quasiparticle dispersions in one- and two-dimensions. Moreover, we observe the salient signatures of topological phases in the entanglement spectrum and entanglement entropy which unveil an unprecedented probe of topological phases without relying on the bulk-boundary correspondence. The progress here opens a frontier where entanglement entropy serves as an important experimental tool in the study of emergent phases and phase transitions which can be generalized to non-Hermitian and other unconventional regimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08632v1-abstract-full').style.display = 'none'; document.getElementById('2312.08632v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 15, Article number: 1601 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07564">arXiv:2312.07564</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07564">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of dynamic non-Hermitian skin effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zhen Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+L">Li-Wei Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xulong Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhi-Kang Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+G">Guancong Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+J">Jian-Hua Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07564v1-abstract-short" style="display: inline;"> Non-Hermitian effects have emerged as a new paradigm for the manipulation of phases of matter that profoundly changes our understanding of non-equilibrium systems, introducing novel concepts such as exceptional points and spectral topology, as well as exotic phenomena such as non-Hermitian skin effects (NHSEs). Most existing studies, however, focus on non-Hermitian eigenstates, whereas dynamic pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07564v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07564v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07564v1-abstract-full" style="display: none;"> Non-Hermitian effects have emerged as a new paradigm for the manipulation of phases of matter that profoundly changes our understanding of non-equilibrium systems, introducing novel concepts such as exceptional points and spectral topology, as well as exotic phenomena such as non-Hermitian skin effects (NHSEs). Most existing studies, however, focus on non-Hermitian eigenstates, whereas dynamic properties of non-Hermitian systems have been discussed only very recently, predicting unexpected phenomena such as wave self-healing, chiral Zener tunneling, and the dynamic NHSEs that are not yet confirmed in experiments. Here, we report the first experimental observation of rich non-Hermitian skin dynamics using tunable one-dimensional nonreciprocal double-chain mechanical systems with glide-time symmetry. Remarkably, dynamic NHSEs are observed with various dynamic behaviors in different dynamic phases, revealing the intriguing nature of these phases that can be understood via the generalized Brillouin zone and the related concepts. Moreover, the observed tunable non-Hermitian skin dynamics and amplifications, the bulk unidirectional wave propagation, and the boundary wave trapping provide promising ways to guide, trap, and amplify waves in a controllable and robust way. Our findings unveil the fundamental aspects and open a new pathway toward non-Hermitian dynamics, which will fertilize the study of non-equilibrium phases of matter and give rise to novel applications in information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07564v1-abstract-full').style.display = 'none'; document.getElementById('2312.07564v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07463">arXiv:2312.07463</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07463">pdf</a>, <a href="https://arxiv.org/format/2312.07463">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological magnon-polaron transport in a bilayer van der Waals magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhi-Xing Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Shu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07463v2-abstract-short" style="display: inline;"> The stacking of intrinsically magnetic van der Waals materials provides a fertile platform to explore tunable transport effects of magnons, presenting significant prospects for spintronic applications. The possibility of having topologically nontrivial magnons in these systems can further expand the scope of exploration. In this work, we consider a bilayer system with intralayer ferromagnetic exch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07463v2-abstract-full').style.display = 'inline'; document.getElementById('2312.07463v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07463v2-abstract-full" style="display: none;"> The stacking of intrinsically magnetic van der Waals materials provides a fertile platform to explore tunable transport effects of magnons, presenting significant prospects for spintronic applications. The possibility of having topologically nontrivial magnons in these systems can further expand the scope of exploration. In this work, we consider a bilayer system with intralayer ferromagnetic exchange and a weak interlayer antiferromagnetic exchange, and study the topological magnon-polaron excitations induced by magnetoelastic couplings. Under an applied magnetic field, the system features a metamagnetic transition, where the magnetic ground state changes from antiparallel layers to parallel. We show that the metamagnetic transition is accompanied by a transition of the topological structure of the magnon polarons, which results in discernible changes in the topology induced transport effects. The magnetic-field dependence of the thermal Hall conductivity and spin Nernst coefficient is analyzed with linear response theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07463v2-abstract-full').style.display = 'none'; document.getElementById('2312.07463v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published with open access as part of the APL Special Collection on Magnonics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05280">arXiv:2312.05280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05280">pdf</a>, <a href="https://arxiv.org/format/2312.05280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Temporal Multiplexing of Heralded Photons Based on Thin Film Lithium Niobate Photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ekici%2C+C">Cagin Ekici</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+Y">Yonghe Yu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Adcock%2C+J+C">Jeremy C. Adcock</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Muthali%2C+A+L">Alif Laila Muthali</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zahidy%2C+M">Mujtaba Zahidy</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+H">Heyun Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhongjin Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Oxenl%C3%B8we%2C+L+K">Leif K. Oxenl酶we</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+X">Xinlun Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+Y">Yunhong Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05280v1-abstract-short" style="display: inline;"> Heralded photons from a silicon source are temporally multiplexed utilizing thin film lithium niobate photonics. The time-multiplexed source, operating at a rate of R = 62.2 MHz, enhances single photon probability by 3.25 $\pm$ 0.05. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05280v1-abstract-full" style="display: none;"> Heralded photons from a silicon source are temporally multiplexed utilizing thin film lithium niobate photonics. The time-multiplexed source, operating at a rate of R = 62.2 MHz, enhances single photon probability by 3.25 $\pm$ 0.05. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05280v1-abstract-full').style.display = 'none'; document.getElementById('2312.05280v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14676">arXiv:2308.14676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14676">pdf</a>, <a href="https://arxiv.org/format/2308.14676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Fast generation of Schr枚dinger cat states in a Kerr-tunable superconducting resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X+L">X. L. He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+Y">Yong Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+D+Q">D. Q. Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+H">Hang Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+W+B">W. B. Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Roudsari%2C+A+F">A. F. Roudsari</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Delsing%2C+P">Per Delsing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tsai%2C+J+S">J. S. Tsai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z+R">Z. R. Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14676v1-abstract-short" style="display: inline;"> Schr枚dinger cat states, quantum superpositions of macroscopically distinct classical states, are an important resource for quantum communication, quantum metrology and quantum computation. Especially, cat states in a phase space protected against phase-flip errors can be used as a logical qubit. However, cat states, normally generated in three-dimensional cavities, are facing the challenges of sca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14676v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14676v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14676v1-abstract-full" style="display: none;"> Schr枚dinger cat states, quantum superpositions of macroscopically distinct classical states, are an important resource for quantum communication, quantum metrology and quantum computation. Especially, cat states in a phase space protected against phase-flip errors can be used as a logical qubit. However, cat states, normally generated in three-dimensional cavities, are facing the challenges of scalability and controllability. Here, we present a novel strategy to generate and store cat states in a coplanar superconducting circuit by the fast modulation of Kerr nonlinearity. At the Kerr-free work point, our cat states are passively preserved due to the vanishing Kerr effect. We are able to prepare a 2-component cat state in our chip-based device with a fidelity reaching 89.1% under a 96 ns gate time. Our scheme shows an excellent route to constructing a chip-based bosonic quantum processor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14676v1-abstract-full').style.display = 'none'; document.getElementById('2308.14676v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages,12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12424">arXiv:2308.12424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.12424">pdf</a>, <a href="https://arxiv.org/format/2308.12424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.034006">10.1103/PhysRevD.109.034006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Virtual states in the coupled-channel problems with an improved complex scaling method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yan-Ke Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Meng%2C+L">Lu Meng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zi-Yang Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+S">Shi-Lin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12424v2-abstract-short" style="display: inline;"> We improve the complex scaling method (CSM) to obtain virtual states, which were previously challenging in the conventional CSM. Our approach solves the Schr枚dinger equation in the momentum space as an eigenvalue problem by choosing the flexible contours. It proves to be highly effective in identifying the poles across the different Riemann sheets in the multichannel scatterings. It is more straig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12424v2-abstract-full').style.display = 'inline'; document.getElementById('2308.12424v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12424v2-abstract-full" style="display: none;"> We improve the complex scaling method (CSM) to obtain virtual states, which were previously challenging in the conventional CSM. Our approach solves the Schr枚dinger equation in the momentum space as an eigenvalue problem by choosing the flexible contours. It proves to be highly effective in identifying the poles across the different Riemann sheets in the multichannel scatterings. It is more straightforward and efficient than searching for the zeros of the Fredholm determinant of the Lippmann-Schwinger equation using the root-finding algorithms. This advancement significantly extends the capabilities of the CSM in accurately characterizing the resonances and virtual states in quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12424v2-abstract-full').style.display = 'none'; document.getElementById('2308.12424v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 14 figures, 2 tables. Version accepted by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 109, 034006 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11290">arXiv:2308.11290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.11290">pdf</a>, <a href="https://arxiv.org/format/2308.11290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> ShadowNet for Data-Centric Quantum System Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+Y">Yuxuan Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+Y">Yibo Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+T">Tongliang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhouchen Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ghanem%2C+B">Bernard Ghanem</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tao%2C+D">Dacheng Tao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11290v1-abstract-short" style="display: inline;"> Understanding the dynamics of large quantum systems is hindered by the curse of dimensionality. Statistical learning offers new possibilities in this regime by neural-network protocols and classical shadows, while both methods have limitations: the former is plagued by the predictive uncertainty and the latter lacks the generalization ability. Here we propose a data-centric learning paradigm combi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11290v1-abstract-full').style.display = 'inline'; document.getElementById('2308.11290v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11290v1-abstract-full" style="display: none;"> Understanding the dynamics of large quantum systems is hindered by the curse of dimensionality. Statistical learning offers new possibilities in this regime by neural-network protocols and classical shadows, while both methods have limitations: the former is plagued by the predictive uncertainty and the latter lacks the generalization ability. Here we propose a data-centric learning paradigm combining the strength of these two approaches to facilitate diverse quantum system learning (QSL) tasks. Particularly, our paradigm utilizes classical shadows along with other easily obtainable information of quantum systems to create the training dataset, which is then learnt by neural networks to unveil the underlying mapping rule of the explored QSL problem. Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems at the inference stage, even with few state copies. Besides, it inherits the characteristic of classical shadows, enabling memory-efficient storage and faithful prediction. These features underscore the immense potential of the proposed data-centric approach in discovering novel and large-scale quantum systems. For concreteness, we present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits. Our work showcases the profound prospects of data-centric artificial intelligence to advance QSL in a faithful and generalizable manner. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11290v1-abstract-full').style.display = 'none'; document.getElementById('2308.11290v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14140">arXiv:2307.14140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14140">pdf</a>, <a href="https://arxiv.org/format/2307.14140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Single-flux-quantum-based Qubit Control with Tunable Driving Strength </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+K">Kuang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yifan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ji%2C+B">Bo Ji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+W">Wanpeng Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhirong Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14140v1-abstract-short" style="display: inline;"> Single-flux-quantum (SFQ) circuits have great potential in building cryogenic quantum-classical interfaces for scaling up superconducting quantum processors. SFQ-based quantum gates have been designed and realized. However, current control schemes are difficult to tune the driving strength to qubits, which restricts the gate length and usually induces leakage to unwanted levels. In this study, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14140v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14140v1-abstract-full" style="display: none;"> Single-flux-quantum (SFQ) circuits have great potential in building cryogenic quantum-classical interfaces for scaling up superconducting quantum processors. SFQ-based quantum gates have been designed and realized. However, current control schemes are difficult to tune the driving strength to qubits, which restricts the gate length and usually induces leakage to unwanted levels. In this study, we design the scheme and corresponding pulse generator circuit to continuously adjust the driving strength by coupling SFQ pulses with variable intervals. This scheme not only provides a way to adjust the SFQ-based gate length, but also proposes the possibility to tune the driving strength envelope. Simulations show that our scheme can suppress leakage to unwanted levels and reduce the error of SFQ-based Clifford gates by more than an order of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14140v1-abstract-full').style.display = 'none'; document.getElementById('2307.14140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14130">arXiv:2307.14130</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14130">pdf</a>, <a href="https://arxiv.org/format/2307.14130">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.064512">10.1103/PhysRevB.108.064512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasiparticle Dynamics in Superconducting Quantum-Classical Hybrid Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+K">Kuang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+X">Xiaoliang He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+Z">Zhengqi Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+H">Hang Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+W">Wenbing Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ying%2C+L">Liliang Ying</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+W">Wei Peng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Maezawa%2C+M">Masaaki Maezawa</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhirong Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+X">Xiaoming Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14130v1-abstract-short" style="display: inline;"> Single flux quantum (SFQ) circuitry is a promising candidate for a scalable and integratable cryogenic quantum control system. However, the operation of SFQ circuits introduces non-equilibrium quasiparticles (QPs), which are a significant source of qubit decoherence. In this study, we investigate QP behavior in a superconducting quantum-classical hybrid chip that comprises an SFQ circuit and a qub&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14130v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14130v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14130v1-abstract-full" style="display: none;"> Single flux quantum (SFQ) circuitry is a promising candidate for a scalable and integratable cryogenic quantum control system. However, the operation of SFQ circuits introduces non-equilibrium quasiparticles (QPs), which are a significant source of qubit decoherence. In this study, we investigate QP behavior in a superconducting quantum-classical hybrid chip that comprises an SFQ circuit and a qubit circuit. By monitoring qubit relaxation time, we explore the dynamics of SFQ-circuit-induced QPs. Our findings reveal that the QP density near the qubit reaches its peak after several microseconds of SFQ circuit operation, which corresponds to the phonon-mediated propagation time of QPs in the hybrid circuits. This suggests that phonon-mediated propagation dominates the spreading of QPs in the hybrid circuits. Our results lay the foundation to suppress QP poisoning in quantum-classical hybrid systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14130v1-abstract-full').style.display = 'none'; document.getElementById('2307.14130v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages,13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevB.108.064512 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12167">arXiv:2307.12167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12167">pdf</a>, <a href="https://arxiv.org/format/2307.12167">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nonlinear Multi-Resonant Cavity Quantum Photonics Gyroscopes Quantum Light Navigation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+M">Mengdi Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lon%C4%8Dar%2C+M">Marko Lon膷ar</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kovanis%2C+V">Vassilios Kovanis</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12167v2-abstract-short" style="display: inline;"> We propose an on-chip all-optical gyroscope based on nonlinear multi-resonant cavity quantum photonics in thin film $蠂^{(2)}$ resonators -- Quantum-Optic Nonlinear Gyro or QONG in short. The key feature of our gyroscope is co-arisal and co-accumulation of quantum correlations, nonlinear wave mixing and non-inertial signals, all inside the same sensor-resonator. We theoretically analyze the Fisher&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12167v2-abstract-full').style.display = 'inline'; document.getElementById('2307.12167v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12167v2-abstract-full" style="display: none;"> We propose an on-chip all-optical gyroscope based on nonlinear multi-resonant cavity quantum photonics in thin film $蠂^{(2)}$ resonators -- Quantum-Optic Nonlinear Gyro or QONG in short. The key feature of our gyroscope is co-arisal and co-accumulation of quantum correlations, nonlinear wave mixing and non-inertial signals, all inside the same sensor-resonator. We theoretically analyze the Fisher Information of our QONGs under fundamental quantum noise conditions. Using Bayesian optimization, we maximize the Fisher Information and show that $\sim 900\times$ improvement is possible over the shot-noise limited linear gyroscope with the same footprint, intrinsic quality factors and power budget. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12167v2-abstract-full').style.display = 'none'; document.getElementById('2307.12167v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 9 figures, journal artical</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00511">arXiv:2304.00511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.00511">pdf</a>, <a href="https://arxiv.org/ps/2304.00511">ps</a>, <a href="https://arxiv.org/format/2304.00511">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0158083">10.1063/5.0158083 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thin film aluminum nitride surface acoustic wave resonators for quantum acoustodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+W">Wenbing Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Junfeng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+X">Xiaoyu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+Z">Zhengqi Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+K">Kuang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+W">Wei Peng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhi-Rong Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00511v2-abstract-short" style="display: inline;"> The quantum excitations of macroscopic surface acoustic waves (SAWs) have been tailored to control, communicate and transduce stationary and flying quantum states. However, the limited lifetime of this hybrid quantum systems remains critical obstacles to extend their applications in quantum information processing. Here we present the potentials of thin film aluminum nitride to on-chip integrate ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00511v2-abstract-full').style.display = 'inline'; document.getElementById('2304.00511v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00511v2-abstract-full" style="display: none;"> The quantum excitations of macroscopic surface acoustic waves (SAWs) have been tailored to control, communicate and transduce stationary and flying quantum states. However, the limited lifetime of this hybrid quantum systems remains critical obstacles to extend their applications in quantum information processing. Here we present the potentials of thin film aluminum nitride to on-chip integrate phonons with superconducting qubits over previous bulk piezoelectric substrates. We have reported high-quality thin film GHz-SAW resonators with the highest internal quality factor Qi of 5 e4 at the single-phonon level. The internal loss of SAW resonators are systematically investigated with tuning the parameters of sample layout, power and temperature. Our results manifest that SAWs on piezoelectric films are readily integrable with standard fabrication of Josephson junction quantum circuits, and offer excellent acoustic platforms for the high-coherence quantum acoustodynamics architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00511v2-abstract-full').style.display = 'none'; document.getElementById('2304.00511v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08804">arXiv:2303.08804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08804">pdf</a>, <a href="https://arxiv.org/format/2303.08804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.176602">10.1103/PhysRevLett.131.176602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-photon Chern number in cavity-embedded 2D moir茅 materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Nguyen%2C+D">Danh-Phuong Nguyen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Arwas%2C+G">Geva Arwas</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zuzhang Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ciuti%2C+C">Cristiano