CINXE.COM
quantum group in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> quantum group in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> quantum group </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/6948/#Item_3" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="algebra">Algebra</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></strong></p> <p><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></p> <h2 id="algebraic_theories">Algebraic theories</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+theory">algebraic theory</a> / <a class="existingWikiWord" href="/nlab/show/2-algebraic+theory">2-algebraic theory</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-algebraic+theory">(∞,1)-algebraic theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monad">monad</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-monad">(∞,1)-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/operad">operad</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-operad">(∞,1)-operad</a></p> </li> </ul> <h2 id="algebras_and_modules">Algebras and modules</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebra over a monad</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-monad">∞-algebra over an (∞,1)-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+algebraic+theory">algebra over an algebraic theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-algebraic+theory">∞-algebra over an (∞,1)-algebraic theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+operad">algebra over an operad</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-operad">∞-algebra over an (∞,1)-operad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/action">action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module">module</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-module">∞-module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/associated+bundle">associated bundle</a>, <a class="existingWikiWord" href="/nlab/show/associated+%E2%88%9E-bundle">associated ∞-bundle</a></p> </li> </ul> <h2 id="higher_algebras">Higher algebras</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+%28%E2%88%9E%2C1%29-category">monoidal (∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28%E2%88%9E%2C1%29-category">symmetric monoidal (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+in+an+%28%E2%88%9E%2C1%29-category">monoid in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutative+monoid+in+an+%28%E2%88%9E%2C1%29-category">commutative monoid in an (∞,1)-category</a></p> </li> </ul> </li> <li> <p>symmetric monoidal (∞,1)-category of spectra</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smash+product+of+spectra">smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+smash+product+of+spectra">symmetric monoidal smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ring+spectrum">ring spectrum</a>, <a class="existingWikiWord" href="/nlab/show/module+spectrum">module spectrum</a>, <a class="existingWikiWord" href="/nlab/show/algebra+spectrum">algebra spectrum</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+algebra">A-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+ring">A-∞ ring</a>, <a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+space">A-∞ space</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/C-%E2%88%9E+algebra">C-∞ algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+ring">E-∞ ring</a>, <a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+algebra">E-∞ algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-module">∞-module</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-module+bundle">(∞,1)-module bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multiplicative+cohomology+theory">multiplicative cohomology theory</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebra">L-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/deformation+theory">deformation theory</a></li> </ul> </li> </ul> <h2 id="model_category_presentations">Model category presentations</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+T-algebras">model structure on simplicial T-algebras</a> / <a class="existingWikiWord" href="/nlab/show/homotopy+T-algebra">homotopy T-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+operads">model structure on operads</a></p> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+algebras+over+an+operad">model structure on algebras over an operad</a></p> </li> </ul> <h2 id="geometry_on_formal_duals_of_algebras">Geometry on formal duals of algebras</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+geometry">derived geometry</a></p> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+conjecture">Deligne conjecture</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/delooping+hypothesis">delooping hypothesis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal Dold-Kan correspondence</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/higher+algebra+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#overview'>Overview</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#tannaka_duality'>Tannaka