CINXE.COM

Search results for: natural fibre

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: natural fibre</title> <meta name="description" content="Search results for: natural fibre"> <meta name="keywords" content="natural fibre"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="natural fibre" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="natural fibre"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6089</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: natural fibre</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6089</span> Analysis of the Torque Required for Mixing LDPE with Natural Fibre and DCP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Delgado">A. E. Delgado</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Aperador"> W. Aperador</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluated the incidence of concentrated natural fibre, as well as the effects of adding a crosslinking agent on the torque when those components are mixed with low density polyethylene (LDPE). The natural fibre has a particle size of between 0.8-1.2mm and a moisture content of 0.17%. An internal mixer was used to measure the torque required to mix the polymer with the fibre. The effect of the fibre content and crosslinking agent on the torque was also determined. A change was observed in the morphology of the mixes using SEM differential scanning microscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WPC" title="WPC">WPC</a>, <a href="https://publications.waset.org/abstracts/search?q=DCP" title=" DCP"> DCP</a>, <a href="https://publications.waset.org/abstracts/search?q=LDPE" title=" LDPE"> LDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibre" title=" natural fibre"> natural fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=torque" title=" torque"> torque</a> </p> <a href="https://publications.waset.org/abstracts/13819/analysis-of-the-torque-required-for-mixing-ldpe-with-natural-fibre-and-dcp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6088</span> Mechanical Properties of Kenaf Fibre Reinforced Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Tezara">C. Tezara</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Y.%20Lim"> H. Y. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Yazdi"> M. H. Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20W.%20Lim"> J. W. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Siregar"> J. P. Siregar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibre has become an element in human lives. A lot of researchers have conducted research about natural fibre reinforced polymer. Malaysian government has spent a lot of money on the research funding for researchers and academician especially research on kenaf fibre due to exclusion of tobacco from AFTA (Asean Free Trade Area) list. This work is to investigate the mechanical properties of kenaf fiber reinforced epoxy composite where short kenaf fibre was applied and the mechanical properties of 5%, 10% and 15% wt. of kenaf fibre were added into the mixture of epoxy resin. Hand lay-up process was selected in the fabrication of the specimen for testing. The tensile, flexural and impact test were conducted following ASTM D3039, ASTM D790 and ASTM D256 accordingly. From the experiment result, the effect of different fiber loading of the specimen on its mechanical properties would be analyzed and compared in the result and discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenaf%20fibre" title="Kenaf fibre">Kenaf fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre" title=" fibre"> fibre</a> </p> <a href="https://publications.waset.org/abstracts/47148/mechanical-properties-of-kenaf-fibre-reinforced-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6087</span> Mechanical Properties of Sugar Palm Fibre Reinforced Thermoplastic Polyurethane Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dandi%20Bachtiar">Dandi Bachtiar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ausama%20Abbas"> Mohammed Ausama Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Januar%20Parlaungan%20Siregar"> Januar Parlaungan Siregar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ruzaimi%20Bin%20Mat%20Rejab"> Mohd Ruzaimi Bin Mat Rejab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Short sugar palm fibre and thermoplastic polyurethane were combined to produce new composites by using the extrude method. Two techniques used to prepare a new composite material, firstly, extrusion of the base material with short fibre, secondly hot pressing them. The size of sugar palm fibre was fixed at 250µm. Different weight percent (10 wt%, 20 wt% and 30 wt%) were used in order to optimise preparation process. The optimization of process depended on the characterization mechanical properties such as impact, tensile, and flexural of the new (TPU/SPF) composite material. The results proved that best tensile and impact properties of weight additive fibre applied 10 wt%. There was an increasing trend recorded of flexural properties during increased the fibre loading. Meanwhile, the maximum tensile strength was 14.0 MPa at 10 wt% of the fibre. Moreover, there was no significant effect for additions more than 30 wt% of the fibre. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites" title="composites">composites</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibre" title=" natural fibre"> natural fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20palm" title=" sugar palm"> sugar palm</a> </p> <a href="https://publications.waset.org/abstracts/47250/mechanical-properties-of-sugar-palm-fibre-reinforced-thermoplastic-polyurethane-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6086</span> Bamboo Fibre Extraction and Its Reinforced Polymer Composite Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Zakikhani">P. Zakikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Zahari"> R. Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20H.%20Sultan"> M. T. H. Sultan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20Majid"> D. L. Majid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural plant fibres reinforced polymeric composite materials have been used in many fields of our lives to save the environment. Especially, bamboo fibres due to its environmental sustainability, mechanical properties, and recyclability have been utilized as reinforced polymer matrix composite in construction industries. In this review study bamboo structure and three different methods such as mechanical, chemical and combination of mechanical and chemical to extract fibres from bamboo are summarized. Each extraction method has been done base on the application of bamboo. In addition Bamboo fibre is compared with glass fibre from various aspects and in some parts it has advantages over the glass fibre. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20fibres" title="bamboo fibres">bamboo fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibres" title=" natural fibres"> natural fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=bio%20composite" title=" bio composite"> bio composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20extraction" title=" mechanical extraction"> mechanical extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibres" title=" glass fibres"> glass fibres</a> </p> <a href="https://publications.waset.org/abstracts/7836/bamboo-fibre-extraction-and-its-reinforced-polymer-composite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6085</span> Natural Fibre Composite Structural Sections for Residential Stud Wall Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mike%20R.