Ciuti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08804v2-abstract-short" style="display: inline;"> We explore theoretically how the topological properties of 2D materials can be manipulated by cavity quantum electromagnetic fields for both resonant and off-resonant electron-photon coupling, with a focus on van der Waals moir茅 superlattices. We investigate an electron-photon topological Chern number for the cavity-dressed energy minibands that is well defined for any degree of hybridization of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08804v2-abstract-full').style.display = 'inline'; document.getElementById('2303.08804v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08804v2-abstract-full" style="display: none;"> We explore theoretically how the topological properties of 2D materials can be manipulated by cavity quantum electromagnetic fields for both resonant and off-resonant electron-photon coupling, with a focus on van der Waals moir茅 superlattices. We investigate an electron-photon topological Chern number for the cavity-dressed energy minibands that is well defined for any degree of hybridization of the electron and photon states. While an off-resonant cavity mode can renormalize electronic topological phases that exist without cavity coupling, we show that when the cavity mode is resonant to electronic miniband transitions, new and higher electron-photon Chern numbers can emerge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08804v2-abstract-full').style.display = 'none'; document.getElementById('2303.08804v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PRL accepted version (additional figures with respect to version v1 have been added both in the manuscript and Supplementary Material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 176602 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12620">arXiv:2301.12620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.12620">pdf</a>, <a href="https://arxiv.org/format/2301.12620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.033008">10.1103/PhysRevResearch.5.033008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of a buffer-gas-loaded, deep optical trap for molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Singh%2C+A">Ashwin Singh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Maisenbacher%2C+L">Lothar Maisenbacher</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Ziguang Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Axelrod%2C+J">Jeremy Axelrod</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Panda%2C+C">Cristian Panda</a>, <a href="/search/quant-ph?searchtype=author&amp;query=M%C3%BCller%2C+H">Holger M眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12620v2-abstract-short" style="display: inline;"> We describe an approach to optically trapping small, chemically stable molecules at cryogenic temperatures by buffer-gas loading a deep optical dipole trap. The ~10 K trap depth will be produced by a tightly-focused, 1064-nm cavity capable of reaching intensities of hundreds of GW/cm$^2$. Molecules will be directly buffer-gas loaded into the trap using a helium buffer gas at 1.5 K. The very far-of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12620v2-abstract-full').style.display = 'inline'; document.getElementById('2301.12620v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12620v2-abstract-full" style="display: none;"> We describe an approach to optically trapping small, chemically stable molecules at cryogenic temperatures by buffer-gas loading a deep optical dipole trap. The ~10 K trap depth will be produced by a tightly-focused, 1064-nm cavity capable of reaching intensities of hundreds of GW/cm$^2$. Molecules will be directly buffer-gas loaded into the trap using a helium buffer gas at 1.5 K. The very far-off-resonant, quasielectrostatic trapping mechanism is insensitive to a molecule&#39;s internal state, energy level structure, and its electric and magnetic dipole moment. Here, we theoretically investigate the trapping and loading dynamics, as well as the heating and loss rates, and conclude that $10^4$-$10^6$ molecules are likely to be trapped. Our trap would open new possibilities in molecular spectroscopy, studies of cold chemical reactions, and precision measurement, amongst other fields of physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12620v2-abstract-full').style.display = 'none'; document.getElementById('2301.12620v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 033008 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02695">arXiv:2212.02695</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02695">pdf</a>, <a href="https://arxiv.org/ps/2212.02695">ps</a>, <a href="https://arxiv.org/format/2212.02695">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> High-dimensional quantum key distribution using energy-time entanglement over 242 km partially deployed fiber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Jingyuan Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhihao Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+D">Dongning Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Feng%2C+X">Xue Feng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+F">Fang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+K">Kaiyu Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+Y">Yidong Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02695v1-abstract-short" style="display: inline;"> Entanglement-based quantum key distribution (QKD) is an essential ingredient in quantum communication, owing to the property of source-independent security and the potential on constructing large-scale quantum communication networks. However, implementation of entanglement-based QKD over long-distance optical fiber links is still challenging, especially over deployed fibers. In this work, we repor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02695v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02695v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02695v1-abstract-full" style="display: none;"> Entanglement-based quantum key distribution (QKD) is an essential ingredient in quantum communication, owing to the property of source-independent security and the potential on constructing large-scale quantum communication networks. However, implementation of entanglement-based QKD over long-distance optical fiber links is still challenging, especially over deployed fibers. In this work, we report an experimental QKD using energy-time entangled photon pairs that transmit over optical fibers of 242 km (including a section of 19 km deployed fibers). High-quality entanglement distribution is verified by Franson-type interference with raw fringe visibilities of 94.1$\pm$1.9% and %92.4$\pm$5.4% in two non-orthogonal bases. The QKD is realized through the protocol of dispersive-optics QKD. A high-dimensional encoding is applied to utilize coincidence counts more efficiently. Using reliable, high-accuracy time synchronization technology, the system operates continuously for more than 7 days, even without active polarization or phase calibration. We ultimately generate secure keys with secure key rates of 0.22 bps and 0.06 bps in asymptotic and finite-size regime,respectively. This system is compatible with existing telecommunication infrastructures, showing great potential on realizing large-scale quantum communication networks in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02695v1-abstract-full').style.display = 'none'; document.getElementById('2212.02695v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, 51 references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.03691">arXiv:2209.03691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.03691">pdf</a>, <a href="https://arxiv.org/format/2209.03691">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.106.063112">10.1103/PhysRevA.106.063112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian skin effect in a single trapped ion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Ziguang Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Y">Yiheng Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+W">Wei Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.03691v1-abstract-short" style="display: inline;"> Non-Hermitian skin effect (NHSE) describes the exponential localization of all eigenstates toward boundaries in non-Hermitian systems, and has attracted intense research interest of late. Here we theoretically propose a scheme in which the NHSE significantly impacts the external motion of a single trapped ion through complex spin-motion dynamics. On the one hand, we show the competition between th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03691v1-abstract-full').style.display = 'inline'; document.getElementById('2209.03691v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.03691v1-abstract-full" style="display: none;"> Non-Hermitian skin effect (NHSE) describes the exponential localization of all eigenstates toward boundaries in non-Hermitian systems, and has attracted intense research interest of late. Here we theoretically propose a scheme in which the NHSE significantly impacts the external motion of a single trapped ion through complex spin-motion dynamics. On the one hand, we show the competition between the NHSE and the coherent Bloch dynamics. On the other hand, since the NHSE manifests as a non-reciprocal flow in occupied phonon modes, we demonstrate that such dynamics can have potential applications in cooling and sensing. Our proposal can be readily implemented using existing experimental techniques, and offers a scalable (in terms of the available ions and phonon modes) simulation platform for relevant non-Hermitian physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03691v1-abstract-full').style.display = 'none'; document.getElementById('2209.03691v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 106, 063112 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05847">arXiv:2208.05847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05847">pdf</a>, <a href="https://arxiv.org/format/2208.05847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.070502">10.1103/PhysRevLett.129.070502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement-Enhanced Quantum Metrology in Colored Noise by Quantum Zeno Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Long%2C+X">Xinyue Long</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+W">Wan-Ting He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+N">Na-Na Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+K">Kai Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zidong Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Hongfeng Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nie%2C+X">Xinfang Nie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Feng%2C+G">Guanru Feng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xin%2C+T">Tao Xin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ai%2C+Q">Qing Ai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+D">Dawei Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05847v1-abstract-short" style="display: inline;"> In open quantum systems, the precision of metrology inevitably suffers from the noise. {In Markovian open quantum dynamics, the precision can not be improved by using entangled probes although the measurement time is effectively shortened.} However, it was predicted over one decade ago that in a non-Markovian one, the error can be significantly reduced by the quantum Zeno effect (QZE) [Chin, Huelg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05847v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05847v1-abstract-full" style="display: none;"> In open quantum systems, the precision of metrology inevitably suffers from the noise. {In Markovian open quantum dynamics, the precision can not be improved by using entangled probes although the measurement time is effectively shortened.