duality</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The notion of <em>quantum group</em> refers to various objects which are deformations of (<a class="existingWikiWord" href="/nlab/show/algebras+of+functions">algebras of functions</a> on) <a class="existingWikiWord" href="/nlab/show/groups">groups</a>, but still have very similar properties to (algebras of functions on) groups, and in particular to <a class="existingWikiWord" href="/nlab/show/semisimple+Lie+groups">semisimple Lie groups</a>. Most important are the <a class="existingWikiWord" href="/nlab/show/Hopf+algebras">Hopf algebras</a> <em>deforming</em> the function algebras on <a class="existingWikiWord" href="/nlab/show/semisimple+Lie+groups">semisimple Lie groups</a> or to the enveloping algebras of Kac-Moody Lie algebras.</p> <h2 id="overview">Overview</h2> <p>It is a common experience in <a class="existingWikiWord" href="/nlab/show/representation+theory">representation theory</a> that a number of mathematical structures behaves very similarly to <a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic</a> or <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie</a> groups. After the impetus of the theory of quantum <a class="existingWikiWord" href="/nlab/show/integrable+systems">integrable systems</a>, mainly the work of Leningrad’s school of mathematical physics around 1980, several mathematicians (including Drinfeld, Manin, Woronowicz, Jimbo, Faddeev–Reshetikhin–Takhtajan) found, in different formalisms, major series of examples which are mostly noncommutative noncocommutative <a class="existingWikiWord" href="/nlab/show/Hopf+algebras">Hopf algebras</a> and which deform enveloping algebras of (semisimple) Lie algebras, or algebras of functions on the corresponding algebraic groups. These deformations <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>G</mi> <mi>q</mi></msub></mrow><annotation encoding="application/x-tex">G_q</annotation></semantics></math> depend on a parameter <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math> (sometimes one prefers a formal parameter <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi></mrow><annotation encoding="application/x-tex">h</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo>=</mo><msup><mi>e</mi> <mi>h</mi></msup></mrow><annotation encoding="application/x-tex">q = e^{h}</annotation></semantics></math>), which may be taken as belonging to the <a class="existingWikiWord" href="/nlab/show/ground+field">ground field</a>, but also being formal (transcendental over the ground field). A peculiar case is when the parameter <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math> of the deformation is an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>l</mi></mrow><annotation encoding="application/x-tex">l</annotation></semantics></math>-th root of unity; the remaining cases are usually called generic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math>.</p> <p>The <a class="existingWikiWord" href="/nlab/show/representation+theory">representation theory</a> for these ‘quantum’ examples is highly developed; in fact many phenomena in the representation theory of semisimple Lie algebras (e.g. canonical bases) were discovered first as a limiting case of constructions in the quantum case, which become degenerate in the classical case (the principle that quantization removes degeneracy). While representations for generic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math> parallel classical ones, the theory at roots of unity is peculiar and related to the representation theory of affine Lie algebras; the quantum groups at roots of unity as algebras have big centers.</p> <p>Nowadays, both the class of examples and the class of formalisms has been extended a lot, hence the term ‘quantum group’ is not a fixed notion but rather a collective term for a rather author-dependent class of group-like objects, most often subclasses or extensions of the concept of Hopf algebras which are sometimes required to belong to families of deformations of their classical counterparts. One of the common features is that if we forget the group-like features, the examples belong to the class of noncommutative spaces (see <a class="existingWikiWord" href="/nlab/show/noncommutative+geometry">noncommutative geometry</a>).</p> <p>Mathematically better defined are notions (sometimes equated by various authors with the class of quantum groups) like <a class="existingWikiWord" href="/nlab/show/quasitriangular+Hopf+algebras">quasitriangular Hopf algebras</a>, <span class="newWikiWord">quantum matrix groups<a href="/nlab/new/quantum+matrix+groups">?