CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 98 results for author: <span class="mathjax">Schneider, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Schneider%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Schneider, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Schneider%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Schneider, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Schneider%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04582">arXiv:2411.04582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04582">pdf</a>, <a href="https://arxiv.org/format/2411.04582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Efficient Spintronic THz Emitters Without External Magnetic Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+A">Amir Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beermann%2C+N+S">Nicolas Sylvester Beermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+S">Shalini Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T+d+O">Tiago de Oliveira Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+W">Wentao Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turchinovich%2C+D">Dmitry Turchinovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meinert%2C+M">Markus Meinert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04582v1-abstract-short" style="display: inline;"> We investigate the performance of state-of-the-art spintronic THz emitters (W or Ta)/CoFeB/Pt with non-magnetic underlayer deposited using oblique angle deposition. The THz emission amplitude in the presence or absence of an external magnetic field remains the same and remarkably stable over time. This stability is attributed to the enhanced uniaxial magnetic anisotropy in the ferromagnetic layer,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04582v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04582v1-abstract-full" style="display: none;"> We investigate the performance of state-of-the-art spintronic THz emitters (W or Ta)/CoFeB/Pt with non-magnetic underlayer deposited using oblique angle deposition. The THz emission amplitude in the presence or absence of an external magnetic field remains the same and remarkably stable over time. This stability is attributed to the enhanced uniaxial magnetic anisotropy in the ferromagnetic layer, achieved by oblique angle deposition of the underlying non-magnetic layer. Our findings could be used for the development of practical field-free emitters of linearly polarized THz radiation, potentially enabling novel applications in future THz technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04582v1-abstract-full').style.display = 'none'; document.getElementById('2411.04582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages including references and 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03954">arXiv:2411.03954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03954">pdf</a>, <a href="https://arxiv.org/format/2411.03954">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-congruent point in critical matrix product states: An effective field theory for finite-entanglement scaling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+T">Jan T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ueda%2C+A">Atsushi Ueda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yifan Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%A4uchli%2C+A+M">Andreas M. L盲uchli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oshikawa%2C+M">Masaki Oshikawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tagliacozzo%2C+L">Luca Tagliacozzo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03954v1-abstract-short" style="display: inline;"> We set up an effective field theory formulation for the renormalization flow of matrix product states (MPS) with finite bond dimension, focusing on systems exhibiting finite-entanglement scaling close to a conformally invariant critical fixed point. We show that the finite MPS bond dimension $蠂$ is equivalent to introducing a perturbation by a relevant operator to the fixed-point Hamiltonian. The&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03954v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03954v1-abstract-full" style="display: none;"> We set up an effective field theory formulation for the renormalization flow of matrix product states (MPS) with finite bond dimension, focusing on systems exhibiting finite-entanglement scaling close to a conformally invariant critical fixed point. We show that the finite MPS bond dimension $蠂$ is equivalent to introducing a perturbation by a relevant operator to the fixed-point Hamiltonian. The fingerprint of this mechanism is encoded in the $蠂$-independent universal transfer matrix&#39;s gap ratios, which are distinct from those predicted by the unperturbed Conformal Field Theory. This phenomenon defines a renormalization group self-congruent point, where the relevant coupling constant ceases to flow due to a balance of two effects; When increasing $蠂$, the infrared scale, set by the correlation length $尉(蠂)$, increases, while the strength of the perturbation at the lattice scale decreases. The presence of a self-congruent point does not alter the validity of the finite-entanglement scaling hypothesis, since the self-congruent point is located at a finite distance from the critical fixed point, well inside the scaling regime of the CFT. We corroborate this framework with numerical evidences from the exact solution of the Ising model and density matrix renormalization group (DMRG) simulations of an effective lattice model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03954v1-abstract-full').style.display = 'none'; document.getElementById('2411.03954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15976">arXiv:2409.15976</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15976">pdf</a>, <a href="https://arxiv.org/format/2409.15976">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> OpenFMR: A low-cost open-source broadband ferromagnetic resonance spectrometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Meinert%2C+M">Markus Meinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T+d+O">Tiago de Oliveira Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+S">Shalini Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+A">Amir Khan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15976v1-abstract-short" style="display: inline;"> We describe a broadband ferromagnetic resonance spectrometer for scientific and educational applications with a frequency range up to 30 GHz. It is built with low-cost components available off-the-shelf and utilizes 3D printed parts for sample holders and support structures, and requires little assembly. A PCB design for the grounded coplanar waveguide (GCPW) is presented and analysed. We further&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15976v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15976v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15976v1-abstract-full" style="display: none;"> We describe a broadband ferromagnetic resonance spectrometer for scientific and educational applications with a frequency range up to 30 GHz. It is built with low-cost components available off-the-shelf and utilizes 3D printed parts for sample holders and support structures, and requires little assembly. A PCB design for the grounded coplanar waveguide (GCPW) is presented and analysed. We further include a software suite for command-line or script driven data acqusition, a graphical user interface, and a graphical data analysis program. The capabilities of the system design are demonstrated with measurements on ferromagnetic thin films with a thickness of 1 nm. All designs and scripts are published under the GNU GPL v3.0 license. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15976v1-abstract-full').style.display = 'none'; document.getElementById('2409.15976v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05517">arXiv:2409.05517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05517">pdf</a>, <a href="https://arxiv.org/format/2409.05517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Measuring temporal entanglement in experiments as a hallmark for integrability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bou-Comas%2C+A">Aleix Bou-Comas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marim%C3%B3n%2C+C+R">Carlos Ramos Marim贸n</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+T">Jan T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carignano%2C+S">Stefano Carignano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tagliacozzo%2C+L">Luca Tagliacozzo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05517v1-abstract-short" style="display: inline;"> We introduce a novel experimental approach to probe many-body quantum systems by developing a protocol to measure generalized temporal entropies. We demonstrate that the recently proposed generalized temporal entropies [Phys. Rev. Research 6, 033021] are equivalent to observing the out-of-equilibrium dynamics of a replicated system induced by a double quench protocol using local operators as probe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05517v1-abstract-full').style.display = 'inline'; document.getElementById('2409.05517v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05517v1-abstract-full" style="display: none;"> We introduce a novel experimental approach to probe many-body quantum systems by developing a protocol to measure generalized temporal entropies. We demonstrate that the recently proposed generalized temporal entropies [Phys. Rev. Research 6, 033021] are equivalent to observing the out-of-equilibrium dynamics of a replicated system induced by a double quench protocol using local operators as probes. This equivalence, confirmed through state-of-the-art tensor network simulations for one-dimensional systems, validates the feasibility of measuring generalized temporal entropies experimentally. Our results reveal that the dynamics governed by the transverse field Ising model integrable Hamiltonian differ qualitatively from those driven by the same model with an additional parallel field, breaking integrability. They thus suggest that generalized temporal entropies can serve as a tool for identifying different dynamical classes. This work represents the first practical application of generalized temporal entropy characterization in one-dimensional many-body quantum systems and offers a new pathway for experimentally detecting integrability. We conclude by outlining the experimental requirements for implementing this protocol with state of the art quantum simulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05517v1-abstract-full').style.display = 'none'; document.getElementById('2409.05517v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figure, all comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02431">arXiv:2408.02431</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02431">pdf</a>, <a href="https://arxiv.org/format/2408.02431">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Moire exciton polaritons in twisted photonic lattices at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xing%2C+C">Chunzi Xing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhai%2C+X">Xiaokun Zhai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xinzheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiong%2C+Z">Zhenyu Xiong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Hao Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ren%2C+Y">Yuan Ren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+H">Haitao Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiao Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+A">Anlian Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schumacher%2C+S">Stefan Schumacher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xuekai Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+T">Tingge Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02431v2-abstract-short" style="display: inline;"> Moire lattices attract intensive attention in the double graphene/TMD layers and photonic crystals due to the interesting exotic physics within these structures. However, precise measurement of the moir&#39;e ground states, excited states and Bloch bands in the twisted photonic lattices is still illusive. In this work we report the strong coupling between the excitons of CsPbBr3 microplates and the ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02431v2-abstract-full').style.display = 'inline'; document.getElementById('2408.02431v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02431v2-abstract-full" style="display: none;"> Moire lattices attract intensive attention in the double graphene/TMD layers and photonic crystals due to the interesting exotic physics within these structures. However, precise measurement of the moir&#39;e ground states, excited states and Bloch bands in the twisted photonic lattices is still illusive. In this work we report the strong coupling between the excitons of CsPbBr3 microplates and the photonic modes of the moire lattice at room temperature. Depending on the coupling strength between the nearest potential sites, we observe staggered moire polariton ground states, excited states trapped in the potential sites and moire polariton bands across the twisted photonic lattice. In addition, the phase locking of moire zero (stable in-phase) states and moire pi (metastable antiphase) states with different spatial distributions are measured. Moir&#39;e polariton distribution can be tuned in the shape of parallelogram by controlling the depth and width of the potential in one photonic lattice with another one fixed. Our work lays the foundation to study moir&#39;e exciton polariton Wigner crystals and Luttinger liquid in twisted photonic lattices at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02431v2-abstract-full').style.display = 'none'; document.getElementById('2408.02431v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12593">arXiv:2303.12593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.12593">pdf</a>, <a href="https://arxiv.org/format/2303.12593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1515/nanoph-2023-0556">10.1515/nanoph-2023-0556 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological edge and corner states in coupled wave lattices in nonlinear polariton condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+W">Wenlong Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zentgraf%2C+T">Thomas Zentgraf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schumacher%2C+S">Stefan Schumacher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+X">Xuekai Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12593v3-abstract-short" style="display: inline;"> Topological states have been widely investigated in different types of systems and lattices. In the present work, we report on topological edge states in double-wave (DW) chains, which can be described by a generalized Aubry-Andr茅-Harper (AAH) model. For the specific system of a driven-dissipative exciton polariton system we show that in such potential chains, different types of edge states can fo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12593v3-abstract-full').style.display = 'inline'; document.getElementById('2303.12593v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12593v3-abstract-full" style="display: none;"> Topological states have been widely investigated in different types of systems and lattices. In the present work, we report on topological edge states in double-wave (DW) chains, which can be described by a generalized Aubry-Andr茅-Harper (AAH) model. For the specific system of a driven-dissipative exciton polariton system we show that in such potential chains, different types of edge states can form. For resonant optical excitation, we further find that the optical nonlinearity leads to a multistability of different edge states. This includes topologically protected edge states evolved directly from individual linear eigenstates as well as additional edge states that originate from nonlinearity-induced localization of bulk states. Extending the system into two dimensions (2D) by stacking horizontal DW chains in the vertical direction, we also create 2D multi-wave lattices. In such 2D lattices multiple Su-Schrieffer-Heeger (SSH) chains appear along the vertical direction. The combination of DW chains in the horizontal and SSH chains in the vertical direction then results in the formation of higher-order topological insulator corner states. Multistable corner states emerge in the nonlinear regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12593v3-abstract-full').style.display = 'none'; document.getElementById('2303.12593v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01396">arXiv:2302.01396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.01396">pdf</a>, <a href="https://arxiv.org/format/2302.01396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.engfracmech.2023.109318">10.1016/j.engfracmech.2023.109318 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Overview of phase-field models for fatigue fracture in a unified framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kalina%2C+M">Martha Kalina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tom Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brummund%2C+J">J枚rg Brummund</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%A4stner%2C+M">Markus K盲stner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01396v3-abstract-short" style="display: inline;"> In the last ten years, the phase-field method has gained much attention as a novel method to simulate fracture due to its straightforward way allowing to cover crack initiation and propagation without additional conditions. More recently, it has also been applied to fatigue fracture due to cyclic loading. This publication gives an overview of the main phase-field fatigue models published to date.