%20Bambach">Mike R. Bambach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing awareness of environmental concerns is leading a drive towards more sustainable structural products for the built environment. Natural fibres such as flax, jute and hemp have recently been considered for fibre-resin composites, with a major motivation for their implementation being their notable sustainability attributes. While recent decades have seen substantial interest in the use of such natural fibres in composite materials, much of this research has focused on the materials aspects, including fibre processing techniques, composite fabrication methodologies, matrix materials and their effects on the mechanical properties. The present study experimentally investigates the compression strength of structural channel sections of flax, jute and hemp, with a particular focus on their suitability for residential stud wall applications. The section geometry is optimised for maximum strength via the introduction of complex stiffeners in the webs and flanges. Experimental results on both natural fibre composite channel sections and typical steel and timber residential wall studs are compared. The geometrically optimised natural fibre composite channels are shown to have compression capacities suitable for residential wall stud applications, identifying them as a potentially viable alternative to traditional building materials in such application, and potentially other light structural applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20sections" title="channel sections">channel sections</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibre%20composites" title=" natural fibre composites"> natural fibre composites</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20stud%20walls" title=" residential stud walls"> residential stud walls</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20composites" title=" structural composites"> structural composites</a> </p> <a href="https://publications.waset.org/abstracts/84092/natural-fibre-composite-structural-sections-for-residential-stud-wall-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6084</span> Biobased Facade: Illuminated Natural Fibre Polymer with Cardboard Core</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ralf%20Gliniorz">Ralf Gliniorz</a>, <a href="https://publications.waset.org/abstracts/search?q=Carolin%20Petzoldt"> Carolin Petzoldt</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Ehrlich"> Andreas Ehrlich</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Gelbrich"> Sandra Gelbrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Lothar%20Kroll"> Lothar Kroll</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building envelope is integral part of buildings, and renewable resources have a key role in energy consumption. So our aim was the development and implementation of a free forming facade system, consisting of fibre-reinforced polymer, which is built up of commercial biobased resin systems and natural fibre reinforcement. The field of application is aimed in modern architecture, like the office block 'Fachagentur Nachwachsende Rohstoffe e.V.' with its oak wood recyclate facade. The build-up of our elements is a classically sandwich-structured composite: face sheets as fibre-reinforced composite using polymer matrix, here a biobased epoxy, and natural fibres. The biobased core consists of stuck cardboard structure (BC-flute). Each element is manufactured from two shells in a counterpart, via hand lay-up laminate. These natural fibre skins and cardboard core have adhered 'wet-on-wet'. As a result, you get the effect of translucent face sheets with matrix illumination. Each created pixel can be controlled in RGB-colours and form together a screen at buildings. A 10 x 5 m² area 'NFP-BIO' with 25 elements is planned as a reference object in Chemnitz. The resolution is about 100 x 50 pixels. Specials are also the efficient technology of production and the possibility to extensively 3D-formed elements for buildings, replacing customary facade systems, which can give out information or advertising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biobased%20facade" title="biobased facade">biobased facade</a>, <a href="https://publications.waset.org/abstracts/search?q=cardboard%20core" title=" cardboard core"> cardboard core</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibre%20skins" title=" natural fibre skins"> natural fibre skins</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20element" title=" sandwich element"> sandwich element</a> </p> <a href="https://publications.waset.org/abstracts/76879/biobased-facade-illuminated-natural-fibre-polymer-with-cardboard-core" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6083</span> Behaviour of Hybrid Steel Fibre Reinforced High Strength Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emdad%20K.%20Z.%20Balanji">Emdad K. Z. Balanji</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Neaz%20Sheikh"> M. Neaz Sheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20N.%20S.%20Hadi"> Muhammad N. S. Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents results of an experimental investigation on the behaviour of Hybrid Steel Fibre Reinforced High Strength Concrete (HSFR-HSC) cylinder specimens (150 mm x 300 mm) under uniaxial compression. Three different combinations of HSFR-HSC specimens and reference specimens without steel fibres were prepared. The first combination of HSFR-HSC included 1.5% Micro Steel (MS) fibre and 1% Deformed Steel (DS) fibre. The second combination included 1.5% MS fibre and 1.5% Hooked-end Steel (HS) fibre. The third combination included 1% DS fibre and 1.5% HS fibre. The experimental results showed that the addition of hybrid steel fibres improved the ductility of high strength concrete. The combination of MS fibre and HS fibre in high strength concrete mixes showed best stress-strain behaviour compared to the other combinations and the reference specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title="high strength concrete">high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20steel%20fibre%20%28MS%29" title=" micro steel fibre (MS)"> micro steel fibre (MS)</a>, <a href="https://publications.waset.org/abstracts/search?q=deformed%20steel%20fibre%20%28DS%29" title=" deformed steel fibre (DS)"> deformed steel fibre (DS)</a>, <a href="https://publications.waset.org/abstracts/search?q=hooked-end%20steel%20fibre%20%28HS%29" title=" hooked-end steel fibre (HS)"> hooked-end steel fibre (HS)</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20steel%20fibre" title=" hybrid steel fibre"> hybrid steel fibre</a> </p> <a href="https://publications.waset.org/abstracts/31303/behaviour-of-hybrid-steel-fibre-reinforced-high-strength-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6082</span> Durability Properties of Foamed Concrete with Fiber Inclusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanizam%20Awang">Hanizam Awang</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hafiz%20Ahmad"> Muhammad Hafiz Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glass, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000 kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4 %. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foamed%20concrete" title="foamed concrete">foamed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fibres" title=" fibres"> fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20engineering" title=" geological engineering"> geological engineering</a> </p> <a href="https://publications.waset.org/abstracts/5947/durability-properties-of-foamed-concrete-with-fiber-inclusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6081</span> Effect of Surface Treatment on Physico-Mechanical Properties of Sisal Fiber-Unsaturated Polyester Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Birniwa">A. H. Birniwa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Salisu"> A. A. Salisu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Yakasai"> M. Y. Yakasai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sabo"> A. Sabo</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Aujara"> K. Aujara</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Isma%E2%80%99il"> A. Isma’il</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sisal fibre was extracted from Sisal leaves by enzymatic retting method. A portion of the fibre was subjected to treatment with alkali, benzoyl chloride and silane compounds. Sisal fibre composites were fabricated using unsaturated polyester resin, by hand lay-up technique using both the treated and untreated fibre. Tensile, flexural and water absorption tests were conducted and evaluated on the composites. The results obtained were found to increase in the treated fibre compared to untreated fibre. Surface morphology of the fibre was observed using scanning electron microscopy (SEM) and the result obtained showed variation in the morphology of the treated and untreated fibre. FT-IR results showed inclusion of benzoyl and silane groups on the fibre surface. The fibre chemical modification improves its adhesion to the matrix, mechanical properties of the composites were also found to improve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=sisal%20fibre" title=" sisal fibre"> sisal fibre</a> </p> <a href="https://publications.waset.org/abstracts/34084/effect-of-surface-treatment-on-physico-mechanical-properties-of-sisal-fiber-unsaturated-polyester-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6080</span> Evaluation of Tensile Strength of Natural Fibres