CINXE.COM

Search results for: endogenic contrast agent

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: endogenic contrast agent</title> <meta name="description" content="Search results for: endogenic contrast agent"> <meta name="keywords" content="endogenic contrast agent"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="endogenic contrast agent" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="endogenic contrast agent"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2971</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: endogenic contrast agent</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2971</span> Two-wavelength High-energy Cr:LiCaAlF6 MOPA Laser System for Medical Multispectral Optoacoustic Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radik%20D.%20Aglyamov">Radik D. Aglyamov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20K.%20Naumov"> Alexander K. Naumov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20A.%20Shavelev"> Alexey A. Shavelev</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20A.%20Morozov"> Oleg A. Morozov</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsenij%20D.%20Shishkin"> Arsenij D. Shishkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yury%20P.Brodnikovsky"> Yury P.Brodnikovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.Karabutov"> Alexander A.Karabutov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.%20Oraevsky"> Alexander A. Oraevsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Vadim%20V.%20Semashko"> Vadim V. Semashko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of medical optoacoustic tomography with the using human blood as endogenic contrast agent is constrained by the lack of reliable, easy-to-use and inexpensive sources of high-power pulsed laser radiation in the spectral region of 750-900 nm [1-2]. Currently used titanium-sapphire, alexandrite lasers or optical parametric light oscillators do not provide the required and stable output characteristics, they are structurally complex, and their cost is up to half the price of diagnostic optoacoustic systems. Here we are developing the lasers based on Cr:LiCaAlF6 crystals which are free of abovementioned disadvantages and provides intensive ten’s ns-range tunable laser radiation at specific absorption bands of oxy- (~840 nm) and -deoxyhemoglobin (~757 nm) in the blood. Cr:LiCAF (с=3 at.%) crystals were grown in Kazan Federal University by the vertical directional crystallization (Bridgman technique) in graphite crucibles in a fluorinating atmosphere at argon overpressure (P=1500 hPa) [3]. The laser elements have cylinder shape with the diameter of 8 mm and 90 mm in length. The direction of the optical axis of the crystal was normal to the cylinder generatrix, which provides the π-polarized laser action correspondent to maximal stimulated emission cross-section. The flat working surfaces of the active elements were polished and parallel to each other with an error less than 10”. No any antireflection coating was applied. The Q-switched master oscillator-power amplifiers laser system (MOPA) with the dual-Xenon flashlamp pumping scheme in diffuse-reflectivity close-coupled head were realized. A specially designed laser cavity, consisting of dielectric highly reflective reflectors with a 2 m-curvature radius, a flat output mirror, a polarizer and Q-switch sell, makes it possible to operate sequentially in a circle (50 ns - laser one pulse after another) at wavelengths of 757 and 840 nm. The programmable pumping system from Tomowave Laser LLC (Russia) provided independent to each pulses (up to 250 J at 180 μs) pumping to equalize the laser radiation intensity at these wavelengths. The MOPA laser operates at 10 Hz pulse repetition rate with the output energy up to 210 mJ. Taking into account the limitations associated with physiological movements and other characteristics of patient tissues, the duration of laser pulses and their energy allows molecular and functional high-contrast imaging to depths of 5-6 cm with a spatial resolution of at least 1 mm. Highly likely the further comprehensive design of laser allows improving the output properties and realizing better spatial resolution of medical multispectral optoacoustic tomography systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20optoacoustic" title="medical optoacoustic">medical optoacoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent" title=" endogenic contrast agent"> endogenic contrast agent</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwavelength%20tunable%20pulse%20lasers" title=" multiwavelength tunable pulse lasers"> multiwavelength tunable pulse lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=MOPA%20laser%20system" title=" MOPA laser system"> MOPA laser system</a> </p> <a href="https://publications.waset.org/abstracts/167567/two-wavelength-high-energy-crlicaalf6-mopa-laser-system-for-medical-multispectral-optoacoustic-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2970</span> New Method to Increase Contrast of Electromicrograph of Rat Tissues Sections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lise%20Paule%20Lab%C3%A9jof">Lise Paule Labéjof</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%ADza%20Sales%20Pereira%20Bizerra"> Raíza Sales Pereira Bizerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Galileu%20Barbosa%20Costa"> Galileu Barbosa Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tha%C3%ADsa%20Barros%20dos%20Santos"> Thaísa Barros dos Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the beginning of the microscopy, improving the image quality has always been a concern of its users. Especially for transmission electron microscopy (TEM), the problem is even more important due to the complexity of the sample preparation technique and the many variables that can affect the conservation of structures, proper operation of the equipment used and then the quality of the images obtained. Animal tissues being transparent it is necessary to apply a contrast agent in order to identify the elements of their ultrastructural morphology. Several methods of contrastation of tissues for TEM imaging have already been developed. The most used are the “in block” contrastation and “in situ” contrastation. This report presents an alternative technique of application of contrast agent in vivo, i.e. before sampling. By this new method the electromicrographies of the tissue sections have better contrast compared to that in situ and present no artefact of precipitation of contrast agent. Another advantage is that a small amount of contrast is needed to get a good result given that most of them are expensive and extremely toxic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20quality" title="image quality">image quality</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopy%20research" title=" microscopy research"> microscopy research</a>, <a href="https://publications.waset.org/abstracts/search?q=staining%20technique" title=" staining technique"> staining technique</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20thin%20section" title=" ultra thin section"> ultra thin section</a> </p> <a href="https://publications.waset.org/abstracts/26993/new-method-to-increase-contrast-of-electromicrograph-of-rat-tissues-sections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2969</span> Broadcasting Stabilization for Dynamical Multi-Agent Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myung-Gon%20Yoon">Myung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon"> Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a stabilization problem for multi-agent systems, when all agents in a multi-agent system receive the