CINXE.COM

Search results for: time to cracking

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: time to cracking</title> <meta name="description" content="Search results for: time to cracking"> <meta name="keywords" content="time to cracking"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="time to cracking" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="time to cracking"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18442</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: time to cracking</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18442</span> A Probabilistic Study on Time to Cover Cracking Due to Corrosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Qing%20Li">Chun-Qing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Baji"> Hassan Baji</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion of steel in reinforced concrete structures is a major problem worldwide. The volume expansion of corrosion products causes concrete cover cracking, which could lead to delamination of concrete cover. The time to cover cracking plays a key role to the assessment of serviceability of reinforced concrete structures subjected to corrosion. Many analytical, numerical, and empirical models have been developed to predict the time to cracking initiation due to corrosion. In this study, a numerical model based on finite element modeling of corrosion-induced cracking process is used. In order to predict the service life based on time to cover initiation, the numerical approach is coupled with a probabilistic procedure. In this procedure, all the influential factors affecting time to cover cracking are modeled as random variables. The results show that the time to cover cracking is highly variables. It is also shown that rust product expansion ratio and the size of more porous concrete zone around the rebar are the most influential factors in predicting service life of corrosion-affected structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic" title=" probabilistic"> probabilistic</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20life" title=" service life"> service life</a> </p> <a href="https://publications.waset.org/abstracts/79579/a-probabilistic-study-on-time-to-cover-cracking-due-to-corrosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18441</span> Rational Probabilistic Method for Calculating Thermal Cracking Risk of Mass Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naoyuki%20Sugihashi">Naoyuki Sugihashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiharu%20Kishi"> Toshiharu Kishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The probability of occurrence of thermal cracks in mass concrete in Japan is evaluated by the cracking probability diagram that represents the relationship between the thermal cracking index and the probability of occurrence of cracks in the actual structure. In this paper, we propose a method to directly calculate the cracking probability, following a probabilistic theory by modeling the variance of tensile stress and tensile strength. In this method, the relationship between the variance of tensile stress and tensile strength, the thermal cracking index, and the cracking probability are formulated and presented. In addition, standard deviation of tensile stress and tensile strength was identified, and the method of calculating cracking probability in a general construction controlled environment was also demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20crack%20control" title="thermal crack control">thermal crack control</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20concrete" title=" mass concrete"> mass concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cracking%20probability" title=" thermal cracking probability"> thermal cracking probability</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20of%20concrete" title=" durability of concrete"> durability of concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=calculating%20method%20of%20cracking%20probability" title=" calculating method of cracking probability"> calculating method of cracking probability</a> </p> <a href="https://publications.waset.org/abstracts/74943/rational-probabilistic-method-for-calculating-thermal-cracking-risk-of-mass-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18440</span> Early-Age Cracking of Low Carbon Concrete Incorporating Ferronickel Slag as Supplementary Cementitious Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Khan">Mohammad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnaud%20Castel"> Arnaud Castel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete viscoelastic properties such as shrinkage, creep, and associated relaxation are important in assessing the risk of cracking during the first few days after placement. This paper investigates the early-age mechanical and viscoelastic properties, restrained shrinkage-induced cracking and time to cracking of concrete incorporating ferronickel slag (FNS) as supplementary cementitious material. Compressive strength, indirect tensile strength and elastic modulus were measured. Tensile creep and drying shrinkage was measured on dog-bone shaped specimens. Restrained shrinkage induced stresses and concrete cracking age were assessed by using the ring test. Results revealed that early-age strength development of FNS blended concrete is lower than that of the corresponding ordinary Portland cement (OPC) concrete. FNS blended concrete showed significantly higher tensile creep. The risk of early-age cracking for the restrained specimens depends on the development of concrete tensile stress considering both restrained shrinkage and tensile creep and the development of the tensile strength. FNS blended concrete showed only 20% reduction in time to cracking compared to reference OPC concrete, and this reduction is significantly lower compared to fly ash and ground granulated blast furnace slag blended concretes at similar replacement level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferronickel%20slag" title="ferronickel slag">ferronickel slag</a>, <a href="https://publications.waset.org/abstracts/search?q=restraint%20shrinkage" title=" restraint shrinkage"> restraint shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20creep" title=" tensile creep"> tensile creep</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking" title=" time to cracking"> time to cracking</a> </p> <a href="https://publications.waset.org/abstracts/110525/early-age-cracking-of-low-carbon-concrete-incorporating-ferronickel-slag-as-supplementary-cementitious-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18439</span> Password Cracking on Graphics Processing Unit Based Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Gopalakrishna%20Kini">N. Gopalakrishna Kini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjana%20Paleppady"> Ranjana Paleppady</a>, <a href="https://publications.waset.org/abstracts/search?q=Akshata%20K.%20Naik"> Akshata K. Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Password authentication is one of the widely used methods to achieve authentication for legal users of computers and defense against attackers. There are many different ways to authenticate users of a system and there are many password cracking methods also developed. This paper is mainly to propose how best password cracking can be performed on a CPU-GPGPU based system. The main objective of this work is to project how quickly a password can be cracked with some knowledge about the computer security and password cracking if sufficient security is not incorporated to the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPGPU" title="GPGPU">GPGPU</a>, <a href="https://publications.waset.org/abstracts/search?q=password%20cracking" title=" password cracking"> password cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=secret%20key" title=" secret key"> secret key</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20authentication" title=" user authentication"> user authentication</a> </p> <a href="https://publications.waset.org/abstracts/40190/password-cracking-on-graphics-processing-unit-based-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18438</span> A Study on the Effect of Different Climate Conditions on Time of Balance of Bleeding and Evaporation in Plastic Shrinkage Cracking of Concrete Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Ziari">Hasan Ziari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Fazaeli"> Hassan Fazaeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Javad%20Vaziri%20Kang%20Olyaei"> Seyed Javad Vaziri Kang Olyaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Sadat%20Dabiri"> Asma Sadat Dabiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of cracks in concrete pavements is a place for the ingression of corrosive substances, acids, oils, and water into the pavement and reduces its long-term durability and level of service. One of the causes of early cracks in concrete pavements is the plastic shrinkage. This shrinkage occurs due to the formation of negative capillary pressures after the equilibrium of the bleeding and evaporation rates at the pavement surface. These cracks form if the tensile stresses caused by the restrained shrinkage exceed the tensile strength of the concrete. Different climate conditions change the rate of evaporation and thus change the balance time of the bleeding and evaporation, which changes the severity of cracking in concrete. The present study examined the relationship between the balance time of bleeding and evaporation and the area of cracking in the concrete slabs using the standard method ASTM C1579 in 27 different environmental conditions by using continuous video recording and digital image analyzing. The results showed that as the evaporation rate increased and the balance time decreased, the crack severity significantly increased so that by reducing the balance time from the maximum value to its minimum value, the cracking area increased more than four times. It was also observed that the cracking area- balance time curve could be interpreted in three sections. An examination of these three parts showed that the combination of climate conditions has a significant effect on increasing or decreasing these two variables. The criticality of a single factor cannot cause the critical conditions of plastic cracking. By combining two mild environmental factors with a severe climate factor (in terms of surface evaporation rate), a considerable reduction in balance time and a sharp increase in cracking severity can be prevented. The results of this study showed that balance time could be an essential factor in controlling and predicting plastic shrinkage cracking in concrete pavements. It is necessary to control this factor in the case of constructing concrete pavements in different climate conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bleeding%20and%20cracking%20severity" title="bleeding and cracking severity">bleeding and cracking severity</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20pavements" title=" concrete pavements"> concrete pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20conditions" title=" climate conditions"> climate conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20shrinkage" title=" plastic shrinkage "> plastic shrinkage </a> </p> <a href="https://publications.waset.org/abstracts/127405/a-study-on-the-effect-of-different-climate-conditions-on-time-of-balance-of-bleeding-and-evaporation-in-plastic-shrinkage-cracking-of-concrete-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18437</span> Prediction of Concrete Hydration Behavior and Cracking Tendency Based on Electrical Resistivity Measurement, Cracking Test and ANSYS Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaila%20Muazu%20Bawa">Samaila Muazu Bawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were separately monitored using non-contact electrical resistivity apparatus, a plastic ring mould and penetration resistance method respectively. The results show highest resistivity of C30 at the beginning until reaching the acceleration point when C50 accelerated and overtaken the others, and this period corresponds to its final setting time range, from resistivity derivative curve, hydration process can be divided into dissolution, induction, acceleration and deceleration periods, restrained shrinkage crack and setting time tests demonstrated the earliest cracking and setting time of C50, therefore, this method conveniently and rapidly determines the concrete’s crack potential. The highest inflection time (ti), the final setting time (tf) were obtained and used with crack time in coming up with mathematical models for the prediction of concrete’s cracking age for the range being considered. Finally, ANSYS numerical simulations supports the experimental findings in terms of the earliest crack age of C50 and the crack location that, highest stress concentration is always beneath the artificially introduced expansion joint of C50. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20hydration" title="concrete hydration">concrete hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title=" electrical resistivity"> electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=restrained%20shrinkage%20crack" title=" restrained shrinkage crack"> restrained shrinkage crack</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20simulation" title=" ANSYS simulation"> ANSYS simulation</a> </p> <a href="https://publications.waset.org/abstracts/49699/prediction-of-concrete-hydration-behavior-and-cracking-tendency-based-on-electrical-resistivity-measurement-cracking-test-and-ansys-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18436</span> Structural Engineering Forensic Evaluation of Misdiagnosed Concrete Masonry Wall Cracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20C.