Reinforced Epoxy Composites Using Fly Ash as Filler Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Singh">Balwinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Veerpaul%20Kaur%20Mann"> Veerpaul Kaur Mann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A composite material is formed by the combination of two or more phases or materials. Natural minerals-derived Basalt fiber is a kind of fiber being introduced in the polymer composite industry due to its good mechanical properties similar to synthetic fibers and low cost, environment friendly. Also, there is a rising trend towards the use of industrial wastes as fillers in polymer composites with the aim of improving the properties of the composites. The mechanical properties of the fiber-reinforced polymer composites are influenced by various factors like fiber length, fiber weight %, filler weight %, filler size, etc. Thus, a detailed study has been done on the characterization of short-chopped Basalt fiber-reinforced polymer matrix composites using fly ash as filler. Taguchi’s L9 orthogonal array has been used to develop the composites by considering fiber length (6, 9 and 12 mm), fiber weight % (25, 30 and 35 %) and filler weight % (0, 5 and 10%) as input parameters with their respective levels and a thorough analysis on the mechanical characteristics (tensile strength and impact strength) has been done using ANOVA analysis with the help of MINITAB14 software. The investigation revealed that fiber weight is the most significant parameter affecting tensile strength, followed by fiber length and fiber weight %, respectively, while impact characterization showed that fiber length is the most significant factor, followed by fly ash weight, respectively. Introduction of fly ash proved to be beneficial in both the characterization with enhanced values upto 5% fly ash weight. The present study on the natural fibres reinforced epoxy composites using fly ash as filler material to study the effect of input parameters on the tensile strength in order to maximize tensile strength of the composites. Fabrication of composites based on Taguchi L9 orthogonal array design of experiments by using three factors fibre type, fibre weight % and fly ash % with three levels of each factor. The Optimization of composition of natural fibre reinforces composites using ANOVA for obtaining maximum tensile strength on fabricated composites revealed that the natural fibres along with fly ash can be successfully used with epoxy resin to prepare polymer matrix composites with good mechanical properties. Paddy- Paddy fibre gives high elasticity to the fibre composite due to presence of approximately hexagonal structure of cellulose present in paddy fibre. Coir- Coir fibre gives less tensile strength than paddy fibre as Coir fibre is brittle in nature when it pulls breakage occurs showing less tensile strength. Banana- Banana fibre has the least tensile strength in comparison to the paddy & coir fibre due to less cellulose content. Higher fibre weight leads to reduction in tensile strength due to increased nuclei of air pockets. Increasing fly ash content reduces tensile strength due to nonbonding of fly ash particles with natural fibre. Fly ash is also not very strong as compared to the epoxy resin leading to reduction in tensile strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20and%20epoxy%20resin.%20basalt%20Fiber" title="tensile strength and epoxy resin. basalt Fiber">tensile strength and epoxy resin. basalt Fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=taguchi" title=" taguchi"> taguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20matrix" title=" polymer matrix"> polymer matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title=" natural fiber"> natural fiber</a> </p> <a href="https://publications.waset.org/abstracts/183720/evaluation-of-tensile-strength-of-natural-fibres-reinforced-epoxy-composites-using-fly-ash-as-filler-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6079</span> Surface Modification of Pineapple Leaf Fibre Reinforced Polylactic Acid Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Januar%20Parlaungan%20Siregar">Januar Parlaungan Siregar</a>, <a href="https://publications.waset.org/abstracts/search?q=Davindra%20Brabu%20Mathivanan"> Davindra Brabu Mathivanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dandi%20Bachtiar"> Dandi Bachtiar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ruzaimi%20Mat%20Rejab"> Mohd Ruzaimi Mat Rejab</a>, <a href="https://publications.waset.org/abstracts/search?q=Tezara%20Cionita"> Tezara Cionita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibres play a significant role in mass industries such as automotive, construction and sports. Many researchers have found that the natural fibres are the best replacement for the synthetic fibres in terms of cost, safety, and degradability due to the shortage of landfill and ingestion of non biodegradable plastic by animals. This study mainly revolved around pineapple leaf fibre (PALF) which is available abundantly in tropical countries and with excellent mechanical properties. The composite formed in this study is highly biodegradable as both fibre and matrix are both derived from natural based products. The matrix which is polylactic acid (PLA) is made from corn starch which gives the upper hand as both material are renewable resources are easier to degrade by bacteria or enzyme. The PALF is treated with different alkaline solution to remove excessive moisture in the fibre to provide better interfacial bonding with PLA. Thereafter the PALF is washed with distilled water several times before placing in vacuum oven at 80°C for 48 hours. The dried PALF later were mixed with PLA using extrusion method using fibre in percentage of 30 by weight. The temperature for all zone were maintained at 160°C with the screw speed of 50 rpm for better bonding and afterwards the products of the mixture were pelletized using pelletizer. The pellets were placed in the specimen-sized mould for hot compression under the temperature of 170°C at 5 MPa for 5 min and subsequently were cold pressed under room temperature at 5 MPa for 5 min. The specimen were tested for tensile and flexure strength according to American Society for Testing and Materials (ASTM) D638 and D790 respectively. The effect of surface modification on PALF with different alkali solution will be investigated and compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20fibre" title="natural fibre">natural fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=PALF" title=" PALF"> PALF</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA" title=" PLA"> PLA</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a> </p> <a href="https://publications.waset.org/abstracts/47130/surface-modification-of-pineapple-leaf-fibre-reinforced-polylactic-acid-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6078</span> Extraction and Characterization of Ethiopian Hibiscus macranthus Bast Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Solomon%20Tilahun%20Desisa">Solomon Tilahun Desisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Muktar%20Seid%20Hussen"> Muktar Seid Hussen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hibiscus macranthus is one of family Malvaceae and genus Hibiscus plant which grows mainly in western part of Ethiopia. Hibiscus macranthus is the most adaptable and abundant plant in the nation, which are used as an ornamental plant often a hedge or fence plant, and used as a firewood after harvesting the stem together with the bark, and used also as a fiber for trying different kinds of things by forming the rope. However, Hibiscus macranthus plant fibre has not been commercially exploited and extracted properly. This study of work describes the possibility of mechanical and retting methods of Hibiscus macranthus fibre extraction and characterization. Hibiscus macranthus fibre is a bast fibre which obtained naturally from the stem or stalks of the dicotyledonous plant since it is a natural cellulose plant fiber. And the fibre characterized by studying its physical and chemical properties. The physical characteristics were investigated as follows, including the length of 100-190mm, fineness of 1.0-1.2Tex, diameter under X100 microscopic view 16-21 microns, the moisture content of 12.46% and dry tenacity of 48-57cN/Tex along with breaking extension of 0.9-1.6%. Hibiscus macranthus fiber productivity was observed that 12-18% of the stem out of which more than 65% is primary long fibers. The fiber separation methods prove to decrease of non-cellulose ingredients in the order