same broadcasting control signal and the controller can measure not each agent output but the sum of all agent outputs. It is analytically shown that when the sum of all agent outputs is bounded with a certain broadcasting controller for a given reference, each agent output is separately bounded:stabilization of the sum of agent outputs always results in the stability of every agent output. A numerical example is presented to illustrate our theoretic findings in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broadcasting%20control" title="broadcasting control">broadcasting control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20function" title=" transfer function"> transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/11214/broadcasting-stabilization-for-dynamical-multi-agent-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2968</span> Allopurinol Prophylactic Therapy in the Prevention of Contrast Induced Nephropathy in High Risk Patients Undergoing Coronary Angiography: A Prospective Randomized Controlled Trial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Fakhreddin%20Hejazi">Seyed Fakhreddin Hejazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Leili%20Iranirad"> Leili Iranirad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sadeghi"> Mohammad Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Talebizadeh"> Mohsen Talebizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Contrast-induced nephropathy (CIN) remains to be a potentially serious complication of radiographic procedures. We performed this clinical trial to assess the preventive effect of allopurinol against CIN in high-risk patients undergoing coronary angiography. Methods: In this prospective randomized controlled trial, 140 patients with at least two risk factors for CIN undergoing coronary angiography were randomly assigned to either the allopurinol group or the control group. Patients in the allopurinol group received 300 mg allopurinol 24 hours before a procedure and intravenous hydration for 12 hours before and after coronary angiography, whereas patients in the control group received intravenous hydration. Serum creatinine (SCr), blood urea nitrogen (BUN) and uric acid were measured before contrast exposure and at 48 hours. CIN was defined as an increase of 25% in serum creatinine (SCr) or >0.5 mg/dl 48 hours after contrast administration. Results: CIN occurred in 11 out of 70 (7.9%) patients in the control group and in 8 out of 70 (5.7%) patients in the allopurinol group. There was no significant difference in the incidence of CIN between the two groups at 48 hours after administering the radiocontrast agent (p = 0.459). However, there were significant differences between the two groups in SCr, BUN, uric acid, and eGFR 48 hours after radiocontrast administration (p < 0.05). Conclusion: Our findings revealed that allopurinol had no substantial efficacy over hydration protocol in high-risk patients for the development of CIN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast-induced%20nephropathy" title="contrast-induced nephropathy">contrast-induced nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=allopurinol" title=" allopurinol"> allopurinol</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20angiography" title=" coronary angiography"> coronary angiography</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20agent" title=" contrast agent"> contrast agent</a> </p> <a href="https://publications.waset.org/abstracts/53315/allopurinol-prophylactic-therapy-in-the-prevention-of-contrast-induced-nephropathy-in-high-risk-patients-undergoing-coronary-angiography-a-prospective-randomized-controlled-trial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2967</span> An Inquiry on Imaging of Soft Tissues in Micro-Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matej%20Patzelt">Matej Patzelt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Mrzilkova"> Jana Mrzilkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Dudak"> Jan Dudak</a>, <a href="https://publications.waset.org/abstracts/search?q=Frantisek%20Krejci"> Frantisek Krejci</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Zemlicka"> Jan Zemlicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdenek%20Wurst"> Zdenek Wurst</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Zach"> Petr Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Musil"> Vladimir Musil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Micro-CT is well used for examination of bone structures and teeth. On the other hand visualization of the soft tissues is still limited. The goal of our study was to elaborate methodology for soft tissue samples imaging in micro-CT. Methodology: We used organs of rats and mice. We either did a preparation of the organs and fixation in contrast solution or we did cannulation of blood vessels and their injection for imaging of the vascular system. First, we scanned native specimens, then we created corrosive specimens by resins. In the next step, we injected vascular system either by Aurovist contrast agent or by Exitron. In the next step, we focused on soft tissues contrast increase. We scanned samples fixated in Lugol solution, samples fixated in pure ethanol and in formaldehyde solution. All used methods were afterwards compared. Results: Native specimens did not provide sufficient contrast of the tissues in any of organs. Corrosive samples of the blood stream provided great contrast and details; on the other hand, it was necessary to destroy the organ. Further examined possibility was injection of the AuroVist contrast that leads to the great bloodstream contrast. Injection of Exitron contrast agent comparing to Aurovist did not provide such a great contrast. The soft tissues (kidney, heart, lungs, brain, and liver) were best visualized after fixation in ethanol. This type of fixation showed best results in all studied tissues. Lugol solution had great results in muscle tissue. Fixation by formaldehyde solution showed similar quality of contrast in the tissues like ethanol. Conclusion: Before imaging, we need to, first, determinate which structures of the soft tissues we want to visualize. In the case of the bloodstream, the best was AuroVist and corrosive specimens. Muscle tissue is best visualized by Lugol solution. In the case of the organs containing cavities, like kidneys or brain, the best way was ethanol fixation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20imaging" title="experimental imaging">experimental imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=fixation" title=" fixation"> fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-CT" title=" micro-CT"> micro-CT</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20tissues" title=" soft tissues"> soft tissues</a> </p> <a href="https://publications.waset.org/abstracts/51423/an-inquiry-on-imaging-of-soft-tissues-in-micro-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2966</span> Fapitow: An Advanced AI Agent for Travel Agent Competition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faiz%20Ul%20Haque%20Zeya">Faiz Ul Haque Zeya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Fapitow’s bidding strategy and approach to participate in Travel Agent Competition (TAC) is described. Previously, Fapitow is designed using the agents provided by the TAC Team and mainly used their modification for developing our strategy. But later, by observing the behavior of the agent, it is decided to come up with strategies that will be the main cause of improved utilities of the agent, and by theoretical examination, it is evident that the strategies will provide a significant improvement in performance which is later proved