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01396v3-abstract-full').style.display = 'inline'; document.getElementById('2302.01396v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01396v3-abstract-full" style="display: none;"> In the last ten years, the phase-field method has gained much attention as a novel method to simulate fracture due to its straightforward way allowing to cover crack initiation and propagation without additional conditions. More recently, it has also been applied to fatigue fracture due to cyclic loading. This publication gives an overview of the main phase-field fatigue models published to date. We present all models in a unified variational framework for best comparability. Subsequently, the models are compared regarding their most important features. It becomes apparent that they can be classified in mainly two categories according to the way fatigue is implemented in the model - that is as a gradual degradation of the fracture toughness or with an additional term in the crack driving force. We aim to provide a helpful guide for choosing the appropriate model for different applications and for developing existing models further. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01396v3-abstract-full').style.display = 'none'; document.getElementById('2302.01396v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.13343">arXiv:2202.13343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.13343">pdf</a>, <a href="https://arxiv.org/format/2202.13343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.014306">10.1103/PhysRevB.106.014306 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Entanglement spectrum and quantum phase diagram of the long-range XXZ chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+T">J. T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomson%2C+S+J">S. J. Thomson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez-Palencia%2C+L">L. Sanchez-Palencia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.13343v3-abstract-short" style="display: inline;"> Entanglement is a central feature of many-body quantum systems and plays a unique role in quantum phase transitions. In many cases, the entanglement spectrum, which represents the spectrum of the density matrix of a bipartite system, contains valuable information beyond the sole entanglement entropy. Here we investigate the entanglement spectrum of the long-range XXZ model. We show that within&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13343v3-abstract-full').style.display = 'inline'; document.getElementById('2202.13343v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.13343v3-abstract-full" style="display: none;"> Entanglement is a central feature of many-body quantum systems and plays a unique role in quantum phase transitions. In many cases, the entanglement spectrum, which represents the spectrum of the density matrix of a bipartite system, contains valuable information beyond the sole entanglement entropy. Here we investigate the entanglement spectrum of the long-range XXZ model. We show that within the critical phase it exhibits a remarkable self-similarity. The breakdown of self-similarity and the transition away from a Luttinger liquid is consistent with renormalization group theory. Combining the two, we are able to determine the quantum phase diagram of the model and locate the corresponding phase transitions. Our results are confirmed by numerically-exact calculations using tensor-network techniques. Moreover, we show that the self-similar rescaling extends to the geometrical entanglement as well as the Luttinger parameter in the critical phase. Our results pave the way to further studies of entanglement properties in long-range quantum models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13343v3-abstract-full').style.display = 'none'; document.getElementById('2202.13343v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 106:1, 014306 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05037">arXiv:2111.05037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05037">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/9.0000360">10.1063/9.0000360 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Oxygen Defect Engineered Magnetism of La2NiMnO6 Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Palakkal%2C+J+P">Jasnamol P. Palakkal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Thorsten Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alff%2C+L">Lambert Alff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05037v1-abstract-short" style="display: inline;"> The double perovskite La2NiMnO6 (LNMO) exhibits complex magnetism due to the competition of magnetic interactions that are strongly affected by structural and magnetic inhomogeneities. In this work, we study the effect of oxygen annealing on the structure and magnetism of epitaxial thin films grown by pulsed laser deposition. The key observations are that a longer annealing time leads to a reducti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05037v1-abstract-full').style.display = 'inline'; document.getElementById('2111.05037v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05037v1-abstract-full" style="display: none;"> The double perovskite La2NiMnO6 (LNMO) exhibits complex magnetism due to the competition of magnetic interactions that are strongly affected by structural and magnetic inhomogeneities. In this work, we study the effect of oxygen annealing on the structure and magnetism of epitaxial thin films grown by pulsed laser deposition. The key observations are that a longer annealing time leads to a reduction of saturation magnetization and an enhancement in the ferromagnetic transition temperature. We explain these results based upon epitaxial strain and oxygen defect engineering. The oxygen enrichment by annealing caused a decrease in the volume of the perovskite lattice. This increased the epitaxial strain of the films that are in-plane locked to the SrTiO3 substrate. The enhanced strain caused a reduction in the saturation magnetization due to randomly distributed anti-site defects. The reduced oxygen defects concentration in the films due to the annealing in oxygen improved the ferromagnetic long-range interaction and caused an increase in the magnetic transition temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05037v1-abstract-full').style.display = 'none'; document.getElementById('2111.05037v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, 4 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.03975">arXiv:2105.03975</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.03975">pdf</a>, <a href="https://arxiv.org/format/2105.03975">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum phase transition in overdoped La$_{2-x}$Sr$_x$CuO$_4$ evinced by the superfluid density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.03975v1-abstract-short" style="display: inline;"> The superfluid density of overdoped La$_{2-x}$Sr$_x$CuO$_4$ thin films of high quality have been measured with Tc (defined by the onset of the Meissner effect) from 5.1 to 41.6 K by Bosovic et al. Given this Tc the superfluid density shows no clear evidence of critical fluctuations and no indication of vortex unbinding as T-&gt;Tc. Nevertheless, the superfluid density displays the expected behavior f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03975v1-abstract-full').style.display = 'inline'; document.getElementById('2105.03975v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.03975v1-abstract-full" style="display: none;"> The superfluid density of overdoped La$_{2-x}$Sr$_x$CuO$_4$ thin films of high quality have been measured with Tc (defined by the onset of the Meissner effect) from 5.1 to 41.6 K by Bosovic et al. Given this Tc the superfluid density shows no clear evidence of critical fluctuations and no indication of vortex unbinding as T-&gt;Tc. Nevertheless, the superfluid density displays the expected behavior for for a quantum phase transition (QPT) in the (3+1)D-xy universality class, rho(T=0)~Tc^2. However, this relation is also a hallmark of dirty superconductors, treated in the mean-field approximation. Here we attempt to clear out the nature of the suppression of ro(T) as Tc-&gt;0. Noting that for any finite system the continuous transition will be rounded we perform a finite size scaling analysis. It uncovers that the ro(T) data data are consistent with a finite length limited 3D-xy transition. In some films it is their thickness and in others their inhomogeneity that determines the limiting length. Having established the precondition for the occurrence of a QPT mapping on the (3+1) D-xy model, we explore the consistency with the hallmarks of this transition. In particular with the relations rho(T)/rho(0)=1-ycT/Tc, rho((0)^Tc^2, yc=alpha*Tc/ro(0), where alpha is the coefficient in rho(T)=rho(0)-alphaT as T-&gt;0. The emerging agreement with these characteristics points clearly to a quantum fluctuations induced suppression, revealing the crossover from the thermal to the quantum critical regime as Tc -&gt;0. In the classical-quantum mapping it corresponds to a 3D to (3 + 1)D crossover. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03975v1-abstract-full').style.display = 'none'; document.getElementById('2105.03975v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.11296">arXiv:2011.11296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.11296">pdf</a>, <a href="https://arxiv.org/format/2011.11296">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.L012022">10.1103/PhysRevResearch.3.L012022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spreading of Correlations and Entanglement in the Long-Range Transverse Ising Chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+T">J. T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Despres%2C+J">J. Despres</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomson%2C+S+J">S. J. Thomson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tagliacozzo%2C+L">L. Tagliacozzo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez-Palencia%2C+L">L. Sanchez-Palencia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.11296v2-abstract-short" style="display: inline;"> Whether long-range interactions allow for a form of causality in non-relativistic quantum models remains an open question with far-reaching implications for the propagation of information and thermalization processes. Here, we study the out-of-equilibrium dynamics of the one-dimensional transverse Ising model with algebraic long-range exchange coupling. Using a state of the art tensor-network appr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11296v2-abstract-full').style.display = 'inline'; document.getElementById('2011.11296v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.11296v2-abstract-full" style="display: none;"> Whether long-range interactions allow for a form of causality in non-relativistic quantum models remains an open question with far-reaching implications for the propagation of information and thermalization processes. Here, we study the out-of-equilibrium dynamics of the one-dimensional transverse Ising model with algebraic long-range exchange coupling. Using a state of the art tensor-network approach, complemented by analytic calculations and considering various observables, we show that a weak form of causality emerges, characterized by non-universal dynamical exponents. While the local spin and spin correlation causal edges are sub-ballistic, the causal region has a rich internal structure, which, depending on the observable, displays ballistic or super-ballistic features. In contrast, the causal region of entanglement entropy is featureless and its edge is always ballistic, irrespective of the interaction range. Our results shed light on the propagation of information in long-range interacting lattice models and pave the way to future experiments, which are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11296v2-abstract-full').style.display = 'none'; document.getElementById('2011.11296v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, and supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 012022 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.01925">arXiv:2005.01925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.01925">pdf</a>, <a href="https://arxiv.org/format/2005.01925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.054422">10.1103/PhysRevB.102.054422 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dimensional crossover in spin Hall oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+A">Andrew Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sobotkiewich%2C+K">Kemal Sobotkiewich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+A">Amanatullah Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montoya%2C+E+A">Eric A. Montoya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Liu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duan%2C+Z">Zheng Duan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenz%2C+K">Kilian Lenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">J眉rgen Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=An%2C+K">Kyongmo An</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaoqin Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krivorotov%2C+I+N">Ilya N. Krivorotov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.01925v2-abstract-short" style="display: inline;"> Auto-oscillations of magnetization driven by direct spin current have been previously observed in multiple quasi-zero-dimensional (0D) ferromagnetic systems such as nanomagnets and nanocontacts. Recently, it was shown that pure spin Hall current can excite coherent auto-oscillatory dynamics in quasi-one-dimensional (1D) ferromagnetic nanowires but not in quasi-two-dimensional (2D) ferromagnetic fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01925v2-abstract-full').style.display = 'inline'; document.getElementById('2005.01925v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.01925v2-abstract-full" style="display: none;"> Auto-oscillations of magnetization driven by direct spin current have been previously observed in multiple quasi-zero-dimensional (0D) ferromagnetic systems such as nanomagnets and nanocontacts. Recently, it was shown that pure spin Hall current can excite coherent auto-oscillatory dynamics in quasi-one-dimensional (1D) ferromagnetic nanowires but not in quasi-two-dimensional (2D) ferromagnetic films. Here we study the 1D to 2D dimensional crossover of current-driven magnetization dynamics