of mechanical, water and chemical methods. The color measurement also shows the raw Hibiscus macranthus fiber has a natural golden color according to YID1925 and paler look under both retting methods than mechanical separation. Finally, it is suggested that Hibiscus macranthus fibre can be used for manufacturing of natural and organic crop and coffee packages as well as super absorbent, fine and high tenacity textile products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hibiscus%20macranthus" title="Hibiscus macranthus">Hibiscus macranthus</a>, <a href="https://publications.waset.org/abstracts/search?q=bast%20fiber" title=" bast fiber"> bast fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/89825/extraction-and-characterization-of-ethiopian-hibiscus-macranthus-bast-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6077</span> The Simulation of Superfine Animal Fibre Fractionation: The Strength Variation of Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sepehr%20Moradi">Sepehr Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the contribution of individual Australian Superfine Merino Wool (ASFW) and Inner Mongolia Cashmere (IMC) fibres strength behaviour to the breaking force variation (CVBF) and minimum fibre diameter (CVₘFD) induced by actual single fibre lengths and the combination of length and diameter groups. Mid-side samples were selected for the ASFW (n = 919) and IMC (n = 691) since it is assumed to represent the average of the whole fleece. The average (LₘFD) varied for ASFW and IMC by 36.6 % and 33.3 % from shortest to longest actual single fibre length and -21.2 % and -21.7 % between longest-coarsest and shortest-finest groups, respectively. The tensile properties of single animal fibres were characterised using Single Fibre Analyser (SIFAN 4). After normalising for diversity in fibre diameter at the position of breakage, the parameters, which explain the strength behaviour within actual fibre lengths and combination of length-diameter groups, were the Intrinsic Fibre Strength (IFS) (MPa), Min IFS (MPa), Max IFS (MPa) and Breaking force (BF) (cN). The average strength of single fibres varied extensively within actual length groups and within a combination of length-diameter groups. IFS ranged for ASFW and IMC from 419 to 355 MPa (-15.2 % range) and 353 to 319 (-9.6 % range) and BF from 2.2 to 3.6 (63.6 % range) and 3.2 to 5.3 cN (65.6 % range) from shortest to longest groups, respectively. Single fibre properties showed no differences within actual length groups and within a combination of length-diameter groups, or was there a strong interaction between the strength of single fibre (P > 0.05) within remaining and removing length-diameter groups. Longer-coarser fibre fractionation had a significant effect on BF and IFS and all of the length groups showed a considerable variance in single fibre strength that is accounted for by diversity in the diameter variation along the fibre. There are many concepts for the improvement of the stress-strain properties of animal fibres as a means of raising a single fibre strength by simultaneous changes in fibre length and diameter. Fibre fractionation over a given length directly for single fibre strength or using the variation traits of fibre diameter is an important process used to increase the strength of the single fibre. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20animal%20fibre%20fractionation" title="single animal fibre fractionation">single animal fibre fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=actual%20length%20groups" title=" actual length groups"> actual length groups</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20variation" title=" strength variation"> strength variation</a>, <a href="https://publications.waset.org/abstracts/search?q=length-diameter%20groups" title=" length-diameter groups"> length-diameter groups</a>, <a href="https://publications.waset.org/abstracts/search?q=diameter%20variation%20along%20fibre" title=" diameter variation along fibre"> diameter variation along fibre</a> </p> <a href="https://publications.waset.org/abstracts/82558/the-simulation-of-superfine-animal-fibre-fractionation-the-strength-variation-of-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6076</span> Physico-Mechanical Properties of Chemically Modified Sisal Fibre Reinforced Unsaturated Polyester Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Salisu">A. A. Salisu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Yakasai"> M. Y. Yakasai</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Aujara"> K. M. Aujara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sisal leaves were subjected to enzymatic retting method to extract the sisal fibre. A portion of the fibre was pretreated with alkali (NaOH), and further treated with benzoyl chloride and silane treatment reagents. Both the treated and untreated Sisal fibre composites were used to fabricate the composite by hand lay-up technique using unsaturated polyester resin. Tensile, flexural, water absorption, density, thickness swelling and chemical resistant tests were conducted and evaluated on the composites. Results obtained for all the parameters showed an increase in the treated fibre compared to untreated fibre. FT-IR spectra results ascertained the inclusion of benzoyl and silane groups on the fibre surface. Scanning electron microscopy (SEM) result obtained showed variation in the morphology of the treated and untreated fibre. Chemical modification was found to improve adhesion of the fibre to the matrix, as well as physico-mechanical properties of the composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20resistance" title="chemical resistance">chemical resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20test" title=" density test"> density test</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20matrix%20sisal%20fibre" title=" polymer matrix sisal fibre"> polymer matrix sisal fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness%20swelling" title=" thickness swelling"> thickness swelling</a> </p> <a href="https://publications.waset.org/abstracts/41859/physico-mechanical-properties-of-chemically-modified-sisal-fibre-reinforced-unsaturated-polyester-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6075</span> Hysteresis Behaviour of Mass Concrete Mixed with Plastic Fibre under Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Okeola">A. A. Okeola</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20I.%20Sijuade"> T. I. Sijuade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unreinforced concrete is a comparatively brittle substance when exposed to tensile stresses, the required tensile strength is provided by the introduction of steel which is used as reinforcement. The strength of concrete may be improved tremendously by the addition of fibre. This study focused on investigating the compressive strength of mass concrete mixed with different percentage of plastic fibre. Twelve samples of concrete cubes with varied percentage of plastic fibre at 7, 14 and 28 days of water submerged curing were tested under compression loading. The result shows that the compressive strength of plastic fibre reinforced concrete increased with rise in curing age. The strength increases for all percentage dosage of fibre used for the concrete. The density of the Plastic Fibre Reinforced Concrete (PFRC) also increases with curing age, which implies that during curing, concrete absorbs water which aids its hydration. The least compressive strength obtained with the introduction of plastic fibre is more than the targeted 20 N/mm<sup>2 </sup>recommended for construction work showing that PFRC can be used where significant loading is expected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=curing" title=" curing"> curing</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20fibre" title=" plastic fibre"> plastic fibre</a> </p> <a href="https://publications.waset.org/abstracts/49961/hysteresis-behaviour-of-mass-concrete-mixed-with-plastic-fibre-under-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6074</span> Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kan">C. W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20materials" title="learning materials">learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pressure%20plasma%20treatment" title=" atmospheric pressure plasma treatment"> atmospheric pressure plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkle-resistant" title=" wrinkle-resistant"> wrinkle-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=BTCA" title=" BTCA"> BTCA</a> </p> <a