by agent’s performance in the games. The techniques and strategies for further possible improvement are also described. TAC provides a real-time, uncertain environment for learning, experimenting, and implementing various AI techniques. Some lessons learned about handling uncertain environments are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent" title="agent">agent</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20agent%20competition" title=" travel agent competition"> travel agent competition</a>, <a href="https://publications.waset.org/abstracts/search?q=bidding" title=" bidding"> bidding</a>, <a href="https://publications.waset.org/abstracts/search?q=TAC" title=" TAC"> TAC</a> </p> <a href="https://publications.waset.org/abstracts/171771/fapitow-an-advanced-ai-agent-for-travel-agent-competition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2965</span> Prospective Randomized Trial of Na/K Citrate for the Prevention of Contrast-Induced Nephropathy in High-Risk Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leili%20Iranirad">Leili Iranirad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saleh%20Sadeghi"> Mohammad Saleh Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Fakhreddin%20Hejazi"> Seyed Fakhreddin Hejazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Negar%20Vakili%20Razlighi"> Negar Vakili Razlighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Contrast-induced nephropathy (CIN) or contrast-induced acute kidney injury (CI-AKI) is an unknown acute kidney injury (AKI) occurring after exposure to contrast media (CM). Contrast agents are most often used for diagnostic procedures or therapeutic angiographic interventions. Recently, Na/K citrate as a urine alkalinization has been evaluated for the prevention of CIN. We conducted this experiment to evaluate the efficiency of Na/K citrate on CIN in high-risk patients treated with cardiac catheterization. Methods: A prospective randomized clinical trial was conducted on 400 patients having moderate to high-risk factors for CIN treated with elective percutaneous coronary intervention (PCI) and were assigned randomly to the control group or the Na/K citrate group. The Na/K citrate group (n=200) received 5 g Na/K citrate solution, which was diluted in 200 mL water two h before and four hours after the first administration and intravenous hydration for two h prior to and six h after the procedure, while the control group (n=200) only received intravenous hydration. Serum creatinine (SCr) was calculated prior to the contrast exposure and after 48 h. CIN was described as a 25% increase in creatinine of serum (SCr) or >0.5 mg/dl 48 h after contrast administration. Results: CIN was observed in 33 patients (16.5%) in the control group and in 6 patients (3%) in the Na/K citrate group. A significant variation was recorded in the CIN incidence between the two groups 48 h after the radiocontrast agent administration (p < 0.001). Conclusion: Our results show that Na/K citrate is useful and substantially reduces the incidence of CIN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast%20media" title="contrast media">contrast media</a>, <a href="https://publications.waset.org/abstracts/search?q=citrate" title=" citrate"> citrate</a>, <a href="https://publications.waset.org/abstracts/search?q=PCI" title=" PCI"> PCI</a> </p> <a href="https://publications.waset.org/abstracts/159055/prospective-randomized-trial-of-nak-citrate-for-the-prevention-of-contrast-induced-nephropathy-in-high-risk-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2964</span> Current Status of Scaled-Up Synthesis/Purification and Characterization of a Potentially Translatable Tantalum Oxide Nanoparticle Intravenous CT Contrast Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20T.%20Leman">John T. Leman</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Gibson"> James Gibson</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20Bonitatibus"> Peter J. Bonitatibus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There have been no potential clinically translatable developments of intravenous CT contrast materials over decades, and iodinated contrast agents (ICA) remain the only FDA-approved media for CT. Small molecule ICA used to highlight vascular anatomy have weak CT signals in large-to-obese patients due to their rapid redistribution from plasma into interstitial fluid, thereby diluting their intravascular concentration, and because of a mismatch of iodine’s K-edge and the high kVp settings needed to image this patient population. The use of ICA is also contraindicated in a growing population of renally impaired patients who are hypersensitive to these contrast agents; a transformative intravenous contrast agent with improved capabilities is urgently needed. Tantalum oxide nanoparticles (TaO NPs) with zwitterionic siloxane polymer coatings have high potential as clinically translatable general-purpose CT contrast agents because of (1) substantially improved imaging efficacy compared to ICA in swine/phantoms emulating medium-sized and larger adult abdomens and superior thoracic vascular contrast enhancement of thoracic arteries and veins in rabbit, (2) promising biological safety profiles showing near-complete renal clearance and low tissue retention at 3x anticipated clinical dose (ACD), and (3) clinically acceptable physiochemical parameters as concentrated bulk solutions(250-300 mgTa/mL). Here, we review requirements for general-purpose intravenous CT contrast agents in terms of patient safety, X-ray attenuating properties and contrast-producing capabilities, and physicochemical and pharmacokinetic properties. We report the current status of a TaO NP-based contrast agent, including chemical process technology developments and results of newly defined scaled-up processes for NP synthesis and purification, yielding reproducible formulations with appropriate size and concentration specifications. We discuss recent results of recent pre-clinical in vitro immunology, non-GLP high dose tolerability in rats (10x ACD), non-GLP long-term biodistribution in rats at 3x ACD, and non-GLP repeat dose in rats at ACD. We also include a discussion of NP characterization, in particular size-stability testing results under accelerated conditions (37C), and insights into TaO NP purity, surface structure, and bonding of the zwitterionic siloxane polymer coating by multinuclear (1H, 13C, 29Si) and multidimensional (2D) solution NMR spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic" title=" diagnostic"> diagnostic</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20technology" title=" process technology"> process technology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20characterization" title=" nanoparticle characterization"> nanoparticle characterization</a> </p> <a href="https://publications.waset.org/abstracts/188428/current-status-of-scaled-up-synthesispurification-and-characterization-of-a-potentially-translatable-tantalum-oxide-nanoparticle-intravenous-ct-contrast-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2963</span> Hypersensitivity Reactions Following Intravenous Administration of Contrast Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Cydejko">Joanna Cydejko</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Mika"> Paulina Mika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hypersensitivity reactions are side effects of medications that resemble an allergic reaction. Anaphylaxis is a generalized, severe allergic reaction of the body caused by exposure to a specific agent at a dose tolerated by a healthy body. The most common causes of anaphylaxis are food (about 70%), Hymenoptera venoms (22%), and