CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 83 results for author: <span class="mathjax">Sun, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Sun%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sun, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sun%2C+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sun, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Sun%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Sun%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Sun%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19334">arXiv:2410.19334</a> <span> [<a href="https://arxiv.org/pdf/2410.19334">pdf</a>, <a href="https://arxiv.org/format/2410.19334">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancing Quantum Key Distribution with Entanglement Distillation and Classical Advantage Distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shin Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Goodenough%2C+K">Kenneth Goodenough</a>, <a href="/search/quant-ph?searchtype=author&query=Bhatti%2C+D">Daniel Bhatti</a>, <a href="/search/quant-ph?searchtype=author&query=Elkouss%2C+D">David Elkouss</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19334v1-abstract-short" style="display: inline;"> Realizing secure communication between distant parties is one of quantum technology's main goals. Although quantum key distribution promises information-theoretic security for sharing a secret key, the key rate heavily depends on the level of noise in the quantum channel. To overcome the noise, both quantum and classical techniques exist, i.e., entanglement distillation and classical advantage dis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19334v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19334v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19334v1-abstract-full" style="display: none;"> Realizing secure communication between distant parties is one of quantum technology's main goals. Although quantum key distribution promises information-theoretic security for sharing a secret key, the key rate heavily depends on the level of noise in the quantum channel. To overcome the noise, both quantum and classical techniques exist, i.e., entanglement distillation and classical advantage distillation. So far, these techniques have only been used separately from each other. Herein, we present a two-stage distillation scheme concatenating entanglement distillation with classical advantage distillation. While for the advantage distillation, we use a fixed protocol, i.e., the repetition code, in the case of entanglement distillation, we employ an enumeration algorithm to find the optimal protocol. We test our scheme for different noisy entangled states and demonstrate its quantitative advantage: our two-stage distillation scheme achieves finite key rates even in the high-noise regime where entanglement distillation or advantage distillation alone cannot afford key sharing. Since the advantage distillation part does not introduce further requirements on quantum resources, the proposed scheme is well-suited for near-term quantum key distribution tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19334v1-abstract-full').style.display = 'none'; document.getElementById('2410.19334v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08205">arXiv:2410.08205</a> <span> [<a href="https://arxiv.org/pdf/2410.08205">pdf</a>, <a href="https://arxiv.org/format/2410.08205">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Holographic View of Mixed-State Symmetry-Protected Topological Phases in Open Quantum Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shijun Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J">Jian-Hao Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Bi%2C+Z">Zhen Bi</a>, <a href="/search/quant-ph?searchtype=author&query=You%2C+Y">Yizhi You</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08205v1-abstract-short" style="display: inline;"> We establish a holographic duality between d-dimensional mixed-state symmetry-protected topological phases (mSPTs) and (d+1)-dimensional subsystem symmetry-protected topological states (SSPTs). Specifically, we show that the reduced density matrix of the boundary layer of a (d+1)-dimensional SSPT with subsystem symmetry $\mathcal{S}$ and global symmetry $\mathcal{G}$ corresponds to a d-dimensional… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08205v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08205v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08205v1-abstract-full" style="display: none;"> We establish a holographic duality between d-dimensional mixed-state symmetry-protected topological phases (mSPTs) and (d+1)-dimensional subsystem symmetry-protected topological states (SSPTs). Specifically, we show that the reduced density matrix of the boundary layer of a (d+1)-dimensional SSPT with subsystem symmetry $\mathcal{S}$ and global symmetry $\mathcal{G}$ corresponds to a d-dimensional mSPT with strong $\mathcal{S}$ and weak $\mathcal{G}$ symmetries. Conversely, we demonstrate that the wavefunction of an SSPT can be constructed by replicating the density matrix of the corresponding lower-dimensional mSPT. This mapping links the density matrix in lower dimensions to the entanglement properties of higher-dimensional wavefunctions, providing an approach for analyzing nonlinear quantities and quantum information metrics in mixed-state systems. Our duality offers a new perspective for studying intrinsic mSPTs that are unique to open quantum systems, without pure state analogs. We show that strange correlators and twisted Renyi-N correlators can diagnose these nontrivial phases and explore their connection to strange correlators in pure-state SSPTs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08205v1-abstract-full').style.display = 'none'; document.getElementById('2410.08205v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18041">arXiv:2406.18041</a> <span> [<a href="https://arxiv.org/pdf/2406.18041">pdf</a>, <a href="https://arxiv.org/format/2406.18041">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.134301">10.1103/PhysRevB.110.134301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of the Gibbs ensemble as a steady state in Lindbladian dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shi-Kang Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S">Shu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18041v2-abstract-short" style="display: inline;"> We explicitly construct unique non-equilibrium steady state (NESS) of Lindblad master equation characterized by a Gibbs ensemble $蟻_{\text{NESS}} \propto e^{-尾\tilde{H}}$, where the effective Hamiltonian $\tilde{H}$ consists only of $U(1)$ conserved charges of the original Hamiltonian. Specifically, when the original Hamiltonian has multiple charges, it is possible to couple them with bathes at di… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18041v2-abstract-full').style.display = 'inline'; document.getElementById('2406.18041v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18041v2-abstract-full" style="display: none;"> We explicitly construct unique non-equilibrium steady state (NESS) of Lindblad master equation characterized by a Gibbs ensemble $蟻_{\text{NESS}} \propto e^{-尾\tilde{H}}$, where the effective Hamiltonian $\tilde{H}$ consists only of $U(1)$ conserved charges of the original Hamiltonian. Specifically, when the original Hamiltonian has multiple charges, it is possible to couple them with bathes at different temperature respectively, but still leads to an equilibrium state. To access the Gibbs NESS, the jump operators need to be properly chosen to fulfill quantum detailed balance condition (qDBC). These jump operators are ladder operators for $\tilde{H}$ and jump process they generate form a vertex-weighted directed acyclic graph (wDAG). By studying the XX model and Fredkin model, we showcase how the Gibbs state emerges as the unique steady state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18041v2-abstract-full').style.display = 'none'; document.getElementById('2406.18041v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated: 10 pages, 6 figures. Added journal reference. Comments are welcome!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 110, 134301 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16518">arXiv:2405.16518</a> <span> [<a href="https://arxiv.org/pdf/2405.16518">pdf</a>, <a href="https://arxiv.org/format/2405.16518">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental demonstration of 4-state reference-frame-independent quantum key distribution over 200km </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xie%2C+Z">Ziran Xie</a>, <a href="/search/quant-ph?searchtype=author&query=Tian%2C+Z">Zhiyu Tian</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shihai Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16518v1-abstract-short" style="display: inline;"> Reference frame independent quantum key distribution (RFI-QKD) has gained widespread attention due to the unique advantage for practical application, as it circumvents the need for active reference frame alignment within the system. However, in comparison to the standard BB84 protocol, the original 6-state RFI protocol requires a greater number of quantum states to be operated by Alice and Bob, wh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16518v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16518v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16518v1-abstract-full" style="display: none;"> Reference frame independent quantum key distribution (RFI-QKD) has gained widespread attention due to the unique advantage for practical application, as it circumvents the need for active reference frame alignment within the system. However, in comparison to the standard BB84 protocol, the original 6-state RFI protocol requires a greater number of quantum states to be operated by Alice and Bob, which is an aspect that merits optimization. In this work, we propose a 4-state RFI protocol and illustrate that Alice and Bob each require only four quantum states to perform channel estimation that remains independent of reference frame deviation, which can proficiently reduce the system complexity. Furthermore, through numerical simulations taking the finite-size key effect into consideration, we show that 4-state RFI protocol can achieve a secure key rate and transmission distance on par with the original 6-state RFI protocol. Finally, a experiment over 200 km is inplemented to conducted the feasibility of our scheme. We believe that our protocol can streamline the implementation of RFI-QKD and thereby contribute to the practical advancement of RFI-QKD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16518v1-abstract-full').style.display = 'none'; document.getElementById('2405.16518v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10294">arXiv:2403.10294</a> <span> [<a href="https://arxiv.org/pdf/2403.10294">pdf</a>, <a href="https://arxiv.org/format/2403.10294">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.522384">10.1364/OE.522384 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental demonstration of improved reference-frame-independent quantum key distribution over 175km </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tian%2C+Z">Zhiyu Tian</a>, <a href="/search/quant-ph?searchtype=author&query=Xie%2C+Z">Ziran Xie</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+R">Rong Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Chunmei Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shihai Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10294v1-abstract-short" style="display: inline;"> Reference-frame-independent (RFI) quantum key distribution (QKD) presents promising advantages, especially for mobile-platform-based implementations, as it eliminates the need for active reference frame calibration. While RFI-QKD has been explored in various studies, limitations in key rate and distance persist due to finite data collection. In this study, we experimentally demonstrate an improved… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10294v1-abstract-full').style.display = 'inline'; document.getElementById('2403.10294v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10294v1-abstract-full" style="display: none;"> Reference-frame-independent (RFI) quantum key distribution (QKD) presents promising advantages, especially for mobile-platform-based implementations, as it eliminates the need for active reference frame calibration. While RFI-QKD has been explored in various studies, limitations in key rate and distance persist due to finite data collection. In this study, we experimentally demonstrate an improved RFI-QKD protocol proposed by Zhu \textit{et al.} [Opt. Lett. 47, 4219 (2022)], featuring a statistical quantity for bounding information leaked to Eve that exhibits more insensitivity to statistical fluctuations and more robustness to variations in the reference frame. Taking into account finite-size considerations and potential general attacks, RFI-QKD is implemented over a distance of 175 \si{\kilo\meter} in this work. We believe that our study extends the communication distance achievable by RFI-QKD, thereby constituting a notable advancement for its practical application. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10294v1-abstract-full').style.display = 'none'; document.getElementById('2403.10294v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express, Vol.32, No.13/17, 22460 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13960">arXiv:2402.13960</a> <span> [<a href="https://arxiv.org/pdf/2402.13960">pdf</a>, <a href="https://arxiv.org/format/2402.13960">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Evaluating Ground State Energies of Chemical Systems with Low-Depth Quantum Circuits and High Accuracy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Kumar%2C+C">Chandan Kumar</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+K">Kevin Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Shishenina%2C+E">Elvira Shishenina</a>, <a href="/search/quant-ph?searchtype=author&query=Mendl%2C+C+B">Christian B. Mendl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13960v1-abstract-short" style="display: inline;"> Solving electronic structure problems is considered one of the most promising applications of quantum computing. However, due to limitations imposed by the coherence time of qubits in the Noisy Intermediate Scale Quantum (NISQ) era or the capabilities of early fault-tolerant quantum devices, it is vital to design algorithms with low-depth circuits. In this work, we develop an enhanced Variational… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13960v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13960v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13960v1-abstract-full" style="display: none;"> Solving electronic structure problems is considered one of the most promising applications of quantum computing. However, due to limitations imposed by the coherence time of qubits in the Noisy Intermediate Scale Quantum (NISQ) era or the capabilities of early fault-tolerant quantum devices, it is vital to design algorithms with low-depth circuits. In this work, we develop an enhanced Variational Quantum Eigensolver (VQE) ansatz based on the Qubit Coupled Cluster (QCC) approach, which demands optimization over only $n$ parameters rather than the usual $n+2m$ parameters, where $n$ represents the number of Pauli string time evolution gates $e^{-itP}$, and $m$ is the number of qubits involved. We evaluate the ground state energies of $\mathrm{O_3}$, $\mathrm{Li_4}$, and $\mathrm{Cr_2}$, using CAS(2,2), (4,4) and (6,6) respectively in conjunction with our enhanced QCC ansatz, UCCSD (Unitary Coupled Cluster Single Double) ansatz, and canonical CCSD method as the active space solver, and compare with CASCI results. Finally, we assess our enhanced QCC ansatz on two distinct quantum hardware, IBM Kolkata and Quantinuum H1-1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13960v1-abstract-full').style.display = 'none'; document.getElementById('2402.13960v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.08325">arXiv:2401.08325</a> <span> [<a href="https://arxiv.org/pdf/2401.08325">pdf</a>, <a href="https://arxiv.org/format/2401.08325">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.515390">10.1364/OE.515390 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Random Number Generation Based on Phase Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+J">Jialiang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+Z">Zitao Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+C">Chunlin Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+J">Jiajie Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+T">Tongge Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+X">Xiangwei Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shihai Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.08325v1-abstract-short" style="display: inline;"> Quantum random number generator (QRNG) utilizes the intrinsic randomness of quantum systems to generate completely unpredictable and genuine random numbers, finding wide applications across many fields. QRNGs relying on the phase noise of a laser have attracted considerable attention due to their straightforward system architecture and high random number generation rates. However, traditional phas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08325v1-abstract-full').style.display = 'inline'; document.getElementById('2401.08325v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.08325v1-abstract-full" style="display: none;"> Quantum random number generator (QRNG) utilizes the intrinsic randomness of quantum systems to generate completely unpredictable and genuine random numbers, finding wide applications across many fields. QRNGs relying on the phase noise of a laser have attracted considerable attention due to their straightforward system architecture and high random number generation rates. However, traditional phase noise QRNGs suffer from a 50\% loss of quantum entropy during the randomness extraction process. In this paper, we propose a phase-reconstruction quantum random number generation scheme, in which the phase noise of a laser is reconstructed by simultaneously measuring the orthogonal quadratures of the light field using balanced