in wire-based Pt/$\mathrm{Ni}_{80}\mathrm{Fe}_{20}$ bilayer spin Hall oscillators via varying the wire width. We find that increasing the wire width results in an increase of the number of excited auto-oscillatory modes accompanied by a decrease of the amplitude and coherence of each mode. We also observe a crossover from a hard to a soft onset of the auto-oscillations with increasing the wire width. The amplitude of auto-oscillations rapidly decreases with increasing temperature suggesting that interactions of the phase-coherent auto-oscillatory modes with incoherent thermal magnons plays an important role in suppression of the auto-oscillatory dynamics. Our measurements set the upper limit on the dimensions of an individual spin Hall oscillator and elucidate the mechanisms leading to suppression of coherent auto-oscillations with increasing oscillator size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.01925v2-abstract-full').style.display = 'none'; document.getElementById('2005.01925v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 054422 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.09400">arXiv:1911.09400</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.09400">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.024416">10.1103/PhysRevMaterials.4.024416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low damping and microstructural perfection of sub-40nm-thin yttrium iron garnet films grown by liquid phase epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dubs%2C+C">Carsten Dubs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Surzhenko%2C+O">Oleksii Surzhenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+R">Ronny Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osten%2C+J">Julia Osten</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenz%2C+K">Kilian Lenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grenzer%2C+J">J枚rg Grenzer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%BCbner%2C+R">Ren茅 H眉bner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wendler%2C+E">Elke Wendler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.09400v1-abstract-short" style="display: inline;"> The field of magnon spintronics is experiencing an increasing interest in the development of solutions for spin-wave-based data transport and processing technologies that are complementary or alternative to modern CMOS architectures. Nanometer-thin yttrium iron garnet (YIG) films have been the gold standard for insulator-based spintronics to date, but a potential process technology that can delive&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09400v1-abstract-full').style.display = 'inline'; document.getElementById('1911.09400v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.09400v1-abstract-full" style="display: none;"> The field of magnon spintronics is experiencing an increasing interest in the development of solutions for spin-wave-based data transport and processing technologies that are complementary or alternative to modern CMOS architectures. Nanometer-thin yttrium iron garnet (YIG) films have been the gold standard for insulator-based spintronics to date, but a potential process technology that can deliver perfect, homogeneous large-diameter films is still lacking. We report that liquid phase epitaxy (LPE) enables the deposition of nanometer-thin YIG films with low ferromagnetic resonance losses and consistently high magnetic quality down to a thickness of 20 nm. The obtained epitaxial films are characterized by an ideal stoichiometry and perfect film lattices, which show neither significant compositional strain nor geometric mosaicity, but sharp interfaces. Their magneto-static and dynamic behavior is similar to that of single crystalline bulk YIG. We found, that the Gilbert damping coefficient alpha is independent of the film thickness and close to 1 x 10-4, and that together with an inhomogeneous peak-to-peak linewidth broadening of delta H0|| = 0.4 G, these values are among the lowest ever reported for YIG films with a thickness smaller than 40 nm. These results suggest, that nanometer-thin LPE films can be used to fabricate nano- and micro-scaled circuits with the required quality for magnonic devices. The LPE technique is easily scalable to YIG sample diameters of several inches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.09400v1-abstract-full').style.display = 'none'; document.getElementById('1911.09400v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 024416 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.12445">arXiv:1909.12445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.12445">pdf</a>, <a href="https://arxiv.org/format/1909.12445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Thermally driven two-magnet nano-oscillator with large spin-charge conversion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Arkook%2C+B">Bassim Arkook</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Safranski%2C+C">Christopher Safranski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodriguez%2C+R">Rodolfo Rodriguez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krivorotov%2C+I+N">Ilya N. Krivorotov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenz%2C+K">Kilian Lenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">J眉rgen Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+H">Houchen Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Mingzhong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tserkovnyak%2C+Y">Yaroslav Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barsukov%2C+I">Igor Barsukov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.12445v1-abstract-short" style="display: inline;"> Next-generation spintronic applications require material properties that can be hardly met by one material candidate. Here we demonstrate that by combining insulating and metallic magnets, enhanced spin-charge conversion and energy-efficient thermal spin currents can be realized. We develop a nanowire device consisting of an yttrium iron garnet and permalloy bi-layer. An interfacial temperature gr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12445v1-abstract-full').style.display = 'inline'; document.getElementById('1909.12445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.12445v1-abstract-full" style="display: none;"> Next-generation spintronic applications require material properties that can be hardly met by one material candidate. Here we demonstrate that by combining insulating and metallic magnets, enhanced spin-charge conversion and energy-efficient thermal spin currents can be realized. We develop a nanowire device consisting of an yttrium iron garnet and permalloy bi-layer. An interfacial temperature gradient drives the nanowire magnetization into auto-oscillations at gigahertz frequencies. Interfacial spin coupling and magnetoresistance of the permalloy layer translate spin dynamics into sizable microwave signals. The results show prospect for energy-efficient spintronic devices and present an experimental realization of magnon condensation in a heterogeneous magnetic system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12445v1-abstract-full').style.display = 'none'; document.getElementById('1909.12445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.00897">arXiv:1812.00897</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.00897">pdf</a>, <a href="https://arxiv.org/ps/1812.00897">ps</a>, <a href="https://arxiv.org/format/1812.00897">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.174404">10.1103/PhysRevB.97.174404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry and localization properties of defect modes in magnonic superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gallardo%2C+R+A">Rodolfo A. Gallardo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rold%C3%A1n-Molina%2C+A">Alejandro Rold谩n-Molina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Langer%2C+M">Manuel Langer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+%C3%81+S">脕lvaro S. N煤帽ez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenz%2C+K">Kilian Lenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">J眉rgen Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Landeros%2C+P">Pedro Landeros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.00897v1-abstract-short" style="display: inline;"> Symmetry and localization properties of defect modes of a one-dimensional bi-component magnonic superlattice are theoretically studied. The magnonic superlattice can be seen as a periodic array of nanostripes, where stripes with different width, termed as defect stripes, are periodically introduced. By controlling the geometry of the defect stripes, a transition from dispersive to practically flat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.00897v1-abstract-full').style.display = 'inline'; document.getElementById('1812.00897v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.00897v1-abstract-full" style="display: none;"> Symmetry and localization properties of defect modes of a one-dimensional bi-component magnonic superlattice are theoretically studied. The magnonic superlattice can be seen as a periodic array of nanostripes, where stripes with different width, termed as defect stripes, are periodically introduced. By controlling the geometry of the defect stripes, a transition from dispersive to practically flat spin-wave defect modes can be observed inside the magnonic band gaps. It is shown that the spin-wave profile of the defect modes can be either symmetric or antisymmetric, depending on the geometry of the defect. Due to the localized character of the defect modes, a particular magnonic superlattice is proposed, wherein the excitation of either symmetric or antisymmetric flat magnonic modes is enabled at the same time. Also, it is demonstrated that the relative frequency position of the antisymmetric mode inside the band gap does not significantly change with the application of an external field, while the symmetric modes move to the edges of the frequency band gaps. The results are complemented by numerical simulations, where an excellent agreement is observed between both methods. The proposed theory allows exploring different ways to control the dynamic properties of the defect modes in metamaterial magnonic superlattices, which can be useful for applications on multifunctional microwave devices operating over a broad frequency range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.00897v1-abstract-full').style.display = 'none'; document.getElementById('1812.00897v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 97, 174404 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.09369">arXiv:1811.09369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.09369">pdf</a>, <a href="https://arxiv.org/format/1811.09369">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.144412">10.1103/PhysRevB.103.144412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-stabilizing exchange-mediated spin transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hill%2C+D">D. Hill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%A1kay%2C+A">A. K谩kay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenz%2C+K">K. Lenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">J. Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fassbender%2C+J">J. Fassbender</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Upadhyaya%2C+P">P. Upadhyaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yuxiang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tserkovnyak%2C+Y">Y. Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krivorotov%2C+I+N">I. N. Krivorotov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barsukov%2C+I">I. Barsukov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.09369v2-abstract-short" style="display: inline;"> Long-range spin transport in magnetic systems can be achieved by means of exchange-mediated spin textures with robust topological winding -- a phenomenon referred to as spin superfluidity. Its experimental signatures have been discussed in antiferromagnets which are nearly free of dipolar interaction. However, in ferromagnets, which possess non-negligible dipole fields, realization of such spin tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.09369v2-abstract-full').style.display = 'inline'; document.getElementById('1811.09369v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.09369v2-abstract-full" style="display: none;"> Long-range spin transport in magnetic systems can be achieved by means of exchange-mediated spin textures with robust topological winding -- a phenomenon referred to as spin superfluidity. Its experimental signatures have been discussed in antiferromagnets which are nearly free of dipolar interaction. However, in ferromagnets, which possess non-negligible dipole fields, realization of such spin transport has remained a challenge. Using micromagnetic simulations, we investigate coherent exchange-mediated spin transport in extended thin ferromagnetic films. We uncover a two-fluid state, in which the long-range spin transport by spin textures co-exists with spin waves, as well as a soliton-screened spin transport regime at high spin injection biases. Both states are associated with distinct spin texture reconstructions near the spin injection region and sustain spin transport over large distances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.09369v2-abstract-full').style.display = 'none'; document.getElementById('1811.09369v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103,144412 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.13324">arXiv:1810.13324</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.13324">pdf</a>, <a href="https://arxiv.org/format/1810.13324">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> A Model for Hydrodynamics in Kinetic Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Viermann%2C+C">C. Viermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+T">J. T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lilow%2C+R">R. Lilow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabis%2C+F">F. Fabis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Littek%2C+C">C. Littek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kozlikin%2C+E">E. Kozlikin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bartelmann%2C+M">M. Bartelmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.13324v1-abstract-short" style="display: inline;"> In this work, we introduce an effective model for both ideal and viscous fluid dynamics within the framework of kinetic field theory (KFT). The main application we have in mind is cosmic structure formation where gaseous components need to be gravitationally coupled to dark matter. However, we expect that the fluid model is much more widely applicable. The idea behind the effective model is simila&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13324v1-abstract-full').style.display = 'inline'; document.getElementById('1810.13324v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.13324v1-abstract-full" style="display: none;"> In this work, we introduce an effective model for both ideal and viscous fluid dynamics within the framework of kinetic field theory (KFT). The main application we have in mind is cosmic structure formation where gaseous components need to be gravitationally coupled to dark matter. However, we expect that the fluid model is much more widely applicable. The idea behind the effective model is similar to that of smoothed particle hydrodynamics. By introducing mesoscopic particles equipped with a position, a momentum, and an enthalpy, we construct a free theory for such particles and derive suitable interaction operators. We then show that the model indeed leads to the correct macroscopic evolution equations, namely the continuity, Euler, Navier-Stokes, and energy conservation equations of both ideal and viscous hydrodynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13324v1-abstract-full').style.display = 'none'; document.getElementById('1810.13324v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.07885">arXiv:1808.07885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.07885">pdf</a>, <a