medications (7%), despite detailed diagnostics in 1% of people, the cause of the anaphylactic reaction was not indicated. Contrast media are anaphylactic agents of unknown mechanism. Hypersensitivity reactions can occur with both immunological and non-immunological mechanisms. Symptoms of anaphylaxis occur within a few seconds to several minutes after exposure to the allergen. Contrast agents are chemical compounds that make it possible to visualize or improve the visibility of anatomical structures. In the diagnosis of computed tomography, the preparations currently used are derivatives of the triiodide benzene ring. Pharmacokinetic and pharmacodynamic properties, i.e., their osmolality, viscosity, low chemotoxicity and high hydrophilicity, have an impact on better tolerance of the substance by the patient's body. In MRI diagnostics, macrocyclic gadolinium contrast agents are administered during examinations. The aim of this study is to present the results of the number and severity of anaphylactic reactions that occurred in patients in all age groups undergoing diagnostic imaging with intravenous administration of contrast agents. In non-ionic iodine CT and in macrocyclic gadolinium MRI. A retrospective assessment of the number of adverse reactions after contrast administration was carried out on the basis of data from the Department of Radiology of the University Clinical Center in Gdańsk, and it was assessed whether their different physicochemical properties had an impact on the incidence of acute complications. Adverse reactions are divided according to the severity of the patient's condition and the diagnostic method used in a given patient. Complications following the administration of a contrast medium in the form of acute anaphylaxis accounted for less than 0.5% of all diagnostic procedures performed with the use of a contrast agent. In the analysis period from January to December 2022, 34,053 CT scans and 15,279 MRI examinations with the use of contrast medium were performed. The total number of acute complications was 21, of which 17 were complications of iodine-based contrast agents and 5 of gadolinium preparations. The introduction of state-of-the-art contrast formulations was an important step toward improving the safety and tolerability of contrast agents used in imaging. Currently, contrast agents administered to patients are considered to be one of the best-tolerated preparations used in medicine. However, like any drug, they can be responsible for the occurrence of adverse reactions resulting from their toxic effects. The increase in the number of imaging tests performed with the use of contrast agents has a direct impact on the number of adverse events associated with their administration. However, despite the low risk of anaphylaxis, this risk should not be marginalized. The growing threat associated with the mass performance of radiological procedures with the use of contrast agents forces the knowledge of the rules of conduct in the event of symptoms of hypersensitivity to these preparations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaphylactic" title="anaphylactic">anaphylactic</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20medium" title=" contrast medium"> contrast medium</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic" title=" diagnostic"> diagnostic</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20imagine" title=" medical imagine"> medical imagine</a> </p> <a href="https://publications.waset.org/abstracts/178982/hypersensitivity-reactions-following-intravenous-administration-of-contrast-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2962</span> Robust Stabilization against Unknown Consensus Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myung-Gon%20Yoon">Myung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon"> Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. Applying known robust stabilization results, we present sufficient conditions for a robust stabilization of an agent against unknown network topology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20agent%20control" title="single agent control">single agent control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20function" title=" transfer function"> transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20angle" title=" graph angle"> graph angle</a> </p> <a href="https://publications.waset.org/abstracts/11150/robust-stabilization-against-unknown-consensus-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2961</span> A Study on Real-Time Fluorescence-Photoacoustic Imaging System for Mouse Thrombosis Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Hun%20Park">Sang Hun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Moung%20Young%20Lee"> Moung Young Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Min%20Yu"> Su Min Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Sang%20Jo"> Hyun Sang Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hyeon%20Kim"> Ji Hyeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Gyu%20Song"> Chul Gyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A near-infrared light source used as a light source in the fluorescence imaging system is suitable for use in real-time during the operation since it has no interference in surgical vision. However, fluorescence images do not have depth information. In this paper, we configured the device with the research on molecular imaging systems for monitoring thrombus imaging using fluorescence and photoacoustic. Fluorescence imaging was performed using a phantom experiment in order to search the exact location, and the Photoacoustic image was in order to detect the depth. Fluorescence image obtained when evaluated through current phantom experiments when the concentration of the contrast agent is 25μg / ml, it was confirmed that it looked sharper. The phantom experiment is has shown the possibility with the fluorescence image and photoacoustic image using an indocyanine green contrast agent. For early diagnosis of cardiovascular diseases, more active research with the fusion of different molecular imaging devices is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title="fluorescence">fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=photoacoustic" title=" photoacoustic"> photoacoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=indocyanine%20green" title=" indocyanine green"> indocyanine green</a>, <a href="https://publications.waset.org/abstracts/search?q=carotid%20artery" title=" carotid artery"> carotid artery</a> </p> <a href="https://publications.waset.org/abstracts/93152/a-study-on-real-time-fluorescence-photoacoustic-imaging-system-for-mouse-thrombosis-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">601</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2960</span> An Approach to Secure Mobile Agent Communication in Multi-Agent Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olumide%20Simeon%20Ogunnusi">Olumide Simeon Ogunnusi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shukor%20Abd%20Razak"> Shukor Abd Razak</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kolade%20Adu"> Michael Kolade Adu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent%20communication" title="agent communication">agent communication</a>, <a href="https://publications.waset.org/abstracts/search?q=introspective%20agent" title=" introspective agent"> introspective agent</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation%20of%20agent" title=" isolation of agent"> isolation of agent</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20enforcement%20system" title=" policy enforcement system"> policy enforcement system</a> </p> <a