detectors. This enables direct discretization of uniform phase noise, and the min-entropy can achieve a value of 1. Furthermore, our approach exhibits inherent robustness against the classical phase fluctuations of the unbalanced interferometer, eliminating the need for active compensation. Finally, we conducted experimental validation using commercial optical hybrid and balanced detectors, achieving a random number generation rate of 1.96 Gbps at a sampling rate of 200 MSa/s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.08325v1-abstract-full').style.display = 'none'; document.getElementById('2401.08325v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11pages. Submitted to Optics Express, and any comment is welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express,Vol.32,No.4, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03860">arXiv:2401.03860</a> <span> [<a href="https://arxiv.org/pdf/2401.03860">pdf</a>, <a href="https://arxiv.org/format/2401.03860">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantification of Photon Fusion for Genuine Multiphoton Quantum Correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Sheng-Yan Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yu-Cheng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S">Shih-Hsuan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+K">Kuan-Jou Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+C">Ching-Jui Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Tsai%2C+T">Tung-Ju Tsai</a>, <a href="/search/quant-ph?searchtype=author&query=Kao%2C+W">Wei-Ting Kao</a>, <a href="/search/quant-ph?searchtype=author&query=Hsu%2C+T">Tzu-Liang Hsu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Che-Ming Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03860v3-abstract-short" style="display: inline;"> Fusing photon pairs creates an arena where indistinguishability can exist between two two-photon amplitudes contributing to the same joint photodetection event. This two-photon interference has been extensively utilized in creating multiphoton entanglement, from passive to scalable generation, from bulk-optical to chip-scale implementations. While significant, no experimental evidence exists that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03860v3-abstract-full').style.display = 'inline'; document.getElementById('2401.03860v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03860v3-abstract-full" style="display: none;"> Fusing photon pairs creates an arena where indistinguishability can exist between two two-photon amplitudes contributing to the same joint photodetection event. This two-photon interference has been extensively utilized in creating multiphoton entanglement, from passive to scalable generation, from bulk-optical to chip-scale implementations. While significant, no experimental evidence exists that the full capability of photon fusion can be utterly quantified like a quantum entity. Herein, we demonstrate the first complete capability quantification of experimental photon fusion. Our characterization faithfully measures the whole abilities of photon fusion in the experiment to create and preserve entangled photon pairs. With the created four- and six-photon entangled states using spontaneous parametric down-conversion entanglement sources, we show that capability quantification provides a faithful assessment of interferometry for generating genuine multiphoton entanglement and Einstein-Podolsky-Rosen steering. These results reveal a practical diagnostic method to benchmark photon fusion underlying the primitive operations in general quantum photonics devices and networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03860v3-abstract-full').style.display = 'none'; document.getElementById('2401.03860v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01401">arXiv:2312.01401</a> <span> [<a href="https://arxiv.org/pdf/2312.01401">pdf</a>, <a href="https://arxiv.org/format/2312.01401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum Computer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lin%2C+C">Chin-Yi Lin</a>, <a href="/search/quant-ph?searchtype=author&query=Shih%2C+L">Li-Chai Shih</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shin Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+Y">Yuan-Chung Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01401v2-abstract-short" style="display: inline;"> In recent years, due to its formidable potential in computational theory, quantum computing has become a very popular research topic. However, the implementation of practical quantum algorithms, which hold the potential to solve real-world problems, is often hindered by the significant error rates associated with quantum gates and the limited availability of qubits. In this study, we propose a pra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01401v2-abstract-full').style.display = 'inline'; document.getElementById('2312.01401v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01401v2-abstract-full" style="display: none;"> In recent years, due to its formidable potential in computational theory, quantum computing has become a very popular research topic. However, the implementation of practical quantum algorithms, which hold the potential to solve real-world problems, is often hindered by the significant error rates associated with quantum gates and the limited availability of qubits. In this study, we propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer, which encompasses general and valuable characteristics. Notably, our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits. The results generated by our method performed on IBM-Q Jakarta aligned with the those calculated by hierarchical equations of motion (HEOM), which is a classical numerically-exact method, while our simulation method runs with a much better computing complexity. In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation. Based on quantum simulator, we show the extending ability of TTM, which allows us to get a longer simulation using a relatively short quantum circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01401v2-abstract-full').style.display = 'none'; document.getElementById('2312.01401v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13309">arXiv:2307.13309</a> <span> [<a href="https://arxiv.org/pdf/2307.13309">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c02645">10.1021/acs.nanolett.3c02645 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Photonic Circuits Integrated with Color Centers in Designer Nanodiamonds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ngan%2C+K">Kinfung Ngan</a>, <a href="/search/quant-ph?searchtype=author&query=Zhan%2C+Y">Yuan Zhan</a>, <a href="/search/quant-ph?searchtype=author&query=Dory%2C+C">Constantin Dory</a>, <a href="/search/quant-ph?searchtype=author&query=Vu%C4%8Dkovi%C4%87%2C+J">Jelena Vu膷kovi膰</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13309v2-abstract-short" style="display: inline;"> Diamond has emerged as a leading host material for solid-state quantum emitters, quantum memories, and quantum sensors. However, the challenges in fabricating photonic devices in diamond have limited its potential for use in quantum technologies. While various hybrid integration approaches have been developed for coupling diamond color centers with photonic devices defined in a heterogeneous mater… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13309v2-abstract-full').style.display = 'inline'; document.getElementById('2307.13309v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13309v2-abstract-full" style="display: none;"> Diamond has emerged as a leading host material for solid-state quantum emitters, quantum memories, and quantum sensors. However, the challenges in fabricating photonic devices in diamond have limited its potential for use in quantum technologies. While various hybrid integration approaches have been developed for coupling diamond color centers with photonic devices defined in a heterogeneous material, these methods suffer from either large insertion loss at the material interface or evanescent light-matter coupling. Here, we present a new technique that enables deterministic assembly of diamond color centers in a silicon nitride photonic circuit. Using this technique, we observe Purcell enhancement of silicon vacancy centers coupled to a silicon nitride ring resonator. Our hybrid integration approach has the potential for achieving the maximum possible light-matter interaction strength while maintaining low insertion loss, and paves the way towards scalable manufacturing of large-scale quantum photonic circuits integrated with high-quality quantum emitters and spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13309v2-abstract-full').style.display = 'none'; document.getElementById('2307.13309v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.10366">arXiv:2306.10366</a> <span> [<a href="https://arxiv.org/pdf/2306.10366">pdf</a>, <a href="https://arxiv.org/format/2306.10366">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cold hybrid electrical-optical ion trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Cui%2C+J">Jin-Ming Cui</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shi-Jia Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+X">Xi-Wang Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+Y">Yun-Feng Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.10366v1-abstract-short" style="display: inline;"> Advances in research such as quantum information and quantum chemistry require subtle methods for trapping particles (including ions, neutral atoms, molecules, etc.). Here we propose a hybrid ion trapping method by combining a Paul trap with optical tweezers. The trap combines the advances of the deep-potential feature for the Paul trap and the micromotion-free feature for the optical dipole trap.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10366v1-abstract-full').style.display = 'inline'; document.getElementById('2306.10366v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.10366v1-abstract-full" style="display: none;"> Advances in research such as quantum information and quantum chemistry require subtle methods for trapping particles (including ions, neutral atoms, molecules, etc.). Here we propose a hybrid ion trapping method by combining a Paul trap with optical tweezers. The trap combines the advances of the deep-potential feature for the Paul trap and the micromotion-free feature for the optical dipole trap. By modulating the optical-dipole trap synchronously with the radio frequency voltage of the Paul trap, the alternating electrical force in the trap center is fully counteracted, and the micromotion temperature of a cold trapped ion can reach the order of nK while the trap depth is beyond 300K. These features will enable cold collisions between an ion and an atom in the $s$-wave regime and stably trap the produced molecular ion in the cold hybrid system. This will provide a unique platform for probing the interactions between the ions and the surrounding neutral particles and enable the investigation of new reaction pathways and reaction products in the cold regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10366v1-abstract-full').style.display = 'none'; document.getElementById('2306.10366v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17771">arXiv:2303.17771</a> <span> [<a href="https://arxiv.org/pdf/2303.17771">pdf</a>, <a href="https://arxiv.org/ps/2303.17771">ps</a>, <a href="https://arxiv.org/format/2303.17771">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-024-00867-0">10.1038/s41534-024-00867-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scalable Determination of Multipartite Entanglement in Quantum Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Kao%2C+W">Wei-Ting Kao</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+C">Chien-Ying Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Tsai%2C+T">Tung-Ju Tsai</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S">Shih-Hsuan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Sheng-Yan Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yu-Cheng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Liao%2C+T">Teh-Lu Liao</a>, <a href="/search/quant-ph?searchtype=author&query=Chuu%2C+C">Chih-Sung Chuu</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+H">He Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+C">Che-Ming Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17771v5-abstract-short" style="display: inline;"> Quantum networks comprised of entangled end nodes serve stronger than the classical correlation for unparalleled quantum internet applications. However, practical quantum networking is affected by noise, which at its worst, causes end nodes to be described by pre-existing classical data. In such untrusted networks, determining quantum network fidelity and genuine multi-node entanglement becomes cr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17771v5-abstract-full').style.display = 'inline'; document.getElementById('2303.17771v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17771v5-abstract-full" style="display: none;"> Quantum networks comprised of entangled end nodes serve stronger than the classical correlation for unparalleled quantum internet applications. However, practical quantum networking is affected by noise, which at its worst, causes end nodes to be described by pre-existing classical data. In such untrusted networks, determining quantum network fidelity and genuine multi-node entanglement becomes crucial. Here, we show that determining quantum network fidelity and genuine $N$-node entanglement in an untrusted star network requires only $N+1$ measurement settings. This method establishes a semi-trusted framework, allowing some nodes to relax their assumptions. Our network determination method is enabled by detecting genuine $N$-node Einstein-Podolsky-Rosen steerability. Experimentally, using spontaneous parametric down-conversion entanglement sources, we demonstrate the determinations of genuine 3-photon and 4-photon quantum networks and the false positives of the widely used entanglement witness, the fidelity criterion of $1/2$. Our results provide a scalable method for the determination of multipartite entanglement in realistic quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17771v5-abstract-full').style.display = 'none'; document.getElementById('2303.17771v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Information 10, 73 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.09636">arXiv:2303.09636</a> <span> [<a href="https://arxiv.org/pdf/2303.09636">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.3c01819">10.1021/acsnano.3c01819 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nitrogen-vacancy magnetometry of individual Fe-triazole spin crossover nanorods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lamichhane%2C+S">Suvechhya Lamichhane</a>, <a href="/search/quant-ph?searchtype=author&query=McElveen%2C+K+A">Kayleigh A McElveen</a>, <a href="/search/quant-ph?searchtype=author&query=Erickson%2C+A">Adam Erickson</a>, <a href="/search/quant-ph?searchtype=author&query=Fescenko%2C+I">Ilja Fescenko</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Timalsina%2C+R">Rupak Timalsina</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+Y">Yinsheng Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Liou%2C+S">Sy-Hwang Liou</a>, <a href="/search/quant-ph?searchtype=author&query=Lai%2C+R+Y">Rebecca Y. Lai</a>, <a href="/search/quant-ph?searchtype=author&query=Laraoui%2C+A">Abdelghani Laraoui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.09636v4-abstract-short" style="display: inline;"> [Fe(Htrz)2(trz)](BF4) (Fe-triazole) spin crossover molecules show thermal, electrical, and optical switching between high spin (HS) and low spin (LS) states, making them promising candidates for molecular spintronics. The LS and HS transitions originate from the electronic configurations of Fe(II), and are considered to be diamagnetic and paramagnetic respectively. The Fe(II) LS state has six pair… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09636v4-abstract-full').style.display = 'inline'; document.getElementById('2303.09636v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.09636v4-abstract-full" style="display: none;"> [Fe(Htrz)2(trz)](BF4) (Fe-triazole) spin crossover molecules show thermal, electrical, and optical switching between high spin (HS) and low spin (LS) states, making them promising candidates for molecular spintronics. The LS and HS transitions originate from the electronic configurations of Fe(II), and are considered to be diamagnetic and paramagnetic respectively. The Fe(II) LS state has six paired electrons in the ground states with no interaction with the magnetic field and a diamagnetic behavior is usually observed. While the bulk magnetic properties of Fe-triazole compounds are widely studied by standard magnetometry techniques their properties at the individual level are missing. Here we use nitrogen vacancy (NV) based magnetometry to study the magnetic properties of the Fe-triazole LS state of nanoparticle clusters and individual nanorods of size varying from 20 to 1000 nm. Scanning electron microscopy (SEM) and Raman spectroscopy are performed to determine the size of the nanoparticles/nanorods and to confirm their respective spin state. The magnetic field patterns produced by the nanoparticles/nanorods are imaged by NV magnetic microscopy as a function of applied magnetic field (up to 350 mT) and correlated with SEM and Raman. We found that in most of the nanorods the LS state is slightly paramagnetic, possibly originating from the surface oxidation and/or the greater Fe(III) presence along the nanorod edges. NV measurements on the Fe-triazole LS state nanoparticle clusters revealed both diamagnetic and paramagnetic behavior. Our results highlight the potential of NV quantum sensors to study the magnetic properties of spin crossover molecules and molecular magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.09636v4-abstract-full').style.display = 'none'; document.getElementById('2303.09636v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Nano 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04271">arXiv:2302.04271</a> <span> [<a href="https://arxiv.org/pdf/2302.04271">pdf</a>, <a