%20Bracken">W. C. Bracken</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given that concrete masonry walls are expected to experience shrinkage combined with thermal expansion and contraction, and in some cases even carbonation, throughout their service life, cracking is to be expected. However, after concrete masonry walls have been placed into service, originally anticipated and accounted for cracking is often misdiagnosed as a structural defect. Such misdiagnoses often result in or are used to support litigation. This paper begins by discussing the causes and types of anticipated cracking within concrete masonry walls followed by a discussion on the processes and analyses that exists for properly evaluating them and their significance. From here, the paper then presents a case of misdiagnosed concrete masonry cracking and the flawed logic employed to support litigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20masonry" title="concrete masonry">concrete masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20wall%20cracking" title=" masonry wall cracking"> masonry wall cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20defect" title=" structural defect"> structural defect</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage" title=" structural damage"> structural damage</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20defect" title=" construction defect"> construction defect</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20investigation" title=" forensic investigation"> forensic investigation</a> </p> <a href="https://publications.waset.org/abstracts/56999/structural-engineering-forensic-evaluation-of-misdiagnosed-concrete-masonry-wall-cracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18435</span> The Use of Electrical Resistivity Measurement, Cracking Test and Ansys Simulation to Predict Concrete Hydration Behavior and Crack Tendency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaila%20Bawa%20Muazu">Samaila Bawa Muazu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were separately monitored using non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance method respectively. The results show highest resistivity of C30 at the beginning until reaching the acceleration point when C50 accelerated and overtaken the others, and this period corresponds to its final setting time range, from resistivity derivative curve, hydration process can be divided into dissolution, induction, acceleration and deceleration periods, restrained shrinkage crack and setting time tests demonstrated the earliest cracking and setting time of C50, therefore, this method conveniently and rapidly determines the concrete’s crack potential. The highest inflection time (ti), the final setting time (tf) were obtained and used with crack time in coming up with mathematical models for the prediction of concrete’s cracking age for the range being considered. Finally, ANSYS numerical simulations supports the experimental findings in terms of the earliest crack age of C50 and the crack location that, highest stress concentration is always beneath the artificially introduced expansion joint of C50. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20hydration" title="concrete hydration">concrete hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title=" electrical resistivity"> electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=restrained%20shrinkage%20crack" title=" restrained shrinkage crack"> restrained shrinkage crack</a>, <a href="https://publications.waset.org/abstracts/search?q=setting%20time" title=" setting time"> setting time</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/46710/the-use-of-electrical-resistivity-measurement-cracking-test-and-ansys-simulation-to-predict-concrete-hydration-behavior-and-crack-tendency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18434</span> Risk of Plastic Shrinkage Cracking in Recycled Aggregate Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Eckert">M. Eckert</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Oliveira"> M. Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intensive use of natural aggregates, near cities and towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and takes up space. The use of recycled aggregates in concrete preparation would contribute to mitigate the problem. However, it arises the problem that the high water absorption of recycled aggregate decreases the bleeding rate of concrete, and when this gets lower than the evaporation rate, plastic shrinkage cracking occurs. This phenomenon can be particularly problematic in hot and windy curing environments. Cracking facilitates the flow of liquid and gas into concrete which attacks the reinforcement and degrades the concrete. These factors reduce the durability of concrete structures and consequently the lifetime of buildings. A ring test was used, cured in a wind tunnel, to evaluate the plastic shrinkage cracking sensitivity of recycled aggregate concrete, in order to implement preventive means to control this phenomenon. The role of several aggregate properties on the concrete segregation and cracking mechanisms were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate" title="recycled aggregate">recycled aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20shrinkage%20cracking" title=" plastic shrinkage cracking"> plastic shrinkage cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/24303/risk-of-plastic-shrinkage-cracking-in-recycled-aggregate-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18433</span> N-Heptane as Model Molecule for Cracking Catalyst Evaluation to Improve the Yield of Ethylene and Propylene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tony%20K.%20Joseph">Tony K. Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=Balasubramanian%20Vathilingam"> Balasubramanian Vathilingam</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Morin"> Stephane Morin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the refiners around the world are more focused on improving the yield of light olefins (propylene and ethylene) as both of them are very prominent raw materials to produce wide spectrum of polymeric materials such as polyethylene and polypropylene. Henceforth, it is desirable to increase the yield of light olefins via selective cracking of heavy oil fractions. In this study, zeolite grown on SiC was used as the catalyst to do model cracking reaction of n-heptane. The catalytic cracking of n-heptane was performed in a fixed bed reactor (12 mm i.d.) at three different temperatures (425, 450 and 475 °C) and at atmospheric pressure. A carrier gas (N₂) was mixed with n-heptane with ratio of 90:10 (N₂:n-heptane), and the gaseous mixture was introduced into the fixed bed reactor. Various flow rate of reactants was tested to increase the yield of ethylene and propylene. For the comparison purpose, commercial zeolite was also tested in addition to Zeolite on SiC. The products were analyzed using an Agilent gas chromatograph (GC-9860) equipped with flame ionization detector (FID). The GC is connected online with the reactor and all the cracking tests were successfully reproduced. The entire catalytic evaluation results will be presented during the conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracking" title="cracking">cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene" title=" ethylene"> ethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=heptane" title=" heptane"> heptane</a>, <a href="https://publications.waset.org/abstracts/search?q=propylene" title=" propylene"> propylene</a> </p> <a href="https://publications.waset.org/abstracts/118988/n-heptane-as-model-molecule-for-cracking-catalyst-evaluation-to-improve-the-yield-of-ethylene-and-propylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18432</span> Stress Corrosion Cracking, Parameters Affecting It, Problems Caused by It and Suggested Methods for Treatment: State of the Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Zaid">Adnan Zaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress corrosion cracking (SCC) may be defined as a degradation of the mechanical properties of a material under the combined action of a tensile stress and corrosive environment of the susceptible material. It is a harmful phenomenon which might cause catastrophic fracture without a sign of prior warning. In this paper, the stress corrosion cracking, SCC, process, the parameters affecting it, and the different damages caused by it are given and discussed. Utilization of shot peening as a mean of enhancing the resistance of materials to SCC is given and