</a></span> (quantum linear groups, more general FRT-algebras and Majid’s <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A(R)</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/quantum+Yang-Baxter+matrix">quantum Yang-Baxter equation</a>), quantized enveloping algebras, quantum function algebras, compact matrix pseudogroups, Kac algebras, Yangians etc. The representations of quasitriangular Hopf algebras form <a class="existingWikiWord" href="/nlab/show/braided+monoidal+categories">braided monoidal categories</a>, which are in main examples related to the mathematics of Iwahori–Hecke algebras, braid groups, knot theory, finite group Chern–Simons theory and Wess–Zumino–Novikov–Witten theory of <a class="existingWikiWord" href="/nlab/show/CFT">CFT</a>. One should note that in the classical limit quantum function algebras give not simply (functions on) algebraic (or Lie) groups but also a compatible (= multiplicative) Poisson structure giving rise to Poisson–Lie or Poisson algebraic groups.</p> <p>There is an extensive geometric theory of homogeneous spaces for quantum groups and <a class="existingWikiWord" href="/nlab/show/fiber+bundles">fiber bundles</a> whose structure groups are quantum groups.</p> <h2 id="properties">Properties</h2> <h3 id="tannaka_duality">Tannaka duality</h3> <div> <p><strong><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a> for <a class="existingWikiWord" href="/nlab/show/categories+of+modules">categories of modules</a> over <a class="existingWikiWord" href="/nlab/show/monoids">monoids</a>/<a class="existingWikiWord" href="/nlab/show/associative+algebras">associative algebras</a></strong></p> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/monoid">monoid</a>/<a class="existingWikiWord" href="/nlab/show/associative+algebra">associative algebra</a></th><th><a class="existingWikiWord" href="/nlab/show/category+of+modules">category of modules</a></th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Mod</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">Mod_A</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/associative+algebra">algebra</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Mod</mi> <mi>R</mi></msub></mrow><annotation encoding="application/x-tex">Mod_R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/2-module">2-module</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/sesquialgebra">sesquialgebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/2-ring">2-ring</a> = <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal</a> <a class="existingWikiWord" href="/nlab/show/presentable+category">presentable category</a> with <a class="existingWikiWord" href="/nlab/show/colimit">colimit</a>-preserving <a class="existingWikiWord" href="/nlab/show/tensor+product">tensor product</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/bialgebra">bialgebra</a></td><td style="text-align: left;">strict <a class="existingWikiWord" href="/nlab/show/2-ring">2-ring</a>: <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> with <a class="existingWikiWord" href="/nlab/show/fiber+functor">fiber functor</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hopf+algebra">Hopf algebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/rigid+monoidal+category">rigid monoidal category</a> with <a class="existingWikiWord" href="/nlab/show/fiber+functor">fiber functor</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/hopfish+algebra">hopfish algebra</a> (correct version)</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/rigid+monoidal+category">rigid monoidal category</a> (without fiber functor)</td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/weak+Hopf+algebra">weak Hopf algebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/fusion+category">fusion category</a> with generalized <a class="existingWikiWord" href="/nlab/show/fiber+functor">fiber functor</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/quasitriangular+bialgebra">quasitriangular bialgebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/braided+monoidal+category">braided monoidal category</a> with <a class="existingWikiWord" href="/nlab/show/fiber+functor">fiber functor</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/triangular+bialgebra">triangular bialgebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a> with <a class="existingWikiWord" href="/nlab/show/fiber+functor">fiber functor</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/quasitriangular+Hopf+algebra">quasitriangular Hopf algebra</a> (<a class="existingWikiWord" href="/nlab/show/quantum+group">quantum group</a>)</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/rigid+monoidal+category">rigid</a> <a class="existingWikiWord" href="/nlab/show/braided+monoidal+category">braided monoidal category</a> with <a class="existingWikiWord" href="/nlab/show/fiber+functor">fiber functor</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/triangular+Hopf+algebra">triangular Hopf algebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/rigid+monoidal+category">rigid</a> <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a> with <a class="existingWikiWord" href="/nlab/show/fiber+functor">fiber functor</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/superalgebra">supercommutative</a> <a class="existingWikiWord" href="/nlab/show/Hopf+algebra">Hopf