href="https://arxiv.org/format/2302.04271">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Computation of Frequency-Domain Molecular Response Properties Using a Three-Qubit iToffoli Gate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shi-Ning Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Marinelli%2C+B">Brian Marinelli</a>, <a href="/search/quant-ph?searchtype=author&query=Koh%2C+J+M">Jin Ming Koh</a>, <a href="/search/quant-ph?searchtype=author&query=Kim%2C+Y">Yosep Kim</a>, <a href="/search/quant-ph?searchtype=author&query=Nguyen%2C+L+B">Long B. Nguyen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+L">Larry Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Kreikebaum%2C+J+M">John Mark Kreikebaum</a>, <a href="/search/quant-ph?searchtype=author&query=Santiago%2C+D+I">David I. Santiago</a>, <a href="/search/quant-ph?searchtype=author&query=Siddiqi%2C+I">Irfan Siddiqi</a>, <a href="/search/quant-ph?searchtype=author&query=Minnich%2C+A+J">Austin J. Minnich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04271v1-abstract-short" style="display: inline;"> The quantum computation of molecular response properties on near-term quantum hardware is a topic of significant interest. While computing time-domain response properties is in principle straightforward due to the natural ability of quantum computers to simulate unitary time evolution, circuit depth limitations restrict the maximum time that can be simulated and hence the extraction of frequency-d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04271v1-abstract-full').style.display = 'inline'; document.getElementById('2302.04271v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04271v1-abstract-full" style="display: none;"> The quantum computation of molecular response properties on near-term quantum hardware is a topic of significant interest. While computing time-domain response properties is in principle straightforward due to the natural ability of quantum computers to simulate unitary time evolution, circuit depth limitations restrict the maximum time that can be simulated and hence the extraction of frequency-domain properties. Computing properties directly in the frequency domain is therefore desirable, but the circuits require large depth when the typical hardware gate set consisting of single- and two-qubit gates is used. Here, we report the experimental quantum computation of the response properties of diatomic molecules directly in the frequency domain using a three-qubit iToffoli gate, enabling a reduction in circuit depth by a factor of two. We show that the molecular properties obtained with the iToffoli gate exhibit comparable or better agreement with theory than those obtained with the native CZ gates. Our work is among the first demonstrations of the practical usage of a native multi-qubit gate in quantum simulation, with diverse potential applications to the simulation of quantum many-body systems on near-term digital quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04271v1-abstract-full').style.display = 'none'; document.getElementById('2302.04271v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.00386">arXiv:2210.00386</a> <span> [<a href="https://arxiv.org/pdf/2210.00386">pdf</a>, <a href="https://arxiv.org/format/2210.00386">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-024-00841-w">10.1038/s41534-024-00841-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fourier Transform Noise Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Vezvaee%2C+A">Arian Vezvaee</a>, <a href="/search/quant-ph?searchtype=author&query=Shitara%2C+N">Nanako Shitara</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Montoya-Castillo%2C+A">Andr茅s Montoya-Castillo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.00386v4-abstract-short" style="display: inline;"> Spectral characterization of noise environments that lead to the decoherence of qubits is critical to developing robust quantum technologies. While dynamical decoupling offers one of the most successful approaches to characterize noise spectra, it necessitates applying large sequences of $蟺$ pulses that increase the complexity and cost of the method. Here, we introduce a noise spectroscopy method… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.00386v4-abstract-full').style.display = 'inline'; document.getElementById('2210.00386v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.00386v4-abstract-full" style="display: none;"> Spectral characterization of noise environments that lead to the decoherence of qubits is critical to developing robust quantum technologies. While dynamical decoupling offers one of the most successful approaches to characterize noise spectra, it necessitates applying large sequences of $蟺$ pulses that increase the complexity and cost of the method. Here, we introduce a noise spectroscopy method that utilizes only the Fourier transform of free induction decay or spin echo measurements, thus removing the need for the application many $蟺$ pulses. We show that our method faithfully recovers the correct noise spectra for a variety of different environments (including $1/f$-type noise) and outperforms previous dynamical decoupling schemes while significantly reducing their experimental overhead. We also discuss the experimental feasibility of our proposal and demonstrate its robustness in the presence of statistical measurement error. Our method is applicable to a wide range of quantum platforms and provides a simpler path toward a more accurate spectral characterization of quantum devices, thus offering possibilities for tailored decoherence mitigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.00386v4-abstract-full').style.display = 'none'; document.getElementById('2210.00386v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Inf 10, 52 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11430">arXiv:2209.11430</a> <span> [<a href="https://arxiv.org/pdf/2209.11430">pdf</a>, <a href="https://arxiv.org/format/2209.11430">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22331/q-2023-02-16-924">10.22331/q-2023-02-16-924 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance analysis of quantum repeaters enabled by deterministically generated photonic graph states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhan%2C+Y">Yuan Zhan</a>, <a href="/search/quant-ph?searchtype=author&query=Hilaire%2C+P">Paul Hilaire</a>, <a href="/search/quant-ph?searchtype=author&query=Barnes%2C+E">Edwin Barnes</a>, <a href="/search/quant-ph?searchtype=author&query=Economou%2C+S+E">Sophia E. Economou</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11430v2-abstract-short" style="display: inline;"> By encoding logical qubits into specific types of photonic graph states, one can realize quantum repeaters that enable fast entanglement distribution rates approaching classical communication. However, the generation of these photonic graph states requires a formidable resource overhead using traditional approaches based on linear optics. Overcoming this challenge, a number of new schemes have bee… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11430v2-abstract-full').style.display = 'inline'; document.getElementById('2209.11430v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11430v2-abstract-full" style="display: none;"> By encoding logical qubits into specific types of photonic graph states, one can realize quantum repeaters that enable fast entanglement distribution rates approaching classical communication. However, the generation of these photonic graph states requires a formidable resource overhead using traditional approaches based on linear optics. Overcoming this challenge, a number of new schemes have been proposed that employ quantum emitters to deterministically generate photonic graph states. Although these schemes have the potential to significantly reduce the resource cost, a systematic comparison of the repeater performance among different encodings and different generation schemes is lacking. Here, we quantitatively analyze the performance of quantum repeaters based on two different graph states, i.e. the tree graph states and the repeater graph states. For both states, we compare the performance between two generation schemes, one based on a single quantum emitter coupled to ancillary matter qubits, and one based on a single quantum emitter coupled to a delayed feedback. We identify the numerically optimal scheme at different system parameters. Our analysis provides a clear guideline on the selection of the generation scheme for graph-state-based quantum repeaters, and lays out the parameter requirements for future experimental realizations of different schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11430v2-abstract-full').style.display = 'none'; document.getElementById('2209.11430v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum 7, 924 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03894">arXiv:2208.03894</a> <span> [<a href="https://arxiv.org/pdf/2208.03894">pdf</a>, <a href="https://arxiv.org/format/2208.03894">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.106.022614">10.1103/PhysRevA.106.022614 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental study of secure quantum key distribution with source and detection imperfections </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Ye Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+C">Chunfeng Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Z">Zihao Chen</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+W">Wenjie He</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Chengxian Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shihai Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Wei%2C+K">Kejin Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03894v1-abstract-short" style="display: inline;"> The quantum key distribution (QKD), guaranteed by the principle of quantum physics, is a promising solution for future secure information and communication technology. However, device imperfections compromise the security of real-life QKD systems, restricting the wide deployment of QKD. This study reports a decoy-state BB84 QKD experiment that considers both source and detection imperfections. In… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03894v1-abstract-full').style.display = 'inline'; document.getElementById('2208.03894v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03894v1-abstract-full" style="display: none;"> The quantum key distribution (QKD), guaranteed by the principle of quantum physics, is a promising solution for future secure information and communication technology. However, device imperfections compromise the security of real-life QKD systems, restricting the wide deployment of QKD. This study reports a decoy-state BB84 QKD experiment that considers both source and detection imperfections. In particular, we achieved a rigorous finite-key security bound over fiber links of up to 75 km by applying a systematic performance analysis. Furthermore, our study considers more device imperfections than most previous experiments, and the proposed theory can be extended to other discrete-variable QKD systems. These features constitute a crucial step toward securing QKD with imperfect practical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03894v1-abstract-full').style.display = 'none'; document.getElementById('2208.03894v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15291">arXiv:2203.15291</a> <span> [<a href="https://arxiv.org/pdf/2203.15291">pdf</a>, <a href="https://arxiv.org/format/2203.15291">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Simulating challenging correlated molecules and materials on the Sycamore quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tazhigulov%2C+R+N">Ruslan N. Tazhigulov</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shi-Ning Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Haghshenas%2C+R">Reza Haghshenas</a>, <a href="/search/quant-ph?searchtype=author&query=Zhai%2C+H">Huanchen Zhai</a>, <a href="/search/quant-ph?searchtype=author&query=Tan%2C+A+T+K">Adrian T. K. Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Rubin%2C+N+C">Nicholas C. Rubin</a>, <a href="/search/quant-ph?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/quant-ph?searchtype=author&query=Minnich%2C+A+J">Austin J. Minnich</a>, <a href="/search/quant-ph?searchtype=author&query=Chan%2C+G+K">Garnet Kin-Lic Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15291v1-abstract-short" style="display: inline;"> Simulating complex molecules and materials is an anticipated application of quantum devices. With strong quantum advantage demonstrated in artificial tasks, we examine how such advantage translates into modeling physical problems of correlated electronic structure. We simulate static and dynamical electronic structure on a superconducting quantum processor derived from Google's Sycamore architectu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15291v1-abstract-full').style.display = 'inline'; document.getElementById('2203.15291v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15291v1-abstract-full" style="display: none;"> Simulating complex molecules and materials is an anticipated application of quantum devices. With strong quantum advantage demonstrated in artificial tasks, we examine how such advantage translates into modeling physical problems of correlated electronic structure. We simulate static and dynamical electronic structure on a superconducting quantum processor derived from Google's Sycamore architecture for two representative correlated electron problems: the nitrogenase iron-sulfur molecular clusters, and $伪$-ruthenium trichloride, a proximate spin-liquid material. To do so, we simplify the electronic structure into low-energy spin models that fit on the device. With extensive error mitigation and assistance from classically simulated data, we achieve quantitatively meaningful results deploying about 1/5 of the gate resources used in artificial quantum advantage experiments on a similar architecture. This increases to over 1/2 of the gate resources when choosing a model that suits the hardware. Our work serves to convert artificial measures of quantum advantage into a physically relevant setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15291v1-abstract-full').style.display = 'none'; document.getElementById('2203.15291v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.04338">arXiv:2203.04338</a> <span> [<a href="https://arxiv.org/pdf/2203.04338">pdf</a>, <a href="https://arxiv.org/format/2203.04338">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02076-6">10.1038/s41567-023-02076-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Realization of a Measurement-Induced Entanglement Phase Transition on a Superconducting Quantum Processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Koh%2C+J+M">Jin Ming Koh</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shi-Ning Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Motta%2C+M">Mario Motta</a>, <a href="/search/quant-ph?searchtype=author&query=Minnich%2C+A+J">Austin J. Minnich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.04338v2-abstract-short" style="display: inline;"> Ergodic quantum many-body systems undergoing unitary dynamics evolve towards increasingly entangled states characterized by an extensive scaling of entanglement entropy with system volume. At the other extreme, quantum systems repeatedly measured may be stabilized in a measurement eigenstate, a phenomenon known as the quantum Zeno effect. Recently, the intermediate regime in which unitary evolutio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04338v2-abstract-full').style.display = 'inline'; document.getElementById('2203.04338v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.04338v2-abstract-full" style="display: none;"> Ergodic quantum many-body systems undergoing unitary dynamics evolve towards increasingly entangled states characterized by an extensive scaling of entanglement entropy with system volume. At the other extreme, quantum systems repeatedly measured may be stabilized in a measurement eigenstate, a phenomenon known as the quantum Zeno effect. Recently, the intermediate regime in which unitary evolution is interspersed with quantum measurements has become of interest. Numerical studies have reported the existence of distinct phases characterized by volume- and area-law entanglement entropy scaling for infrequent and frequent measurement rates, respectively, separated by a critical measurement rate. The experimental investigation of these dynamic quantum phases of matter on near-term quantum hardware is challenging due to the need for repeated high-fidelity mid-circuit measurements and fine control over the evolving unitaries. Here, we report the realization of a measurement-induced entanglement transition on superconducting quantum processors with mid-circuit readout capability. We directly observe extensive and sub-extensive scaling of entanglement entropy in the volume- and area-law phases, respectively, by varying the rate of projective measurements. We further demonstrate phenomenological critical behavior of the transition by performing a data collapse for different system sizes. Our work paves the way for the use of mid-circuit measurement as an effective resource for quantum simulation on near-term quantum computers, for instance by facilitating the study of dynamic and long-range entangled quantum phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04338v2-abstract-full').style.display = 'none'; document.getElementById('2203.04338v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures; supplementary material 7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10333">arXiv:2112.10333</a> <span> [<a href="https://arxiv.org/pdf/2112.10333">pdf</a>, <a href="https://arxiv.org/format/2112.10333">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Realizing symmetry-protected topological phases in a spin-1/2 chain with next-nearest neighbor hopping on superconducting qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tan%2C+A+T+K">Adrian T. K. Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shi-Ning Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Tazhigulov%2C+R+N">Ruslan N. Tazhigulov</a>, <a href="/search/quant-ph?searchtype=author&query=Chan%2C+G+K">Garnet Kin-Lic Chan</a>, <a href="/search/quant-ph?searchtype=author&query=Minnich%2C+A+J">Austin J. Minnich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10333v1-abstract-short" style="display: inline;"> The realization of novel phases of matter on quantum simulators is a topic of intense interest. Digital quantum computers offer a route to prepare topological phases with interactions that do not naturally arise in analog quantum simulators. Here, we report the realization of symmetry-protected topological (SPT) phases of a spin-{1/2} Hamiltonian with next-nearest-neighbor hopping on up to 11 qubi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10333v1-abstract-full').style.display = 'inline'; document.getElementById('2112.10333v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10333v1-abstract-full" style="display: none;"> The realization of novel phases of matter on quantum simulators is a topic of intense interest. Digital quantum computers offer a route to prepare topological phases with interactions that do not naturally arise in analog quantum simulators. Here, we report the realization of symmetry-protected topological (SPT) phases of a spin-{1/2} Hamiltonian with next-nearest-neighbor hopping on up to 11 qubits on a programmable superconducting quantum processor. We observe clear signatures of the two distinct SPT phases, such as excitations localized to specific edges and finite string order parameters. Our work advances ongoing efforts to realize novel states of matter with exotic interactions on digital near-term quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10333v1-abstract-full').style.display = 'none'; document.getElementById('2112.10333v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.11346">arXiv:2111.11346</a> <span> [<a href="https://arxiv.org/pdf/2111.11346">pdf</a>, <a href="https://arxiv.org/format/2111.11346">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.4.L022064">10.1103/PhysRevResearch.4.L022064 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Knot topology of exceptional point and non-Hermitian no-go theorem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+H">Haiping Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shikang Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S">Shu Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.11346v4-abstract-short" style="display: inline;"> Exceptional points (EPs) are peculiar band singularities and play a vital role in a rich array of unusual optical phenomena and non-Hermitian band theory. In this paper, we provide a topological classification of isolated EPs based on homotopy theory. In particular, the classification indicates that an $n$-th order EP in two dimensions is fully characterized by the braid group B$_n$, with its eige… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11346v4-abstract-full').style.display = 'inline'; document.getElementById('2111.11346v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.11346v4-abstract-full" style="display: none;"> Exceptional points (EPs) are peculiar band singularities and play a vital role in a rich array of unusual optical phenomena and non-Hermitian band theory. In this paper, we provide a topological classification of isolated EPs based on homotopy theory. In particular, the classification indicates that an $n$-th order EP in two dimensions is fully characterized by the braid group B$_n$, with its eigenenergies tied up into a geometric knot along a closed path enclosing the EP. The quantized discriminant invariant of the EP is the writhe of the knot. The knot crossing number gives the number of bulk Fermi arcs emanating from each EP. Furthermore, we put forward a non-Hermitian no-go theorem, which governs the possible configurations of EPs and their splitting rules on a two-dimensional lattice and goes beyond the previous fermion doubling theorem. We present a simple algorithm generating the non-Hermitian Hamiltonian with a prescribed knot. Our framework constitutes a systematic topological classification of the EPs and paves the way towards exploring the intriguing phenomena related to the enigmatic non-Hermitian band degeneracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.11346v4-abstract-full').style.display = 'none'; document.getElementById('2111.11346v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+3 pages, 2+1 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 4, L022064 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.13659">arXiv:2110.13659</a> <span> [<a href="https://arxiv.org/pdf/2110.13659">pdf</a>, <a href="https://arxiv.org/ps/2110.13659">ps</a>, <a href="https://arxiv.org/format/2110.13659">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A class of quantum synchronizable codes of length $2^n$ over ${\rm F}_q$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shiwen Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+T">Tongjiang Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+Y">Yuhua Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xueting Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.13659v1-abstract-short" style="display: inline;"> Quantum synchronizable codes (QSCs) are special quantum error-correcting codes which can be used to correct the effects of quantum noise on qubits and misalignment in block synchronization. In this paper, a new class of quantum synchronizable codes of length $2^n$ are constructed by using the cyclotomic cosets, whose synchronization capabilities always reach the upper bound $2^n$. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.13659v1-abstract-full" style="display: none;"> Quantum synchronizable codes (QSCs) are special quantum error-correcting codes which can be used to correct the effects of quantum noise on qubits and misalignment in block synchronization. In this paper, a new class of quantum synchronizable codes of length $2^n$ are constructed by using the cyclotomic cosets, whose synchronization capabilities always reach the upper bound $2^n$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.13659v1-abstract-full').style.display = 'none'; document.getElementById('2110.13659v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.02648">arXiv:2107.02648</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> A new family of quantum synchronizable codes from negacyclic codes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+T">Tao Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+T">Tongjiang Yan</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shiwen Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.02648v3-abstract-short" style="display: inline;"> Quantum synchronizable codes are kinds of quantum error-correcting codes that can not only correct the effects of quantum noise on qubits but also the misalignment in block synchronization. In this paper, a new method for construct quantum synchronizable codes from negacyclic codes are proposed, where the length of these negacyclic codes are $p$ and $pq$. Through this method, the quantum synchroni… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.02648v3-abstract-full').style.display = 'inline'; document.getElementById('2107.02648v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.02648v3-abstract-full" style="display: none;"> Quantum synchronizable codes are kinds of quantum error-correcting codes that can not only correct the effects of quantum noise on qubits but also the misalignment in block synchronization. In this paper, a new method for construct quantum synchronizable codes from negacyclic codes are proposed, where the length of these negacyclic codes are $p$ and $pq$. Through this method, the quantum synchronizable code possesses optimal or almost optimal error-correcting capability towards bits errors and phase errors, since the negacyclic codes we used are optimal or almost optimal. Moreover, this paper contributes to construct two classes quantum synchronizable codes, whose synchronization capabilities can reach the upper limit under certain conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.02648v3-abstract-full').style.display = 'none'; document.getElementById('2107.02648v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Some errors with this article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12882">arXiv:2106.12882</a> <span> [<a href="https://arxiv.org/pdf/2106.12882">pdf</a>, <a href="https://arxiv.org/format/2106.12882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1402-4896/ad1c27">10.1088/1402-4896/ad1c27 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy Quantum Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shin Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Shih%2C+L">Li-Chai Shih</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+Y">Yuan-Chung Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12882v3-abstract-short" style="display: inline;"> Quantum simulation represents the most promising quantum application to demonstrate quantum advantage on near-term noisy intermediate-scale quantum (NISQ) computers, yet available quantum simulation algorithms are prone to errors and thus difficult to be realized. Herein, we propose a novel scheme to utilize intrinsic gate errors of NISQ devices to enable controllable simulation of open quantum sy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12882v3-abstract-full').style.display = 'inline'; document.getElementById('2106.12882v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12882v3-abstract-full" style="display: none;"> Quantum simulation represents the most promising quantum application to demonstrate quantum advantage on near-term noisy intermediate-scale quantum (NISQ) computers, yet available quantum simulation algorithms are prone to errors and thus difficult to be realized. Herein, we propose a novel scheme to utilize intrinsic gate errors of NISQ devices to enable controllable simulation of open quantum system dynamics without ancillary qubits or explicit bath engineering, thus turning unwanted quantum noises into useful quantum resources. Specifically, we simulate energy transfer process in a photosynthetic dimer system on IBM-Q cloud. By employing designed decoherence-inducing gates, we show that quantum dissipative dynamics can be simulated efficiently across coherent-to-incoherent regimes with results comparable to those of the numerically-exact classical method. Moreover, we demonstrate a calibration routine that enables consistent and predictive simulations of open-quantum system dynamics in the intermediate coupling regime. This work provides a new direction for quantum advantage in the NISQ era. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12882v3-abstract-full').style.display = 'none'; document.getElementById('2106.12882v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Scr. 99 035101 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.07823">arXiv:2104.07823</a> <span> [<a href="https://arxiv.org/pdf/2104.07823">pdf</a>, <a href="https://arxiv.org/format/2104.07823">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.3.010320">10.1103/PRXQuantum.3.010320 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Digital quantum simulation of open quantum systems using quantum imaginary time evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Kamakari%2C+H">Hirsh Kamakari</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shi-Ning Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Motta%2C+M">Mario Motta</a>, <a href="/search/quant-ph?searchtype=author&query=Minnich%2C+A+J">Austin J. Minnich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.07823v3-abstract-short" style="display: inline;"> Quantum simulation on emerging quantum hardware is a topic of intense interest. While many studies focus on computing ground state properties or simulating unitary dynamics of closed systems, open quantum systems are an interesting target of study owing to their ubiquity and rich physical behavior. However, their non-unitary dynamics are also not natural to simulate on digital quantum devices. Her… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07823v3-abstract-full').style.display = 'inline'; document.getElementById('2104.07823v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.07823v3-abstract-full" style="display: none;"> Quantum simulation on emerging quantum hardware is a topic of intense interest. While many studies focus on computing ground state properties or simulating unitary dynamics of closed systems, open quantum systems are an interesting target of study owing to their ubiquity and rich physical behavior. However, their non-unitary dynamics are also not natural to simulate on digital quantum devices. Here, we report algorithms for the digital quantum simulation of the dynamics of open quantum systems governed by a Lindblad equation using adaptations of the quantum imaginary time evolution (QITE) algorithm. We demonstrate the algorithms on IBM Quantum's hardware with simulations of the spontaneous emission of a two level system and the dissipative transverse field Ising model. Our work advances efforts to simulate the dynamics of open quantum systems on quantum hardware. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07823v3-abstract-full').style.display = 'none'; document.getElementById('2104.07823v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 6 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 3, 010320 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.05059">arXiv:2104.05059</a> <span> [<a href="https://arxiv.org/pdf/2104.05059">pdf</a>, <a href="https://arxiv.org/format/2104.05059">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.033221">10.1103/PhysRevResearch.3.033221 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Application of Quantum Machine Learning using the Quantum Kernel Algorithm on High Energy Physics Analysis at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wu%2C+S+L">Sau Lan Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shaojun Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Guan%2C+W">Wen Guan</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+C">Chen Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Chan%2C+J">Jay Chan</a>, <a href="/search/quant-ph?searchtype=author&query=Cheng%2C+C+L">Chi Lung Cheng</a>, <a href="/search/quant-ph?searchtype=author&query=Pham%2C+T">Tuan Pham</a>, <a href="/search/quant-ph?searchtype=author&query=Qian%2C+Y">Yan Qian</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+A+Z">Alex Zeng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Livny%2C+M">Miron Livny</a>, <a href="/search/quant-ph?searchtype=author&query=Glick%2C+J">Jennifer Glick</a>, <a href="/search/quant-ph?searchtype=author&query=Barkoutsos%2C+P+K">Panagiotis Kl. Barkoutsos</a>, <a href="/search/quant-ph?searchtype=author&query=Woerner%2C+S">Stefan Woerner</a>, <a href="/search/quant-ph?searchtype=author&query=Tavernelli%2C+I">Ivano Tavernelli</a>, <a href="/search/quant-ph?searchtype=author&query=Carminati%2C+F">Federico Carminati</a>, <a href="/search/quant-ph?searchtype=author&query=Di+Meglio%2C+A">Alberto Di Meglio</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+A+C+Y">Andy C. Y. Li</a>, <a href="/search/quant-ph?searchtype=author&query=Lykken%2C+J">Joseph Lykken</a>, <a href="/search/quant-ph?searchtype=author&query=Spentzouris%2C+P">Panagiotis Spentzouris</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Yoo%2C+S">Shinjae Yoo</a>, <a href="/search/quant-ph?searchtype=author&query=Wei%2C+T">Tzu-Chieh Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.05059v2-abstract-short" style="display: inline;"> Quantum machine learning could possibly become a valuable alternative to classical machine learning for applications in High Energy Physics by offering computational speed-ups. In this study, we employ a support vector machine with a quantum kernel estimator (QSVM-Kernel method) to a recent LHC flagship physics analysis: $t\bar{t}H$ (Higgs boson production in association with a top quark pair). In… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05059v2-abstract-full').style.display = 'inline'; document.getElementById('2104.05059v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.05059v2-abstract-full" style="display: none;"> Quantum machine learning could possibly become a valuable alternative to classical machine learning for applications in High Energy Physics by offering computational speed-ups. In this study, we employ a support vector machine with a quantum kernel estimator (QSVM-Kernel method) to a recent LHC flagship physics analysis: $t\bar{t}H$ (Higgs boson production in association with a top quark pair). In our quantum simulation study using up to 20 qubits and up to 50000 events, the QSVM-Kernel method performs as well as its classical counterparts in three different platforms from Google Tensorflow Quantum, IBM Quantum and Amazon Braket. Additionally, using 15 qubits and 100 events, the application of the QSVM-Kernel method on the IBM superconducting quantum hardware approaches the performance of a noiseless quantum simulator. Our study confirms that the QSVM-Kernel method can use the large dimensionality of the quantum Hilbert space to replace the classical feature space in realistic physics datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.05059v2-abstract-full').style.display = 'none'; document.getElementById('2104.05059v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 033221 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01155">arXiv:2104.01155</a> <span> [<a href="https://arxiv.org/pdf/2104.01155">pdf</a>, <a href="https://arxiv.org/format/2104.01155">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Free-Running Long-Distance Reference-Frame-Independent Quantum Key Distribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Tang%2C+B">Bang-Ying Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+H">Huan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Ji-Peng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+H">Hui-Cun Yu</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+L">Lei Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shi-Hai Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Peng%2C+W">Wei Peng</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+B">Bo Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+W">Wan-Rong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01155v1-abstract-short" style="display: inline;"> Rapidly and randomly drifted reference frames will shorten the link