} However, it was predicted over one decade ago that in a non-Markovian one, the error can be significantly reduced by the quantum Zeno effect (QZE) [Chin, Huelga, and Plenio, Phys. Rev. Lett. \textbf{109}, 233601 (2012)]. In this work, we apply a recently-developed quantum simulation approach to experimentally verify that entangled probes can improve the precision of metrology by the QZE. Up to $n=7$ qubits, we demonstrate that the precision has been improved by a factor of $n^{1/4}$, which is consistent with the theoretical prediction. Our quantum simulation approach may provide an intriguing platform for experimental verification of various quantum metrology schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05847v1-abstract-full').style.display = 'none'; document.getElementById('2208.05847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 129, 070502 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.15127">arXiv:2206.15127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.15127">pdf</a>, <a href="https://arxiv.org/format/2206.15127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-022-00587-3">10.1038/s41534-022-00587-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental quantum simulation of non-Hermitian dynamical topological states using stochastic Schr枚dinger equation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zidong Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">Lin Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Long%2C+X">Xinyue Long</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+Y">Yu-ang Fan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yishan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+K">Kai Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nie%2C+X">XinFang Nie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xin%2C+T">Tao Xin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+X">Xiong-Jun Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+D">Dawei Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.15127v1-abstract-short" style="display: inline;"> Noise is ubiquitous in real quantum systems, leading to non-Hermitian quantum dynamics, and may affect the fundamental states of matter. Here we report in experiment a quantum simulation of the two-dimensional non-Hermitian quantum anomalous Hall (QAH) model using the nuclear magnetic resonance processor. Unlike the usual experiments using auxiliary qubits, we develop a stochastic average approach&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15127v1-abstract-full').style.display = 'inline'; document.getElementById('2206.15127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.15127v1-abstract-full" style="display: none;"> Noise is ubiquitous in real quantum systems, leading to non-Hermitian quantum dynamics, and may affect the fundamental states of matter. Here we report in experiment a quantum simulation of the two-dimensional non-Hermitian quantum anomalous Hall (QAH) model using the nuclear magnetic resonance processor. Unlike the usual experiments using auxiliary qubits, we develop a stochastic average approach based on the stochastic Schr枚dinger equation to realize the non-Hermitian dissipative quantum dynamics, which has advantages in saving the quantum simulation sources and simplifies implementation of quantum gates. We demonstrate the stability of dynamical topology against weak noise, and observe two types of dynamical topological transitions driven by strong noise. Moreover, a region that the emergent topology is always robust regardless of the noise strength is observed. Our work shows a feasible quantum simulation approach for dissipative quantum dynamics with stochastic Schr枚dinger equation and opens a route to investigate non-Hermitian dynamical topological physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.15127v1-abstract-full').style.display = 'none'; document.getElementById('2206.15127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Information volume 8, Article number: 77 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.09313">arXiv:2206.09313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.09313">pdf</a>, <a href="https://arxiv.org/format/2206.09313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2632-2153/ad35a3">10.1088/2632-2153/ad35a3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laziness, Barren Plateau, and Noise in Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Junyu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zexi Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+L">Liang Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.09313v1-abstract-short" style="display: inline;"> We define \emph{laziness} to describe a large suppression of variational parameter updates for neural networks, classical or quantum. In the quantum case, the suppression is exponential in the number of qubits for randomized variational quantum circuits. We discuss the difference between laziness and \emph{barren plateau} in quantum machine learning created by quantum physicists in \cite{mcclean20&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09313v1-abstract-full').style.display = 'inline'; document.getElementById('2206.09313v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.09313v1-abstract-full" style="display: none;"> We define \emph{laziness} to describe a large suppression of variational parameter updates for neural networks, classical or quantum. In the quantum case, the suppression is exponential in the number of qubits for randomized variational quantum circuits. We discuss the difference between laziness and \emph{barren plateau} in quantum machine learning created by quantum physicists in \cite{mcclean2018barren} for the flatness of the loss function landscape during gradient descent. We address a novel theoretical understanding of those two phenomena in light of the theory of neural tangent kernels. For noiseless quantum circuits, without the measurement noise, the loss function landscape is complicated in the overparametrized regime with a large number of trainable variational angles. Instead, around a random starting point in optimization, there are large numbers of local minima that are good enough and could minimize the mean square loss function, where we still have quantum laziness, but we do not have barren plateaus. However, the complicated landscape is not visible within a limited number of iterations, and low precision in quantum control and quantum sensing. Moreover, we look at the effect of noises during optimization by assuming intuitive noise models, and show that variational quantum algorithms are noise-resilient in the overparametrization regime. Our work precisely reformulates the quantum barren plateau statement towards a precision statement and justifies the statement in certain noise models, injects new hope toward near-term variational quantum algorithms, and provides theoretical connections toward classical machine learning. Our paper provides conceptual perspectives about quantum barren plateaus, together with discussions about the gradient descent dynamics in \cite{together}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09313v1-abstract-full').style.display = 'none'; document.getElementById('2206.09313v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mach. Learn.: Sci. Technol. 5 015058, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03338">arXiv:2201.03338</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.03338">pdf</a>, <a href="https://arxiv.org/format/2201.03338">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.205428">10.1103/PhysRevB.105.205428 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Abelian operation through scattering between chiral Dirac edge modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhi-Xing Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yijia Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+X+C">X. C. Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03338v2-abstract-short" style="display: inline;"> We theoretically demonstrate that non-Abelian braiding operation can be realized through the scattering between chiral Dirac edge modes (CDEMs) in quantum anomalous Hall insulators by analytically deriving its S-matrix. Based on the analytical model, we propose a viable device for the experimental realization and detection of the non-Abelian braiding operations. Through investigating the tunneling&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03338v2-abstract-full').style.display = 'inline'; document.getElementById('2201.03338v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03338v2-abstract-full" style="display: none;"> We theoretically demonstrate that non-Abelian braiding operation can be realized through the scattering between chiral Dirac edge modes (CDEMs) in quantum anomalous Hall insulators by analytically deriving its S-matrix. Based on the analytical model, we propose a viable device for the experimental realization and detection of the non-Abelian braiding operations. Through investigating the tunneling conductance in a discretized lattice model, the non-Abelian properties of CDEMs could also be verified in a numerical way. Our proposal for the CDEM-based braiding provides a new avenue for realizing topologically protected quantum gates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03338v2-abstract-full').style.display = 'none'; document.getElementById('2201.03338v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.13550">arXiv:2112.13550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.13550">pdf</a>, <a href="https://arxiv.org/format/2112.13550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Fate of entanglement in one-dimensional fermion liquid with coherent particle loss </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+W">Wei-Zhu Yi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+H">Hao-Jie Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Ze-Xun Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+W">Wei-Qiang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.13550v2-abstract-short" style="display: inline;"> Quantum many-body systems and quantum devices experience the detrimental effects of noise and particle losses, necessitating their treatment as open quantum systems or, in approximation, as non-Hermitian systems. These systems exhibit nontrivial characteristics in their time evolution that differ significantly from closed systems. In this Letter, we study the dynamic properties of a one-dimensiona&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13550v2-abstract-full').style.display = 'inline'; document.getElementById('2112.13550v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.13550v2-abstract-full" style="display: none;"> Quantum many-body systems and quantum devices experience the detrimental effects of noise and particle losses, necessitating their treatment as open quantum systems or, in approximation, as non-Hermitian systems. These systems exhibit nontrivial characteristics in their time evolution that differ significantly from closed systems. In this Letter, we study the dynamic properties of a one-dimensional fermionic system with adjacent-lattice particle loss. By utilizing time-dependent correlation matrix methods and bosonization techniques, we demonstrate that, as the system evolves over time, its (bipartite) von Neumann entropy exhibits a universal behavior of rapid increase due to thermalization effects at short times, independent of the effective Hamiltonian and Liouvillian spectra, even in the presence of interactions. Additionally, we show that the asymmetric non-Hermitian terms in the effective Hamiltonian caused by adjacent-lattice quantum jumps lead to left-right asymmetry of quasiparticles in momentum space, which is ubiquitous in non-Hermitian skin effects and introduces momentum-space entanglement independent of the interaction strength at early times. Our study illuminates the universal fate of non-Hermitian fermionic liquids in the open quantum context, enriching our understanding of non-Hermitian many-body systems over the entire time range. Furthermore, our findings provide valuable insights for near-term quantum devices and the quantum simulation of open systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.13550v2-abstract-full').style.display = 'none'; document.getElementById('2112.13550v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10796">arXiv:2109.10796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.10796">pdf</a>, <a href="https://arxiv.org/format/2109.10796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Popular Physics">physics.pop-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermal divergences of quantum measurement engine </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Su%2C+S">Shanhe Su</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhiyuan Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jincan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10796v1-abstract-short" style="display: inline;"> A quantum engine fueled by quantum measurement is proposed. Under the finite-time adiabatic driving regime, the conversion of heat to work is realized without the compression and expansion of the resonance frequency. The work output, quantum heat, and efficiency are derived, highlighting the important role of the thermal divergence recently reappearing in open quantum systems. The key problem of h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10796v1-abstract-full').style.display = 'inline'; document.getElementById('2109.10796v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10796v1-abstract-full" style="display: none;"> A quantum engine fueled by quantum measurement is proposed. Under the finite-time adiabatic driving regime, the conversion of heat to work is realized without the compression and expansion of the resonance frequency. The work output, quantum heat, and efficiency are derived, highlighting the important role of the thermal divergence recently reappearing in open quantum systems. The key problem of how the measurement basis can be optimized to enhance the performance is solved by connecting the thermal divergence to the nonequilibrium free energy and entropy. The spin-engine architecture offers a comprehensive platform for future investigations of extracting work from quantum measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10796v1-abstract-full').style.display = 'none'; document.getElementById('2109.10796v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.07995">arXiv:2108.07995</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.07995">pdf</a>, <a href="https://arxiv.org/format/2108.07995">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.062210">10.1103/PhysRevA.104.062210 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Suppressing