algebra</a> (<a class="existingWikiWord" href="/nlab/show/supergroup">supergroup</a>)</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/rigid+monoidal+category">rigid</a> <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a> with <a class="existingWikiWord" href="/nlab/show/fiber+functor">fiber functor</a> and Schur smallness</td></tr> <tr><td style="text-align: left;">form <a class="existingWikiWord" href="/nlab/show/Drinfeld+double">Drinfeld double</a></td><td style="text-align: left;">form <a class="existingWikiWord" href="/nlab/show/Drinfeld+center">Drinfeld center</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/trialgebra">trialgebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hopf+monoidal+category">Hopf monoidal category</a></td></tr> </tbody></table> <p><strong>2-Tannaka duality for <a class="existingWikiWord" href="/nlab/show/module+categories">module categories</a> over <a class="existingWikiWord" href="/nlab/show/monoidal+categories">monoidal categories</a></strong></p> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a></th><th><a class="existingWikiWord" href="/nlab/show/2-category+of+module+categories">2-category of module categories</a></th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Mod</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">Mod_A</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/2-algebra">2-algebra</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Mod</mi> <mi>R</mi></msub></mrow><annotation encoding="application/x-tex">Mod_R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/3-module">3-module</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hopf+monoidal+category">Hopf monoidal category</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/monoidal+2-category">monoidal 2-category</a> (with some duality and strictness structure)</td></tr> </tbody></table> <p><strong>3-Tannaka duality for <a class="existingWikiWord" href="/nlab/show/module+2-categories">module 2-categories</a> over <a class="existingWikiWord" href="/nlab/show/monoidal+2-categories">monoidal 2-categories</a></strong></p> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/monoidal+2-category">monoidal 2-category</a></th><th><a class="existingWikiWord" href="/nlab/show/3-category+of+module+2-categories">3-category of module 2-categories</a></th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Mod</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">Mod_A</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/3-algebra">3-algebra</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Mod</mi> <mi>R</mi></msub></mrow><annotation encoding="application/x-tex">Mod_R</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/4-module">4-module</a></td></tr> </tbody></table> </div> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+algebra">quantum algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/noncommutative+geometry">noncommutative geometry</a>, <a class="existingWikiWord" href="/nlab/show/noncommutative+algebraic+geometry">noncommutative algebraic geometry</a>, <a class="existingWikiWord" href="/nlab/show/deformation+quantization">deformation quantization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+inverse+scattering+method">quantum inverse scattering method</a>, <a class="existingWikiWord" href="/nlab/show/Knizhnik-Zamolodchikov+equation">Knizhnik-Zamolodchikov equation</a>, <a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a>, <a class="existingWikiWord" href="/nlab/show/Yang-Baxter+equation">Yang-Baxter equation</a>, <a class="existingWikiWord" href="/nlab/show/classical+Yang-Baxter+equation">classical Yang-Baxter equation</a>, <a class="existingWikiWord" href="/nlab/show/quantum+Yang-Baxter+equation">quantum Yang-Baxter equation</a>, <a class="existingWikiWord" href="/nlab/show/dynamical+Yang-Baxter+equation">dynamical Yang-Baxter equation</a>, <a class="existingWikiWord" href="/nlab/show/reflection+equation">reflection equation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hopf+algebra">Hopf algebra</a>, <a class="existingWikiWord" href="/nlab/show/bialgebra">bialgebra</a>, <a class="existingWikiWord" href="/nlab/show/gebra">gebra</a>, <a class="existingWikiWord" href="/nlab/show/Yangian">Yangian</a>, <a class="existingWikiWord" href="/nlab/show/RTT+algebra">RTT algebra</a>, <a class="existingWikiWord" href="/nlab/show/matrix+bialgebra">matrix bialgebra</a>, <a class="existingWikiWord" href="/nlab/show/quantum+linear+group">quantum linear group</a>, <a class="existingWikiWord" href="/nlab/show/quantized+function+algebra">quantized function algebra</a>, <a class="existingWikiWord" href="/nlab/show/quantized+enveloping+algebra">quantized enveloping algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/braided+monoidal+category">braided monoidal category</a>, <a class="existingWikiWord" href="/nlab/show/quantum+double">quantum double</a>, <a class="existingWikiWord" href="/nlab/show/Heisenberg+double">Heisenberg double</a>, <a class="existingWikiWord" href="/nlab/show/Yetter-Drinfeld+module">Yetter-Drinfeld