discussed. Finally, a method for improving materials resistance to SCC by grain refining its structure by some refining elements prior to usage is suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking" title="stress corrosion cracking">stress corrosion cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters" title=" parameters"> parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=damages" title=" damages"> damages</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20methods" title=" treatment methods"> treatment methods</a> </p> <a href="https://publications.waset.org/abstracts/65830/stress-corrosion-cracking-parameters-affecting-it-problems-caused-by-it-and-suggested-methods-for-treatment-state-of-the-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18431</span> Research on the Feasibility of Evaluating Low-Temperature Cracking Performance of Asphalt Mixture Using Fracture Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Yang">Tao Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongli%20Zhao"> Yongli Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-temperature cracking is one of the major challenges for asphalt pavement in the cold region. Fracture energy could determine from various test methods, which is a commonly used parameter to evaluate the low-temperature cracking resistance of asphalt mixture. However, the feasibility of evaluating the low-temperature cracking performance of asphalt mixture using fracture energy is not investigated comprehensively. This paper aims to verify whether fracture energy is an appropriate parameter to evaluate the low-temperature cracking performance. To achieve this goal, this paper compared the test results of thermal stress restrained specimen test (TSRST) and semi-circular bending test (SCB) of asphalt mixture with different types of aggregate, TSRST and indirect tensile test (IDT) of asphalt mixture with different additives, and single-edge notched beam test (SENB) and TSRST of asphalt mixture with different asphalt. Finally, the correlation between in-suit cracking performance and fracture energy was surveyed. The experimental results showed the evaluation result of critical cracking temperature and fracture energy are not always consistent; the in-suit cracking performance is also not correlated well with fracture energy. These results indicated that it is not feasible to evaluate low-temperature performance by fracture energy. Then, the composition of fracture energy of TSRST, SCB, disk-shaped compact tension test (DCT), three-point bending test (3PB) and IDT was analyzed. The result showed: the area of thermal stress versus temperature curve is the multiple of fracture energy and could be used to represent fracture energy of TSRST, as the multiple is nearly equal among different asphalt mixtures for a specific specimen; the fracture energy, determined from TSRST, SCB, DCT, 3PB, SENB and IDT, is mainly the surface energy that forms the fracture face; fracture energy is inappropriate to evaluate the low-temperature cracking performance of asphalt mixture, as the relaxation/viscous performance is not considered; if the fracture energy was used, it is recommended to combine this parameter with an index characterizing the relaxation or creep performance of asphalt mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title="asphalt pavement">asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20region" title=" cold region"> cold region</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20cracking%20temperature" title=" critical cracking temperature"> critical cracking temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20energy" title=" fracture energy"> fracture energy</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20cracking" title=" low-temperature cracking"> low-temperature cracking</a> </p> <a href="https://publications.waset.org/abstracts/131656/research-on-the-feasibility-of-evaluating-low-temperature-cracking-performance-of-asphalt-mixture-using-fracture-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18430</span> Microwave Assisted Thermal Cracking of Castor Oil Zeolite ZSM-5 as Catalyst for Biofuel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20Faisal%20Najmuldeen">Ghazi Faisal Najmuldeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abdul%20Rahman%E2%80%93Al%20Ezzi"> Ali Abdul Rahman–Al Ezzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tharmathas%20A%2FL%20Alagappan"> Tharmathas A/L Alagappan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this investigation was to produce biofuel from castor oil through microwave assisted thermal cracking with zeolite ZSM-5 as catalyst. The obtained results showed that microwave assisted thermal cracking of castor oil with Zeolite ZSM-5 as catalyst generates products consisting of alcohol, methyl esters and fatty acids. The products obtained from this experimental procedure by the cracking of castor oil are components of biodiesel. Samples of cracked castor oil containing 1, 3 and 5wt % catalyst was analyzed, however, only the sample containing the 5wt % catalyst showed significant presence of condensate. FTIR and GCMS studies show that the condensate obtained is an unsaturated fatty acid, is 9, 12-octadecadienoic acid, suitable for biofuel use. 9, 12-octadecadienoic acid is an unsaturated fatty acid with a molecular weight of 280.445 g/mol. Characterization of the sample demonstrates that functional group for the products from the three samples display a similar peak in the FTIR graph analysis at 1700 cm-1 and 3600 cm-1. The result obtained from GCMS shows that there are 16 peaks obtained from the sample. The compound with the highest peak area is 9, 12-octadecadienoic acid with a retention time of 9.941 and 24.65 peak areas. All these compounds are organic material and can be characterized as biofuel and biodiesel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title="castor oil">castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cracking" title=" thermal cracking"> thermal cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a> </p> <a href="https://publications.waset.org/abstracts/39975/microwave-assisted-thermal-cracking-of-castor-oil-zeolite-zsm-5-as-catalyst-for-biofuel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18429</span> Catalytic Cracking of Butene to Propylene over Modified HZSM-5 Zeolites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianwen%20Li">Jianwen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiwen%20Sun"> Qiwen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catalytic cracking of butene to propylene was carried out in a continuous-flow fixed-bed reactor over HZSM-5 catalysts modified by nickel and phosphorus. The structure and acidity of catalysts were measured by N2 adsorption, NH3-TPD and XPS. The results revealed that surface area and strong acid sites both decreased with increasing phosphorus loadings. The increment of phosphorus loadings reduced the butene conversion but enhanced the propylene selectivity and catalyst stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butene" title="butene">butene</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20cracking" title=" catalytic cracking"> catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=HZSM-5" title=" HZSM-5"> HZSM-5</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a> </p> <a href="https://publications.waset.org/abstracts/9660/catalytic-cracking-of-butene-to-propylene-over-modified-hzsm-5-zeolites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18428</span> Torsional