distance and decrease the secure key rate of realistic quantum key distribution (QKD) systems. However, an actively or inappropriately implemented calibration scheme will increase complexity of the systems and may open security loopholes. In this article, we present a free-running reference-frame-independent (RFI) QKD scheme, wher… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01155v1-abstract-full').style.display = 'inline'; document.getElementById('2104.01155v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01155v1-abstract-full" style="display: none;"> Rapidly and randomly drifted reference frames will shorten the link distance and decrease the secure key rate of realistic quantum key distribution (QKD) systems. However, an actively or inappropriately implemented calibration scheme will increase complexity of the systems and may open security loopholes. In this article, we present a free-running reference-frame-independent (RFI) QKD scheme, where measurement events are classified into multiple slices with the same misalignment variation of reference frames and each slice performs the post-processing procedure individually. We perform the free-running RFI QKD experiment with a fiber link of 100km and the misalignment of the reference frame between Alice and Bob is varied more than 29 periods in a 50.7-hour experiment test. The average secure key rate is about 734 bps with a total loss of 31.5 dB, which achieves the state-of-art performance of the long-distance RFI QKD implementations. Our free-running RFI scheme can be efficiently adapted into the satellite-to-ground and drone based mobile communication scenarios, as it can be performed with rapidly varying reference frame and a loss more than 40 dB, where no secure key can be obtained by the original RFI scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01155v1-abstract-full').style.display = 'none'; document.getElementById('2104.01155v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.03380">arXiv:2103.03380</a> <span> [<a href="https://arxiv.org/pdf/2103.03380">pdf</a>, <a href="https://arxiv.org/format/2103.03380">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-25054-z">10.1038/s41467-021-25054-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A squeezed quantum microcomb on a chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Z">Zijiao Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Jahanbozorgi%2C+M">Mandana Jahanbozorgi</a>, <a href="/search/quant-ph?searchtype=author&query=Jeong%2C+D">Dongin Jeong</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuman Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Pfister%2C+O">Olivier Pfister</a>, <a href="/search/quant-ph?searchtype=author&query=Lee%2C+H">Hansuek Lee</a>, <a href="/search/quant-ph?searchtype=author&query=Yi%2C+X">Xu Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.03380v1-abstract-short" style="display: inline;"> The optical microresonator-based frequency comb (microcomb) provides a versatile platform for nonlinear physics studies and has wide applications ranging from metrology to spectroscopy. Deterministic quantum regime is an unexplored aspect of microcombs, in which unconditional entanglements among hundreds of equidistant frequency modes can serve as critical ingredients to scalable universal quantum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03380v1-abstract-full').style.display = 'inline'; document.getElementById('2103.03380v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.03380v1-abstract-full" style="display: none;"> The optical microresonator-based frequency comb (microcomb) provides a versatile platform for nonlinear physics studies and has wide applications ranging from metrology to spectroscopy. Deterministic quantum regime is an unexplored aspect of microcombs, in which unconditional entanglements among hundreds of equidistant frequency modes can serve as critical ingredients to scalable universal quantum computing and quantum networking. Here, we demonstrate a deterministic quantum microcomb in a silica microresonator on a silicon chip. 40 continuous-variable quantum modes, in the form of 20 simultaneously two-mode squeezed comb pairs, are observed within 1 THz optical span at telecommunication wavelengths. A maximum raw squeezing of 1.6 dB is attained. A high-resolution spectroscopy measurement is developed to characterize the frequency equidistance of quantum microcombs. Our demonstration offers the possibility to leverage deterministically generated, frequency multiplexed quantum states and integrated photonics to open up new avenues in fields of spectroscopy, quantum metrology, and scalable quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03380v1-abstract-full').style.display = 'none'; document.getElementById('2103.03380v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.02464">arXiv:2102.02464</a> <span> [<a href="https://arxiv.org/pdf/2102.02464">pdf</a>, <a href="https://arxiv.org/ps/2102.02464">ps</a>, <a href="https://arxiv.org/format/2102.02464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.023712">10.1103/PhysRevA.103.023712 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excess-noise suppression for a squeezed state propagating through random amplifying media via wave-front shaping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+D">Dong Li</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Song Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Yao%2C+Y">Yao Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.02464v1-abstract-short" style="display: inline;"> After propagating through a random amplifying medium, a squeezed state commonly shows excess noise above the shot-noise level. Since large noise can significantly reduce the signal-to-noise ratio, it is detrimental for precision measurement. To circumvent this problem, we propose a noise-reduction scheme using wavefront shaping. It is demonstrated that the average output quantum noise can be effec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02464v1-abstract-full').style.display = 'inline'; document.getElementById('2102.02464v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.02464v1-abstract-full" style="display: none;"> After propagating through a random amplifying medium, a squeezed state commonly shows excess noise above the shot-noise level. Since large noise can significantly reduce the signal-to-noise ratio, it is detrimental for precision measurement. To circumvent this problem, we propose a noise-reduction scheme using wavefront shaping. It is demonstrated that the average output quantum noise can be effectively suppressed even beyond the shot-noise limit. Both the decrease on amplification strength and the increase on input squeezing strength can give rise to a decrease in the suppressed average quantum noise. Our results not only show the feasibility of manipulating the output quantum noise of random amplifying media, but also indicate potential applications in quantum information processing in complex environments, such as, quantum imaging, quantum communication, and quantum key distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02464v1-abstract-full').style.display = 'none'; document.getElementById('2102.02464v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.11560">arXiv:2012.11560</a> <span> [<a href="https://arxiv.org/pdf/2012.11560">pdf</a>, <a href="https://arxiv.org/format/2012.11560">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ac1391">10.1088/1361-6471/ac1391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Application of Quantum Machine Learning using the Quantum Variational Classifier Method to High Energy Physics Analysis at the LHC on IBM Quantum Computer Simulator and Hardware with 10 qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wu%2C+S+L">Sau Lan Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Chan%2C+J">Jay Chan</a>, <a href="/search/quant-ph?searchtype=author&query=Guan%2C+W">Wen Guan</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shaojun Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+A">Alex Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+C">Chen Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Livny%2C+M">Miron Livny</a>, <a href="/search/quant-ph?searchtype=author&query=Carminati%2C+F">Federico Carminati</a>, <a href="/search/quant-ph?searchtype=author&query=Di+Meglio%2C+A">Alberto Di Meglio</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+A+C+Y">Andy C. Y. Li</a>, <a href="/search/quant-ph?searchtype=author&query=Lykken%2C+J">Joseph Lykken</a>, <a href="/search/quant-ph?searchtype=author&query=Spentzouris%2C+P">Panagiotis Spentzouris</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S+Y">Samuel Yen-Chi Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Yoo%2C+S">Shinjae Yoo</a>, <a href="/search/quant-ph?searchtype=author&query=Wei%2C+T">Tzu-Chieh Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.11560v2-abstract-short" style="display: inline;"> One of the major objectives of the experimental programs at the LHC is the discovery of new physics. This requires the identification of rare signals in immense backgrounds. Using machine learning algorithms greatly enhances our ability to achieve this objective. With the progress of quantum technologies, quantum machine learning could become a powerful tool for data analysis in high energy physic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11560v2-abstract-full').style.display = 'inline'; document.getElementById('2012.11560v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.11560v2-abstract-full" style="display: none;"> One of the major objectives of the experimental programs at the LHC is the discovery of new physics. This requires the identification of rare signals in immense backgrounds. Using machine learning algorithms greatly enhances our ability to achieve this objective. With the progress of quantum technologies, quantum machine learning could become a powerful tool for data analysis in high energy physics. In this study, using IBM gate-model quantum computing systems, we employ the quantum variational classifier method in two recent LHC flagship physics analyses: $t\bar{t}H$ (Higgs boson production in association with a top quark pair) and $H\rightarrow渭^{+}渭^{-}$ (Higgs boson decays to two muons, probing the Higgs boson couplings to second-generation fermions). We have obtained early results with 10 qubits on the IBM quantum simulator and the IBM quantum hardware. With small training samples of 100 events on the quantum simulator, the quantum variational classifier method performs similarly to classical algorithms such as SVM (support vector machine) and BDT (boosted decision tree), which are often employed in LHC physics analyses. On the quantum hardware, the quantum variational classifier method has shown promising discrimination power, comparable to that on the quantum simulator. This study demonstrates that quantum machine learning has the ability to differentiate between signal and background in realistic physics datasets. We foresee the usage of quantum machine learning in future high-luminosity LHC physics analyses, including measurements of the Higgs boson self-couplings and searches for dark matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11560v2-abstract-full').style.display = 'none'; document.getElementById('2012.11560v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.03542">arXiv:2009.03542</a> <span> [<a href="https://arxiv.org/pdf/2009.03542">pdf</a>, <a href="https://arxiv.org/format/2009.03542">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.2.010317">10.1103/PRXQuantum.2.010317 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Computation of Finite-Temperature Static and Dynamical Properties of Spin Systems Using Quantum Imaginary Time Evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shi-Ning Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Motta%2C+M">Mario Motta</a>, <a href="/search/quant-ph?searchtype=author&query=Tazhigulov%2C+R+N">Ruslan N. Tazhigulov</a>, <a href="/search/quant-ph?searchtype=author&query=Tan%2C+A+T+K">Adrian T. K. Tan</a>, <a href="/search/quant-ph?searchtype=author&query=Chan%2C+G+K">Garnet Kin-Lic Chan</a>, <a href="/search/quant-ph?searchtype=author&query=Minnich%2C+A+J">Austin J. Minnich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.03542v1-abstract-short" style="display: inline;"> Developing scalable quantum algorithms to study finite-temperature physics of quantum many-body systems has attracted considerable interest due to recent advancements in quantum hardware. However, such algorithms in their present form require resources that exceed the capabilities of current quantum computers except for a limited range of system sizes and observables. Here, we report calculations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03542v1-abstract-full').style.display = 'inline'; document.getElementById('2009.03542v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.03542v1-abstract-full" style="display: none;"> Developing scalable quantum algorithms to study finite-temperature physics of quantum many-body systems has attracted considerable interest due to recent advancements in quantum hardware. However, such algorithms in their present form require resources that exceed the capabilities of current quantum computers except for a limited range of system sizes and observables. Here, we report calculations of finite-temperature properties including energies, static and dynamical correlation functions, and excitation spectra of spin Hamiltonians with up to four sites on five-qubit IBM Quantum devices. These calculations are performed using the quantum imaginary time evolution (QITE) algorithm and made possible by several algorithmic improvements, including a method to exploit symmetries that reduces the quantum resources required by QITE, circuit optimization procedures to reduce circuit depth, and error mitigation techniques to improve the quality of raw hardware data. Our work demonstrates that the ansatz-independent QITE algorithm is capable of computing diverse finite-temperature observables on near-term quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03542v1-abstract-full').style.display = 'none'; document.getElementById('2009.03542v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 2, 010317 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.06290">arXiv:2008.06290</a> <span> [<a href="https://arxiv.org/pdf/2008.06290">pdf</a>, <a href="https://arxiv.org/format/2008.06290">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-020-75159-6">10.1038/s41598-020-75159-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Security evaluation of quantum key distribution with weak basis-choice flaws </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shi-Hai Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Tian%2C+Z">Zhi-Yu Tian</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+M">Mei-Sheng Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+Y">Yan Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.06290v2-abstract-short" style="display: inline;"> Quantum key distribution (QKD) can share an unconditional secure key between two remote parties, but the deviation between theory and practice will break the security of the generated key. In this paper, we evaluate the security of QKD with weak basis-choice flaws, in which the random bits used by Alice and Bob are weakly controlled by Eve. Based on the definition of Li \textit{et al.} [Sci. Rep.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06290v2-abstract-full').style.display = 'inline'; document.getElementById('2008.06290v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.06290v2-abstract-full" style="display: none;"> Quantum key distribution (QKD) can share an unconditional secure key between two remote parties, but the deviation between theory and practice will break the security of the generated key. In this paper, we evaluate the security of QKD with weak basis-choice flaws, in which the random bits used by Alice and Bob are weakly controlled by Eve. Based on the definition of Li \textit{et al.