coherence effects in quantum-measurement based engines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhiyuan Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Su%2C+S">Shanhe Su</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jingyi Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jincan Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Santos%2C+J+F+G">Jonas F. G. Santos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.07995v1-abstract-short" style="display: inline;"> The recent advances in the study of thermodynamics of microscopic processes have driven the search for new developments in energy converters utilizing quantum effects. We here propose a universal framework to describe the thermodynamics of a quantum engine fueled by quantum projective measurements. Standard quantum thermal machines operating in a finite-time regime with a driven Hamiltonian that d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07995v1-abstract-full').style.display = 'inline'; document.getElementById('2108.07995v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.07995v1-abstract-full" style="display: none;"> The recent advances in the study of thermodynamics of microscopic processes have driven the search for new developments in energy converters utilizing quantum effects. We here propose a universal framework to describe the thermodynamics of a quantum engine fueled by quantum projective measurements. Standard quantum thermal machines operating in a finite-time regime with a driven Hamiltonian that does not commute in different times have the performance decreased by the presence of coherence, which is associated with a larger entropy production and irreversibility degree. However, we show that replacing the standard hot thermal reservoir by a projective measurement operation with general basis in the Bloch sphere and controlling the basis angles suitably could improve the performance of the quantum engine as well as decrease the entropy change during the measurement process. Our results go in direction of a generalization of quantum thermal machine models where the fuel comes from general sources beyond the standard thermal reservoir. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07995v1-abstract-full').style.display = 'none'; document.getElementById('2108.07995v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.05975">arXiv:2108.05975</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.05975">pdf</a>, <a href="https://arxiv.org/format/2108.05975">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.013196">10.1103/PhysRevResearch.4.013196 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Real-time simulation of light-driven spin chains on quantum computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Rodriguez-Vega%2C+M">Martin Rodriguez-Vega</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Carlander%2C+E">Ella Carlander</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bahri%2C+A">Adrian Bahri</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Ze-Xun Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sinitsyn%2C+N+A">Nikolai A. Sinitsyn</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fiete%2C+G+A">Gregory A. Fiete</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.05975v2-abstract-short" style="display: inline;"> In this work, we study the real-time evolution of periodically driven (Floquet) systems on a quantum computer using IBM quantum devices. We consider a driven Landau-Zener model and compute the transition probability between the Floquet steady states as a function of time. We find that for this simple one-qubit model, Floquet states can develop in real-time, as indicated by the transition probabili&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05975v2-abstract-full').style.display = 'inline'; document.getElementById('2108.05975v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.05975v2-abstract-full" style="display: none;"> In this work, we study the real-time evolution of periodically driven (Floquet) systems on a quantum computer using IBM quantum devices. We consider a driven Landau-Zener model and compute the transition probability between the Floquet steady states as a function of time. We find that for this simple one-qubit model, Floquet states can develop in real-time, as indicated by the transition probability between Floquet states. Next, we model light-driven spin chains and compute the time-dependent antiferromagnetic order parameter. We consider models arising from light coupling to the underlying electrons as well as those arising from light coupling to phonons. For the two-spin chains, the quantum devices yield time evolutions that match the effective Floquet Hamiltonian evolution for both models once readout error mitigation is included. For three-spin chains, zero-noise extrapolation yields a time dependence that follows the effective Floquet time evolution. Therefore, the current IBM quantum devices can provide information on the dynamics of small Floquet systems arising from light drives once error mitigation procedures are implemented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05975v2-abstract-full').style.display = 'none'; document.getElementById('2108.05975v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, 013196 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.11874">arXiv:2012.11874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.11874">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Comment on &#39;Semi-Quantum Private Comparison Based on Bell States&#39; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">You-Lin Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+Y">Yu-Chin Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhong-Xuan Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hwang%2C+T">Tzonelih Hwang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.11874v1-abstract-short" style="display: inline;"> This study points out a semi-quantum protocol for private comparison using Bell states (SQPC) suffering from the double C-NOT attack and the malicious agent attack. The attacker can easily obtain information through these attacks. An improved protocol is proposed, which can effectively resist both of these attacks. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.11874v1-abstract-full" style="display: none;"> This study points out a semi-quantum protocol for private comparison using Bell states (SQPC) suffering from the double C-NOT attack and the malicious agent attack. The attacker can easily obtain information through these attacks. An improved protocol is proposed, which can effectively resist both of these attacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11874v1-abstract-full').style.display = 'none'; document.getElementById('2012.11874v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.12580">arXiv:2011.12580</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.12580">pdf</a>, <a href="https://arxiv.org/format/2011.12580">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental Realization of a Quantum Refrigerator Driven by Indefinite Causal Orders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Nie%2C+X">Xinfang Nie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuanran Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+K">Keyi Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+K">Kai Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Long%2C+X">Xinyue Long</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zidong Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+Y">Yu Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qiu%2C+C">Chudan Qiu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xi%2C+C">Cheng Xi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xiaodong Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jun Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dong%2C+Y">Ying Dong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xin%2C+T">Tao Xin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+D">Dawei Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.12580v2-abstract-short" style="display: inline;"> Indefinite causal order (ICO) is playing a key role in recent quantum technologies. Here, we experimentally study quantum thermodynamics driven by ICO on nuclear spins using the nuclear magnetic resonance system. We realize the ICO of two thermalizing channels to exhibit how the mechanism works, and show that the working substance can be cooled or heated albeit it undergoes thermal contacts with r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12580v2-abstract-full').style.display = 'inline'; document.getElementById('2011.12580v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.12580v2-abstract-full" style="display: none;"> Indefinite causal order (ICO) is playing a key role in recent quantum technologies. Here, we experimentally study quantum thermodynamics driven by ICO on nuclear spins using the nuclear magnetic resonance system. We realize the ICO of two thermalizing channels to exhibit how the mechanism works, and show that the working substance can be cooled or heated albeit it undergoes thermal contacts with reservoirs of the same temperature. Moreover, we construct a single cycle of the ICO refrigerator based on the Maxwell&#39;s demon mechanism, and evaluate its performance by measuring the work consumption and the heat energy extracted from the low-temperature reservoir. Unlike classical refrigerators in which the coefficient of performance (COP) is perversely higher the closer the temperature of the high-temperature and low-temperature reservoirs are to each other, the ICO refrigerator&#39;s COP is always bounded to small values due to the non-unit success probability in projecting the ancillary qubit to the preferable subspace. To enhance the COP, we propose and experimentally demonstrate a general framework based on the density matrix exponentiation (DME) approach, as an extension to the ICO refrigeration. The COP is observed to be enhanced by more than three times with the DME approach. Our work demonstrates a new way for non-classical heat exchange, and paves the way towards construction of quantum refrigerators on a quantum system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.12580v2-abstract-full').style.display = 'none'; document.getElementById('2011.12580v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02621">arXiv:2010.02621</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.02621">pdf</a>, <a href="https://arxiv.org/format/2010.02621">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.023519">10.1103/PhysRevA.105.023519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopic observation of the crossover from a classical Duffing oscillator to a Kerr parametric oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Yamaji%2C+T">T. Yamaji</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kagami%2C+S">S. Kagami</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yamaguchi%2C+A">A. Yamaguchi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Satoh%2C+T">T. Satoh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Koshino%2C+K">K. Koshino</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goto%2C+H">H. Goto</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z+R">Z. R. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yamamoto%2C+T">T. Yamamoto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02621v4-abstract-short" style="display: inline;"> We study microwave response of a Josephson parametric oscillator consisting of a superconducting transmission-line resonator with an embedded dc-SQUID. The dc-SQUID allows to control the magnitude of a Kerr nonlinearity over the ranges where it is smaller or larger than the photon loss rate. Spectroscopy measurements reveal the change of the microwave response from a classical Duffing oscillator t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02621v4-abstract-full').style.display = 'inline'; document.getElementById('2010.02621v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02621v4-abstract-full" style="display: none;"> We study microwave response of a Josephson parametric oscillator consisting of a superconducting transmission-line resonator with an embedded dc-SQUID. The dc-SQUID allows to control the magnitude of a Kerr nonlinearity over the ranges where it is smaller or larger than the photon loss rate. Spectroscopy measurements reveal the change of the microwave response from a classical Duffing oscillator to a Kerr parametric oscillator in a single device. In the single-photon Kerr regime, we observe parametric oscillations with a well-defined phase of either $0$ or $蟺$, whose probability can be controlled by an externally injected signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02621v4-abstract-full').style.display = 'none'; document.getElementById('2010.02621v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 105, 023519 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.01902">arXiv:2010.01902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.01902">pdf</a>, <a href="https://arxiv.org/ps/2010.01902">ps</a>, <a href="https://arxiv.org/format/2010.01902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Computable steering criterion for bipartite quantum systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+G">Guo-Zhu Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+J">Jun-Long Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhi Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+M">Ming Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+G">Gang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+Z">Zhuo-Liang Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.01902v1-abstract-short" style="display: inline;"> Quantum steering describes the ability of one observer to nonlocally affect the other observer&#39;s state through local measurements, which represents a new form of quantum nonlocal correlation and has potential applications in quantum information and quantum communication. In this paper, we propose a computable steering criterion that is applicable to bipartite quantum systems of arbitrary dimension&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01902v1-abstract-full').style.display = 'inline'; document.getElementById('2010.01902v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.01902v1-abstract-full" style="display: none;"> Quantum steering describes the ability of one observer to nonlocally affect the other observer&#39;s state through local measurements, which represents a new form of quantum nonlocal correlation and has potential applications in quantum information and quantum communication. In this paper, we propose a computable steering criterion that is applicable to bipartite quantum systems of arbitrary dimensions. The criterion can be used to verify a wide range of steerable states directly from a given density matrix without constructing measurement settings. Compared with the existing steering criteria, it is readily computable and testable in experiment, which can also be used to verify entanglement as all steerable quantum states are entangled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01902v1-abstract-full').style.display = 'none'; document.getElementById('2010.01902v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2010.00083</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.05102">arXiv:2005.05102</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.05102">pdf</a>, <a href="https://arxiv.org/format/2005.05102">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/PRJ.388790">10.1364/PRJ.388790 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental free-space quantum secure direct communication and its security analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+D">Dong Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zaisheng Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+J">Jiawei Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+Z">Zhen Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ruan%2C+D">Dong Ruan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+L">Liuguo Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Long%2C+G">Guilu Long</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.05102v2-abstract-short" style="display: inline;"> We report an experimental implementation of free-space quantum secure direct communication based on single photons. The quantum communication scheme uses phase encoding, and the asymmetric Mach-Zehnder interferometer is optimized so as to automatically compensate phase drift of the photons during their transitions over the free-space medium. An information transmission rate of 500 bps over a 10-me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05102v2-abstract-full').style.display = 'inline'; document.getElementById('2005.05102v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.05102v2-abstract-full" style="display: none;"> We report an experimental implementation of free-space quantum secure direct communication based on single photons. The quantum communication scheme uses phase encoding, and the asymmetric Mach-Zehnder interferometer is optimized so as to automatically compensate phase drift of the photons during their transitions over the free-space medium. An information transmission rate of 500 bps over a 10-meter free space with a mean quantum bit error rate of 0.49%$\pm$0.27% is achieved. The security is analyzed under the scenario that Eve performs collective attack and photon number splitting collective attack. Our results show that quantum secure direct communication is feasible in free space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.05102v2-abstract-full').style.display = 'none'; document.getElementById('2005.05102v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Photonics Research 8 (9), 1522-1531 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.02062">arXiv:2002.02062</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.02062">pdf</a>, <a href="https://arxiv.org/format/2002.02062">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Chip-scale Full-Stokes Spectropolarimeter in Silicon Photonic Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhongjin Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dadalyan%2C+T">Tigran Dadalyan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Villers%2C+S+B">Simon B茅langer-de Villers</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Galstian%2C+T">Tigran Galstian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+W">Wei Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.02062v1-abstract-short" style="display: inline;"> Wavelength-dependent polarization state of light carries crucial information about light-matter interactions. However, its measurement is limited to bulky, energy-consuming devices, which prohibits many modern, portable applications. Here, we propose and demonstrate a chip-scale spectropolarimeter implemented using a CMOS-compatible silicon photonics technology. Four compact Vernier microresonator&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02062v1-abstract-full').style.display = 'inline'; document.getElementById('2002.02062v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.02062v1-abstract-full" style="display: none;"> Wavelength-dependent polarization state of light carries crucial information about light-matter interactions. However, its measurement is limited to bulky, energy-consuming devices, which prohibits many modern, portable applications. Here, we propose and demonstrate a chip-scale spectropolarimeter implemented using a CMOS-compatible silicon photonics technology. Four compact Vernier microresonator spectrometers are monolithically integrated with a broadband polarimeter consisting of a 2D nanophotonic antenna and a polarimetric circuit to achieve full-Stokes spectropolarimetric analysis. The proposed device offers a solid-state spectropolarimetry solution with a small footprint of 1*0.6 mm2 and low power consumption of 360 mW}. Full-Stokes spectral detection across a broad spectral range of 50 nm with a resolution of 1~nm is demonstrated in characterizing a material possessing structural chirality. The proposed device may enable a broader application of spectropolarimetry in the fields ranging from biomedical diagnostics and chemical analysis to observational astronomy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.02062v1-abstract-full').style.display = 'none'; document.getElementById('2002.02062v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 figures, uses jabbrv.sty</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.00420">arXiv:2001.00420</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.00420">pdf</a>, <a href="https://arxiv.org/ps/2001.00420">ps</a>, <a href="https://arxiv.org/format/2001.00420">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-020-67020-7">10.1038/s41598-020-67020-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effective p-wave Fermi-Fermi Interaction Induced by Bosonic Superfluids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yongzheng Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+Z">Zheng Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhi Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lou%2C+J">Jie Lou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.00420v1-abstract-short" style="display: inline;"> We study the two-dimensional Bose-Fermi mixture on square lattice at finite temperature by using the determinant quantum Monte Carlo method within the weakly interacting regime. Here we consider the attractive Bose-Hubbard model and free spinless fermions. In the absence of bosonfermion interactions, we obtain the boundary of the collapsed state of the attractive bosons. In the presence of boson-f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00420v1-abstract-full').style.display = 'inline'; document.getElementById('2001.00420v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.00420v1-abstract-full" style="display: none;"> We study the two-dimensional Bose-Fermi mixture on square lattice at finite temperature by using the determinant quantum Monte Carlo method within the weakly interacting regime. Here we consider the attractive Bose-Hubbard model and free spinless fermions. In the absence of bosonfermion interactions, we obtain the boundary of the collapsed state of the attractive bosons. In the presence of boson-fermion interactions, an effective p-wave interaction between fermions will be induced as far as the bosons are in a superfluid state. Moreover, we find the emergence of the composite fermion pairs at low temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00420v1-abstract-full').style.display = 'none'; document.getElementById('2001.00420v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.08267">arXiv:1911.08267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.08267">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.064102">10.1103/PhysRevB.101.064102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimization of the power broadening in optically detected magnetic resonance of defect spins in silicon carbide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jun-Feng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+J">Jin-Ming Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+F">Fei-Fei Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+Z">Ze-Di Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+Z">Zheng-Hao Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhi-Hai Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.08267v1-abstract-short" style="display: inline;"> Defect spins in silicon carbide have become promising platforms with respect to quantum information processing and quantum sensing. Indeed, the optically detected magnetic resonance (ODMR) of defect spins is the cornerstone of the applications. In this work, we systematically investigate the contrast and linewidth of laser-and microwave power-dependent ODMR with respect to ensemble-divacancy spins&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.08267v1-abstract-full').style.display = 'inline'; document.getElementById('1911.08267v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.08267v1-abstract-full" style="display: none;"> Defect spins in silicon carbide have become promising platforms with respect to quantum information processing and quantum sensing. Indeed, the optically detected magnetic resonance (ODMR) of defect spins is the cornerstone of the applications. In this work, we systematically investigate the contrast and linewidth of laser-and microwave power-dependent ODMR with respect to ensemble-divacancy spins in silicon carbide at room temperature. The results suggest that magnetic field sensing sensitivity can be improved by a factor of 10 for the optimized laser and microwave power range. The experiment will be useful for the applications of silicon carbide defects in quantum information processing and ODMR-dependent quantum sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.08267v1-abstract-full').style.display = 'none'; document.getElementById('1911.08267v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 064102 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11806">arXiv:1810.11806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.11806">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Implementation and Security Analysis of Practical Quantum Secure Direct Communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Qi%2C+R">Ruoyang Qi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+Z">Zhen Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zaisheng Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+P">Penghao Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hao%2C+W">Wentao Hao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+L">Liyuan Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+Q">Qin Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+J">Jiancun Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+L">Liuguo Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Long%2C+G">Gui-Lu Long</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11806v1-abstract-short" style="display: inline;"> Fast development of supercomputer and perspective quantum computer is posing increasing serious threats to communication security. Based on the laws of quantum mechanics, quantum communication offers provable security of communication, and is a promising solution to counter such threats. Quantum secure direct communication (QSDC) is one of the important branches of quantum communication. Different&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11806v1-abstract-full').style.display = 'inline'; document.getElementById('1810.11806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11806v1-abstract-full" style="display: none;"> Fast development of supercomputer and perspective quantum computer is posing increasing serious threats to communication security. Based on the laws of quantum mechanics, quantum communication offers provable security of communication, and is a promising solution to counter such threats. Quantum secure direct communication (QSDC) is one of the important branches of quantum communication. Different from other branches of quantum communication, it transmits secret information directly. Recently, remarkable progress has been made in the proof-of-principle experimental demonstrations of QSDC. However, it remains a technical feast to march QSDC into practical application. Here, we report an implementation of practical quantum secure communication system. The security is analyzed in the Wyner wiretap channel theory. The system uses a coding scheme based on concatenation of low density parity check (LDPC) codes, which works in a regime with realistic environment of high noise and high loss. The present system operates with a repetition rate of 1 MHz, and at a distance of 1.5 kilometers. The secure communication rate is 50 bps, which can effectively send text message and files such as image and sounds with a reasonable size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11806v1-abstract-full').style.display = 'none'; document.getElementById('1810.11806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11252">arXiv:1810.11252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.11252">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> On-demand generation of shallow silicon vacancy in silicon carbide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jun-Feng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+F">Fei-Fei Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">He Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guo-Ping Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wei-Ping Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+X">Xiong Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhi-Hai Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+J">Jin-Ming Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+X">Xiao-Ye Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+J">Jin-Shi Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11252v1-abstract-short" style="display: inline;"> Defects in silicon carbide have been explored as promising spin systems in quantum technologies. However, for practical quantum metrology and quantum communication, it is critical to achieve the on-demand shallow spin-defect generation. In this work, we present the generation and characterization of shallow silicon vacancies in silicon carbide by using different implanted ions and annealing condit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11252v1-abstract-full').style.display = 'inline'; document.getElementById('1810.11252v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11252v1-abstract-full" style="display: none;"> Defects in silicon carbide have been explored as promising spin systems in quantum technologies. However, for practical quantum metrology and quantum communication, it is critical to achieve the on-demand shallow spin-defect generation. In this work, we present the generation and characterization of shallow silicon vacancies in silicon carbide by using different implanted ions and annealing conditions. The conversion efficiency of silicon vacancy of helium ions is shown to be higher than that by carbon and hydrogen ions in a wide implanted fluence range. Furthermore, after optimizing annealing conditions, the conversion efficiency can be increased more than 2 times. Due to the high density of the generated ensemble defects, the sensitivity to sense a static magnetic field can be research as high as , which is about 15 times higher than previous results. By carefully optimizing implanted conditions, we further show that a single silicon vacancy array can be generated with about 80 % conversion efficiency, which reaches the highest conversion yield in solid state systems. The results pave the way for using on-demand generated shallow silicon vacancy for quantum information processing and quantum photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11252v1-abstract-full').style.display = 'none'; document.getElementById('1810.11252v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.09771">arXiv:1808.09771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.09771">pdf</a>, <a href="https://arxiv.org/format/1808.09771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.99.043419">10.1103/PhysRevA.99.043419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emulating topological currents arising from a dipolar parity anomaly in two-dimensional optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhi Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+X">Xian-Jia Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+D">Dan-Wei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+S">Shi-Liang Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z+D">Z. D. Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.09771v2-abstract-short" style="display: inline;"> Dipolar parity anomaly can be induced by spatiotemporally weak-dependent energy-momentum separation of paired Dirac points in two-dimensional Dirac semimetals. Here we reveal topological currents arising from this kind of anomaly. A corresponding lattice model is proposed to emulate the topological currents by using two-component ultracold atoms in a two-dimensional optical Raman lattice. In our s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.09771v2-abstract-full').style.display = 'inline'; document.getElementById('1808.09771v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.09771v2-abstract-full" style="display: none;"> Dipolar parity anomaly can be induced by spatiotemporally weak-dependent energy-momentum separation of paired Dirac points in two-dimensional Dirac semimetals. Here we reveal topological currents arising from this kind of anomaly. A corresponding lattice model is proposed to emulate the topological currents by using two-component ultracold atoms in a two-dimensional optical Raman lattice. In our scheme, the topological currents can be generated by varying on-site coupling between the two atomic components in time and tuned via the laser fields. Moreover, we show that the topological particle currents can directly be detected from measuring the drift of the center of mass of the atomic gases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.09771v2-abstract-full').style.display = 'none'; document.getElementById('1808.09771v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 99, 043419 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.03003">arXiv:1808.03003</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.03003">pdf</a>, <a href="https://arxiv.org/ps/1808.03003">ps</a>, <a href="https://arxiv.org/format/1808.03003">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.99.023838">10.1103/PhysRevA.99.023838 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On-Demand Generation of Traveling Cat States Using a Parametric Oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Goto%2C+H">Hayato Goto</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhirong Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yamamoto%2C+T">Tsuyoshi Yamamoto</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nakamura%2C+Y">Yasunobu Nakamura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.03003v1-abstract-short" style="display: inline;"> We theoretically propose a method for on-demand generation of traveling Schr枚dinger cat states, namely, quantum superpositions of distinct coherent states of traveling fields. This method is based on deterministic generation of intracavity cat states using a Kerr-nonlinear parametric oscillator (KPO) via quantum adiabatic evolution. We show that the cat states generated inside a KPO can be release&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03003v1-abstract-full').style.display = 'inline'; document.getElementById('1808.03003v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.03003v1-abstract-full" style="display: none;"> We theoretically propose a method for on-demand generation of traveling Schr枚dinger cat states, namely, quantum superpositions of distinct coherent states of traveling fields. This method is based on deterministic generation of intracavity cat states using a Kerr-nonlinear parametric oscillator (KPO) via quantum adiabatic evolution. We show that the cat states generated inside a KPO can be released into an output mode by controlling the parametric pump amplitude dynamically. We further show that the quality of the traveling cat states can be improved by using a shortcut-to-adiabaticity technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.03003v1-abstract-full').style.display = 'none'; document.getElementById('1808.03003v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 99, 023838 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.00317">arXiv:1806.00317</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.00317">pdf</a>, <a href="https://arxiv.org/format/1806.00317">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jctc.8b00853">10.1021/acs.jctc.8b00853 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Triplet-Tuning: A Novel Family of Non-Empirical Exchange-Correlation Functionals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhou Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Van+Voorhis%2C+T">Troy Van Voorhis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.00317v3-abstract-short" style="display: inline;"> In the framework of DFT, the lowest triplet excited state, T$_1$, can be evaluated using multiple formulations, the most straightforward of which are UDFT and TDDFT. Assuming the exact XC functional is applied, UDFT and TDDFT provide identical energies for T$_1$ ($E_{\rm T}$), which is also a constraint that we require our XC functionals to obey. However, this condition is not satisfied by most of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00317v3-abstract-full').style.display = 'inline'; document.getElementById('1806.00317v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.00317v3-abstract-full" style="display: none;"> In the framework of DFT, the lowest triplet excited state, T$_1$, can be evaluated using multiple formulations, the most straightforward of which are UDFT and TDDFT. Assuming the exact XC functional is applied, UDFT and TDDFT provide identical energies for T$_1$ ($E_{\rm T}$), which is also a constraint that we require our XC functionals to obey. However, this condition is not satisfied by most of the popular XC functionals, leading to inaccurate predictions of low-lying, spectroscopically and photochemically important excited states, such as T$_1$ and S$_1$. Inspired by the optimal tuning strategy for frontier orbital energies [Stein, Kronik, and Baer, {\it J. Am. Chem. Soc.} {\bf 2009}, 131, 2818], we proposed a novel and non-empirical prescription of constructing an XC functional in which the agreement between UDFT and TDDFT in $E_{\rm T}$ is strictly enforced. Referred to as &#34;triplet tuning&#34;, our procedure allows us to formulate the XC functional on a case-by-case basis using the molecular structure as the exclusive input, without fitting to any experimental data. The first triplet tuned XC functional, TT-$蠅$PBEh, is formulated as a long-range-corrected hybrid of PBE and HF functionals [Rohrdanz, Martins, and Herbert, {\it J. Chem. Phys.} {\bf 2009}, 130, 054112] and tested on four sets of large organic molecules. Compared to existing functionals, TT-$蠅$PBEh manages to provide more accurate predictions for key spectroscopic and photochemical observables, including but not limited to $E_{\rm T}$, $E_{\rm S}$, $螖E_{\rm ST}$, and $I$, as it adjusts the effective electron-hole interactions to arrive at the correct excitation energies. This promising triplet tuning scheme can be applied to a broad range of systems that were notorious in DFT for being extremely challenging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.00317v3-abstract-full').style.display = 'none'; document.getElementById('1806.00317v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.04113">arXiv:1803.04113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.04113">pdf</a>, <a href="https://arxiv.org/format/1803.04113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.060501">10.1103/PhysRevB.98.060501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Circuit QED-based measurement of vortex lattice order in a Josephson junction array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cosmic%2C+R">R. Cosmic</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ikegami%2C+H">Hiroki Ikegami</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhirong Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Inomata%2C+K">Kunihiro Inomata</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Taylor%2C+J+M">Jacob M. Taylor</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nakamura%2C+Y">Yasunobu Nakamura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.04113v1-abstract-short" style="display: inline;"> Superconductivity provides a canonical example of a quantum phase of matter. When superconducting islands are connected by Josephson junctions in a lattice, the low temperature state of the system can map to the celebrated XY model and its associated universality classes. This has been used to experimentally implement realizations of Mott insulator and Berezinskii--Kosterlitz--Thouless (BKT) trans&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.04113v1-abstract-full').style.display = 'inline'; document.getElementById('1803.04113v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.04113v1-abstract-full" style="display: none;"> Superconductivity provides a canonical example of a quantum phase of matter. When superconducting islands are connected by Josephson junctions in a lattice, the low temperature state of the system can map to the celebrated XY model and its associated universality classes. This has been used to experimentally implement realizations of Mott insulator and Berezinskii--Kosterlitz--Thouless (BKT) transitions to vortex dynamics analogous to those in type-II superconductors. When an external magnetic field is added, the effective spins of the XY model become frustrated, leading to the formation of topological defects (vortices). Here we observe the many-body dynamics of such an array, including frustration, via its coupling to a superconducting microwave cavity. We take the design of the transmon qubit, but replace the single junction between two antenna pads with the complete array. This allows us to probe the system at 10 mK with minimal self-heating by using weak coherent states at the single (microwave) photon level to probe the resonance frequency of the cavity. We observe signatures of ordered vortex lattice at rational flux fillings of the array. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.04113v1-abstract-full').style.display = 'none'; document.getElementById('1803.04113v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text (5 pages, 3 figures) and Supplementary Material (5 pages, 2 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 060501 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.00986">arXiv:1707.00986</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.00986">pdf</a>, <a href="https://arxiv.org/ps/1707.00986">ps</a>, <a href="https://arxiv.org/format/1707.00986">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-018-25492-8">10.1038/s41598-018-25492-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissipative quantum bifurcation machine: Quantum heating of coupled nonlinear oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Goto%2C+H">Hayato Goto</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhirong Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nakamura%2C+Y">Yasunobu Nakamura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.00986v3-abstract-short" style="display: inline;"> A network of driven nonlinear oscillators without dissipation has recently been proposed for solving combinatorial optimization problems via quantum adiabatic evolution through its bifurcation point. Here we investigate the behavior of the quantum bifurcation machine in the presence of dissipation. Our numerical study suggests that the output probability distribution of the dissipative quantum bif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.00986v3-abstract-full').style.display = 'inline'; document.getElementById('1707.00986v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.00986v3-abstract-full" style="display: none;"> A network of driven nonlinear oscillators without dissipation has recently been proposed for solving combinatorial optimization problems via quantum adiabatic evolution through its bifurcation point. Here we investigate the behavior of the quantum bifurcation machine in the presence of dissipation. Our numerical study suggests that the output probability distribution of the dissipative quantum bifurcation machine is Boltzmann-like, where the energy in the Boltzmann distribution corresponds to the cost function of the optimization problem. We explain the Boltzmann distribution by generalizing the concept of quantum heating in a single oscillator to the case of multiple coupled oscillators. The present result also suggests that such driven dissipative nonlinear oscillator networks can be applied to Boltzmann sampling, which is used, e.g., for Boltzmann machine learning in the field of artificial intelligence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.00986v3-abstract-full').style.display = 'none'; document.getElementById('1707.00986v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 8, 7154 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.09982">arXiv:1611.09982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.09982">pdf</a>, <a href="https://arxiv.org/format/1611.09982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Ground test of satellite constellation based quantum communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liao%2C+S">Sheng-Kai Liao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yong%2C+H">Hai-Lin Yong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shentu%2C+G">Guo-Liang Shentu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+D">Dong-Dong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+J">Jin Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dai%2C+H">Hui Dai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+S">Shuang-Qiang Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bo Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guan%2C+J">Jian-Yu Guan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+W">Wei Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+Y">Yun-Hong Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Ze-Hong Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+G">Ge-Sheng Pan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pelc%2C+J+S">Jason S. Pelc</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fejer%2C+M+M">M. M. Fejer</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Wen-Zhuo Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+W">Wei-Yue Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yin%2C+J">Juan Yin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+J">Ji-Gang Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xiang-Bin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Peng%2C+C">Cheng-Zhi Peng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pan%2C+J">Jian-Wei Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.09982v1-abstract-short" style="display: inline;"> Satellite based quantum communication has been proven as a feasible way to achieve global scale quantum communication network. Very recently, a low-Earth-orbit (LEO) satellite has been launched for this purpose. However, with a single satellite, it takes an inefficient 3-day period to provide the worldwide connectivity. On the other hand, similar to how the Iridium system functions in classic comm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.09982v1-abstract-full').style.display = 'inline'; document.getElementById('1611.09982v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.09982v1-abstract-full" style="display: none;"> Satellite based quantum communication has been proven as a feasible way to achieve global scale quantum communication network. Very recently, a low-Earth-orbit (LEO) satellite has been launched for this purpose. However, with a single satellite, it takes an inefficient 3-day period to provide the worldwide connectivity. On the other hand, similar to how the Iridium system functions in classic communication, satellite constellation (SC) composed of many quantum satellites, could provide global real-time quantum communication. In such a SC, most of the satellites will work in sunlight. Unfortunately, none of previous ground testing experiments could be implemented at daytime. During daytime, the bright sunlight background prohibits quantum communication in transmission over long distances. In this letter, by choosing a working wavelength of 1550 nm and developing free-space single-mode fibre coupling technology and ultralow noise up-conversion single photon detectors, we overcome the noise due to sunlight and demonstrate a 53-km free space quantum key distribution (QKD) in the daytime through a 48-dB loss channel. Our system not only shows the feasibility of satellite based quantum communication in daylight, but also has the ability to naturally adapt to ground fibre optics, representing an essential step towards a SC-based global quantum network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.09982v1-abstract-full').style.display = 'none'; document.getElementById('1611.09982v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 2 figures and 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Photonics 11, 509 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.02104">arXiv:1610.02104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.02104">pdf</a>, <a href="https://arxiv.org/ps/1610.02104">ps</a>, <a href="https://arxiv.org/format/1610.02104">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.7.064006">10.1103/PhysRevApplied.7.064006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable quantum gate between a superconducting atom and a propagating microwave photon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Koshino%2C+K">K. Koshino</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Inomata%2C+K">K. Inomata</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z+R">Z. R. Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tokunaga%2C+Y">Y. Tokunaga</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yamamoto%2C+T">T. Yamamoto</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nakamura%2C+Y">Y. Nakamura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.02104v1-abstract-short" style="display: inline;"> We propose a two-qubit quantum logic gate between a superconducting atom and a propagating microwave photon. The atomic qubit is encoded on its lowest two levels and the photonic qubit is encoded on its carrier frequencies. The gate operation completes deterministically upon reflection of a photon, and various two-qubit gates (SWAP, $\sqrt{\rm SWAP}$, and Identity) are realized through {\it in sit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02104v1-abstract-full').style.display = 'inline'; document.getElementById('1610.02104v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.02104v1-abstract-full" style="display: none;"> We propose a two-qubit quantum logic gate between a superconducting atom and a propagating microwave photon. The atomic qubit is encoded on its lowest two levels and the photonic qubit is encoded on its carrier frequencies. The gate operation completes deterministically upon reflection of a photon, and various two-qubit gates (SWAP, $\sqrt{\rm SWAP}$, and Identity) are realized through {\it in situ} control of the drive field. The proposed gate is applicable to construction of a network of superconducting atoms, which enables gate operations between non-neighboring atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02104v1-abstract-full').style.display = 'none'; document.getElementById('1610.02104v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 7, 064006 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.05513">arXiv:1601.05513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.05513">pdf</a>, <a href="https://arxiv.org/ps/1601.05513">ps</a>, <a href="https://arxiv.org/format/1601.05513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms12303">10.1038/ncomms12303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single microwave-photon detector using an artificial $螞$-type three-level system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Inomata%2C+K">Kunihiro Inomata</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+Z">Zhirong Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Koshino%2C+K">Kazuki Koshino</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Oliver%2C+W+D">William D. Oliver</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tsai%2C+J">Jaw-Shen Tsai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yamamoto%2C+T">Tsuyoshi Yamamoto</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nakamura%2C+Y">Yasunobu Nakamura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.05513v1-abstract-short" style="display: inline;"> Single photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here, we demonstrate the detection of a single microwave photon propagating th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05513v1-abstract-full').style.display = 'inline'; document.getElementById('1601.05513v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.05513v1-abstract-full" style="display: none;"> Single photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here, we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an &#34;impedance-matched&#34; artificial $螞$ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. We attain a single-photon detection efficiency of $0.66 \pm 0.06$ with a reset time of $\sim 400$~ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.05513v1-abstract-full').style.display = 'none'; document.getElementById('1601.05513v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages (4 figures) + 4 pages (5 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 7, 12303 (2016) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Lin%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Lin%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10