Rigidities of Reinforced Concrete Beams Subjected to Elastic Lateral Torsional Buckling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kalkan">Ilker Kalkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saruhan%20Kartal"> Saruhan Kartal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RC) beams rarely undergo lateral-torsional buckling (LTB), since these beams possess large lateral bending and torsional rigidities owing to their stocky cross-sections, unlike steel beams. However, the problem of LTB is becoming more and more pronounced in the last decades as the span lengths of concrete beams increase and the cross-sections become more slender with the use of pre-stressed concrete. The buckling moment of a beam mainly depends on its lateral bending rigidity and torsional rigidity. The nonhomogeneous and elastic-inelastic nature of RC complicates estimation of the buckling moments of concrete beams. Furthermore, the lateral bending and torsional rigidities of RC beams and the buckling moments are affected from different forms of concrete cracking, including flexural, torsional and restrained shrinkage cracking. The present study pertains to the effects of concrete cracking on the torsional rigidities of RC beams prone to elastic LTB. A series of tests on rather slender RC beams indicated that torsional cracking does not initiate until buckling in elastic LTB, while flexural cracking associated with lateral bending takes place even at the initial stages of loading. Hence, the present study clearly indicated that the un-cracked torsional rigidity needs to be used for estimating the buckling moments of RC beams liable to elastic LTB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20stability" title="lateral stability">lateral stability</a>, <a href="https://publications.waset.org/abstracts/search?q=post-cracking%20torsional%20rigidity" title=" post-cracking torsional rigidity"> post-cracking torsional rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=uncracked%20torsional%20rigidity" title=" uncracked torsional rigidity"> uncracked torsional rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20moment" title=" critical moment"> critical moment</a> </p> <a href="https://publications.waset.org/abstracts/72558/torsional-rigidities-of-reinforced-concrete-beams-subjected-to-elastic-lateral-torsional-buckling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18427</span> First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saruhan%20Kartal">Saruhan Kartal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kalkan"> Ilker Kalkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20reinforcement" title="polymer reinforcement">polymer reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=four-point%20bending" title=" four-point bending"> four-point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20use%20of%20reinforcement" title=" hybrid use of reinforcement"> hybrid use of reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20moment" title=" cracking moment"> cracking moment</a> </p> <a href="https://publications.waset.org/abstracts/107997/first-cracking-moments-of-hybrid-fiber-reinforced-polymer-steel-reinforced-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18426</span> Restrained Shrinkage Behavior of Self Consolidating Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boudjelthia%20Radhwane">Boudjelthia Radhwane </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. The shrinkage of concrete is the main cause of cracking in bridge decks. Bridge decks tend to be restrained from shrinkage, and this restraint along with other factors causes the bridge to crack. The characteristics of SCC under restrained shrinkage are important to understand in order to predict the cracking behavior in actual structures. Restrained shrinkage testing is done in accordance to AASHTO testing protocol. The free shrinkage performance and cracking behavior were reported and compared when changing the sand to aggregate ratio and the water to cement ratio. The results of free shrinkage show that when a mix design has higher free shrinkage, it will crack in restrained shrinkage earlier than a mix with lower free shrinkage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20mix" title="concrete mix">concrete mix</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20behavior" title=" cracking behavior"> cracking behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=restrained%20shrinkage" title=" restrained shrinkage"> restrained shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20compacting%20concrete" title=" self compacting concrete"> self compacting concrete</a> </p> <a href="https://publications.waset.org/abstracts/29974/restrained-shrinkage-behavior-of-self-consolidating-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18425</span> Investigating the Capacity of Cracking Torsion of Rectangular and Cylindrical RC Beams with Spiral and Normal Stirrups </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Barghlame">Hadi Barghlame</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Lotfollahi-Yaghin"> M. A. Lotfollahi-Yaghin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Mohammad%20Rezaei"> Mehdi Mohammad Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Eskanderzadeh"> Saeed Eskanderzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the capacity of cracking torsion on rectangular and cylindrical beams with spiral and normal stirrups in similar properties are investigated. Also, in the beams with spiral stirrups, stirrups are not wrapping and spiral stirrups similar to normal stirrups in ACI code. Therefore, models of above-mentioned beams have been numerically analyzed under various loads using ANSYS software. In this research, the behavior of rectangular reinforced concrete beams is compared with the cylindrical reinforced concrete beams. The capacity of cracking torsion of rectangular and cylindrical RC beams with spiral and normal stirrups are same. In the other words, the behavior of rectangular RC beams is similar to cylindrical beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracking%20torsion" title="cracking torsion">cracking torsion</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20beams" title=" RC beams"> RC beams</a>, <a href="https://publications.waset.org/abstracts/search?q=spiral%20stirrups" title=" spiral stirrups"> spiral stirrups</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20stirrups" title=" normal stirrups"> normal stirrups</a> </p> <a href="https://publications.waset.org/abstracts/33354/investigating-the-capacity-of-cracking-torsion-of-rectangular-and-cylindrical-rc-beams-with-spiral-and-normal-stirrups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18424</span> Characterization of Shrinkage-Induced Cracking of Clay Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20El%20Hajjar">Ahmad El Hajjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Eid"> Joanna Eid</a>, <a href="https://publications.waset.org/abstracts/search?q=Salima%20Bouchemella"> Salima Bouchemella</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Ouahbi"> Tariq Ouahbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Duchemin"> Benoit Duchemin</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Taibi"> Said Taibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In our present society, raw earth presents an alternative as an energy-saving building material for dealing with climate and environmental