} [Sci. Rep. 5, 16200 (2015)] and GLLP's analysis, we obtain a tight and analytical bound to estimate the phase error and key rate for both the single photon source and the weak coherent source. Our approach largely increases the key rate from that of the original approach. Finally, we investigate and confirm the security of BB84-QKD with a practical commercial devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06290v2-abstract-full').style.display = 'none'; document.getElementById('2008.06290v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 10, 18145 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.06608">arXiv:2007.06608</a> <span> [<a href="https://arxiv.org/pdf/2007.06608">pdf</a>, <a href="https://arxiv.org/format/2007.06608">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.223601">10.1103/PhysRevLett.125.223601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deterministic Generation of Loss-Tolerant Photonic Cluster States with a Single Quantum Emitter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhan%2C+Y">Yuan Zhan</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.06608v2-abstract-short" style="display: inline;"> A photonic cluster state with a tree-type entanglement structure constitutes an efficient resource for quantum error correction of photon loss. But the generation of a tree cluster state with an arbitrary size is notoriously difficult. Here, we propose a protocol to deterministically generate photonic tree states of arbitrary size by using only a single quantum emitter. Photonic entanglement is es… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06608v2-abstract-full').style.display = 'inline'; document.getElementById('2007.06608v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.06608v2-abstract-full" style="display: none;"> A photonic cluster state with a tree-type entanglement structure constitutes an efficient resource for quantum error correction of photon loss. But the generation of a tree cluster state with an arbitrary size is notoriously difficult. Here, we propose a protocol to deterministically generate photonic tree states of arbitrary size by using only a single quantum emitter. Photonic entanglement is established through both emission and re-scattering from the same emitter, enabling fast and resource-efficient entanglement generation. The same protocol can also be extended to generate more general tree-type entangled states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06608v2-abstract-full').style.display = 'none'; document.getElementById('2007.06608v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 223601 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10385">arXiv:2005.10385</a> <span> [<a href="https://arxiv.org/pdf/2005.10385">pdf</a>, <a href="https://arxiv.org/format/2005.10385">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.0c00833">10.1021/acsphotonics.0c00833 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Narrow-linewidth tin-vacancy centers in a diamond waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Rugar%2C+A+E">Alison E. Rugar</a>, <a href="/search/quant-ph?searchtype=author&query=Dory%2C+C">Constantin Dory</a>, <a href="/search/quant-ph?searchtype=author&query=Aghaeimeibodi%2C+S">Shahriar Aghaeimeibodi</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+H">Haiyu Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Mishra%2C+S+D">Sattwik Deb Mishra</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Melosh%2C+N+A">Nicholas A. Melosh</a>, <a href="/search/quant-ph?searchtype=author&query=Vu%C4%8Dkovi%C4%87%2C+J">Jelena Vu膷kovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10385v2-abstract-short" style="display: inline;"> Integrating solid-state quantum emitters with photonic circuits is essential for realizing large-scale quantum photonic processors. Negatively charged tin-vacancy (SnV$^-$) centers in diamond have emerged as promising candidates for quantum emitters because of their excellent optical and spin properties including narrow-linewidth emission and long spin coherence times. SnV$^-$ centers need to be i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10385v2-abstract-full').style.display = 'inline'; document.getElementById('2005.10385v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10385v2-abstract-full" style="display: none;"> Integrating solid-state quantum emitters with photonic circuits is essential for realizing large-scale quantum photonic processors. Negatively charged tin-vacancy (SnV$^-$) centers in diamond have emerged as promising candidates for quantum emitters because of their excellent optical and spin properties including narrow-linewidth emission and long spin coherence times. SnV$^-$ centers need to be incorporated in optical waveguides for efficient on-chip routing of the photons they generate. However, such integration has yet to be realized. In this Letter, we demonstrate the coupling of SnV$^-$ centers to a nanophotonic waveguide. We realize this device by leveraging our recently developed shallow ion implantation and growth method for generation of high-quality SnV$^-$ centers and the advanced quasi-isotropic diamond fabrication technique. We confirm the compatibility and robustness of these techniques through successful coupling of narrow-linewidth SnV$^-$ centers (as narrow as $36\pm2$ MHz) to the diamond waveguide. Furthermore, we investigate the stability of waveguide-coupled SnV$^-$ centers under resonant excitation. Our results are an important step toward SnV$^-$-based on-chip spin-photon interfaces, single-photon nonlinearity, and photon-mediated spin interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10385v2-abstract-full').style.display = 'none'; document.getElementById('2005.10385v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.12591">arXiv:2003.12591</a> <span> [<a href="https://arxiv.org/pdf/2003.12591">pdf</a>, <a href="https://arxiv.org/format/2003.12591">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-020-00310-0">10.1038/s41534-020-00310-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectrally reconfigurable quantum emitters enabled by optimized fast modulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lukin%2C+D+M">Daniil M. Lukin</a>, <a href="/search/quant-ph?searchtype=author&query=White%2C+A+D">Alexander D. White</a>, <a href="/search/quant-ph?searchtype=author&query=Trivedi%2C+R">Rahul Trivedi</a>, <a href="/search/quant-ph?searchtype=author&query=Guidry%2C+M+A">Melissa A. Guidry</a>, <a href="/search/quant-ph?searchtype=author&query=Morioka%2C+N">Naoya Morioka</a>, <a href="/search/quant-ph?searchtype=author&query=Babin%2C+C">Charles Babin</a>, <a href="/search/quant-ph?searchtype=author&query=Soykal%2C+%C3%96+O">脰ney O. Soykal</a>, <a href="/search/quant-ph?searchtype=author&query=Hassan%2C+J+U">Jawad Ul Hassan</a>, <a href="/search/quant-ph?searchtype=author&query=Son%2C+N+T">Nguyen Tien Son</a>, <a href="/search/quant-ph?searchtype=author&query=Ohshima%2C+T">Takeshi Ohshima</a>, <a href="/search/quant-ph?searchtype=author&query=Vasireddy%2C+P+K">Praful K. Vasireddy</a>, <a href="/search/quant-ph?searchtype=author&query=Nasr%2C+M+H">Mamdouh H. Nasr</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=MacLean%2C+J+W">Jean-Phillipe W. MacLean</a>, <a href="/search/quant-ph?searchtype=author&query=Dory%2C+C">Constantin Dory</a>, <a href="/search/quant-ph?searchtype=author&query=Nanni%2C+E+A">Emilio A. Nanni</a>, <a href="/search/quant-ph?searchtype=author&query=Wrachtrup%2C+J">J枚rg Wrachtrup</a>, <a href="/search/quant-ph?searchtype=author&query=Kaiser%2C+F">Florian Kaiser</a>, <a href="/search/quant-ph?searchtype=author&query=Vu%C4%8Dkovi%C4%87%2C+J">Jelena Vu膷kovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.12591v3-abstract-short" style="display: inline;"> The ability to shape photon emission facilitates strong photon-mediated interactions between disparate physical systems, thereby enabling applications in quantum information processing, simulation and communication. Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is particularly attractive for realizing such applications on-chip. Here we propose t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12591v3-abstract-full').style.display = 'inline'; document.getElementById('2003.12591v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.12591v3-abstract-full" style="display: none;"> The ability to shape photon emission facilitates strong photon-mediated interactions between disparate physical systems, thereby enabling applications in quantum information processing, simulation and communication. Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is particularly attractive for realizing such applications on-chip. Here we propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission. Using a scattering-matrix formalism, we find that a two-level system, when modulated faster than its optical lifetime, can be treated as a single-photon source with a widely reconfigurable photon spectrum that is amenable to standard numerical optimization techniques. To enable the experimental demonstration of this spectral control scheme, we investigate the Stark tuning properties of the silicon vacancy in silicon carbide, a color center with promise for optical quantum information processing technologies. We find that the silicon vacancy possesses excellent spectral stability and tuning characteristics, allowing us to probe its fast modulation regime, observe the theoretically-predicted two-photon correlations, and demonstrate spectral engineering. Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.12591v3-abstract-full').style.display = 'none'; document.getElementById('2003.12591v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures; Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Inf 6, 80 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.09146">arXiv:2002.09146</a> <span> [<a href="https://arxiv.org/pdf/2002.09146">pdf</a>, <a href="https://arxiv.org/format/2002.09146">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.397962">10.1364/OE.397962 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hacking single-photon avalanche detector in quantum key distribution via pulse illumination </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Z">Zhihao Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+A">Anqi Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+H">Huan Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shi-Hai Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+J">Jiangfang Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Qiang%2C+X">Xiaogang Qiang</a>, <a href="/search/quant-ph?searchtype=author&query=Fu%2C+X">Xiang Fu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+P">Ping Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+J">Junjie Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.09146v2-abstract-short" style="display: inline;"> Quantum key distribution (QKD) has been proved to be information-theoretically secure in theory. Unfortunately, the imperfect devices in practice compromise its security. Thus, to improve the security property of practical QKD systems, a commonly used method is to patch the loopholes in the existing QKD systems. However, in this work, we show an adversary's capability of exploiting the imperfectio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09146v2-abstract-full').style.display = 'inline'; document.getElementById('2002.09146v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.09146v2-abstract-full" style="display: none;"> Quantum key distribution (QKD) has been proved to be information-theoretically secure in theory. Unfortunately, the imperfect devices in practice compromise its security. Thus, to improve the security property of practical QKD systems, a commonly used method is to patch the loopholes in the existing QKD systems. However, in this work, we show an adversary's capability of exploiting the imperfection of the patch itself to bypass the patch. Specifically, we experimentally demonstrate that, in the detector under test, the patch of photocurrent monitor against the detector blinding attack can be defeated by the pulse illumination attack proposed in this paper. We also analyze the secret key rate under the pulse illumination attack, which theoretically confirmed that Eve can conduct the attack to learn the secret key. This work indicates the importance of inspecting the security loopholes in a detection unit to further understand their impacts on a QKD system. The method of pulse illumination attack can be a general testing item in the security evaluation standard of QKD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09146v2-abstract-full').style.display = 'none'; document.getElementById('2002.09146v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.02844">arXiv:2001.02844</a> <span> [<a href="https://arxiv.org/pdf/2001.02844">pdf</a>, <a href="https://arxiv.org/format/2001.02844">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.aba9636">10.1126/sciadv.aba9636 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Real-time nanodiamond thermometry probing in-vivo thermogenic responses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Fujiwara%2C+M">Masazumi Fujiwara</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Simo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Dohms%2C+A">Alexander Dohms</a>, <a href="/search/quant-ph?searchtype=author&query=Nishimura%2C+Y">Yushi Nishimura</a>, <a href="/search/quant-ph?searchtype=author&query=Suto%2C+K">Ken Suto</a>, <a href="/search/quant-ph?searchtype=author&query=Takezawa%2C+Y">Yuka Takezawa</a>, <a href="/search/quant-ph?searchtype=author&query=Oshimi%2C+K">Keisuke Oshimi</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+L">Li Zhao</a>, <a href="/search/quant-ph?searchtype=author&query=Sadzak%2C+N">Nikola Sadzak</a>, <a href="/search/quant-ph?searchtype=author&query=Umehara%2C+Y">Yumi Umehara</a>, <a href="/search/quant-ph?searchtype=author&query=Teki%2C+Y">Yoshio Teki</a>, <a href="/search/quant-ph?searchtype=author&query=Komatsu%2C+N">Naoki Komatsu</a>, <a href="/search/quant-ph?searchtype=author&query=Benson%2C+O">Oliver Benson</a>, <a href="/search/quant-ph?searchtype=author&query=Shikano%2C+Y">Yutaka Shikano</a>, <a href="/search/quant-ph?searchtype=author&query=Kage-Nakadai%2C+E">Eriko Kage-Nakadai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.02844v2-abstract-short" style="display: inline;"> Real-time temperature monitoring inside living organisms provides a direct measure of their biological activities, such as homeostatic thermoregulation and energy metabolism. However, it is challenging to reduce the size of bio-compatible thermometers down to submicrometers despite their potential applications for the thermal imaging of subtissue structures with single-cell resolution. Light-emitt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02844v2-abstract-full').style.display = 'inline'; document.getElementById('2001.02844v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.02844v2-abstract-full" style="display: none;"> Real-time temperature monitoring inside living organisms provides a direct measure of their biological activities, such as homeostatic thermoregulation and energy metabolism. However, it is challenging to reduce the size of bio-compatible thermometers down to submicrometers despite their potential applications for the thermal imaging of subtissue structures with single-cell resolution. Light-emitting nanothermometers that remotely sense temperature via optical signals exhibit considerable potential in such \textit{in-vivo} high-spatial-resolution thermometry. Here, using quantum nanothermometers based on optically accessible electron spins in nanodiamonds (NDs), we demonstrate \textit{in-vivo} real-time temperature monitoring inside \textit{Caenorhabditis elegans} (\textit{C. elegans}) worms. We developed a thermometry system that can measure the temperatures of movable NDs inside live adult worms with a precision of $\pm 0.22^{\circ}{\rm C}$. Using this system, we determined the increase in temperature based on the thermogenic responses of the worms during the chemical stimuli of mitochondrial uncouplers. Our technique demonstrates sub-micrometer localization of real-time temperature information in living animals and direct identification of their pharmacological thermogenesis. The results obtained facilitate the development of a method to probe subcellular temperature variation inside living organisms and may allow for quantification of their biological activities based on their energy expenditures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02844v2-abstract-full').style.display = 'none'; document.getElementById('2001.02844v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 + 10 pages, 4 + 11 figures, our submission is jointly with the paper arXiv:2001.02664</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 6, eaba9636 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.06642">arXiv:1912.06642</a> <span> [<a href="https://arxiv.org/pdf/1912.06642">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.2.017002">10.1103/PRXQuantum.2.017002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of Quantum InterConnects for Next-Generation Information Technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Awschalom%2C+D">David Awschalom</a>, <a href="/search/quant-ph?searchtype=author&query=Berggren%2C+K+K">Karl K. Berggren</a>, <a href="/search/quant-ph?searchtype=author&query=Bernien%2C+H">Hannes Bernien</a>, <a href="/search/quant-ph?searchtype=author&query=Bhave%2C+S">Sunil Bhave</a>, <a href="/search/quant-ph?searchtype=author&query=Carr%2C+L+D">Lincoln D. Carr</a>, <a href="/search/quant-ph?searchtype=author&query=Davids%2C+P">Paul Davids</a>, <a href="/search/quant-ph?searchtype=author&query=Economou%2C+S+E">Sophia E. Economou</a>, <a href="/search/quant-ph?searchtype=author&query=Englund%2C+D">Dirk Englund</a>, <a href="/search/quant-ph?searchtype=author&query=Faraon%2C+A">Andrei Faraon</a>, <a href="/search/quant-ph?searchtype=author&query=Fejer%2C+M">Marty Fejer</a>, <a href="/search/quant-ph?searchtype=author&query=Guha%2C+S">Saikat Guha</a>, <a href="/search/quant-ph?searchtype=author&query=Gustafsson%2C+M+V">Martin V. Gustafsson</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+E">Evelyn Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+L">Liang Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Kim%2C+J">Jungsang Kim</a>, <a href="/search/quant-ph?searchtype=author&query=Korzh%2C+B">Boris Korzh</a>, <a href="/search/quant-ph?searchtype=author&query=Kumar%2C+P">Prem Kumar</a>, <a href="/search/quant-ph?searchtype=author&query=Kwiat%2C+P+G">Paul G. Kwiat</a>, <a href="/search/quant-ph?searchtype=author&query=Lon%C4%8Dar%2C+M">Marko Lon膷ar</a>, <a href="/search/quant-ph?searchtype=author&query=Lukin%2C+M+D">Mikhail D. Lukin</a>, <a href="/search/quant-ph?searchtype=author&query=Miller%2C+D+A+B">David A. B. Miller</a>, <a href="/search/quant-ph?searchtype=author&query=Monroe%2C+C">Christopher Monroe</a>, <a href="/search/quant-ph?searchtype=author&query=Nam%2C+S+W">Sae Woo Nam</a>, <a href="/search/quant-ph?searchtype=author&query=Narang%2C+P">Prineha Narang</a>, <a href="/search/quant-ph?searchtype=author&query=Orcutt%2C+J+S">Jason S. Orcutt</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.06642v2-abstract-short" style="display: inline;"> Just as classical information technology rests on a foundation built of interconnected information-processing systems, quantum information technology (QIT) must do the same. A critical component of such systems is the interconnect, a device or process that allows transfer of information between disparate physical media, for example, semiconductor electronics, individual atoms, light pulses in opti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06642v2-abstract-full').style.display = 'inline'; document.getElementById('1912.06642v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.06642v2-abstract-full" style="display: none;"> Just as classical information technology rests on a foundation built of interconnected information-processing systems, quantum information technology (QIT) must do the same. A critical component of such systems is the interconnect, a device or process that allows transfer of information between disparate physical media, for example, semiconductor electronics, individual atoms, light pulses in optical fiber, or microwave fields. While interconnects have been well engineered for decades in the realm of classical information technology, quantum interconnects (QuICs) present special challenges, as they must allow the transfer of fragile quantum