href="https://arxiv.org/format/1808.07885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.050403">10.1103/PhysRevLett.122.050403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical topological transitions in the massive Schwinger model with a 胃-term </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zache%2C+T+V">T. V. Zache</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mueller%2C+N">N. Mueller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+J+T">J. T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jendrzejewski%2C+F">F. Jendrzejewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berges%2C+J">J. Berges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hauke%2C+P">P. Hauke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.07885v1-abstract-short" style="display: inline;"> Aiming at a better understanding of anomalous and topological effects in gauge theories out-of-equilibrium, we study the real-time dynamics of a prototype model for CP-violation, the massive Schwinger model with a $胃$-term. We identify dynamical quantum phase transitions between different topological sectors that appear after sufficiently strong quenches of the $胃$-parameter. Moreover, we establis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07885v1-abstract-full').style.display = 'inline'; document.getElementById('1808.07885v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.07885v1-abstract-full" style="display: none;"> Aiming at a better understanding of anomalous and topological effects in gauge theories out-of-equilibrium, we study the real-time dynamics of a prototype model for CP-violation, the massive Schwinger model with a $胃$-term. We identify dynamical quantum phase transitions between different topological sectors that appear after sufficiently strong quenches of the $胃$-parameter. Moreover, we establish a general dynamical topological order parameter, which can be accessed through fermion two-point correlators and, importantly, which can be applied for interacting theories. Enabled by this result, we show that the topological transitions persist beyond the weak-coupling regime. Finally, these effects can be observed with table-top experiments based on existing cold-atom, superconducting-qubit, and trapped-ion technology. Our work, thus, presents a significant step towards quantum simulating topological and anomalous real-time phenomena relevant to nuclear and high-energy physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.07885v1-abstract-full').style.display = 'none'; document.getElementById('1808.07885v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 050403 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.00897">arXiv:1807.00897</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.00897">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-019-0383-4">10.1038/s41565-019-0383-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emission and Propagation of Multi-Dimensional Spin Waves with nanoscale wavelengths in Anisotropic Spin Textures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sluka%2C+V">V. Sluka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallardo%2C+R+A">R. A. Gallardo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kakay%2C+A">A. Kakay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weigand%2C+M">M. Weigand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Warnatz%2C+T">T. Warnatz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mattheis%2C+R">R. Mattheis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roldan-Molina%2C+A">A. Roldan-Molina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Landeros%2C+P">P. Landeros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiberkevich%2C+V">V. Tiberkevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slavin%2C+A">A. Slavin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BCtz%2C+G">G. Sch眉tz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Erbe%2C+A">A. Erbe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deac%2C+A">A. Deac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">J. Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Raabe%2C+J">J. Raabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fassbender%2C+J">J. Fassbender</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wintz%2C+S">S. Wintz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.00897v2-abstract-short" style="display: inline;"> Spin waves offer intriguing novel perspectives for computing and signal processing, since their damping can be lower than the Ohmic losses in conventional CMOS circuits. For controlling the spatial extent and propagation of spin waves on the actual chip, magnetic domain walls show considerable potential as magnonic waveguides. However, low-loss guidance of spin waves with nanoscale wavelengths, in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00897v2-abstract-full').style.display = 'inline'; document.getElementById('1807.00897v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.00897v2-abstract-full" style="display: none;"> Spin waves offer intriguing novel perspectives for computing and signal processing, since their damping can be lower than the Ohmic losses in conventional CMOS circuits. For controlling the spatial extent and propagation of spin waves on the actual chip, magnetic domain walls show considerable potential as magnonic waveguides. However, low-loss guidance of spin waves with nanoscale wavelengths, in particular around angled tracks, remains to be shown. Here we experimentally demonstrate that such advanced control of propagating spin waves can be obtained using natural features of magnetic order in an interlayer exchange-coupled, anisotropic ferromagnetic bilayer. Using Scanning Transmission X-Ray Microscopy, we image generation of spin waves and their propagation across distances exceeding multiple times the wavelength, in extended planar geometries as well as along one-dimensional domain walls, which can be straight and curved. The observed range of wavelengths is between 1 渭m and 150 nm, at corresponding excitation frequencies from 250 MHz to 3 GHz. Our results show routes towards practical implementation of magnonic waveguides employing domain walls in future spin wave logic and computational circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00897v2-abstract-full').style.display = 'none'; document.getElementById('1807.00897v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.08333">arXiv:1806.08333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.08333">pdf</a>, <a href="https://arxiv.org/format/1806.08333">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.067204">10.1103/PhysRevLett.122.067204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flat Bands, Indirect Gaps, and Unconventional Spin-Wave Behavior Induced by a Periodic Dzyaloshinskii-Moriya Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gallardo%2C+R+A">R. A. Gallardo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cort%C3%A9s-Ortu%C3%B1o%2C+D">D. Cort茅s-Ortu帽o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rold%C3%A1n-Molina%2C+A">A. Rold谩n-Molina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+F">Fusheng Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Troncoso%2C+R+E">R. E. Troncoso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenz%2C+K">K. Lenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fangohr%2C+H">H. Fangohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">J. Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Landeros%2C+P">P. Landeros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.08333v2-abstract-short" style="display: inline;"> Periodically patterned metamaterials are known for exhibiting wave properties similar to the ones observed in electronic band structures in crystal lattices. In particular, periodic ferromagnetic materials are characterized by the presence of bands and bandgaps in their spin-wave spectrum at tunable GHz frequencies. Recently, the fabrication of magnets hosting Dzyaloshinskii-Moriya interactions ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.08333v2-abstract-full').style.display = 'inline'; document.getElementById('1806.08333v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.08333v2-abstract-full" style="display: none;"> Periodically patterned metamaterials are known for exhibiting wave properties similar to the ones observed in electronic band structures in crystal lattices. In particular, periodic ferromagnetic materials are characterized by the presence of bands and bandgaps in their spin-wave spectrum at tunable GHz frequencies. Recently, the fabrication of magnets hosting Dzyaloshinskii-Moriya interactions has been pursued with high interest since properties such as the stabilization of chiral spin textures and nonreciprocal spin-wave propagation emerge from this antisymmetric exchange coupling. In this context, to further engineer the magnon band structure, we propose the implementation of magnonic crystals with periodic Dzyaloshinskii-Moriya interactions, which can be obtained, for instance, via patterning of periodic arrays of heavy-metals wires on top of an ultrathin magnetic film. We demonstrate through theoretical calculations and micromagnetic simulations that such systems show an unusual evolution of the standing spin waves around the gaps in areas of the film that are in contact with the heavy-metal wires. We also predict the emergence of indirect gaps and flat bands and, effects that depend on the strength of the Dzyaloshinskii-Moriya interaction. This study opens new routes towards engineered metamaterials for spin-wave-based devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.08333v2-abstract-full').style.display = 'none'; document.getElementById('1806.08333v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 067204 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00902">arXiv:1709.00902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.00902">pdf</a>, <a href="https://arxiv.org/format/1709.00902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.97.013405">10.1103/PhysRevA.97.013405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling the adiabatic creation of ultracold, polar $\mathrm{^{23}Na^{40}K}$ molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=See%C3%9Felberg%2C+F">Frauke See脽elberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchheim%2C+N">Nikolaus Buchheim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+Z">Zhen-Kai Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+X">Xin-Yu Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiemann%2C+E">Eberhard Tiemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bloch%2C+I">Immanuel Bloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gohle%2C+C">Christoph Gohle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00902v2-abstract-short" style="display: inline;"> In this work we model and realize stimulated Raman adiabatic passage (STIRAP) in the diatomic $\mathrm{^{23}Na^{40}K}$ molecule from weakly bound Feshbach molecules to the rovibronic ground state via the $\left|v_d=5,J=惟=1\right\rangle$ excited state in the $d^3螤$ electronic potential. We demonstrate how to set up a quantitative model for polar molecule production by taking into account the rich i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00902v2-abstract-full').style.display = 'inline'; document.getElementById('1709.00902v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00902v2-abstract-full" style="display: none;"> In this work we model and realize stimulated Raman adiabatic passage (STIRAP) in the diatomic $\mathrm{^{23}Na^{40}K}$ molecule from weakly bound Feshbach molecules to the rovibronic ground state via the $\left|v_d=5,J=惟=1\right\rangle$ excited state in the $d^3螤$ electronic potential. We demonstrate how to set up a quantitative model for polar molecule production by taking into account the rich internal structure of the molecules and the coupling laser phase noise. We find excellent agreement between the model predictions and the experiment, demonstrating the applicability of the model in the search of an ideal STIRAP transfer path. In total we produce 5000 fermionic groundstate molecules. The typical phase-space density of the sample is 0.03 and induced dipole moments of up to 0.54 Debye could be observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00902v2-abstract-full').style.display = 'none'; document.getElementById('1709.00902v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures Version 2: Fixed a few typos, elaborated more on the differences between different choices of intermediate state, clarified H枚nl-London factor, added a intuitive explanation of the benefits of detuned STIRAP, elaborated on realized dipole moments in diatomics, compared phase-space density reducing processes in the whole molecule creation process, added two more references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 97, 013405 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.05675">arXiv:1702.05675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.05675">pdf</a>, <a href="https://arxiv.org/ps/1702.05675">ps</a>, <a href="https://arxiv.org/format/1702.05675">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.024426">10.1103/PhysRevB.99.024426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-Wave Modes in Transition from a Thin Film to a Full Magnonic Crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Langer%2C+M">Manuel Langer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallardo%2C+R+A">Rodolfo A. Gallardo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stienen%2C+S">Sven Stienen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rold%C3%A1n-Molina%2C+A">Alejandro Rold谩n-Molina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+Y">Ye Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenz%2C+K">Kilian Lenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">J眉rgen Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Landeros%2C+P">Pedro Landeros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fassbender%2C+J">J眉rgen Fassbender</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.05675v3-abstract-short" style="display: inline;"> Spin-wave modes are studied under the gradual transition from a flat thin film to a &#39;full&#39; (one-dimensional) magnonic crystal. For this purpose, the surface of a pre-patterned 36.8 nm thin permalloy film was sequentially ion milled resulting in magnonic hybrid structures, referred to as surface-modulated magnonic crystals, with increasing modulation depth. After each etching step, ferromagnetic re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05675v3-abstract-full').style.display = 'inline'; document.getElementById('1702.05675v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.05675v3-abstract-full" style="display: none;"> Spin-wave modes are studied under the gradual transition from a flat thin film to a &#39;full&#39; (one-dimensional) magnonic crystal. For this purpose, the surface of a pre-patterned 36.8 nm thin permalloy film was sequentially ion milled resulting in magnonic hybrid structures, referred to as surface-modulated magnonic crystals, with increasing modulation depth. After each etching step, ferromagnetic resonance measurements were performed yielding the spin-wave resonance modes in backward-volume and Damon-Eshbach geometry. The spin-wave spectra of these hybrid systems reveal an even larger variety of spin-wave states compared to the &#39;full&#39; magnonic crystal. The measurements are corroborated by quasi-analytical theory and micromagnetic simulations in order to study the changing spin-wave mode character employing spin-wave mode profiles. In backward-volume geometry, a gradual transition from the uniform mode in the film limit to a fundamental mode in the thin part of the magnonic crystal was observed. Equivalently, the first and the second film modes are transform into a center and an edge mode of the thick part of the magnonic crystal. Simple transition rules from the $n^{\mathrm{th}}$ film mode to the $m^{\mathrm{th}}$ mode in the &#39;full&#39; magnonic crystal are formulated unraveling the complex mode structure particularly in the backward-volume geometry. An analogous analysis was performed in the Damon-Eshbach geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.05675v3-abstract-full').style.display = 'none'; document.getElementById('1702.05675v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 024426 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.09611">arXiv:1611.09611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.09611">pdf</a>, <a href="https://arxiv.org/ps/1611.09611">ps</a>, <a href="https://arxiv.org/format/1611.09611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-319-52675-1_24">10.1007/978-3-319-52675-1_24 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal and Quantum critical Properties of overdoped La_{2-x}Sr_{x}CuO_{4} </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.09611v1-abstract-short" style="display: inline;"> We analyze the extended superfluid density data of Bo啪ovi膰 \textit{ et al}. taken on homogenous thin films to explore the critical properties of the thermal (TSM) and quantum superconductor to metal (QSM) transitions in overdoped La$_{2-x}$Sr$_{x}$CuO$_{4}$. The temperature dependence reveals remarkable agreement with d-wave BCS behavior, where $蟽\propto 1/位^{2}$. No sign of the expected KTB trans&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.09611v1-abstract-full').style.display = 'inline'; document.getElementById('1611.09611v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.09611v1-abstract-full" style="display: none;"> We analyze the extended superfluid density data of Bo啪ovi膰 \textit{ et al}. taken on homogenous thin films to explore the critical properties of the thermal (TSM) and quantum superconductor to metal (QSM) transitions in overdoped La$_{2-x}$Sr$_{x}$CuO$_{4}$. The temperature dependence reveals remarkable agreement with d-wave BCS behavior, where $蟽\propto 1/位^{2}$. No sign of the expected KTB transition is observable. We show that the critical amplitude $蟻_{s0}=蟻_{s}\left( T\right) /\left( 1-T/T_{c}\right) $ scales as $T_{c}\propto 蟻_{s0}^{1/2}$ and with that as $T_{c}\propto 蟻_{s}\left( 0\right) $, empirically verified by Bo啪ovi膰 \textit{et al}. Together with additional evidence for BCS behavior in overdoped La$_{2-x}$Sr$_{x}$CuO$_{4}$ we show that the scaling relation $T_{c}\propto 位\left( 0\right) ^{-1}\propto 螖\left( 0\right) \propto 尉\left( 0\right) ^{-1}\propto H_{c2}\left( 0\right) ^{-1/2}\propto 位_{0}^{-1}\propto 螖_{0}\propto 尉_{0}^{-1}\propto H_{c20}^{-1/2}$ applies, by approaching the QSM and TSM transitions. This differs from the dirty limit behavior $位\left( 0\right) \propto 尉\left( 0\right) ^{1/2}$, maintains the $T_{c}$ \ independence of the Ginzburg-Landau parameter $魏=位_{o}/尉_{0}$, and puts a stringent constraint on the effect at work. We notice that potential candidates appear to be the nonlocal effects on the penetration depth of clean d-wave superconductors explored by Kosztin and Legget. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.09611v1-abstract-full').style.display = 'none'; document.getElementById('1611.09611v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.00887">arXiv:1611.00887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.00887">pdf</a>, <a href="https://arxiv.org/ps/1611.00887">ps</a>, <a href="https://arxiv.org/format/1611.00887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-017-00184-5">10.1038/s41467-017-00184-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin caloritronic nano-oscillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Safranski%2C+C">Chris Safranski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barsukov%2C+I">Igor Barsukov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H+K">Han Kyu Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jara%2C+A">Alejandro Jara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smith%2C+A">Andrew Smith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+H">Houchen Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenz%2C+K">Kilian Lenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">Juergen Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tserkovnyak%2C+Y">Yaroslav Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+M">Mingzhong Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krivorotov%2C+I">Ilya Krivorotov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.00887v2-abstract-short" style="display: inline;"> Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00887v2-abstract-full').style.display = 'inline'; document.getElementById('1611.00887v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.00887v2-abstract-full" style="display: none;"> Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in $\mathrm{Y_{3}Fe_{5}O_{12}/Pt}$ bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the $\mathrm{Y_{3}Fe_{5}O_{12}}$ layer. This leads to excitation of auto-oscillations of the $\mathrm{Y_{3}Fe_{5}O_{12}}$ magnetization and generation of coherent microwave radiation. Our work paves the way towards spin caloritronic devices for microwave and magnonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.00887v2-abstract-full').style.display = 'none'; document.getElementById('1611.00887v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 8, 117 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.04176">arXiv:1610.04176</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.04176">pdf</a>, <a href="https://arxiv.org/format/1610.04176">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Spin-wave spectra in periodically surface-modulated ferromagnetic thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gallardo%2C+R+A">R. A. Gallardo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Langer%2C+M">M. Langer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rold%C3%A1n-Molina%2C+A">A. Rold谩n-Molina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenz%2C+K">K. Lenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">J. Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Landeros%2C+P">P. Landeros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.04176v1-abstract-short" style="display: inline;"> This article presents theoretical results for the dynamic response of periodically surface-modulated ferromagnetic thin films. For such system, the role of the periodic dipolar field induced by the modulation is addressed by using the plane-wave method. By controlling the geometry of the modulated volumes within the film, the frequency modes and spatial profiles of spin waves can be manipulated. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04176v1-abstract-full').style.display = 'inline'; document.getElementById('1610.04176v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.04176v1-abstract-full" style="display: none;"> This article presents theoretical results for the dynamic response of periodically surface-modulated ferromagnetic thin films. For such system, the role of the periodic dipolar field induced by the modulation is addressed by using the plane-wave method. By controlling the geometry of the modulated volumes within the film, the frequency modes and spatial profiles of spin waves can be manipulated. The angular dependence of the frequency band-gaps unveils the influence of both dynamic and static magnetic charges, which reside in the edges of the etching periodic zones, and it is stablished that band-gap widths created by static magnetic charges are broader than the one created by dynamic magnetic charges. To corroborate the validity of the model, the theoretical results are compared with ferromagnetic resonance simulations, where a very good agreement is achieved between both methods. The theoretical model allows for a detailed understanding of the physics underlying these kind of systems, thereby providing an outlook to potential applications associated with magnonic crystals-based devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.04176v1-abstract-full').style.display = 'none'; document.getElementById('1610.04176v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.00342">arXiv:1609.00342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.00342">pdf</a>, <a href="https://arxiv.org/ps/1609.00342">ps</a>, <a href="https://arxiv.org/format/1609.00342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.95.184405">10.1103/PhysRevB.95.184405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The role of the internal demagnetizing field in a surface-modulated magnonic crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Langer%2C+M">Manuel Langer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C3%B6der%2C+F">Falk R枚der</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallardo%2C+R+A">Rodolfo A. Gallardo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stienen%2C+S">Sven Stienen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatel%2C+C">Christophe Gatel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%BCbner%2C+R">Ren茅 H眉bner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bischoff%2C+L">Lothar Bischoff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenz%2C+K">Kilian Lenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lindner%2C+J">J眉rgen Lindner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Landeros%2C+P">Pedro Landeros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fassbender%2C+J">J眉rgen Fassbender</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.00342v3-abstract-short" style="display: inline;"> Magnonic crystals with locally alternating properties and specific periodicities exhibit interesting effects, such as a multitude of different spin-wave states and large band gaps. This work aims for demonstrating and understanding the key role of local demagnetizing fields in such systems. To achieve this, hybrid structures are investigated consisting of a continuous thin film with a stripe modul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00342v3-abstract-full').style.display = 'inline'; document.getElementById('1609.00342v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.00342v3-abstract-full" style="display: none;"> Magnonic crystals with locally alternating properties and specific periodicities exhibit interesting effects, such as a multitude of different spin-wave states and large band gaps. This work aims for demonstrating and understanding the key role of local demagnetizing fields in such systems. To achieve this, hybrid structures are investigated consisting of a continuous thin film with a stripe modulation on top favorable due to the adjustability of the magnonic effects with the modulation size. For a direct access to the spin dynamics, a magnonic crystal was reconstructed from `bottom-up&#39;, i.e., the structural shape as well as the internal field landscape of the structure were experimentally obtained on the nanoscale using electron holography. Subsequently, both properties were utilized to perform dynamic response calculations. The simulations yield the frequency-field dependence as well as the angular dependence of spin waves in a magnonic crystal and reveal the governing role of the internal field landscape around the backward-volume geometry. The complex angle-dependent spin-wave behavior is described for a 360 degree in-plane rotation of an external field by connecting the internal field landscape with the individual spin-wave localization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.00342v3-abstract-full').style.display = 'none'; document.getElementById('1609.00342v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 95, 184405 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.07014">arXiv:1510.07014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.07014">pdf</a>, <a href="https://arxiv.org/ps/1510.07014">ps</a>, <a href="https://arxiv.org/format/1510.07014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optmat.2006.10.015">10.1016/j.optmat.2006.10.015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical properties of PZT thin films deposited on a ZnO buffer layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leduc%2C+D">D Leduc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cardin%2C+J">J. Cardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lupi%2C+C">C Lupi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barreau%2C+N">N Barreau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gundel%2C+H">H Gundel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.07014v1-abstract-short" style="display: inline;"> The optical properties of lead zirconate titanate (PZT) thin films deposited on ZnO were studied by m-lines spectroscopy. In order to retrieve the refractive index and the thickness of both layers from the m-lines spectra, we develop a numerical algorithm for the case of a two-layer system and show its robustness in the presence of noise. The sensitivity of the algorithm of the two-layer model all&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.07014v1-abstract-full').style.display = 'inline'; document.getElementById('1510.07014v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.07014v1-abstract-full" style="display: none;"> The optical properties of lead zirconate titanate (PZT) thin films deposited on ZnO were studied by m-lines spectroscopy. In order to retrieve the refractive index and the thickness of both layers from the m-lines spectra, we develop a numerical algorithm for the case of a two-layer system and show its robustness in the presence of noise. The sensitivity of the algorithm of the two-layer model allows us to relate the observed changes in the PZT refractive index to the PZT structural change due to the ZnO interface of the PZT/ZnO optical waveguide. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.07014v1-abstract-full').style.display = 'none'; document.getElementById('1510.07014v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optical Materials, Elsevier, 2007, \&amp;lt;10.1016/j.optmat.2006.10.015\&amp;gt; </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.07643">arXiv:1505.07643</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.07643">pdf</a>, <a href="https://arxiv.org/format/1505.07643">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/18/2/025019">10.1088/1367-2630/18/2/025019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cumulant expansions for atmospheric flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ait-Chaalal%2C+F">Farid Ait-Chaalal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tapio Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyer%2C+B">Bettina Meyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marston%2C+J+B">J. B. Marston</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.07643v3-abstract-short" style="display: inline;"> The equations governing atmospheric flows are nonlinear. Consequently, the hierarchy of cumulant equations is not closed. But because atmospheric flows are inhomogeneous and anisotropic, the nonlinearity may manifest itself only weakly through interactions of mean fields with disturbances such as thermals or eddies. In such situations, truncations of the hierarchy of cumulant equations hold promis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.07643v3-abstract-full').style.display = 'inline'; document.getElementById('1505.07643v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.07643v3-abstract-full" style="display: none;"> The equations governing atmospheric flows are nonlinear. Consequently, the hierarchy of cumulant equations is not closed. But because atmospheric flows are inhomogeneous and anisotropic, the nonlinearity may manifest itself only weakly through interactions of mean fields with disturbances such as thermals or eddies. In such situations, truncations of the hierarchy of cumulant equations hold promise as a closure strategy. We review how truncations at second order can be used to model and elucidate the dynamics of atmospheric flows. Two examples are considered. First, we study the growth of a dry convective boundary layer, which is heated from below, leading to turbulent upward energy transport and growth of the boundary layer. We demonstrate that a quasilinear truncation of the equations of motion, in which interactions of disturbances among each other are neglected but interactions with mean fields are taken into account, can capture the growth of the convective boundary layer even if it does not capture important turbulent transport terms. Second, we study the evolution of two-dimensional large-scale waves representing