href="https://publications.waset.org/abstracts/75444/an-approach-to-secure-mobile-agent-communication-in-multi-agent-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2959</span> Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Lhafiane">F. Lhafiane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elbyed"> A. Elbyed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouchoum"> M. Bouchoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20logistics" title="reverse logistics">reverse logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20agent%20system" title=" multi agent system"> multi agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=prometheus%20methodology" title=" prometheus methodology "> prometheus methodology </a> </p> <a href="https://publications.waset.org/abstracts/32686/multi-agent-system-architecture-oriented-prometheus-methodology-design-for-reverse-logistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2958</span> Multifunctional Bismuth-Based Nanoparticles as Theranostic Agent for Imaging and Radiation Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azimeh%20Rajaee">Azimeh Rajaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingyun%20Zhao"> Lingyun Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Wang"> Shi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaqiang%20Liu"> Yaqiang Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years many studies have been focused on bismuth-based nanoparticles as radiosensitizer and contrast agent in radiation therapy and imaging due to the high atomic number (Z = 82), high photoelectric absorption, low cost, and low toxicity. This study aims to introduce a new multifunctional bismuth-based nanoparticle as a theranostic agent for radiotherapy, computed tomography (CT) and magnetic resonance imaging (MRI). We synthesized bismuth ferrite (BFO, BiFeO3) nanoparticles by sol-gel method and surface of the nanoparticles were modified by Polyethylene glycol (PEG). After proved biocompatibility of the nanoparticles, the ability of them as contract agent in Computed tomography (CT) and magnetic resonance imaging (MRI) was investigated. The relaxation time rate (R2) in MRI and Hounsfield unit (HU) in CT imaging were increased with the concentration of the nanoparticles. Moreover, the effect of nanoparticles on dose enhancement in low energy was investigated by clonogenic assay. According to clonogenic assay, sensitizer enhancement ratios (SERs) were obtained as 1.35 and 1.76 for nanoparticle concentrations of 0.05 mg/ml and 0.1 mg/ml, respectively. In conclusion, our experimental results demonstrate that the multifunctional nanoparticles have the ability to employ as multimodal imaging and therapy to enhance theranostic efficacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20imaging" title="molecular imaging">molecular imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomedicine" title=" nanomedicine"> nanomedicine</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy"> radiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=theranostics" title=" theranostics"> theranostics</a> </p> <a href="https://publications.waset.org/abstracts/95005/multifunctional-bismuth-based-nanoparticles-as-theranostic-agent-for-imaging-and-radiation-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2957</span> Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bimali%20Sanjeevani%20Weerakoon">Bimali Sanjeevani Weerakoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiaki%20Osuga"> Toshiaki Osuga</a>, <a href="https://publications.waset.org/abstracts/search?q=Takehisa%20Konishi"> Takehisa Konishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s&ndash;1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Concentration" title="Concentration">Concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=resovist" title=" resovist"> resovist</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20strength" title=" field strength"> field strength</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxivity" title=" relaxivity"> relaxivity</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20intensity" title=" signal intensity"> signal intensity</a> </p> <a href="https://publications.waset.org/abstracts/37638/enhancement-effect-of-superparamagnetic-iron-oxide-nanoparticle-based-mri-contrast-agent-at-different-concentrations-and-magnetic-field-strengths" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2956</span> Mineralized Nanoparticles as a Contrast Agent for Ultrasound and Magnetic Resonance Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Won%20Lee">Jae Won Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Hyun%20Min"> Kyung Hyun Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Jae%20Lee"> Hong Jae Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Cheon%20Lee"> Sang Cheon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To date, imaging techniques have attracted much attention in medicine because the detection of diseases at an early stage provides greater opportunities for successful treatment. Consequently, over the past few decades, diverse imaging modalities including magnetic resonance (MR), positron emission tomography, computed tomography, and ultrasound (US) have been developed and applied widely in the field of clinical diagnosis. However, each of the above-mentioned imaging modalities possesses unique strengths and intrinsic weaknesses, which limit their abilities to provide accurate information. Therefore, multimodal imaging systems may be a solution that can provide improved diagnostic performance. Among the current medical imaging modalities, US is a widely available real-time imaging modality. It has many advantages including safety, low cost and easy access for patients. However, its low spatial resolution precludes accurate discrimination of diseased region such as cancer sites. In contrast, MR has no tissue-penetrating limit and can provide images possessing exquisite soft tissue contrast and high spatial resolution. However, it cannot offer real-time images and needs a comparatively long imaging time. The characteristics of these imaging modalities may be considered complementary, and the modalities have been frequently combined for the clinical diagnostic process. Biominerals such as calcium carbonate (CaCO3) and calcium phosphate (CaP) exhibit pH-dependent dissolution behavior. They demonstrate pH-controlled drug release due to the dissolution of minerals in acidic pH conditions. In particular, the application of this mineralization technique to a US contrast agent has been reported recently. The CaCO3 mineral reacts with acids and decomposes to generate calcium dioxide (CO2) gas in an acidic environment. These gas-generating mineralized nanoparticles generated CO2 bubbles in the acidic environment of the tumor, thereby allowing for strong echogenic US imaging of tumor tissues. On the basis of this previous work, it was hypothesized that the loading of MR contrast agents into the CaCO3 mineralized nanoparticles may be a novel strategy in designing a contrast agent for dual imaging. Herein, CaCO3 mineralized nanoparticles that were capable of generating CO2 bubbles to trigger the release of entrapped MR contrast agents in response to tumoral acidic pH were developed for the purposes of US and MR dual-modality imaging of tumors. Gd2O3 nanoparticles were selected as an MR contrast agent. A key strategy employed in this study was to prepare Gd2O3 nanoparticle-loaded mineralized nanoparticles (Gd2O3-MNPs) using block copolymer-templated CaCO3 mineralization in the presence of calcium cations (Ca2+), carbonate anions (CO32-) and positively charged Gd2O3 nanoparticles. The CaCO3 core was considered