states between different physical parts or degrees of freedom of the system. The diversity of QIT platforms (superconducting, atomic, solid-state color center, optical, etc.) that will form a quantum internet poses additional challenges. As quantum systems scale to larger size, the quantum interconnect bottleneck is imminent, and is emerging as a grand challenge for QIT. For these reasons, it is the position of the community represented by participants of the NSF workshop on Quantum Interconnects that accelerating QuIC research is crucial for sustained development of a national quantum science and technology program. Given the diversity of QIT platforms, materials used, applications, and infrastructure required, a convergent research program including partnership between academia, industry and national laboratories is required. This document is a summary from a U.S. National Science Foundation supported workshop held on 31 October - 1 November 2019 in Alexandria, VA. Attendees were charged to identify the scientific and community needs, opportunities, and significant challenges for quantum interconnects over the next 2-5 years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06642v2-abstract-full').style.display = 'none'; document.getElementById('1912.06642v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is an updated version V2, including expanded text and listing of all co-authors. To whom correspondence should be addressed: Marko Lon膷ar: loncar@seas.harvard.edu; Michael G. Raymer: raymer@uoregon.edu</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 2, 017002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.14165">arXiv:1910.14165</a> <span> [<a href="https://arxiv.org/pdf/1910.14165">pdf</a>, <a href="https://arxiv.org/format/1910.14165">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b04495">10.1021/acs.nanolett.9b04495 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of Tin-Vacancy Centers in Diamond via Shallow Ion Implantation and Subsequent Diamond Overgrowth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Rugar%2C+A+E">Alison E. Rugar</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+H">Haiyu Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Dory%2C+C">Constantin Dory</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=McQuade%2C+P+J">Patrick J. McQuade</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Melosh%2C+N+A">Nicholas A. Melosh</a>, <a href="/search/quant-ph?searchtype=author&query=Vu%C4%8Dkovi%C4%87%2C+J">Jelena Vu膷kovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.14165v2-abstract-short" style="display: inline;"> Group-IV color centers in diamond have garnered great interest for their potential as optically active solid-state spin qubits. Future utilization of such emitters requires the development of precise site-controlled emitter generation techniques that are compatible with high-quality nanophotonic devices. This task is more challenging for color centers with large group-IV impurity atoms, which are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14165v2-abstract-full').style.display = 'inline'; document.getElementById('1910.14165v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.14165v2-abstract-full" style="display: none;"> Group-IV color centers in diamond have garnered great interest for their potential as optically active solid-state spin qubits. Future utilization of such emitters requires the development of precise site-controlled emitter generation techniques that are compatible with high-quality nanophotonic devices. This task is more challenging for color centers with large group-IV impurity atoms, which are otherwise promising because of their predicted long spin coherence times without a dilution refrigerator. For example, when applied to the negatively charged tin-vacancy (SnV$^-$) center, conventional site-controlled color center generation methods either damage the diamond surface or yield bulk spectra with unexplained features. Here we demonstrate a novel method to generate site-controlled SnV$^-$ centers with clean bulk spectra. We shallowly implant Sn ions through a thin implantation mask and subsequently grow a layer of diamond via chemical vapor deposition. This method can be extended to other color centers and integrated with quantum nanophotonic device fabrication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.14165v2-abstract-full').style.display = 'none'; document.getElementById('1910.14165v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.12490">arXiv:1909.12490</a> <span> [<a href="https://arxiv.org/pdf/1909.12490">pdf</a>, <a href="https://arxiv.org/ps/1909.12490">ps</a>, <a href="https://arxiv.org/format/1909.12490">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.cplett.2019.136766">10.1016/j.cplett.2019.136766 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-order strong methods for stochastic differential equations with colored noises </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuanglin Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Yan%2C+Y">Yun-An Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.12490v1-abstract-short" style="display: inline;"> The key difficulty to develop efficient high-order methods for integrating stochastic differential equations lies in the calculations of the multiple stochastic integrals. This letter suggests a scheme to compute the stochastic integrals for the colored noises based on the white noise representation. The multiple stochastic integrals involving one and two stationary noises can be conveniently gene… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12490v1-abstract-full').style.display = 'inline'; document.getElementById('1909.12490v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.12490v1-abstract-full" style="display: none;"> The key difficulty to develop efficient high-order methods for integrating stochastic differential equations lies in the calculations of the multiple stochastic integrals. This letter suggests a scheme to compute the stochastic integrals for the colored noises based on the white noise representation. The multiple stochastic integrals involving one and two stationary noises can be conveniently generated together with noises using the discrete Fourier transformation. Based on the calculated stochastic integrals, we obtain simple fourth-order and third-order strong methods for equations with a single and multiple noises, respectively. Numerical tests verify the accuracy of the suggested methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12490v1-abstract-full').style.display = 'none'; document.getElementById('1909.12490v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chem. Phys. Lett. 735, 136766 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07864">arXiv:1907.07864</a> <span> [<a href="https://arxiv.org/pdf/1907.07864">pdf</a>, <a href="https://arxiv.org/format/1907.07864">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.13.034026">10.1103/PhysRevApplied.13.034026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resonant soft x-ray scattering from stripe-ordered La$_{2-x}$Ba$_x$CuO$_4$ detected by a transition edge sensor array detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Joe%2C+Y+I">Y. I. Joe</a>, <a href="/search/quant-ph?searchtype=author&query=Fang%2C+Y">Y. Fang</a>, <a href="/search/quant-ph?searchtype=author&query=Lee%2C+S">S. Lee</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S+X+L">S. X. L. Sun</a>, <a href="/search/quant-ph?searchtype=author&query=de+la+Pe%C3%B1a%2C+G+A">G. A. de la Pe帽a</a>, <a href="/search/quant-ph?searchtype=author&query=Doriese%2C+W+B">W. B. Doriese</a>, <a href="/search/quant-ph?searchtype=author&query=Morgan%2C+K+M">K. M. Morgan</a>, <a href="/search/quant-ph?searchtype=author&query=Fowler%2C+J+W">J. W. Fowler</a>, <a href="/search/quant-ph?searchtype=author&query=Vale%2C+L+R">L. R. Vale</a>, <a href="/search/quant-ph?searchtype=author&query=Rodolakis%2C+F">F. Rodolakis</a>, <a href="/search/quant-ph?searchtype=author&query=McChesney%2C+J+L">J. L. McChesney</a>, <a href="/search/quant-ph?searchtype=author&query=Ullom%2C+J+N">J. N. Ullom</a>, <a href="/search/quant-ph?searchtype=author&query=Swetz%2C+D+S">D. S. Swetz</a>, <a href="/search/quant-ph?searchtype=author&query=Abbamonte%2C+P">P. Abbamonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07864v2-abstract-short" style="display: inline;"> Resonant soft x-ray scattering (RSXS) is a leading probe of valence band order in materials best known for detecting charge density wave order in the copper-oxide superconductors. One of the biggest limitations on the RSXS technique is the presence of a severe fluorescence background which, like the RSXS cross section itself, is enhanced under resonant conditions. This background prevents the stud… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07864v2-abstract-full').style.display = 'inline'; document.getElementById('1907.07864v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07864v2-abstract-full" style="display: none;"> Resonant soft x-ray scattering (RSXS) is a leading probe of valence band order in materials best known for detecting charge density wave order in the copper-oxide superconductors. One of the biggest limitations on the RSXS technique is the presence of a severe fluorescence background which, like the RSXS cross section itself, is enhanced under resonant conditions. This background prevents the study of weak signals such as diffuse scattering from glassy or fluctuating order that is spread widely over momentum space. Recent advances in superconducting transition edge sensor (TES) detectors have led to major improvements in energy resolution and detection efficiency in the soft x-ray range. Here, we perform a RSXS study of stripe-ordered La$_{2-x}$Ba$_x$CuO$_4$ at the Cu $L_{3/2}$ edge (932.2 eV) using a TES detector with 1.5 eV resolution, to evaluate its utility for mitigating the fluorescence background problem. We find that, for suitable degree of detuning from the resonance, the TES rejects the fluorescence background, leading to a 5 to 10 times improvement in the statistical quality of the data compared to an equivalent, energy-integrated measurement. We conclude that a TES presents a promising approach to reducing background in RSXS studies and may lead to new discoveries in materials exhibiting valence band order that is fluctuating or glassy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07864v2-abstract-full').style.display = 'none'; document.getElementById('1907.07864v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 13, 034026 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.10721">arXiv:1906.10721</a> <span> [<a href="https://arxiv.org/pdf/1906.10721">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b02443">10.1021/acs.nanolett.9b02443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A spin-photon interface using charge-tunable quantum dots strongly coupled to a cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Luo%2C+Z">Zhouchen Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Karasahin%2C+A">Aziz Karasahin</a>, <a href="/search/quant-ph?searchtype=author&query=Yakes%2C+M+K">Michael K. Yakes</a>, <a href="/search/quant-ph?searchtype=author&query=Carter%2C+S+G">Samuel G. Carter</a>, <a href="/search/quant-ph?searchtype=author&query=Bracker%2C+A+S">Allan S. Bracker</a>, <a href="/search/quant-ph?searchtype=author&query=Gammon%2C+D">Daniel Gammon</a>, <a href="/search/quant-ph?searchtype=author&query=Waks%2C+E">Edo Waks</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.10721v1-abstract-short" style="display: inline;"> Charged quantum dots containing an electron or hole spin are bright solid-state qubits suitable for quantum networks and distributed quantum computing. Incorporating such quantum dot spin into a photonic crystal cavity creates a strong spin-photon interface, in which the spin can control a photon by modulating the cavity reflection coefficient. However, previous demonstrations of such spin-photon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.10721v1-abstract-full').style.display = 'inline'; document.getElementById('1906.10721v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.10721v1-abstract-full" style="display: none;"> Charged quantum dots containing an electron or hole spin are bright solid-state qubits suitable for quantum networks and distributed quantum computing. Incorporating such quantum dot spin into a photonic crystal cavity creates a strong spin-photon interface, in which the spin can control a photon by modulating the cavity reflection coefficient. However, previous demonstrations of such spin-photon interfaces have relied on quantum dots that are charged randomly by nearby impurities, leading to instability in the charge state, which causes poor contrast in the cavity reflectivity. Here we demonstrate a strong spin-photon interface using a quantum dot that is charged deterministically with a diode structure. By incorporating this actively charged quantum dot in a photonic crystal cavity, we achieve strong coupling between the cavity mode and the negatively charged state of the dot. Furthermore, by initializing the spin through optical pumping, we show strong spin-dependent modulation of the cavity reflectivity, corresponding to a cooperativity of 12. This spin-dependent reflectivity is important for mediating entanglement between spins using photons, as well as generating strong photon-photon interactions for applications in quantum networking and distributed quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.10721v1-abstract-full').style.display = 'none'; document.getElementById('1906.10721v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.09792">arXiv:1902.09792</a> <span> [<a href="https://arxiv.org/pdf/1902.09792">pdf</a>, <a href="https://arxiv.org/format/1902.09792">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.12.064043">10.1103/PhysRevApplied.12.064043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Laser seeding attack in quantum key distribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Huang%2C+A">Anqi Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Navarrete%2C+%C3%81">脕lvaro Navarrete</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shi-Hai Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Chaiwongkhot%2C+P">Poompong Chaiwongkhot</a>, <a href="/search/quant-ph?searchtype=author&query=Curty%2C+M">Marcos Curty</a>, <a href="/search/quant-ph?searchtype=author&query=Makarov%2C+V">Vadim Makarov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.09792v3-abstract-short" style="display: inline;"> Quantum key distribution (QKD) based on the laws of quantum physics allows the secure distribution of secret keys over an insecure channel. Unfortunately, imperfect implementations of QKD compromise its information-theoretical security. Measurement-device-independent quantum key distribution (MDI-QKD) is a promising approach to remove all side channels from the measurement unit, which is regarded… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.09792v3-abstract-full').style.display = 'inline'; document.getElementById('1902.09792v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.09792v3-abstract-full" style="display: none;"> Quantum key distribution (QKD) based on the laws of quantum physics allows the secure distribution of secret keys over an insecure channel. Unfortunately, imperfect implementations of QKD compromise its information-theoretical security. Measurement-device-independent quantum key distribution (MDI-QKD) is a promising approach to remove all side channels from the measurement unit, which is regarded as the "Achilles' heel" of QKD. An essential assumption in MDI-QKD is however that the sources are trusted. Here we experimentally demonstrate that a practical source based on a semiconductor laser diode is vulnerable to a laser seeding attack, in which light injected from the communication line into the laser results in an increase of the intensities of the prepared states. The unnoticed increase of intensity may compromise the security of QKD, as we show theoretically for the prepare-and-measure decoy-state BB84 and MDI-QKD protocols. Our theoretical security analysis is general and can be applied to any vulnerability that increases the intensity of the emitted pulses. Moreover, a laser seeding attack might be launched as well against decoy-state based quantum cryptographic protocols beyond QKD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.09792v3-abstract-full').style.display = 'none'; document.getElementById('1902.09792v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 12, 064043 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.09941">arXiv:1811.09941</a> <span> [<a href="https://arxiv.org/pdf/1811.09941">pdf</a>, <a href="https://arxiv.org/format/1811.09941">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.205417">10.1103/PhysRevB.99.205417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of Optical and Spin Properties of Single Tin-Vacancy Centers in Diamond Nanopillars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Rugar%2C+A+E">Alison E. Rugar</a>, <a href="/search/quant-ph?searchtype=author&query=Dory%2C+C">Constantin Dory</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Vu%C4%8Dkovi%C4%87%2C+J">Jelena Vu膷kovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.09941v2-abstract-short" style="display: inline;"> Color centers in diamond have attracted much interest as candidates for optically active, solid-state quantum bits. Of particular interest are inversion-symmetric color centers based on group-IV impurities in diamond because they emit strongly into their zero-phonon lines and are insensitive to electric field noise to first order. Early studies of the negatively-charged tin-vacancy (SnV$^{-}$) cen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.09941v2-abstract-full').style.display = 'inline'; document.getElementById('1811.09941v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.09941v2-abstract-full" style="display: none;"> Color centers in diamond have attracted much interest as candidates for optically active, solid-state quantum bits. Of particular interest are inversion-symmetric color centers based on group-IV impurities in diamond because they emit strongly into their zero-phonon lines and are insensitive to electric field noise to first order. Early studies