module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+homogeneous+space">quantum homogeneous space</a>, <a class="existingWikiWord" href="/nlab/show/quantum+flag+manifold">quantum flag manifold</a>, <a class="existingWikiWord" href="/nlab/show/quantum+symmetric+pair">quantum symmetric pair</a>, <a class="existingWikiWord" href="/nlab/show/Hopf-Galois+extension">Hopf-Galois extension</a>, <a class="existingWikiWord" href="/nlab/show/noncommutative+principal+bundle">noncommutative principal bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Poisson+Lie+group">Poisson Lie group</a>, <a class="existingWikiWord" href="/nlab/show/dressing+action">dressing action</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+2-group">quantum 2-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+topology">quantum topology</a></p> </li> </ul> <h2 id="references">References</h2> <ul> <li id="Drinfeld87"> <p><a class="existingWikiWord" href="/nlab/show/Vladimir+Drinfeld">Vladimir Drinfeld</a>, <em>Quantum groups</em>, in: A. Gleason (ed.) <em><a href="https://archive.org/details/proceedingsofint0002inte_v5c3/mode/2up">Proceedings of the</a> <a href="https://inspirehep.net/conferences/966215?ui-citation-summary=true">1986 International Congress of Mathematics</a></em> <strong>1</strong> (1987) 798–820 [<a href="https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1986.1/ICM1986.1.ocr.pdf">pdf</a>]</p> <p>expanded version:</p> <p>Journal of Soviet Mathematics <strong>41</strong> (1988) 898–915 [<a href="https://doi.org/10.1007/BF01247086">doi:10.1007/BF01247086</a>]</p> </li> <li id="Tjin92"> <p><a class="existingWikiWord" href="/nlab/show/Tjark+Tjin">Tjark Tjin</a>, <em>An introduction to quantized Lie groups and algebras</em>, Int. J. Mod. Phys. A <strong>7</strong> (1992) 6175–6213 [<a href="https://arxiv.org/abs/hep-th/9111043">arXiv:hep-th/9111043</a>, <a href="https://doi.org/10.1142/S0217751X92002805">doi:10.1142/S0217751X92002805</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Christian+Kassel">Christian Kassel</a>, <em>Quantum groups</em>, Graduate Texts in Mathematics <strong>155</strong>, Springer 1995 (<a href="https://link.springer.com/book/10.1007/978-1-4612-0783-2">doi:10.1007/978-1-4612-0783-2</a>, <a href="http://www-irma.u-strasbg.fr/~kassel/QGbk.html">webpage</a>, <a href="http://www-irma.u-strasbg.fr/~kassel/QGerrata030399.pdf">errata pdf</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Shahn+Majid">Shahn Majid</a>, <em>Foundations of quantum group theory</em>, Cambridge University Press 1995, 2000.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yuri+Manin">Yu. I. Manin</a>, <em>Quantum groups and non-commutative geometry</em>, CRM, Montreal 1988.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brian+Parshall">Brian Parshall</a>, J.Wang, <em>Quantum linear groups</em>, Mem. Amer. Math. Soc. 89(1991), No. 439, vi+157 pp.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Nikolai+Reshetikhin">N. Yu. Reshetikhin</a>, <a class="existingWikiWord" href="/nlab/show/Leon+Takhtajan">L. A. Takhtajan</a>, <a class="existingWikiWord" href="/nlab/show/Ludwig+Fadeev">L. D. Faddeev</a>, <em>Quantization of Lie groups and Lie algebras</em>, Algebra i analiz <strong>1</strong>, 178 (1989) (Russian), English translation in Leningrad Math. J. 1.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Arun+Ram">Arun Ram</a>, <em>A survey of quantum groups: background, motivation, and results</em>, in: Geometric analysis and Lie theory in mathematics and physics, A. Carey and M. Murray eds., Australian Math. Soc. Lecture Notes Series <strong>11</strong>, Cambridge Univ. Press 1997, pp. 20-104. <a href="http://www.ms.unimelb.edu.au/~ram/Publications/1997AustMSLectNotesv11p20.pdf">pdf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Pavel+Etingof">Pavel Etingof</a>, O. Schiffmann, <em>Lectures on Quantum Groups</em>, Lectures in Math. Phys., International Press (1998).</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Pavel+Etingof">Pavel Etingof</a>, <a class="existingWikiWord" href="/nlab/show/Igor+Frenkel">Igor Frenkel</a>, <em>Lectures on representation theory and Knizhnik-Zamolodchikov equations</em></p> </li> <li> <p>A. U. Klymik, K. Schmuedgen, <em>Quantum groups and their representations</em>, Springer 1997.</p> </li> <li> <p>A. Joseph, <em>Quantum groups and their primitive ideals</em>, Springer 1995.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Ross+Street">Ross Street</a>, <em>Quantum groups : a path to current algebra</em>, Cambridge Univ. Press 2007</p> </li> <li> <p>L. I. Korogodski, Ya. S. Soibelman, <em>Algebras of functions on quantum groups I</em>, Math. Surveys and Monographs 56, AMS 1998.