waves in Earth&#39;s upper atmosphere. We demonstrate that a cumulant expansion truncated at second order (CE2) can capture the evolution of such waves and their nonlinear interaction with the mean flow in some circumstances, for example, when the wave amplitude is small enough or the planetary rotation rate is large enough. However, CE2 fails to capture the flow evolution when nonlinear eddy--eddy interactions in surf zones become important. Higher-order closures can capture these missing interactions. The results point to new ways in which the dynamics of turbulent boundary layers may be represented in climate models, and they illustrate different classes of nonlinear processes that can control wave dissipation and momentum fluxes in the troposphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.07643v3-abstract-full').style.display = 'none'; document.getElementById('1505.07643v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 10 figures, accepted for publication in the New Journal of Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 18, 025019 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.4412">arXiv:1408.4412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.4412">pdf</a>, <a href="https://arxiv.org/format/1408.4412">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.020410">10.1103/PhysRevB.91.020410 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Infinite Geometric Frustration in a Cubic Dipole Cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%B6nke%2C+J">Johannes Sch枚nke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T+M">Tobias M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rehberg%2C+I">Ingo Rehberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.4412v1-abstract-short" style="display: inline;"> The geometric arrangement of interacting (magnetic) dipoles is a question of fundamental importance in physics, chemistry and engineering. Motivated by recent progress concerning the self-assembly of magnetic structures, the equilibrium orientation of 8 interacting dipoles in a cubic cluster is investigated in detail. Instead of discrete equilibria we find a new type of ground state consisting of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.4412v1-abstract-full').style.display = 'inline'; document.getElementById('1408.4412v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.4412v1-abstract-full" style="display: none;"> The geometric arrangement of interacting (magnetic) dipoles is a question of fundamental importance in physics, chemistry and engineering. Motivated by recent progress concerning the self-assembly of magnetic structures, the equilibrium orientation of 8 interacting dipoles in a cubic cluster is investigated in detail. Instead of discrete equilibria we find a new type of ground state consisting of infinitely many orientations. This continuum of energetically degenerate states represents a yet unknown form of magnetic frustration. The corresponding dipole rotations in the flat potential valley of this Goldstone mode enable the construction of frictionless magnetic couplings. Using novel computer-assisted algebraic geometry methods, we moreover completely enumerate all equilibrium configurations. The seemingly simple cubic system allows for exactly 9536 unstable discrete equilibria falling into 183 distinct energy families. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.4412v1-abstract-full').style.display = 'none'; document.getElementById('1408.4412v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.0748">arXiv:1408.0748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1408.0748">pdf</a>, <a href="https://arxiv.org/format/1408.0748">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rspa.2014.0593">10.1098/rspa.2014.0593 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elastocapillary coalescence of plates and pillars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wei%2C+Z">Zhiyan Wei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jungchul Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Ho-Young Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aizenberg%2C+J">Joanna Aizenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mahadevan%2C+L">L. Mahadevan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.0748v1-abstract-short" style="display: inline;"> When a fluid-immersed array of lamellae or filaments that is attached to a substrate is dried, evaporation leads to the formation of menisci on the tips of the plates or pillars that bring them together. Similarly, when hair dries it clumps together due to capillary forces induced by the liquid menisci between the flexible hairs. Building on prior experimental observations, we use a combination of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.0748v1-abstract-full').style.display = 'inline'; document.getElementById('1408.0748v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.0748v1-abstract-full" style="display: none;"> When a fluid-immersed array of lamellae or filaments that is attached to a substrate is dried, evaporation leads to the formation of menisci on the tips of the plates or pillars that bring them together. Similarly, when hair dries it clumps together due to capillary forces induced by the liquid menisci between the flexible hairs. Building on prior experimental observations, we use a combination of theory and computation to understand the nature of this instability and its evolution in both the two-dimensional and three-dimensional setting of the problem. For the case of lamellae, we explicitly derive the interaction torques based on the relevant physical parameters. A Bloch-wave analysis for our periodic mechanical system captures the critical volume of the liquid and the 2-plate-collapse eigenmode at the onset of instability. We study the evolution of clusters and their arrest using numerical simulations to explain the hierarchical cluster formation and characterize the sensitive dependence of the final structures on the initial perturbations. We then generalize our analysis to treat the problem of pillar collapse in 3D, where the fluid domain is completely connected and the interface is a surface with the uniform mean curvature. Our theory and simulations capture the salient features of both previous experimental observations and our own in terms of the key parameters that can be used to control the kinetics of the process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.0748v1-abstract-full').style.display = 'none'; document.getElementById('1408.0748v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.1999">arXiv:1407.1999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.1999">pdf</a>, <a href="https://arxiv.org/ps/1407.1999">ps</a>, <a href="https://arxiv.org/format/1407.1999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.064501">10.1103/PhysRevB.90.064501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Suppression of the Berezinskii-Kosterlitz-Thouless and Quantum Phase Transitions in 2D Superconductors by Finite Size Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weyeneth%2C+S">S. Weyeneth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.1999v1-abstract-short" style="display: inline;"> We perform a detailed finite-size scaling analysis of the sheet resistance in Bi-films and the LaAlO$_{3}$/SrTiO$_{3}$ interface in the presence and absence of a magnetic field applied perpendicular to the system. Our main aim is to explore the occurrence of Berezinskii-Kosterlitz-Thouless (BKT) and quantum phase transition behavior in the presence of limited size, stemming from the finite extent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.1999v1-abstract-full').style.display = 'inline'; document.getElementById('1407.1999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.1999v1-abstract-full" style="display: none;"> We perform a detailed finite-size scaling analysis of the sheet resistance in Bi-films and the LaAlO$_{3}$/SrTiO$_{3}$ interface in the presence and absence of a magnetic field applied perpendicular to the system. Our main aim is to explore the occurrence of Berezinskii-Kosterlitz-Thouless (BKT) and quantum phase transition behavior in the presence of limited size, stemming from the finite extent of the homogeneous domains or the magnetic field. Moreover we explore the implications thereof. Above an extrapolated BKT transition temperature, modulated by the thickness $d$, gate voltage $%V_{g}$ or magnetic field $H$, we identify a temperature range where BKT behavior occurs. Its range is controlled by the relevant limiting lengths,which are set by the extent of the homogeneous domains or the magnetic field. The extrapolated BKT transition lines $T_{c}\left(d,V_{g},H\right) $ uncover compatibility with the occurrence of a quantum phase transition where $T_{c}\left( d_{c},V_{gc},H_{c}\right) =0$. However, an essential implication of the respective limiting length is that the extrapolated phase transition lines $T_{c}\left( d,V_{g},H\right) $ are unattainable. Consequently, given a finite limiting length, BKT and quantum phase transitions do not occur. Nevertheless, BKT and quantum critical behavior is observable, controlled by the extent of the relevant limiting length. Additional results and implications include: the magnetic field induced finite size effect generates a flattening out of the sheet resistance in the $T\rightarrow 0$ limit, while in zero field it exhibits a characteristic temperature dependence and vanishes at $T=0$ only. The former prediction is confirmed in both, the Bi-films and the LaAlO$_{3}$/SrTiO$_{3}$ interface, as well as in previous studies. The latter is consistent with the LaAlO$_{3}$/SrTiO$_{3}$ interface data, while the Bi-films exhibit a flattening out. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.1999v1-abstract-full').style.display = 'none'; document.getElementById('1407.1999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.6501">arXiv:1405.6501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.6501">pdf</a>, <a href="https://arxiv.org/ps/1405.6501">ps</a>, <a href="https://arxiv.org/format/1405.6501">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2885147">10.1063/1.2885147 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A method to retrieve optical and geometrical characteristics of three layer waveguides from m-lines measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Thomas Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leduc%2C+D">Dominique Leduc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lupi%2C+C">Cyril Lupi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cardin%2C+J">Julien Cardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gundel%2C+H">Hartmut Gundel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boisrobert%2C+C">Christian Boisrobert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.6501v1-abstract-short" style="display: inline;"> We consider three layer optical waveguides and present a method to measure simultaneously the refractive index and the thickness of each layer with m-lines spectroscopy. We establish the three layer waveguide modal dispersion equations and describe a numerical method to solve these equations. The accuracy of the method is evaluated by numerical simulations with noisy data and experimentally demons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.6501v1-abstract-full').style.display = 'inline'; document.getElementById('1405.6501v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.6501v1-abstract-full" style="display: none;"> We consider three layer optical waveguides and present a method to measure simultaneously the refractive index and the thickness of each layer with m-lines spectroscopy. We establish the three layer waveguide modal dispersion equations and describe a numerical method to solve these equations. The accuracy of the method is evaluated by numerical simulations with noisy data and experimentally demonstrated using a PZT thin film placed between two ZnO layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.6501v1-abstract-full').style.display = 'none'; document.getElementById('1405.6501v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics 103, 6 (2008) 063110-063110-7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.6150">arXiv:1405.6150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.6150">pdf</a>, <a href="https://arxiv.org/ps/1405.6150">ps</a>, <a href="https://arxiv.org/format/1405.6150">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jeurceramsoc.2005.03.163">10.1016/j.jeurceramsoc.2005.03.163 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical characterization of PZT thin films for waveguide applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cardin%2C+J">Julien Cardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leduc%2C+D">Dominique Leduc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Thomas Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lupi%2C+C">Cyril Lupi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Averty%2C+D">Dominique Averty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gundel%2C+H">Hartmut Gundel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.6150v1-abstract-short" style="display: inline;"> In order to develop an electro-optic waveguide, Pb(Zr, Ti)O3 ceramic ferroelectric thin films were elaborated by a modified sol-gel process on glass substrate. In the aim to study the optical properties of the PZT films, an accurate refractive index and thickness measurement apparatus was set up, which is called M-lines device. An evaluation of experimental uncertainty and calculation of the preci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.6150v1-abstract-full').style.display = 'inline'; document.getElementById('1405.6150v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.6150v1-abstract-full" style="display: none;"> In order to develop an electro-optic waveguide, Pb(Zr, Ti)O3 ceramic ferroelectric thin films were elaborated by a modified sol-gel process on glass substrate. In the aim to study the optical properties of the PZT films, an accurate refractive index and thickness measurement apparatus was set up, which is called M-lines device. An evaluation of experimental uncertainty and calculation of the precision of the refractive index and thickness were developed on PZT layers. Two different processes of PZT elaboration were made and studied with this apparatus. The reproducibility of one fabrication process was tested and results are presented in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.6150v1-abstract-full').style.display = 'none'; document.getElementById('1405.6150v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of European Ceramic Society 25, 12 (2005) 2913-2916 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.1116">arXiv:1305.1116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.1116">pdf</a>, <a href="https://arxiv.org/ps/1305.1116">ps</a>, <a href="https://arxiv.org/format/1305.1116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Gate voltage tuned quantum superconductor to insulator transition in an ultrathin bismuth film revisited </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weyeneth%2C+S">S. Weyeneth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.1116v1-abstract-short" style="display: inline;"> We explore the implications of Berezinskii-Kosterlitz-Thouless (BKT) critical behavior and variable-range hopping on the two dimensional (2D) quantum superconductor-insulator (QSI) transition driven by tuning the gate voltage. To illustrate the potential and the implications of this scenario we analyze sheet resistance data of Parendo et al. taken on a gate voltage tuned ultrathin amorphous bismut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.1116v1-abstract-full').style.display = 'inline'; document.getElementById('1305.1116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.1116v1-abstract-full" style="display: none;"> We explore the implications of Berezinskii-Kosterlitz-Thouless (BKT) critical behavior and variable-range hopping on the two dimensional (2D) quantum superconductor-insulator (QSI) transition driven by tuning the gate voltage. To illustrate the potential and the implications of this scenario we analyze sheet resistance data of Parendo et al. taken