of the negatively-charged tin-vacancy (SnV$^{-}$) center in diamond have found the SnV$^{-}$ to be a promising candidate: it has high quantum efficiency, emits strongly into its zero-phonon lines, and is expected to have a long $T_2$ spin coherence time at 4~K. To develop the SnV$^{-}$ into a spin qubit requires further characterization, especially of the spin and optical properties of individual SnV$^{-}$ in nanofabricated structures. In this work we isolate single SnV$^{-}$ centers in diamond nanopillars and characterize their emission properties and their spin response to a magnetic field. We observe narrow emission linewidths that are spectrometer-limited, as well as a strong polarization dependence of each transition. We also find the Zeeman splitting under a magnetic field to be in good agreement with theoretical prediction. Our results pave the way toward future employment of single SnV$^{-}$s for optically accessible quantum memories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.09941v2-abstract-full').style.display = 'none'; document.getElementById('1811.09941v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 205417 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.03244">arXiv:1811.03244</a> <span> [<a href="https://arxiv.org/pdf/1811.03244">pdf</a>, <a href="https://arxiv.org/format/1811.03244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.12.034039">10.1103/PhysRevApplied.12.034039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reference-Frame-Independent Quantum Key Distribution Using Fewer States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+H">Hongwei Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jipeng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+H">Haiqiang Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shihai Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.03244v1-abstract-short" style="display: inline;"> Reference-frame-independent quantum key distribution (RFI QKD) protocol can reduce the requirement on the alignment of reference frames in practical systems. However, comparing with the Bennett-Brassard (BB84) QKD protocol, the main drawback of RFI QKD is that Alice needs to prepare six encoding states in the three mutually unbiased bases (X, Y, and Z), and Bob also needs to measures the quantum s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.03244v1-abstract-full').style.display = 'inline'; document.getElementById('1811.03244v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.03244v1-abstract-full" style="display: none;"> Reference-frame-independent quantum key distribution (RFI QKD) protocol can reduce the requirement on the alignment of reference frames in practical systems. However, comparing with the Bennett-Brassard (BB84) QKD protocol, the main drawback of RFI QKD is that Alice needs to prepare six encoding states in the three mutually unbiased bases (X, Y, and Z), and Bob also needs to measures the quantum state with such three bases. Here, we show that the RFI QKD protocol can be secured in the case where Alice sends fewer states. In particular, we find that transmitting three states (two eigenstates of the Z basis and one of the eigenstates in the X basis) is sufficient to obtain the comparable secret key rates and the covered distances, even when the security against coherent attacks with statistical fluctuations of finite-key size is considered. Finally, a proof-of-principle experiment based on time-bin encoding is demonstrated to show the feasibility of our scheme, and its merit to simplify the experimental setup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.03244v1-abstract-full').style.display = 'none'; document.getElementById('1811.03244v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 12, 034039 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.05166">arXiv:1806.05166</a> <span> [<a href="https://arxiv.org/pdf/1806.05166">pdf</a>, <a href="https://arxiv.org/format/1806.05166">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.5.000902">10.1364/OPTICA.5.000902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reference-frame-independent measurement-device-independent quantum key distribution based on polarization multiplexing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+H">Hongwei Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jipeng Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+H">Haiqiang Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shihai Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.05166v2-abstract-short" style="display: inline;"> Measurement-device-independent quantum key distribution (MDI-QKD) is proved to be able to eliminate all potential detector side channel attacks. Combining with the reference frame independent (RFI) scheme, the complexity of practical system can be reduced because of the unnecessary alignment for reference frame. Here, based on polarization multiplexing, we propose a time-bin encoding structure, an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.05166v2-abstract-full').style.display = 'inline'; document.getElementById('1806.05166v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.05166v2-abstract-full" style="display: none;"> Measurement-device-independent quantum key distribution (MDI-QKD) is proved to be able to eliminate all potential detector side channel attacks. Combining with the reference frame independent (RFI) scheme, the complexity of practical system can be reduced because of the unnecessary alignment for reference frame. Here, based on polarization multiplexing, we propose a time-bin encoding structure, and experimentally demonstrate the RFI-MDI-QKD protocol. Thanks to this, two of the four Bell states can be distinguished, whereas only one is used to generate the secure key in previous RFI-MDI-QKD experiments. As far as we know, this is the first demonstration for RFI-MDI-QKD protocol with clock rate of 50 MHz and distance of more than hundred kilometers between legitimate parties Alice and Bob. In asymptotic case, we experimentally compare RFI-MDI-QKD protocol with the original MDI-QKD protocol at the transmission distance of 160 km, when the different misalignments of the reference frame are deployed. By considering observables and statistical fluctuations jointly, four-intensity decoy-state RFI-MDI-QKD protocol with biased bases is experimentally achieved at the transmission distance of 100km and 120km. The results show the robustness of our scheme, and the key rate of RFI-MDI-QKD can be improved obviously under a large misalignment of the reference frame. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.05166v2-abstract-full').style.display = 'none'; document.getElementById('1806.05166v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.12248">arXiv:1805.12248</a> <span> [<a href="https://arxiv.org/pdf/1805.12248">pdf</a>, <a href="https://arxiv.org/format/1805.12248">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.021802">10.1103/PhysRevA.98.021802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulsed coherent drive in the Jaynes--Cummings model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Fischer%2C+K">Kevin Fischer</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Lukin%2C+D">Daniil Lukin</a>, <a href="/search/quant-ph?searchtype=author&query=Kelaita%2C+Y">Yousif Kelaita</a>, <a href="/search/quant-ph?searchtype=author&query=Trivedi%2C+R">Rahul Trivedi</a>, <a href="/search/quant-ph?searchtype=author&query=Vu%C4%8Dkovi%C4%87%2C+J">Jelena Vu膷kovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.12248v2-abstract-short" style="display: inline;"> The Jaynes--Cummings system is one of the most fundamental models of how light and matter interact. When driving the system with a coherent state (e.g. laser light), it is often assumed that whether the light couples through the cavity or atom plays an important role in determining the dynamics of the system and its emitted field. Here, we prove that the dynamics are identical in either case excep… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12248v2-abstract-full').style.display = 'inline'; document.getElementById('1805.12248v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.12248v2-abstract-full" style="display: none;"> The Jaynes--Cummings system is one of the most fundamental models of how light and matter interact. When driving the system with a coherent state (e.g. laser light), it is often assumed that whether the light couples through the cavity or atom plays an important role in determining the dynamics of the system and its emitted field. Here, we prove that the dynamics are identical in either case except for the offset of a trivial coherent state. In particular, our formalism allows for both steady-state and the treatment of any arbitrary multimode coherent state driving the system. Finally, the offset coherent state can be interferometrically canceled by appropriately homodyning the emitted light, which is especially important for nanocavity quantum electrodynamics where driving the atom is much more difficult than driving the cavity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12248v2-abstract-full').style.display = 'none'; document.getElementById('1805.12248v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 021802 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.01964">arXiv:1805.01964</a> <span> [<a href="https://arxiv.org/pdf/1805.01964">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aat3581">10.1126/science.aat3581 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A single-photon switch and transistor enabled by a solid-state quantum memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Kim%2C+H">Hyochul Kim</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+Z">Zhouchen Luo</a>, <a href="/search/quant-ph?searchtype=author&query=Solomon%2C+G+S">Glenn S. Solomon</a>, <a href="/search/quant-ph?searchtype=author&query=Waks%2C+E">Edo Waks</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.01964v1-abstract-short" style="display: inline;"> Single-photon switches and transistors generate strong photon-photon interactions that are essential for quantum circuits and networks. However, to deterministically control an optical signal with a single photon requires strong interactions with a quantum memory, which have been lacking in a solid-state platform. We realize a single-photon switch and transistor enabled by a solid-state quantum me… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.01964v1-abstract-full').style.display = 'inline'; document.getElementById('1805.01964v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.01964v1-abstract-full" style="display: none;"> Single-photon switches and transistors generate strong photon-photon interactions that are essential for quantum circuits and networks. However, to deterministically control an optical signal with a single photon requires strong interactions with a quantum memory, which have been lacking in a solid-state platform. We realize a single-photon switch and transistor enabled by a solid-state quantum memory. Our device consists of a semiconductor spin qubit strongly coupled to a nanophotonic cavity. The spin qubit enables a single gate photon to switch a signal field containing up to an average of 27.7 photons, with a switching time of 63 ps. Our results show that semiconductor nanophotonic devices can produce strong and controlled photon-photon interactions that could enable high-bandwidth photonic quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.01964v1-abstract-full').style.display = 'none'; document.getElementById('1805.01964v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 361, 57-60 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.06533">arXiv:1804.06533</a> <span> [<a href="https://arxiv.org/pdf/1804.06533">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.083601">10.1103/PhysRevLett.121.083601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cavity-enhanced Raman emission from a single color center in a solid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J+L">Jingyuan Linda Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Fischer%2C+K+A">Kevin A. Fischer</a>, <a href="/search/quant-ph?searchtype=author&query=Burek%2C+M+J">Michael J. Burek</a>, <a href="/search/quant-ph?searchtype=author&query=Dory%2C+C">Constantin Dory</a>, <a href="/search/quant-ph?searchtype=author&query=Lagoudakis%2C+K+G">Konstantinos G. Lagoudakis</a>, <a href="/search/quant-ph?searchtype=author&query=Tzeng%2C+Y">Yan-Kai Tzeng</a>, <a href="/search/quant-ph?searchtype=author&query=Radulaski%2C+M">Marina Radulaski</a>, <a href="/search/quant-ph?searchtype=author&query=Kelaita%2C+Y">Yousif Kelaita</a>, <a href="/search/quant-ph?searchtype=author&query=Safavi-Naeini%2C+A">Amir Safavi-Naeini</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Melosh%2C+N+A">Nicholas A. Melosh</a>, <a href="/search/quant-ph?searchtype=author&query=Chu%2C+S">Steven Chu</a>, <a href="/search/quant-ph?searchtype=author&query=Loncar%2C+M">Marko Loncar</a>, <a href="/search/quant-ph?searchtype=author&query=Vuckovic%2C+J">Jelena Vuckovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.06533v2-abstract-short" style="display: inline;"> We demonstrate cavity-enhanced Raman emission from a single atomic defect in a solid. Our platform is a single silicon-vacancy center in diamond coupled with a monolithic diamond photonic crystal cavity. The cavity enables an unprecedented frequency tuning range of the Raman emission (100 GHz) that significantly exceeds the spectral inhomogeneity of silicon-vacancy centers in diamond nanostructure… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.06533v2-abstract-full').style.display = 'inline'; document.getElementById('1804.06533v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.06533v2-abstract-full" style="display: none;"> We demonstrate cavity-enhanced Raman emission from a single atomic defect in a solid. Our platform is a single silicon-vacancy center in diamond coupled with a monolithic diamond photonic crystal cavity. The cavity enables an unprecedented frequency tuning range of the Raman emission (100 GHz) that significantly exceeds the spectral inhomogeneity of silicon-vacancy centers in diamond nanostructures. We also show that the cavity selectively suppresses the phonon-induced spontaneous emission that degrades the efficiency of Raman photon generation. Our results pave the way towards photon-mediated many-body interactions between solid-state quantum emitters in a nanophotonic platform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.06533v2-abstract-full').style.display = 'none'; document.getElementById('1804.06533v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 083601 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.01672">arXiv:1801.01672</a> <span> [<a href="https://arxiv.org/pdf/1801.01672">pdf</a>, <a href="https://arxiv.org/format/1801.01672">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-018-0092-0">10.1038/s41534-018-0092-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum dot single photon sources with ultra-low multi-photon probability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hanschke%2C+L">Lukas Hanschke</a>, <a href="/search/quant-ph?searchtype=author&query=Fischer%2C+K+A">Kevin A. Fischer</a>, <a href="/search/quant-ph?searchtype=author&query=Appel%2C+S">Stefan Appel</a>, <a href="/search/quant-ph?searchtype=author&query=Lukin%2C+D">Daniil Lukin</a>, <a href="/search/quant-ph?searchtype=author&query=Wierzbowski%2C+J">Jakob Wierzbowski</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+S">Shuo Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Trivedi%2C+R">Rahul Trivedi</a>, <a href="/search/quant-ph?searchtype=author&query=Vu%C4%8Dkovi%C4%87%2C+J">Jelena Vu膷kovi膰</a>, <a href="/search/quant-ph?searchtype=author&query=Finley%2C+J+J">Jonathan J. Finley</a>, <a href="/search/quant-ph?searchtype=author&query=M%C3%BCller%2C+K">Kai M眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.01672v3-abstract-short" style="display: inline;"> High-quality sources of single photons are of paramount importance for quantum communication, sensing and metrology. To these ends, resonantly excited two-level systems based on self-assembled quantum dots have recently generated widespread interest. Nevertheless, we have recently shown that for resonantly excited two-level systems, emission of a photon during the presence of the excitation laser… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.01672v3-abstract-full').style.display = 'inline'; document.getElementById('1801.01672v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.01672v3-abstract-full" style="display: none;"> High-quality sources of single photons are of paramount importance for quantum communication, sensing and metrology. To these ends, resonantly excited two-level systems based on self-assembled quantum dots have recently generated widespread interest. Nevertheless, we have recently shown that for resonantly excited two-level systems, emission of a photon during the presence of the excitation laser pulse and subsequent re-excitation results in a degradation of the obtainable single-photon purity. Here, we demonstrate that generating single photons from self-assembled quantum dots with a scheme based on two-photon excitation of the biexciton strongly suppresses the re-excitation. Specifically, the pulse-length dependence of the multi-photon error rate reveals a quadratic dependence in contrast to the linear dependence of resonantly excited two-level systems, improving the obtainable multi-photon error rate by several orders of magnitude for short pulses. We support our experiments with a new theoretical framework and simulation methodology to understand few-photon sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.01672v3-abstract-full').style.display = 'none'; document.getElementById('1801.01672v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We have included a Jupyter notebook as Supplemental Material which outlines how to perform the calculations in this paper using the Quantum Optics Toolbox in Python (QuTiP)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Information 4, 43 (2018) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Sun%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Sun%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Sun%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>