</p> </li> <li> <p>A. Varchenko, <em>Hypergeometric functions and representation theory of Lie algebras and quantum groups</em>, Advanced Series in Mathematical Physics, Vol. 21, World Scientific (1995)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/George+Lusztig">George Lusztig</a>, <em>Introduction to quantum groups</em></p> </li> <li> <p>V. Chari, A. Pressley, <em>A guide to quantum groups</em>, Camb. Univ. Press 1994</p> </li> <li> <p>Bangming Deng, Jie Du, <a class="existingWikiWord" href="/nlab/show/Brian+Parshall">Brian Parshall</a>, Jianpan Wang, <em>Finite dimensional algebras and quantum groups</em>, Mathematical Surveys and Monographs <strong>150</strong>, Amer. Math. Soc. 2008. xxvi+759 pp. <a href="http://www.ams.org/mathscinet-getitem?mr=2457938">MR2009i:17023)</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tom+Bridgeland">Tom Bridgeland</a>, <em>Quantum groups via Hall algebras of complexes</em>, Annals of Mathematics <strong>177</strong>:2 (2013) 739–759 (21 pages)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Richard+Borcherds">Richard Borcherds</a>, <a class="existingWikiWord" href="/nlab/show/Mark+Haiman">Mark Haiman</a>, <a class="existingWikiWord" href="/nlab/show/Theo+Johnson-Freyd">Theo Johnson-Freyd</a>, <a class="existingWikiWord" href="/nlab/show/Nicolai+Reshetikhin">Nicolai Reshetikhin</a>, <a class="existingWikiWord" href="/nlab/show/Vera+Serganova">Vera Serganova</a>, <em>Berkeley Lectures on Lie Groups and Quantum Groups</em>, 2020 (<a href="http://categorified.net/LieQuantumGroups.pdf">pdf</a>)</p> </li> </ul> <p>In relation to <a class="existingWikiWord" href="/nlab/show/hypergeometric+functions">hypergeometric functions</a> and the <a class="existingWikiWord" href="/nlab/show/Knizhnik-Zamolodchikov+equation">Knizhnik-Zamolodchikov equation</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Alexander+Varchenko">Alexander Varchenko</a>, <em>Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups</em>, Adv. Ser. in Math. Phys. <strong>21</strong>, World Sci. Publ. 1995. x+371 pp. (<a href="https://doi.org/10.1142/2467">doi:10.1142/2467</a>)</p> </li> <li> <p>V. Tarasov, <a class="existingWikiWord" href="/nlab/show/Alexander+Varchenko">Alexander Varchenko</a>, <em>Geometry of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math>-hypergeometric functions, quantum affine algebras and elliptic quantum groups</em>, Astérisque <strong>246</strong> (1997), vi+135 pp. (<a href="https://arxiv.org/abs/q-alg/9703044">arXiv:q-alg/9703044</a>, <a href="http://www.numdam.org/item/AST_1997__246__R1_0">numdam:AST_1997__246__R1_0</a>)</p> </li> </ul> <p>In the generality of <a class="existingWikiWord" href="/nlab/show/noncartesian+internal+categories">noncartesian internal categories</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Marcelo+Aguiar">Marcelo Aguiar</a>, <em>Internal categories and quantum groups</em>, PhD thesis, Cornell 1997 (<a href="http://pi.math.cornell.edu/~maguiar/thesis2.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Aguiar_InternalCategoriesAndQuantumGroups.pdf" title="pdf">pdf</a>)</li> </ul> <p>On elliptic quantum groups:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Hitoshi+Konno">Hitoshi Konno</a>, <em>Elliptic Quantum Groups</em>, in <em><a class="existingWikiWord" href="/nlab/show/Encyclopedia+of+Mathematical+Physics+2nd+ed">Encyclopedia of Mathematical Physics 2nd ed</a></em>, Elsevier (2024) [<a href="https://arxiv.org/abs/2405.11193">arXiv:2405.11193</a>]</li> </ul> <p>See also:</p> <ul> <li>MathOverflow: <a href="http://mathoverflow.net/questions/20683/quantum-group-as-relative-drinfeld-double">q.gr. as relative Drinfeld double</a>, <a href="http://mathoverflow.net/questions/5538/why-drinfeld-jimbo-type-quantum-groups">why Drinfeld-Jimbo q.gr.</a>, <a href="http://mathoverflow.net/questions/14361/what-do-the-local-systems-in-lusztigs-perverse-sheaves-on-quiver-varieties-look">Lusztig perverse sheaves on quiver varieties</a>, <a href="http://mathoverflow.net/questions/8110/canonical-basis-for-the-extended-quantum-enveloping-algebras">canonical bases for extended q.env.algebras</a>, <a href="http://mathoverflow.net/questions/58040/groups-quantum-groups-and-fill-in-the-blank">groups-qgroups-and-… (on elliptic case)</a>, <a href="http://mathoverflow.net/questions/tagged/quantum-group">all posts with quantum group tag</a></li> </ul> <div class="property">category: <a class="category_link" href="/nlab/all_pages/noncommutative+geometry">noncommutative geometry</a></div></body></html> </div> <div class="revisedby"> <p> Last revised on October 1, 2024 at 11:42:22. See the <a href="/nlab/history/quantum+group" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/quantum+group" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/6948/#Item_3">Discuss</a><span class="backintime"><a href="/nlab/revision/quantum+group/31" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/quantum+group" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/quantum+group" accesskey="S" class="navlink" id="history" rel="nofollow">History (31 revisions)</a> <a href="/nlab/show/quantum+group/cite" style="color: black">Cite</a> <a href="/nlab/print/quantum+group" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/quantum+group" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>