suitable because it may effectively shield Gd2O3 nanoparticles from water molecules in the blood (pH 7.4) before decomposing to generate CO2 gas, triggering the release of Gd2O3 nanoparticles in tumor tissues (pH 6.4~7.4). The kinetics of CaCO3 dissolution and CO2 generation from the Gd2O3-MNPs were examined as a function of pH and pH-dependent in vitro magnetic relaxation; additionally, the echogenic properties were estimated to demonstrate the potential of the particles for the tumor-specific US and MR imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title="calcium carbonate">calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization" title=" mineralization"> mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20imaging" title=" ultrasound imaging"> ultrasound imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a> </p> <a href="https://publications.waset.org/abstracts/45843/mineralized-nanoparticles-as-a-contrast-agent-for-ultrasound-and-magnetic-resonance-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2955</span> A Three Tier Secure KQML Interface with Novel Performatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimple%20Juneja">Dimple Juneja</a>, <a href="https://publications.waset.org/abstracts/search?q=Aarti%20Singh"> Aarti Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Renu%20Hooda"> Renu Hooda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge Query Manipulation Language (KQML) and FIPA ACL are two prime communication languages existing in multi agent systems (MAS). Both languages are more or less similar in terms of semantics (based on speech act theory) and offer cutting edge competition while establishing agent communication across Internet. In contrast to the fact that software agents operating on the internet are required to be more safeguarded from their counter-peer, both protocols lack security performatives. The paper proposes a three tier security interface with few novel security related performatives enhancing the basic architecture of KQML. The three levels are attestation, certification and trust establishment which enforces a tight security and hence reduces the security breeches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiagent%20systems" title="multiagent systems">multiagent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=KQML" title=" KQML"> KQML</a>, <a href="https://publications.waset.org/abstracts/search?q=FIPA%20ACL" title=" FIPA ACL"> FIPA ACL</a>, <a href="https://publications.waset.org/abstracts/search?q=performatives" title=" performatives"> performatives</a> </p> <a href="https://publications.waset.org/abstracts/6294/a-three-tier-secure-kqml-interface-with-novel-performatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2954</span> Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Lee">M. Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20H.%20Shin"> D. H. Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Park"> S. H. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=W.C.%20Ham"> W.C. Ham</a>, <a href="https://publications.waset.org/abstracts/search?q=S.K.%20Ko"> S.K. Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Song"> C. G. Song </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat&rsquo;s kidney using real-time PAT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20tomography" title="photoacoustic tomography">photoacoustic tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation%20detection" title=" inflammation detection"> inflammation detection</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20agent" title=" contrast agent"> contrast agent</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/71172/detecting-rats-kidney-inflammation-using-real-time-photoacoustic-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2953</span> Using Cooperation without Communication in a Multi-Agent Unpredictable Dynamic Real-Time Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Khosravi">Abbas Khosravi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the use of cooperation without communication in a multi-agent, unpredictable, dynamic real-time environment. The architecture of the Persian Gulf agent consists of three layers: fixed rule, low level, and high level layers, allowing for cooperation without direct communication. A scenario is presented to each agent in the form of a file, specifying each player's role and actions in the game. The scenario helps in cases of miscommunication, improving team performance. Cooperation without communication enhances reliability and coordination among agents, leading to better results in challenging situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20systems" title="multi-agent systems">multi-agent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=Robocop" title=" Robocop"> Robocop</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20engineering" title=" software engineering"> software engineering</a> </p> <a href="https://publications.waset.org/abstracts/186339/using-cooperation-without-communication-in-a-multi-agent-unpredictable-dynamic-real-time-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2952</span> Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao-Li%20Liu">Xiao-Li Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling-Yun%20Zhao"> Ling-Yun Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xing-Jie%20Liang"> Xing-Jie Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai-Ming%20Fan"> Hai-Ming Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20hyperthermia" title=" magnetic hyperthermia"> magnetic hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/73963/optimization-of-surface-coating-on-magnetic-nanoparticles-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2951</span> Contrast Enhancement of Color Images with Color Morphing Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javed%20Khan">Javed Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamir%20Saeed%20Malik"> Aamir Saeed Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidal%20Kamel"> Nidal Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarat%20Chandra%20Dass"> Sarat Chandra Dass</a>, <a href="https://publications.waset.org/abstracts/search?q=Azura%20Mohd%20Affandi"> Azura Mohd Affandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast%20enhacement" title="contrast enhacement">contrast enhacement</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20RGB" title=" normalized RGB"> normalized RGB</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20histogram%20equalization" title=" adaptive histogram equalization"> adaptive histogram equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20variance." title=" cumulative variance."> cumulative variance.</a> </p> <a href="https://publications.waset.org/abstracts/42755/contrast-enhancement-of-color-images-with-color-morphing-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2950</span> Cooperative Learning Mechanism in Intelligent Multi-Agent System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Mansour">Ayman M. Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Hawashin"> Bilal Hawashin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Mansour"> Mohammed A. Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent" title="intelligent">intelligent</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative" title=" cooperative"> cooperative</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a> </p> <a href="https://publications.waset.org/abstracts/47913/cooperative-learning-mechanism-in-intelligent-multi-agent-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">684</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2949</span> Durability and Early-Age Behavior of Sprayed Concrete with an Expansion Admixture </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyong-Ku%20Yun">Kyong-Ku Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyeo-Re%20Lee"> Kyeo-Re Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyong%20Namkung"> Kyong Namkung</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Yeon%20Han"> Seung-Yeon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Pan-Gil%20Choi"> Pan-Gil Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sprayed concrete is a way to spray a concrete using a machinery with high air pressure. There are insufficient studies on the durability and early-age behavior of sprayed concrete using high quality expansion agent. A series of an experiment were executed with 5 varying expansion agent replacement rates, while all the other conditions were kept constant, including cement binder content and water-cement ratio. The tests includes early-age shrinkage test, rapid chloride permeability test, and image analysis of air void structure. The early-age expansion test with the variation of expansion agent show that the expansion strain increases as the ratio of expansion agent increases. The rapid chloride permeability test shows that it decrease as the expansion agent increase. Therefore, expansion agent affects into the rapid chloride permeability in a better way. As expansion agent content increased, spacing factor slightly decreased while specific surface kept relatively stable. As a results, the optimum ratio of expansion agent would be selected between 7 % and 11%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sprayed%20concrete" title="sprayed concrete">sprayed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=early-age%20behavior" title=" early-age behavior"> early-age behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion%20admixture" title=" expansion admixture "> expansion admixture </a> </p> <a href="https://publications.waset.org/abstracts/30715/durability-and-early-age-behavior-of-sprayed-concrete-with-an-expansion-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2948</span> Post-Contrast Susceptibility Weighted Imaging vs. Post-Contrast T1 Weighted Imaging for Evaluation of Brain Lesions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujith%20Rajashekar%20Swamy">Sujith Rajashekar Swamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Meghana%20Rajashekara%20Swamy"> Meghana Rajashekara Swamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although T1-weighted gadolinium-enhanced imaging (T1-Gd) has its established clinical role in diagnosing brain lesions of infectious and metastatic origins, the use of post-contrast susceptibility-weighted imaging (SWI) has been understudied. This observational study aims to explore and compare the prominence of brain parenchymal lesions between T1-Gd and SWI-Gd images. A cross-sectional study design was utilized to analyze 58 patients with brain parenchymal lesions using T1-Gd and SWI-Gd scanning techniques. Our results indicated that SWI-Gd enhanced the conspicuity of metastatic as well as infectious brain lesions when compared to T1-Gd. Consequently, it can be used as an adjunct to T1-Gd for post-contrast imaging, thereby avoiding additional contrast administration. Improved conspicuity of brain lesions translates directly to enhanced patient outcomes, and hence SWI-Gd imaging proves useful to meet that endpoint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=susceptibility%20weighted" title="susceptibility weighted">susceptibility weighted</a>, <a href="https://publications.waset.org/abstracts/search?q=T1%20weighted" title=" T1 weighted"> T1 weighted</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20lesions" title=" brain lesions"> brain lesions</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast" title=" gadolinium contrast"> gadolinium contrast</a> </p> <a href="https://publications.waset.org/abstracts/160957/post-contrast-susceptibility-weighted-imaging-vs-post-contrast-t1-weighted-imaging-for-evaluation-of-brain-lesions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2947</span> A Multi-agent System Framework for Stakeholder Analysis of Local Energy Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengqiu%20Deng">Mengqiu Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Peng"> Xiao Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhao"> Yang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of local energy systems requires the collective involvement of different actors from various levels of society. However, the stakeholder analysis of local energy systems still has been under-developed. This paper proposes an multi-agent system (MAS) framework to facilitate the development of stakeholder analysis of local energy systems. The framework takes into account the most influencing stakeholders, including prosumers/consumers, system operators, energy companies and government bodies. Different stakeholders are modeled based on agent architectures for example the belief-desire-intention (BDI) to better reflect their motivations and interests in participating in local energy systems. The agent models of different stakeholders are then integrated in one model of the whole energy system. An illustrative case study is provided to elaborate how to develop a quantitative agent model for different stakeholders, as well as to demonstrate the practicability of the proposed framework. The findings from the case study indicate that the suggested framework and agent model can serve as analytical instruments for enhancing the government’s policy-making process by offering a systematic view of stakeholder interconnections in local energy systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title="multi-agent system">multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=BDI%20agent" title=" BDI agent"> BDI agent</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20energy%20systems" title=" local energy systems"> local energy systems</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholders" title=" stakeholders"> stakeholders</a> </p> <a href="https://publications.waset.org/abstracts/176640/a-multi-agent-system-framework-for-stakeholder-analysis-of-local-energy-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2946</span> Impact Position Method Based on Distributed Structure Multi-Agent Coordination with JADE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=YU%20Kaijun">YU Kaijun</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Dong"> Liang Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Yarong"> Zhang Yarong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Zhenzhou"> Jin Zhenzhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhaobao"> Yang Zhaobao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the impact monitoring of distributed structures, the traditional positioning methods are based on the time difference, which includes the four-point arc positioning method and the triangulation positioning method. But in the actual operation, these two methods have errors. In this paper, the Multi-Agent Blackboard Coordination Principle is used to combine the two methods. Fusion steps: (1) The four-point arc locating agent calculates the initial point and records it to the Blackboard Module.(2) The triangulation agent gets its initial parameters by accessing the initial point.(3) The triangulation agent constantly accesses the blackboard module to update its initial parameters, and it also logs its calculated point into the blackboard.