href="https://publications.waset.org/abstracts/49532/learning-materials-of-atmospheric-pressure-plasma-process-application-in-wrinkle-resistant-finishing-of-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6073</span> Analysis of Sound Absorption Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakiul%20Fuady">Zakiul Fuady</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20AB"> Ismail AB</a>, <a href="https://publications.waset.org/abstracts/search?q=Fauzi"> Fauzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulfian"> Zulfian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted to analyze the absorption coefficients of sound at several types of materials as well as its combinations. The aim of this research was to find the value of sound absorption coefficients on the materials and its combinations. The materials used in this research were gypsum panel, gypsum-fibre palm, fibre palm-gypsum, and foamed concrete-fibre palm. The test was conducted by using a method of reverberation chamber based on the ISO 354-1985 with the types of the sound source: white noise and pink noise at the frequency of 125 Hz - 8000 Hz. Based on the test results of white noise, it was found that the panel of gypsum-fibre palm has α = 0.93 at low frequency; the panel of fibre palm has α = 0.97 at a medium frequency; and the panel of foamed concrete-fibre palm has α = 0.89 at high frequency. Further, for the sound source of pink noise, it was found that the panel of gypsum-fibre palm has α = 0.99 at low level; the panel of fibre palm-gypsum has α = 0.86 at medium level; and the panel of fibre palm-gypsum has α = 0.64 at high level. The fibre palm panel could absorb the sounds well since this material has bigger airspace (pore) than the foamed concrete and gypsum. Consequently, when the sounds wave enters to this material it will be trapped in the space. The panel of fibre palm affected an increasing of sound absorption coefficient value at the combination materials when the panel of fibre palm was placed under another panel. However, the absorption coefficient values of both fibre palm and fibre palm-gypsum panels are about the same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20sound%20absorption" title="coefficient of sound absorption">coefficient of sound absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=pink%20noise" title=" pink noise"> pink noise</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20noise" title=" white noise"> white noise</a>, <a href="https://publications.waset.org/abstracts/search?q=palm" title=" palm"> palm</a> </p> <a href="https://publications.waset.org/abstracts/86576/analysis-of-sound-absorption-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6072</span> The Effect of Agricultural Waste as a Filler in Fibre Cement Board Reinforced with Natural Cellulosic Fibres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anuoluwapo%20S.%20Taiwo">Anuoluwapo S. Taiwo</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20S.%20Ayre"> David S. Ayre</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Khorami"> Morteza Khorami</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameer%20S.%20Rahatekar"> Sameer S. Rahatekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation aims to characterize the effect of Corn Cob (CC), an agricultural waste, for potential use as a filler material, reducing cement in natural fibre-reinforced cement composite boards used for building applications in low-cost housing estates in developing countries. The corn cob is readily and abundantly available in many West African States. However, this agricultural waste product has not been put to any effective use. Hence, the objective of the current research is to convert this massive agro-waste resource into a potential material for use as filler materials reducing cement contents in fibre-cement board production. Kraft pulp fibre-reinforced cement composite boards were developed with the incorporation of the corn cob powder at varying percentages of 1 – 4% as filler materials to reduce the cement content, using a laboratory-simulated vacuum de-watering process. The mechanical properties of the developed cement boards were characterized through a three-point bending test, while the fractured morphology of the cement boards was examined through a Scanning Electron Microscope (SEM). Results revealed that the flexural strength of the composite board improved significantly with an optimum enhancement of 39% when compared to the reference sample without corn cob replacement, however, the flexural behaviour (ductility) of the composite board was slightly affected by the addition of the corn cob powder at higher percentage. SEM observation of the fractured surfaces revealed good bonding at the fibre-matrix interface as well as a ductile-to-brittle fracture mechanism. Overall, the composite board incorporated with 2% corn cob powder as filler materials had the optimum properties which satisfied the minimum requirements of relevant standards for fibre cement flat sheets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20applications" title=" building applications"> building applications</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre-cement%20board" title=" fibre-cement board"> fibre-cement board</a>, <a href="https://publications.waset.org/abstracts/search?q=kraft%20pulp%20fibre" title=" kraft pulp fibre"> kraft pulp fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/169114/the-effect-of-agricultural-waste-as-a-filler-in-fibre-cement-board-reinforced-with-natural-cellulosic-fibres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6071</span> Jute Based Biocomposites: The Future of Automobiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Ray">D. P. Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ammayappan"> L. Ammayappan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Debnath"> S. Debnath</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Ghosh"> R. K. Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mondal"> D. Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dasgupta"> S. Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Islam"> S. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chakroborty"> S. Chakroborty</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Ganguly"> P. K. Ganguly</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nag"> D. Nag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nature being bountiful is generous enough to provide rich resources to mankind. These resources can be used as an alternative to synthetics, thereby reducing the chances of environmental pollution. Natural fibre based composites have emerged as a successful trend in recent automobile industry. Natural fibre based composites used in automobile industries not only reduces their fuel consumption but also do not pose any health hazards. In spite of the use of natural fibre based bio composite in automobile industries, its use is only being limited to interior products. However, its major drawbacks which contributed to limited scope in the field of industry are reduced durability and mechanical strength. Thereby, the use of natural fibre based bio composites as headliner in case of automobile industries is also not successfully deployed. Out of all the natural fibres available, jute can widely be used as automobile parts because of its easy availability, comparatively higher specific strength, lower density, low thermal conductivity and most importantly its non polluting and non abrasive nature. Various research outcomes in the field of jute based biocomposites for the use of automobile industries has not successfully being deployed due to certain inherent problem of the fibre. Jute being hydrophilic in nature is not readily adhered to the hydrophobic polyester resin. Therefore introduction of a chemical compatibilizer, in the preparation of jute based composites have been tested to enhance the mechanical and durable properties of the material to a greater extent. This present work therefore focuses on the synthesis of a suitable compatibilizer, acting as a chemical bridge between the polar jute fabric and the non polar resin matrix. This in turn results in imparting better interfacial bonding between the two, thereby inducing higher mechanical strength. These coupling treated fabrics are casted into composites and tested for their mechanical properties. The test reports show a remarkable change in all of its properties. The durability test was performed by soil burial test method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jute" title="jute">jute</a>, <a href="https://publications.waset.org/abstracts/search?q=automobile%20industry" title=" automobile industry"> automobile industry</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20compatibilizer" title=" chemical compatibilizer"> chemical compatibilizer</a> </p> <a href="https://publications.waset.org/abstracts/23128/jute-based-biocomposites-the-future-of-automobiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6070</span> Influence of Random Fibre Packing on the Compressive Strength of Fibre Reinforced Plastic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Wang">Y. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zhang"> S. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Chen"> X. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The longitudinal compressive strength of fibre reinforced plastic (FRP) possess a large stochastic variability, which limits efficient application of composite structures. This study aims to address how the random fibre packing affects the uncertainty of FRP compressive strength. An novel approach is proposed to generate random fibre packing status by a combination of Latin hypercube sampling and random sequential expansion. 3D nonlinear finite element model is built which incorporates both the matrix plasticity and fibre geometrical instability. The matrix is modeled by isotropic ideal elasto-plastic solid elements, and the fibres are modeled by linear-elastic rebar elements. Composite with a series of different nominal fibre volume fractions are studied. Premature fibre waviness at different magnitude and direction is introduced in the finite element model. Compressive tests on uni-directional CFRP (carbon fibre reinforced plastic) are conducted following the ASTM D6641. By a comparison of 3D FE models and compressive tests, it is clearly shown that the stochastic variation of compressive strength is partly caused by the random fibre packing, and normal or lognormal distribution tends to be a good fit the probabilistic compressive strength. Furthermore, it is also observed that different random fibre packing could trigger two different fibre micro-buckling modes while subjected to longitudinal compression: out-of-plane buckling and twisted buckling. The out-of-plane buckling mode results much larger compressive strength, and this is the major reason why the random fibre packing results a large uncertainty in the FRP compressive strength. This study would contribute to new approaches to the quality control of FRP considering higher compressive strength or lower uncertainty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-buckling" title=" micro-buckling"> micro-buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20fibre%20packing" title=" random fibre packing"> random fibre packing</a> </p> <a href="https://publications.waset.org/abstracts/86173/influence-of-random-fibre-packing-on-the-compressive-strength-of-fibre-reinforced-plastic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6069</span> Development of an Elastic Functionally Graded Interphase Model for the Micromechanics Response of Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trevor%20Sabiston">Trevor Sabiston</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Mohammadi"> Mohsen Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Cherkaoui"> Mohammed Cherkaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Inal"> Kaan Inal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new micromechanics framework is developed for long fibre reinforced composites using a single fibre surrounded by a functionally graded interphase and matrix as a representative unit cell. The unit cell is formulated to represent any number of aligned fibres by a single fibre. Using this model the elastic response of long fibre composites is predicted in all directions. The model is calibrated to experimental results and shows very good agreement in the elastic regime. The differences between the proposed model and existing models are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20mechanics" title="computational mechanics">computational mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20interphase" title=" functionally graded interphase"> functionally graded interphase</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20fibre%20composites" title=" long fibre composites"> long fibre composites</a>, <a href="https://publications.waset.org/abstracts/search?q=micromechanics" title=" micromechanics"> micromechanics</a> </p> <a href="https://publications.waset.org/abstracts/42112/development-of-an-elastic-functionally-graded-interphase-model-for-the-micromechanics-response-of-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6068</span> Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paschal%20A.%20Ubi">Paschal A. Ubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salawu%20Abdul%20Rahman%20Asipita"> Salawu Abdul Rahman Asipita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of suitable engineering materials which poses less harm to ,an and the environment is sort for in recent times, thus giving rise to polymer composites filled with natural organic reinforcement which are biodegradable. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa Cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8%, and 10% wt. NaOH concentrations for a period of 24 hours under room temperature conditions. The compounding of the waste LDPE was done using a two roll mill at a temperature of 150 oC and cured in a hydraulic press at a temperature of 150oC for 3 minutes at 3 metric tonnes. A formulation of 20/80g (reinforcement to matrix ratio in grams) was maintained for all fabricated samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had optimum tensile and flexural strengths of 7.65MPa and 17.08Mpa respectively corresponding to a young modulus and flexural modulus of 21.08MPa and 232.22MPa for the 8% and 4%wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improves the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LC%20fibres" title="LC fibres">LC fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=NaOH%20concentration" title=" NaOH concentration"> NaOH concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=LC%2FrLDPE%20composite" title=" LC/rLDPE composite"> LC/rLDPE composite</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a> </p> <a href="https://publications.waset.org/abstracts/19560/effect-of-sodium-hydroxide-treatment-on-the-mechanical-properties-of-crushed-and-uncrushed-luffa-cylindrica-fibre-reinforced-rldpe-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6067</span> The Effect of Alkaline Treatment on Tensile Strength and Morphological Properties of Kenaf Fibres for Yarn Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Khalina">A. Khalina</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Shaharuddin"> K. Shaharuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Wahab"> M. S. Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Saiman"> M. P. Saiman</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Aisyah"> H. A. Aisyah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effect of alkali treatment and mechanical properties of kenaf (<em>Hibiscus cannabinus</em>) fibre for the development of yarn. Two different fibre sources are used for the yarn production. Kenaf fibres were treated with sodium hydroxide (NaOH) in the concentration of 3, 6, 9, and 12% prior to fibre opening process and tested for their tensile strength and Young’s modulus. Then, the selected fibres were introduced to fibre opener at three different opening processing parameters; namely, speed of roller feeder, small drum, and big drum. The diameter size, surface morphology, and fibre durability towards machine of the fibres were characterized. The results show that concentrations of NaOH used have greater effects on fibre mechanical properties. From this study, the tensile and modulus properties of the treated fibres for both types have improved significantly as compared to untreated fibres, especially at the optimum level of 6% NaOH. It is also interesting to highlight that 6% NaOH is the optimum concentration for the alkaline treatment. The untreated and treated fibres at 6% NaOH were then introduced to fibre opener, and it was found that the treated fibre produced higher fibre diameter with better surface morphology compared to the untreated fibre. Higher speed parameter during opening was found to produce higher yield of opened-kenaf fibres. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment" title="alkaline treatment">alkaline treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20fibre" title=" kenaf fibre"> kenaf fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20production" title=" yarn production"> yarn production</a> </p> <a href="https://publications.waset.org/abstracts/69554/the-effect-of-alkaline-treatment-on-tensile-strength-and-morphological-properties-of-kenaf-fibres-for-yarn-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6066</span> Volarization of Sugarcane Bagasse: The Effect of Alkali Concentration, Soaking Time and Temperature on Fibre Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamrat%20Tesfaye">Tamrat Tesfaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Tilahun%20Seyoum"> Tilahun Seyoum</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Shabaridharan"> K. Shabaridharan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper was to determine the effect of NaOH concentration, soaking time, soaking temperature and their interaction on percentage yield of fibre extract using Response Surface Methodology (RSM). A Box-Behnken design was employed to optimize the extraction process of cellulosic fibre from sugar cane by-product bagasse using low alkaline extraction technique. The quadratic model with the optimal technological conditions resulted in a maximum fibre yield of 56.80% at 0.55N NaOH concentration, 4 h steeping time and 60ᵒC soaking temperature. Among the independent variables concentration was found to be the most significant (P < 0.005) variable and the interaction effect of concentration and soaking time leads to securing the optimized processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse" title="sugarcane bagasse">sugarcane bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20alkaline" title=" low alkaline"> low alkaline</a>, <a href="https://publications.waset.org/abstracts/search?q=Box-Behnken" title=" Box-Behnken"> Box-Behnken</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre" title=" fibre "> fibre </a> </p> <a href="https://publications.waset.org/abstracts/45876/volarization-of-sugarcane-bagasse-the-effect-of-alkali-concentration-soaking-time-and-temperature-on-fibre-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6065</span> Effect of Coupling Agent on the Properties of Durian Skin Fibre Reinforced Polypropylene Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hazleen%20Anuar">Hazleen Anuar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Aimi%20Mohd%20Nasir"> Nur Aimi Mohd Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Durian skin is a newly explores natural fibre potentially reinforced polyolefin for diverse applications. In this work, investigation on the effect of coupling agent, maleic anhydride polypropylene (MAPP) on the mechanical, morphological and thermal properties of polypropylene (PP) reinforced with durian skin fibre (DSF) was conducted. The presence of 30 wt% DSF significantly reduced the tensile strength of PP-DSF composite. Interestingly, even though the same trend goes to PP-DSF with the presence of MAPP, the reduction is only about 4% relative to unreinforced PP and 18% higher than PP-DSF without MAPP (untreated composite or UTC). The used of MAPP in treated composite (TC) also increased the tensile modulus, flexural properties and degradation temperature. The enhanced mechanical properties are consistent with good interfacial interaction as evidenced under scanning electron microscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durian%20skin%20fiber" title="durian skin fiber">durian skin fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20agent" title=" coupling agent"> coupling agent</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetry%20analysis" title=" thermogravimetry analysis"> thermogravimetry analysis</a> </p> <a href="https://publications.waset.org/abstracts/33625/effect-of-coupling-agent-on-the-properties-of-durian-skin-fibre-reinforced-polypropylene-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6064</span> Feasibility of Agro Waste-Derived Adsorbent for Colour Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20P.%20L.%20Wijayarathne">U. P. L. Wijayarathne</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20W.%20Vidanage"> P. W. Vidanage</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20D.%20Jayampath"> H. K. D. Jayampath</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20W.%20P.%20M.%20Kothalawala"> K. W. P. M. Kothalawala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feasibility of utilizing Empty Bunch (EB) fibre, a solid waste of palm oil extraction process, as an adsorbent is analysed in this study. Empty bunch fibre is generated after the extraction of retained oil in the sterilized and threshed empty fruit bunches. Besides the numerous characteristics of EB fibre, which enable its utilization as a fuel, a bio-composite material, or mulch, EB fibre also shows exceptional characteristics of a good adsorbent. Fixed bed adsorption method is used to study the adsorptivity of EB fibre using a continuous adsorption column with Methyl-blue (1.13ppm) as the feed. Adsorptivity is assumed to be solely dependent on the bed porosity keeping other parameters (feed flow rate, bed height, bed diameter, and operating temperature) constant. Bed porosity is changed by means of compact ratio and the variation of the feed concentration is analysed using a photometric method. Break through curves are plotted at different porosity levels and optimum bed porosity is identified for a given feed stream. Feasibility of using the EB fibre as an inexpensive and an abundant adsorbent in wastewater treatment facilities, where the effluent colour reduction is adamant, is also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20bed" title=" fixed bed"> fixed bed</a>, <a href="https://publications.waset.org/abstracts/search?q=break%20through%20time" title=" break through time"> break through time</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20fibre" title=" oil palm fibre"> oil palm fibre</a> </p> <a href="https://publications.waset.org/abstracts/32519/feasibility-of-agro-waste-derived-adsorbent-for-colour-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6063</span> Melaleuca alternifolia Fibre Composites: Effect of Different Type of Fibre on Mechanical and Physical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahari%20Japar">Sahari Japar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodney%20Jammy"> Rodney Jammy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Maleque"> M. A. Maleque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fabrication of melaleuca alternifolia fibre reinforced thermoplastic starch composites was successfully done. This paper aims to show the effect of melaleuca alternifolia fibres on mechanical and physical properties of composites by using starch as a matrix. The fibres were extracted from three different part i.e. tea tree trunk (TTT), tea tree bunch (TTB) and tea tree leaf (TTL) and combined with tapioca starch by casting method. All composites showed superior mechanical properties in comparison to TS. The addition of 5% (v/v) fibres as a filler to TS led to the improvement in young’s modulus by 350% for TTB/TS, 282% for TTT/TS and 220% for TTL/TS. The tensile strength also increased to 34.39% for TTL/TS, 82.80% for TTB/TS and 203.18% for TTT/TS respectively. The trend can be correlated to the amount of cellulose in the fibres. For physical properties, it can be seen that, with the addition of fibres, the water absorption and swelling of composites decreased. The addition of melaleuca alternifolia fibre improved mechanical and physical properties of thermoplastic starch composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melaleuca%20alternifolia" title="melaleuca alternifolia">melaleuca alternifolia</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre" title=" fibre"> fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=physical" title=" physical"> physical</a> </p> <a href="https://publications.waset.org/abstracts/36698/melaleuca-alternifolia-fibre-composites-effect-of-different-type-of-fibre-on-mechanical-and-physical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6062</span> The Effectschemical Treatment on Alkyl Phenol Modified Sisal Fiber Reinforced Epoxy Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Panda">Rajesh Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimi%20Tjong"> Jimi Tjong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20K.%20Nayak"> Sanjay K. Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohini%20M.