issues. Nevertheless, it has a sensitivity to water, due to the presence of fines, which has a direct effect on its consistency. This can be expressed during desiccation, by shrinkage deformations resulting in cracking that begins once the internal tensile stresses developed, due to suction, exceed the tensile strength of the material. This work deals with the evolution of the strain of clay samples, from the beginning of shrinkage until the initiation of crack, using the DIC (Digital Image Correlation) technique. In order to understand the origin of cracking, desiccation is studied for different boundary conditions and depending on the intrinsic characteristics of the material. On the other hand, a study of restrained shrinkage is carried out on the ring test to investigate the ultimate tensile strength from which the crack begins in the dough of clay. The purpose of this test is to find the type of reinforcement adapted to thwart in the cracking of the material. A microscopic analysis of the damaged area is necessary to link the macroscopic mechanisms of cracking to the various physicochemical phenomena at the microscopic scale in order to understand the different microstructural mechanisms and their impact on the macroscopic shrinkage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title="clayey soil">clayey soil</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking" title=" cracking"> cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a> </p> <a href="https://publications.waset.org/abstracts/98463/characterization-of-shrinkage-induced-cracking-of-clay-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18423</span> A Study of Cracking Behavior in Concrete Beams Reinforced With Two Different Grades of Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Abdel%20Hamid%20Taha">Nihal Abdel Hamid Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crack evaluation of flexure reinforced concrete (RC) member is considered an important step in the design process, since the formation of concrete cracks depends on the possibility of exposure to various conditions(pollution, humidity,..etc.). Because of the disparity between different grades of steel in the service load stresses, this affects the cracking behavior. This paper is concerned with the crack pattern and cracking load for concrete beams with T-section reinforced with two different grades of steel at the service load levels stages up to ultimate load. A practical program has been put up to investigate the difference between reinforced steel bars with yield strength 420 N/mm2 and 500 N/mm2 through six T-section reinforced beams. The beams were tested under static- monotonic two– point service loading up to ultimate failure under flexural stresses. The influence of parameters such as clear concrete cover and concrete compressive strength are considered for each of the two grades of steel used. Cracking load, spacing and width were determined. The experimental results demonstrated that increasing the concrete strength results in both of cracking and ultimate load increase, while no significant difference in yield load for the two steel grades used. It has also become obvious, that the number of cracks was more for the lower steel strength, which is followed by decrease in crack width and spacing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RC%20beams" title="RC beams">RC beams</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20behavior" title=" cracking behavior"> cracking behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20stress" title=" steel stress"> steel stress</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20spacing" title=" crack spacing"> crack spacing</a> </p> <a href="https://publications.waset.org/abstracts/182397/a-study-of-cracking-behavior-in-concrete-beams-reinforced-with-two-different-grades-of-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18422</span> Simulation of a Fluid Catalytic Cracking Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Kim">Sungho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Shik%20Kim"> Dae Shik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Lee"> Jong Min Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery indusrty. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its nonlinearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flowsheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flowsheet simulator to develop an integrated process model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20catalytic%20cracking" title="fluid catalytic cracking">fluid catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20data" title=" plant data"> plant data</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20design" title=" process design"> process design</a> </p> <a href="https://publications.waset.org/abstracts/29425/simulation-of-a-fluid-catalytic-cracking-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18421</span> Thermal Cracking Approach Investigation to Improve Biodiesel Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roghaieh%20Parvizsedghy">Roghaieh Parvizsedghy</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Mojtaba%20Sadrameli"> Seyyed Mojtaba Sadrameli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20oil" title=" castor oil"> castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20properties" title=" fuel properties"> fuel properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cracking" title=" thermal cracking"> thermal cracking</a> </p> <a href="https://publications.waset.org/abstracts/32353/thermal-cracking-approach-investigation-to-improve-biodiesel-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18420</span> Modeling and Simulation of Fluid Catalytic Cracking Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Kim">Sungho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Shik%20Kim"> Dae Shik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Lee"> Jong Min Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery industry. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its non linearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flow sheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flow sheet simulator to develop an integrated process model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20catalytic%20cracking" title="fluid catalytic cracking">fluid catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20data" title=" plant data"> plant data</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20design" title=" process design"> process design</a> </p> <a href="https://publications.waset.org/abstracts/29415/modeling-and-simulation-of-fluid-catalytic-cracking-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18419</span> Stability of Composite Struts Using the Modified Newmark Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Amin%20Vakili">Seyed Amin Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Sadat%20Vakili"> Sahar Sadat Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ehsan%20Vakili"> Seyed Ehsan Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Abdoli%20Yazdi"> Nader Abdoli Yazdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to examine the behavior of elastic stability of reinforced and composite concrete struts with axial loads. The objective of this study is to verify the ability of the Modified Newmark Method to include geometric non-linearity in addition to non-linearity due to cracking, and also to show the advantage of the established method to reconsider