(4) When the subsequent calculation point and the initial calculation point are within the allowable error, the whole coordination fusion process is finished. This paper presents a Multi-Agent collaboration method whose agent framework is JADE. The JADE platform consists of several agent containers, with the agent running in each container. Because of the perfect management and debugging tools of the JADE, it is very convenient to deal with complex data in a large structure. Finally, based on the data in Jade, the results show that the impact location method based on Multi-Agent coordination fusion can reduce the error of the two methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20monitoring" title="impact monitoring">impact monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring%28SHM%29" title=" structural health monitoring(SHM)"> structural health monitoring(SHM)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system%28MAS%29" title=" multi-agent system(MAS)"> multi-agent system(MAS)</a>, <a href="https://publications.waset.org/abstracts/search?q=black-board%20coordination" title=" black-board coordination"> black-board coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=JADE" title=" JADE"> JADE</a> </p> <a href="https://publications.waset.org/abstracts/149911/impact-position-method-based-on-distributed-structure-multi-agent-coordination-with-jade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2945</span> Comparative Study of Different Enhancement Techniques for Computed Tomography Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Jinimole">C. G. Jinimole</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Harsha"> A. Harsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20techniques" title=" enhancement techniques"> enhancement techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=increasing%20contrast" title=" increasing contrast"> increasing contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR%20and%20MSE" title=" PSNR and MSE"> PSNR and MSE</a> </p> <a href="https://publications.waset.org/abstracts/69868/comparative-study-of-different-enhancement-techniques-for-computed-tomography-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2944</span> Application of Nanoparticles in Biomedical and MRI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raziyeh%20Mohammadi">Raziyeh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. The performance of nanoparticles for biomedical applications is often assessed by their narrow size distribution, suitable magnetic saturation, and low toxicity effects. Superparamagnetic iron oxide nanoparticles have received great attention due to their applications as contrast agents for magnetic resonance imaging (MRI. (Processes in the tissue where the blood brain barrier is intact in this way shielded from the contact to this conventional contrast agent and will only reveal changes in the tissue if it involves an alteration in the vasculature. This technique is very useful for detecting tumors and can even be used for detecting metabolic functional alterations in the brain, such as epileptic activity.SPIONs have found application in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia. Unlike bulk iron, SPIONs do not have remnant magnetization in the absence of the external magnetic field; therefore, a precise remote control over their action is possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical" title=" biomedical"> biomedical</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide" title=" iron oxide"> iron oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=spions" title=" spions"> spions</a> </p> <a href="https://publications.waset.org/abstracts/145609/application-of-nanoparticles-in-biomedical-and-mri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2943</span> Edge Detection in Low Contrast Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koushlendra%20Kumar%20Singh">Koushlendra Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Bajpai"> Manish Kumar Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20K.%20Pandey"> Rajesh K. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20contrast%20image" title="low contrast image">low contrast image</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20differentiator" title="fractional order differentiator">fractional order differentiator</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20of%20Gaussian%20%28LoG%29%20method" title="Laplacian of Gaussian (LoG) method">Laplacian of Gaussian (LoG) method</a>, <a href="https://publications.waset.org/abstracts/search?q=chebyshev%20polynomial" title=" chebyshev polynomial"> chebyshev polynomial</a> </p> <a href="https://publications.waset.org/abstracts/21264/edge-detection-in-low-contrast-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">635</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2942</span> New Variational Approach for Contrast Enhancement of Color Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanhyun%20Cho">Wanhyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongchae%20Seo"> Seongchae Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonja%20Kang"> Soonja Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we propose a variational technique for image contrast enhancement which utilizes global and local information around each pixel. The energy functional is defined by a weighted linear combination of three terms which are called on a local, a global contrast term and dispersion term. The first one is a local contrast term that can lead to improve the contrast of an input image by increasing the grey-level differences between each pixel and its neighboring to utilize contextual information around each pixel. The second one is global contrast term, which can lead to enhance a contrast of image by minimizing the difference between its empirical distribution function and a cumulative distribution function to make the probability distribution of pixel values becoming a symmetric distribution about median. The third one is a dispersion term that controls the departure between new pixel value and pixel value of original image while preserving original image characteristics as well as possible. Second, we derive the Euler-Lagrange equation for true image that can achieve the minimum of a proposed functional by using the fundamental lemma for the calculus of variations. And, we considered the procedure that this equation can be solved by using a gradient decent method, which is one of the dynamic approximation techniques. Finally, by conducting various experiments, we can demonstrate that the proposed method can enhance the contrast of colour images better than existing techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20image" title="color image">color image</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20enhancement%20technique" title=" contrast enhancement technique"> contrast enhancement technique</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20approach" title=" variational approach"> variational approach</a>, <a href="https://publications.waset.org/abstracts/search?q=Euler-Lagrang%20equation" title=" Euler-Lagrang equation"> Euler-Lagrang equation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20approximation%20method" title=" dynamic approximation method"> dynamic approximation method</a>, <a href="https://publications.waset.org/abstracts/search?q=EME%20measure" title=" EME measure"> EME measure</a> </p> <a href="https://publications.waset.org/abstracts/10574/new-variational-approach-for-contrast-enhancement-of-color-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent&amp;page=99">99</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent&amp;page=100">100</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endogenic%20contrast%20agent&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10