%20Sain"> Mohini M. Sain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this manuscript was to evaluate the effect of chemical treatment of sisal fibre on the mechanical and viscoelastic properties of bio based epoxy/fibre composites. The composite samples were manufactured through a vacuum infusion process by adding alkyl phenols from cashew nutshell liquid (CSNL). Changes in the chemical structure of the sisal fibres resulting from the treatments were analyzed by Fourier transform infrared spectroscopy (FTIR). Both alkali and silane treatments produced enhancements in the mechanical properties of sisal fibre bundles. The alkali treatment, when combined with the silane treatment, the mechanical properties of epoxy composites notably improved (13%) in comparison to untreated sisal fibre reinforced composites.This was attributed to an enhanced fibre/matrix interface. The incorporation of CSNL into the sisal/epoxy composite enhanced the fibre-matrix interfacial properties because of the addition of -OH groups to the epoxy matrix. The incorporation of sisal fibre imparts stiffness to the epoxy matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenalkamine" title="phenalkamine">phenalkamine</a>, <a href="https://publications.waset.org/abstracts/search?q=sisal%20fiber" title=" sisal fiber"> sisal fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20infusion" title=" vacuum infusion"> vacuum infusion</a>, <a href="https://publications.waset.org/abstracts/search?q=cashew%20nutshell%20liquid" title=" cashew nutshell liquid"> cashew nutshell liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=cashew%20nutshell%20liquid%20%28CSNL%29" title=" cashew nutshell liquid (CSNL)"> cashew nutshell liquid (CSNL)</a> </p> <a href="https://publications.waset.org/abstracts/93896/the-effectschemical-treatment-on-alkyl-phenol-modified-sisal-fiber-reinforced-epoxy-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6061</span> Characterization of Shear and Extensional Rheology of Fibre Suspensions Prior to Atomization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20N.%20M.%20Rozali">Siti N. M. Rozali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20J.%20Paterson"> A. H. J. Paterson</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20%20Hindmarsh"> J. P. Hindmarsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spray drying of fruit juices from liquid to powder is desirable as the powders are easier to handle, especially for storage and transportation. In this project, pomace fibres will be used as a drying aid during spray drying, replacing the commonly used maltodextrins. The main attraction of this drying aid is that the pomace fibres are originally derived from the fruit itself. However, the addition of micro-sized fibres to fruit juices is expected to affect the rheology and subsequent atomization behaviour during the spray drying process. This study focuses on the determination and characterization of the rheology of juice-fibre suspensions specifically inside a spray dryer nozzle. Results show that the juice-fibre suspensions exhibit shear thinning behaviour with a significant extensional viscosity. The shear and extensional viscosities depend on several factors which include fibre fraction, shape, size and aspect ratio. A commercial capillary rheometer is used to characterize the shear behaviour while a portable extensional rheometer has been designed and built to study the extensional behaviour. Methods and equipment will be presented along with the rheology results. Rheology or behaviour of the juice-fibre suspensions provides an insight into the limitations that will be faced during atomization, and in the future, this finding will assist in choosing the best nozzle design that can overcome the limitations introduced by the fibre particles thus resulting in successful spray drying of juice-fibre suspensions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extensional%20rheology" title="extensional rheology">extensional rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20suspensions" title=" fibre suspensions"> fibre suspensions</a>, <a href="https://publications.waset.org/abstracts/search?q=portable%20extensional%20rheometer" title=" portable extensional rheometer"> portable extensional rheometer</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20rheology" title=" shear rheology"> shear rheology</a> </p> <a href="https://publications.waset.org/abstracts/77661/characterization-of-shear-and-extensional-rheology-of-fibre-suspensions-prior-to-atomization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6060</span> Behavioural Studies on Multidirectional Reinforced 4-D Orthogonal Composites on Various Preform Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sriram%20Venkatesh">Sriram Venkatesh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Murali%20Mohan"> V. Murali Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20V.%20Karthikeyan"> T. V. Karthikeyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main advantage of multi-directionally reinforced composites is the freedom to orient selected fibre types and hence derives the benefits of varying fibre volume fractions and there by accommodate the design loads of the final structure of composites. This technology provides the means to produce tailored composites with desired properties. Due to the high level of fibre integrity with through thickness reinforcement those composites are expected to exhibit superior load bearing characteristics with capability to carry load even after noticeable and apparent fracture. However a survey of published literature indicates inadequacy in the design and test data base for the complete characterization of the multidirectional composites. In this paper the research objective is focused on the development and testing of 4-D orthogonal composites with different preform configurations and resin systems. A preform is the skeleton 4D reinforced composite other than the matrix. In 4-D preforms fibre bundles are oriented in three directions at 1200 with respect to each other and they are on orthogonal plane with the fibre in 4th direction. This paper addresses the various types of 4-D composite manufacturing processes and the mechanical test methods followed for the material characterization. A composite analysis is also made, experiments on course and fine woven preforms are conducted and the findings of test results are discussed in this paper. The interpretations of the test results reveal several useful and interesting features. This should pave the way for more widespread use of the perform configurations for allied applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-directionally%20reinforced%20composites" title="multi-directionally reinforced composites">multi-directionally reinforced composites</a>, <a href="https://publications.waset.org/abstracts/search?q=4-D%20orthogonal%20preform" title=" 4-D orthogonal preform"> 4-D orthogonal preform</a>, <a href="https://publications.waset.org/abstracts/search?q=course%20weave" title=" course weave"> course weave</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20weave" title=" fine weave"> fine weave</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20bundle%20spools" title=" fibre bundle spools"> fibre bundle spools</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20cell" title=" unit cell"> unit cell</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20architecture" title=" fibre architecture"> fibre architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20volume%20fraction" title=" fibre volume fraction"> fibre volume fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20distribution" title=" fibre distribution"> fibre distribution</a> </p> <a href="https://publications.waset.org/abstracts/5808/behavioural-studies-on-multidirectional-reinforced-4-d-orthogonal-composites-on-various-preform-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20fibre&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20fibre&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20fibre&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20fibre&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20fibre&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20fibre&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20fibre&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20fibre&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20fibre&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20fibre&amp;page=202">202</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20fibre&amp;page=203">203</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=natural%20fibre&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10