an ignored minor parameter in mathematical modeling, such as the effect of the cracking by extra geometric bending moment Ny on cross-section properties. The purpose of this investigation is not to present some new results for the instability of reinforced or composite concrete columns. Therefore, no kinds of non-linearity involved in the problem are considered here. Only as mentioned, it is a part of the verification of the new established method to solve two kinds of non-linearity P- δ effect and cracking together simultaneously. However, the Modified Newmark Method can be used to solve non-linearity of materials and time-dependent behavior of concrete. However, since it is out of the scope of this article, it is not considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stability" title="stability">stability</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling" title=" buckling"> buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20newmark%20method" title=" modified newmark method"> modified newmark method</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced" title=" reinforced"> reinforced</a> </p> <a href="https://publications.waset.org/abstracts/42634/stability-of-composite-struts-using-the-modified-newmark-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18418</span> Biofuel Production via Thermal Cracking of Castor Methyl Ester</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roghaieh%20Parvizsedghy">Roghaieh Parvizsedghy</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mojtaba%20Sadrameli"> Seyed Mojtaba Sadrameli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diminishing oil reserves, deteriorating health standards because of greenhouse gas emissions and associated environmental impacts have emerged biofuel production. Vegetable oils are proved to be valuable feedstock in these growing industries as they are renewable and potentially inexhaustible sources. Thermal Cracking of vegetable oils (triglycerides) leads to production of biofuels which are similar to fossil fuels in terms of composition but their combustion and physical properties have limits. Acrolein (very poisonous gas) and water production during cracking of triglycerides occurs because of presence of glycerin in their molecular structure. Transesterification of vegetable oil is a method to extract glycerol from triglycerides structure and produce methyl ester. In this study, castor methyl ester was used for thermal cracking in order to survey the efficiency of this method to produce bio-gasoline and bio-diesel. Thus, several experiments were designed by means of central composite method. Statistical studies showed that two reaction parameters, namely cracking temperature and feed flowrate, affect products yield significantly. At the optimized conditions (480 °C and 29 g/h) for maximum bio-gasoline production, 88.6% bio-oil was achieved which was distilled and separated as bio-gasoline (28%) and bio-diesel (48.2%). Bio-gasoline exposed a high octane number and combustion heat. Distillation curve and Reid vapor pressure of bio-gasoline fell in the criteria of standard gasoline (class AA) by ASTM D4814. Bio-diesel was compatible with standard diesel by ASTM D975. Water production was negligible and no evidence of acrolein production was distinguished. Therefore, thermal cracking of castor methyl ester could be used as a method to produce valuable biofuels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-diesel" title="bio-diesel">bio-diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-gasoline" title=" bio-gasoline"> bio-gasoline</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20methyl%20ester" title=" castor methyl ester"> castor methyl ester</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cracking" title=" thermal cracking"> thermal cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/67949/biofuel-production-via-thermal-cracking-of-castor-methyl-ester" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18417</span> Catalytic Cracking of Hydrocarbon over Zeolite Based Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debdut%20Roy">Debdut Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidyasagar%20Guggilla"> Vidyasagar Guggilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we highlight our exploratory work on modified zeolite based catalysts for catalytic cracking of hydrocarbons for production of light olefin i.e. ethylene and propylene. The work is focused on understanding the catalyst structure and activity correlation. Catalysts are characterized by surface area and pore size distribution analysis, inductively coupled plasma optical emission spectrometry (ICP-OES), Temperature Programmed Desorption (TPD) of ammonia, pyridine Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermo-gravimetric Analysis (TGA) and correlated with the catalytic activity. It is observed that the yield of lighter olefins increases with increase of Bronsted acid strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20cracking" title="catalytic cracking">catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=propylene" title=" propylene"> propylene</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-activity%20correlation" title=" structure-activity correlation"> structure-activity correlation</a> </p> <a href="https://publications.waset.org/abstracts/72865/catalytic-cracking-of-hydrocarbon-over-zeolite-based-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18416</span> Butene Catalytic Cracking to Propylene over Iron and Phosphorus Modified HZSM-5</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianwen%20Li">Jianwen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiwen%20Sun"> Qiwen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HZSM-5 zeolites modified by iron and phosphorus were applied in catalytic cracking of butene. N2 adsorption and NH3-TPD were employed to measure the structure and acidity of catalysts. The results indicate that increasing phosphorus loading decreased surface area, pore volume and strong acidity of catalysts. The introduction of phosphorus significantly decreased butene conversion and promoted propylene selectivity. The catalytic performance of catalyst was strongly dependent on the reaction conditions. Appropriate reaction conditions could suppress side reactions and enhance propylene selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butene%20catalytic%20cracking" title="butene catalytic cracking">butene catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=HZSM-5" title=" HZSM-5"> HZSM-5</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20conditions" title=" reaction conditions"> reaction conditions</a> </p> <a href="https://publications.waset.org/abstracts/22176/butene-catalytic-cracking-to-propylene-over-iron-and-phosphorus-modified-hzsm-5" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18415</span> Cracking Performance of Bituminous Concrete Mixes Containing High Percentage of RAP Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bicky%20Agarwal">Bicky Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ambika%20Behl"> Ambika Behl</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajiv%20Kumar"> Rajiv Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Dhamaniya"> Ashish Dhamaniya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India ranks second for having the largest road network in the world after the United States (U.S.). According to the National Asphalt Pavement Association (NAPA), the U.S. produced about 94.6 million tons of Reclaimed Asphalt Pavement (RAP) in 2021. Despite the benefits of RAP usage, it is not widely adopted in many countries, including India. Rising asphalt binder costs and environmental concerns have spurred interest in using RAP material in asphalt mixtures. However, increasing RAP content may have adverse effects on certain characteristics of asphalt mixtures, such as cracking resistance. Cracking is a common pavement issue that affects the lifespan and durability of hot-mix asphalt pavements. Assessing cracking resistance is crucial in pavement design. Various laboratory tests and performance indicators are utilized to evaluate cracking resistance. This study aims to use the Texas Overlay Tester (TOT) to assess the impact of reclaimed asphalt pavement (RAP) on the cracking resistance of Bituminous Concrete (BC-II) mixes. Following the Marshall Mix Design method, asphalt mixes with RAP contents of 0% (Control), 30%, 40%, 50%, and 60% were prepared and tested at their Optimum Binder Content (OBC). The ITS results showed that the control mix had an ITS value of 1.2 MPa, with slight decreases observed in mixes containing up to 60% RAP, although these changes were not statistically significant (p=0.538>0.05). The TSR tests indicated that all mixes exceeded the minimum requirement of 80%. The Texas Overlay Test (TOT) was used to evaluate cracking performance and revealed that higher RAP contents had a negative impact on fatigue resistance. The 50% RAP mix exhibited the highest CFE, indicating that it has the best resistance to crack propagation despite having a lower number of cycles to failure. All mixes were categorized as falling into the Soft-crack-resistant quadrant, indicating their ability to resist crack propagation while being more susceptible to crack initiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RAP" title="RAP">RAP</a>, <a href="https://publications.waset.org/abstracts/search?q=BC-II" title=" BC-II"> BC-II</a>, <a href="https://publications.waset.org/abstracts/search?q=HMA" title=" HMA"> HMA</a>, <a href="https://publications.waset.org/abstracts/search?q=TOT" title=" TOT"> TOT</a> </p> <a href="https://publications.waset.org/abstracts/189385/cracking-performance-of-bituminous-concrete-mixes-containing-high-percentage-of-rap-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18414</span> Analysis of the Influence of Fiber Volume and Fiber Orientation on Post-Cracking Behavior of Steel Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marilia%20M.%20Camargo">Marilia M. Camargo</a>, <a href="https://publications.waset.org/abstracts/search?q=Luisa%20A.%20Gachet-Barbosa"> Luisa A. Gachet-Barbosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20C.%20C.%20Lintz"> Rosa C. C. Lintz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The addition of fibers into concrete matrix can enhance some properties of the composite, such as tensile, flexural and impact strengths, toughness, deformation capacity and post-cracking ductility. Many factors affect the mechanical behavior of fiber reinforced concrete, such as concrete matrix (concrete strength, additions, aggregate diameter, etc.), characteristics of the fiber (geometry, type, aspect ratio, volume, orientation, distribution, strength, stiffness, etc.), specimen (size, geometry, method of preparation and loading rate). This research investigates the effects of fiber volume and orientation on the post-cracking behavior of steel fiber reinforced concrete (SFRC). Hooked-end steel fibers with aspect ratios of 45 were added into concrete with volume of 0,32%, 0,64%, 0,94%. The post-cracking behaviour was assessed by double punch test of cubic specimens and the actual volume and orientation of the fibers were determined by non-destructive tests by means of electromagnetic induction. The results showed that the actual volume of fibers in each sample differs in a small amount from the dosed volume of fibers and that the deformation and toughness of the concrete increase with the increase in the actual volume of fibers. In determining the orientation of the fibers, it was found that they tend to distribute more in the X and Y axes due to the influence of the walls of the mold. In addition, it was concluded that the orientation of the fibers is important in the post-cracking behaviour of FRC when analyzed together with the actual volume of fibers, since the greater the volume of fibers, the greater the number of fibers oriented orthogonally to the application of loadings and, consequently, there is a better mechanical behavior of the composite. These results provide a better understanding of the influence of volume and fiber orientation on the post-cracking behavior of the FRC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title="fiber reinforced concrete">fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20of%20fibers" title=" volume of fibers"> volume of fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation%20of%20fibers" title=" orientation of fibers"> orientation of fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=post-cracking%20behaviour" title=" post-cracking behaviour"> post-cracking behaviour</a> </p> <a href="https://publications.waset.org/abstracts/99248/analysis-of-the-influence-of-fiber-volume-and-fiber-orientation-on-post-cracking-behavior-of-steel-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18413</span> Recycled Plastic Fibers for Controlling the Plastic Shrinkage Cracking of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Al-Tulaian">B. S. Al-Tulaian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Al-Shannag"> M. J. Al-Shannag</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Al-Hozaimy"> A. M. Al-Hozaimy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing of fibers from industrial or postconsumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of Plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of concrete. The results indicate that recycled plastic RP fiber of 50 mm length is capable of controlling plastic shrinkage cracking of concrete to some extent, but are not as effective as polypropylene PP fibers when added at the same volume fraction. Furthermore, test results indicated that there was The increase in flexural strength of RP fibers and PP fibers concrete were 12.34% and 40.30%, respectively in comparison to plain concrete. RP fiber showed a substantial increase in toughness and a slight decrease in flexural strength of concrete at a fiber volume fraction of 1.00% compared to PP fibers at fiber volume fraction of 0.50%. RP fibers caused a significant increase in compressive strengths up to 13.02% compared to concrete without fiber reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic" title=" plastic"> plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage%20cracking" title=" shrinkage cracking"> shrinkage cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20recycled%20fibers" title=" RF recycled fibers"> RF recycled fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20PP%20fibers" title=" polypropylene PP fibers"> polypropylene PP fibers</a> </p> <a href="https://publications.waset.org/abstracts/20832/recycled-plastic-fibers-for-controlling-the-plastic-shrinkage-cracking-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking&amp;page=614">614</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking&amp;page=615">615</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20to%20cracking&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10