on a gate voltage tuned ultrathin amorphous bismuth film. The finite size scaling analysis of the BKT-transition uncovers a limiting length preventing the correlation length to diverge and to enter the critical regime deeply. Nevertheless the attained BKT critical regime reveals consistency with two parameter quantum scaling and an explicit quantum scaling function determined by the BKT correlation length. The two parameter scaling yields for the zero temperature critical exponents of the QSI-transition the estimates zn = 3/2, z = 3, and n = 1/2, revealing that hyperscaling is violated and in contrast to finite temperature disorder is relevant at zero temperature. Furthermore, zn = 3/2 is also consistent with the two variable quantum scaling form associated with a variable-range hopping controlled insulating ground state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.1116v1-abstract-full').style.display = 'none'; document.getElementById('1305.1116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.1330">arXiv:1212.1330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.1330">pdf</a>, <a href="https://arxiv.org/ps/1212.1330">ps</a>, <a href="https://arxiv.org/format/1212.1330">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/25/30/305701">10.1088/0953-8984/25/30/305701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum superconductor-insulator transition: Implications of BKT-critical behavior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weyeneth%2C+S">S. Weyeneth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.1330v1-abstract-short" style="display: inline;"> We explore the implications of Berezinskii-Kosterlitz-Thouless (BKT) critical behavior on the two dimensional (2D) quantum superconductor-insulator (QSI) transition driven by the tuning parameter x. Concentrating on the sheet resistance R(x) BKT behavior implies: an explicit quantum scaling function for R(x) along the superconducting branch ending at the nonuniversal critical value R_c=R(x_c); a B&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.1330v1-abstract-full').style.display = 'inline'; document.getElementById('1212.1330v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.1330v1-abstract-full" style="display: none;"> We explore the implications of Berezinskii-Kosterlitz-Thouless (BKT) critical behavior on the two dimensional (2D) quantum superconductor-insulator (QSI) transition driven by the tuning parameter x. Concentrating on the sheet resistance R(x) BKT behavior implies: an explicit quantum scaling function for R(x) along the superconducting branch ending at the nonuniversal critical value R_c=R(x_c); a BKT-transition line T_c(x) that is proportional to (x-x_c)^(z*nu) where z is the dynamic and nu the exponent of the zero temperature correlation length; independent estimates of z*nu, z and nu from the x dependence of the nonuniversal parameters entering the BKT expression for the sheet resistance. To illustrate the potential and the implications of this scenario we analyze data of Bollinger et al. taken on gate voltage tuned epitaxial films of La_(2-x)Sr_xCuO_4 that are one unit cell thick. The resulting estimates z=2.35 and nu=0.63 point to a 2D-QSI critical point where hyperscaling, the proportionality between d/位^2(0) and T_c, and the correspondence between quantum phase transitions in D and classical ones in (D+z) dimensions are violated and disorder is relevant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.1330v1-abstract-full').style.display = 'none'; document.getElementById('1212.1330v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.3791">arXiv:1101.3791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.3791">pdf</a>, <a href="https://arxiv.org/format/1101.3791">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.106.094503">10.1103/PhysRevLett.106.094503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Algorithm for a microfluidic assembly line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T+M">Tobias M. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandre%2C+S">Shreyas Mandre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brenner%2C+M+P">Michael P. Brenner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.3791v1-abstract-short" style="display: inline;"> Microfluidic technology has revolutionized the control of flows at small scales giving rise to new possibilities for assembling complex structures on the microscale. We analyze different possible algorithms for assembling arbitrary structures, and demonstrate that a sequential assembly algorithm can manufacture arbitrary 3D structures from identical constituents. We illustrate the algorithm by sho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.3791v1-abstract-full').style.display = 'inline'; document.getElementById('1101.3791v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.3791v1-abstract-full" style="display: none;"> Microfluidic technology has revolutionized the control of flows at small scales giving rise to new possibilities for assembling complex structures on the microscale. We analyze different possible algorithms for assembling arbitrary structures, and demonstrate that a sequential assembly algorithm can manufacture arbitrary 3D structures from identical constituents. We illustrate the algorithm by showing that a modified Hele-Shaw cell with 7 controlled flowrates can be designed to construct the entire English alphabet from particles that irreversibly stick to each other. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.3791v1-abstract-full').style.display = 'none'; document.getElementById('1101.3791v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.4875">arXiv:1011.4875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.4875">pdf</a>, <a href="https://arxiv.org/ps/1011.4875">ps</a>, <a href="https://arxiv.org/format/1011.4875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.144527">10.1103/PhysRevB.83.144527 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diamagnetism, Nernst signal, and finite size effects in superconductors above the transition temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weyeneth%2C+S">S. Weyeneth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.4875v1-abstract-short" style="display: inline;"> Various superconductors, including cuprate superconductors, exhibit peculiar features above the transition temperature T_c. In particular the observation of a large diamagnetism and Nernst signal in a wide temperature window above T_c attracted considerable attention. Noting that this temperature window exceeds the fluctuation dominated regime drastically and that in these materials the spatial ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.4875v1-abstract-full').style.display = 'inline'; document.getElementById('1011.4875v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.4875v1-abstract-full" style="display: none;"> Various superconductors, including cuprate superconductors, exhibit peculiar features above the transition temperature T_c. In particular the observation of a large diamagnetism and Nernst signal in a wide temperature window above T_c attracted considerable attention. Noting that this temperature window exceeds the fluctuation dominated regime drastically and that in these materials the spatial extent of homogeneity is limited, we explore the relevance of the zero dimensional (0D)-model, neglecting thermal fluctuations. It is shown that both, the full 0D-model as well as its Gaussian approximation, mimic the essential features of the isothermal magnetization curves in Pb nanoparticles and various cuprates remarkably well. This analysis also provides estimates for the spatial extent of the homogeneous domains giving rise to a smeared transition in zero magnetic field. The resulting estimates for the amplitude of the in-plane correlation length exhibit a doping dependence reflecting the flow to the quantum phase transition in the underdoped limit. Furthermore it is shown that the isothermal Nernst signal of a superconducting Nb_(0.15)Si_(0.85) film is fully consistent with this scenario. Accordingly, the observed diamagnetism above T_c in Pb nanoparticles, in the cuprates La_(1.91)Sr_(0.09)CuO_4 and BiSr_2Ca_2CuO_(8-d), as well as the Nernst signal in Nb_(0.15)Si_(0.85) films, are all in excellent agreement with the scaling properties emerging from the 0D-model, giving a universal perspective on the interplay between diamagnetism, Nernst signal, correlation length, and the limited spatial extent of homogeneity. Our analysis also provides evidence that singlet Cooper pairs subjected to orbital pair breaking in a 0D system are the main source of the observed diamagnetism and Nernst signal in an extended temperature window above T_c. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.4875v1-abstract-full').style.display = 'none'; document.getElementById('1011.4875v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 83, 144527 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.1922">arXiv:1005.1922</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1005.1922">pdf</a>, <a href="https://arxiv.org/format/1005.1922">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.105.080403">10.1103/PhysRevLett.105.080403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced and reduced atom number fluctuations in a BEC splitter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Maussang%2C+K">Kenneth Maussang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marti%2C+G+E">G. Edward Marti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">Tobias Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Treutlein%2C+P">Philipp Treutlein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yun Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinatra%2C+A">Alice Sinatra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Long%2C+R">Romain Long</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Est%C3%A8ve%2C+J">J茅r么me Est猫ve</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reichel%2C+J">Jakob Reichel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.1922v1-abstract-short" style="display: inline;"> We measure atom number statistics after splitting a gas of ultracold 87Rb atoms in a purely magnetic double-well potential created on an atom chip. Well below the critical temperature for Bose-Einstein condensation T_c, we observe reduced fluctuations down to -4.9dB below the atom shot noise level. Fluctuations rise to more than +3.8dB close to T_c, before reaching the shot noise level for highe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.1922v1-abstract-full').style.display = 'inline'; document.getElementById('1005.1922v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.1922v1-abstract-full" style="display: none;"> We measure atom number statistics after splitting a gas of ultracold 87Rb atoms in a purely magnetic double-well potential created on an atom chip. Well below the critical temperature for Bose-Einstein condensation T_c, we observe reduced fluctuations down to -4.9dB below the atom shot noise level. Fluctuations rise to more than +3.8dB close to T_c, before reaching the shot noise level for higher temperatures. We use two-mode and classical field simulations to model these results. This allows us to confirm that the super-shot noise fluctuations directly originate from quantum statistics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.1922v1-abstract-full').style.display = 'none'; document.getElementById('1005.1922v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0906.3990">arXiv:0906.3990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0906.3990">pdf</a>, <a href="https://arxiv.org/ps/0906.3990">ps</a>, <a href="https://arxiv.org/format/0906.3990">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.80.214507">10.1103/PhysRevB.80.214507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A tool to estimate the critical dynamics and thickness of superconducting films and interfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0906.3990v1-abstract-short" style="display: inline;"> We demonstrate that the magnetic field dependence of the conductivity measured at the transition temperature allows the dynamical critical exponent, the thickness of thin superconducting films and interfaces, and the limiting lateral length to be determined. The resulting tool is applied to the conductivity data of an amorphous Nb0.15 Si0.85 film and a LaAlO3/SrTiO3 interface. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0906.3990v1-abstract-full" style="display: none;"> We demonstrate that the magnetic field dependence of the conductivity measured at the transition temperature allows the dynamical critical exponent, the thickness of thin superconducting films and interfaces, and the limiting lateral length to be determined. The resulting tool is applied to the conductivity data of an amorphous Nb0.15 Si0.85 film and a LaAlO3/SrTiO3 interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.3990v1-abstract-full').style.display = 'none'; document.getElementById('0906.3990v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0904.2488">arXiv:0904.2488</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0904.2488">pdf</a>, <a href="https://arxiv.org/ps/0904.2488">ps</a>, <a href="https://arxiv.org/format/0904.2488">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electrostatically tuned quantum superconductor-metal-insulator transition at the LaAlO3/SrTiO3 interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caviglia%2C+A+D">A. D. Caviglia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gariglio%2C+S">S. Gariglio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">N. Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=2"> 2</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Triscone%2C+J+-">J. -M. Triscone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0904.2488v1-abstract-short" style="display: inline;"> Recently superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with the electric field effect to an unprecedented range of transition temperatures. Here we perform a detailed finite size scaling analysis to explore the compatibility of the phase transition line with Berezinskii-Kosterlitz-Thouless (BKT) behavior and a 2D-quantum phase(QP)-transition. In an in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0904.2488v1-abstract-full').style.display = 'inline'; document.getElementById('0904.2488v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0904.2488v1-abstract-full" style="display: none;"> Recently superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with the electric field effect to an unprecedented range of transition temperatures. Here we perform a detailed finite size scaling analysis to explore the compatibility of the phase transition line with Berezinskii-Kosterlitz-Thouless (BKT) behavior and a 2D-quantum phase(QP)-transition. In an intermediate regime, limited by a gate voltage dependent limiting length, we uncover remarkable consistency with a BKT-critical line ending at a metallic quantum critical point, separating a weakly localized insulator from the superconducting phase. Our estimates for the critical exponents of the 2D-QP-transition, z=1 and nu=0.66, suggest that it belongs to the 3D-xy universality class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0904.2488v1-abstract-full').style.display = 'none'; document.getElementById('0904.2488v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.1536">arXiv:0903.1536</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0903.1536">pdf</a>, <a href="https://arxiv.org/ps/0903.1536">ps</a>, <a href="https://arxiv.org/format/0903.1536">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3131663">10.1063/1.3131663 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An EOM-assisted wave-vector-resolving Brillouin light scattering setup </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Neumann%2C+T">T. Neumann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serga%2C+A+A">A. A. Serga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hillebrands%2C+B">B. Hillebrands</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.1536v1-abstract-short" style="display: inline;"> Brillouin light scattering spectroscopy is a powerful technique which incorporates several extensions such as space-, time-, phase- and wave-vector resolution. Here, we report on the improvement of the wave-vector resolution by including an electro-optical modulator. This provides a reference to calibrate the position of the diaphragm hole which is used for wave-vector selection. The accuracy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.1536v1-abstract-full').style.display = 'inline'; document.getElementById('0903.1536v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.1536v1-abstract-full" style="display: none;"> Brillouin light scattering spectroscopy is a powerful technique which incorporates several extensions such as space-, time-, phase- and wave-vector resolution. Here, we report on the improvement of the wave-vector resolution by including an electro-optical modulator. This provides a reference to calibrate the position of the diaphragm hole which is used for wave-vector selection. The accuracy of this calibration is only limited by the accuracy of the wave-vector measurement itself. To demonstrate the validity of the approach the wave vectors of dipole-dominated spin waves excited by a microstrip antenna were measured. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.1536v1-abstract-full').style.display = 'none'; document.getElementById('0903.1536v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 80, 053905 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0902.1086">arXiv:0902.1086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0902.1086">pdf</a>, <a href="https://arxiv.org/format/0902.1086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.79.214504">10.1103/PhysRevB.79.214504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for Kosterlitz-Thouless and 3D-xy critical behavior in Bi2212 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Weyeneth%2C+S">S. Weyeneth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giannini%2C+E">E. Giannini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0902.1086v2-abstract-short" style="display: inline;"> We present reversible magnetization data of a high quality Bi2212 single crystal and explore the occurrence of 3D-xy critical behavior close to the bulk transition temperature Tc and of Kosterlitz-Thouless (KT) behavior. Below and above the presumed Kosterlitz-Thouless transition temperature T_KT we observe the characteristic 2D-xy behavior: a downward shift of the crossing point phenomenon towa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.1086v2-abstract-full').style.display = 'inline'; document.getElementById('0902.1086v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0902.1086v2-abstract-full" style="display: none;"> We present reversible magnetization data of a high quality Bi2212 single crystal and explore the occurrence of 3D-xy critical behavior close to the bulk transition temperature Tc and of Kosterlitz-Thouless (KT) behavior. Below and above the presumed Kosterlitz-Thouless transition temperature T_KT we observe the characteristic 2D-xy behavior: a downward shift of the crossing point phenomenon towards T_KT as the field is decreased and sufficiently below T_KT the characteristic 2D-xy relationship between the magnetization an the in-plane magnetic penetration depth. In contrast, the measured temperature dependence of the superfluid density does not exhibit the characteristic KT-behavior around the presumed T_KT. The absence of this feature is traced back to the 2D- to 3D-xy crossover setting in around and above T_KT. Invoking the Maxwell relation the anomalous field dependence of the specific heat peak is also traced back to the intermediate 2D-xy behavior. However, close to Tc we observe consistency with 3D-xy critical behavior, in agreement with measurements of the in-plane magnetic penetration depth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.1086v2-abstract-full').style.display = 'none'; document.getElementById('0902.1086v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 79, 214504 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0901.3031">arXiv:0901.3031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0901.3031">pdf</a>, <a href="https://arxiv.org/ps/0901.3031">ps</a>, <a href="https://arxiv.org/format/0901.3031">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3115210">10.1063/1.3115210 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase sensitive Brillouin scattering measurements with a novel magneto-optic modulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fohr%2C+F">F. Fohr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serga%2C+A+A">A. A. Serga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hamrle%2C+J">J. Hamrle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hillebrands%2C+B">B. Hillebrands</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0901.3031v1-abstract-short" style="display: inline;"> A recently reported phase sensitive Brillouin light scattering technique is improved by use of a magnetic modulator. This modulator is based on Brillouin light scattering in a thin ferrite film. Using this magnetic modulator in time- and space Brillouin light scattering measurements we have increased phase contrast and excluded influence of optical inhomogeneities in the sample. We also demonstr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.3031v1-abstract-full').style.display = 'inline'; document.getElementById('0901.3031v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0901.3031v1-abstract-full" style="display: none;"> A recently reported phase sensitive Brillouin light scattering technique is improved by use of a magnetic modulator. This modulator is based on Brillouin light scattering in a thin ferrite film. Using this magnetic modulator in time- and space Brillouin light scattering measurements we have increased phase contrast and excluded influence of optical inhomogeneities in the sample. We also demonstrate that the quality of the resulting interference patterns can be improved by data postprocessing using the simultaneously recorded information about the reference light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0901.3031v1-abstract-full').style.display = 'none'; document.getElementById('0901.3031v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instr. 80, 043903 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0807.0774">arXiv:0807.0774</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0807.0774">pdf</a>, <a href="https://arxiv.org/ps/0807.0774">ps</a>, <a href="https://arxiv.org/format/0807.0774">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Superconductor - Normal and Quantum Superconductor-Insulator Transition at the LaAlO3/SrTiO3Interface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caviglia%2C+A+D">A. D. Caviglia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gariglio%2C+S">S. Gariglio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">N. Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaccard%2C+D">D. Jaccard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Triscone%2C+J+-">J. -M. Triscone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0807.0774v1-abstract-short" style="display: inline;"> Superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with the electric field effect. The data provide evidence for a two dimensional quantum superconductor to insulator (2D-QSI) transition. Here we explore the compatibility of this phase transition line with Berezinskii-Kosterlitz-Thouless (BKT) behavior and a 2D-QSI transition. In an intermediate regime, li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.0774v1-abstract-full').style.display = 'inline'; document.getElementById('0807.0774v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0807.0774v1-abstract-full" style="display: none;"> Superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with the electric field effect. The data provide evidence for a two dimensional quantum superconductor to insulator (2D-QSI) transition. Here we explore the compatibility of this phase transition line with Berezinskii-Kosterlitz-Thouless (BKT) behavior and a 2D-QSI transition. In an intermediate regime, limited by a finite size effect, we uncover remarkable consistency with BKT- criticality, weak localization in the insulating state and non-Drude behavior in the normal state. Our estimates for the critical exponents of the 2D-QSI-transition, z =1 and nu=3, suggest that it belongs to the 3D-xy universality class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.0774v1-abstract-full').style.display = 'none'; document.getElementById('0807.0774v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0807.0585">arXiv:0807.0585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0807.0585">pdf</a>, <a href="https://arxiv.org/format/0807.0585">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature07576">10.1038/nature07576 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric Field Control of the LaAlO$_{3}$/SrTiO$_{3}$ Interface Ground State </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Caviglia%2C+A+D">A. D. Caviglia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gariglio%2C+S">S. Gariglio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">N. Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaccard%2C+D">D. Jaccard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gabay%2C+M">M. Gabay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thiel%2C+S">S. Thiel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hammerl%2C+G">G. Hammerl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mannhart%2C+J">J. Mannhart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Triscone%2C+J+-">J. -M. Triscone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0807.0585v1-abstract-short" style="display: inline;"> Interfaces between complex oxides are emerging as one of the most interesting playgrounds in condensed matter physics. In this special setting, in which translational symmetry is artificially broken, a variety of novel electronic phases can be promoted. Theoretical studies predict complex phase diagrams and suggest the key role of the carrier density in determining the systems ground states. A p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.0585v1-abstract-full').style.display = 'inline'; document.getElementById('0807.0585v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0807.0585v1-abstract-full" style="display: none;"> Interfaces between complex oxides are emerging as one of the most interesting playgrounds in condensed matter physics. In this special setting, in which translational symmetry is artificially broken, a variety of novel electronic phases can be promoted. Theoretical studies predict complex phase diagrams and suggest the key role of the carrier density in determining the systems ground states. A particularly fascinating system is the interface between the insulators LaAlO$_{3}$ and SrTiO$_{3}$, which displays conductivity with high mobility. Recently two possible ground states have been experimentally identified: a magnetic state and a two dimensional (2D) superconducting condensate. In this Letter we use the electric field effect to explore the phase diagram of the system. The electrostatic tuning of the carrier density allows an on/off switching of superconductivity and drives a quantum phase transition (QPT) between a 2D superconducting state and an insulating state (2D-QSI). Analyses of the magnetotransport properties in the insulating state are consistent with weak localisation and do not provide evidence for magnetism. The electric field control of superconductivity demonstrated here opens the way to the development of novel mesoscopic superconducting circuits <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0807.0585v1-abstract-full').style.display = 'none'; document.getElementById('0807.0585v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0804.1090">arXiv:0804.1090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0804.1090">pdf</a>, <a href="https://arxiv.org/ps/0804.1090">ps</a>, <a href="https://arxiv.org/format/0804.1090">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.77.214411">10.1103/PhysRevB.77.214411 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase reciprocity of spin-wave excitation by a microstrip antenna </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serga%2C+A+A">A. A. Serga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neumann%2C+T">T. Neumann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hillebrands%2C+B">B. Hillebrands</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kostylev%2C+M+P">M. P. Kostylev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0804.1090v1-abstract-short" style="display: inline;"> Using space-, time- and phase-resolved Brillouin light scattering spectroscopy we investigate the difference in phase of the two counterpropagating spin waves excited by the same microwave microstrip transducer. These studies are performed both for backward volume magnetostatic waves and magnetostatic surface waves in an in-plane magnetized yttrium iron garnet film. The experiments show that for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0804.1090v1-abstract-full').style.display = 'inline'; document.getElementById('0804.1090v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0804.1090v1-abstract-full" style="display: none;"> Using space-, time- and phase-resolved Brillouin light scattering spectroscopy we investigate the difference in phase of the two counterpropagating spin waves excited by the same microwave microstrip transducer. These studies are performed both for backward volume magnetostatic waves and magnetostatic surface waves in an in-plane magnetized yttrium iron garnet film. The experiments show that for the backward volume magnetostatic spin waves (which are reciprocal and excited symmetrically in amplitude) there is a phase difference of $蟺$ associated with the excitation process and thus the phase symmetry is distorted. On the contrary, for the magnetostatic surface spin waves (which are non-reciprocal and unsymmetrical in amplitude) the phase symmetry is preserved (there is no phase difference between the two waves associated with the excitation). Theoretical analysis confirms this effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0804.1090v1-abstract-full').style.display = 'none'; document.getElementById('0804.1090v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rew. B 77, 214411 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0803.1560">arXiv:0803.1560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0803.1560">pdf</a>, <a href="https://arxiv.org/ps/0803.1560">ps</a>, <a href="https://arxiv.org/format/0803.1560">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/20/42/423201">10.1088/0953-8984/20/42/423201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic field induced 3D to 1D crossover in type II superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0803.1560v2-abstract-short" style="display: inline;"> We review and analyze magnetization and specific heat investigations on type-II superconductors which uncover remarkable evidence for the magnetic field induced fnite size effect and the associated 3D to 1D crossover which enhances thermal fluctuations. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0803.1560v2-abstract-full" style="display: none;"> We review and analyze magnetization and specific heat investigations on type-II superconductors which uncover remarkable evidence for the magnetic field induced fnite size effect and the associated 3D to 1D crossover which enhances thermal fluctuations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0803.1560v2-abstract-full').style.display = 'none'; document.getElementById('0803.1560v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0803.1384">arXiv:0803.1384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0803.1384">pdf</a>, <a href="https://arxiv.org/ps/0803.1384">ps</a>, <a href="https://arxiv.org/format/0803.1384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-8984/20/34/345210">10.1088/0953-8984/20/34/345210 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 3D-xy critical properties of YBa2Cu4O8 and magnetic field induced 3D to 1D crossover </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Weyeneth%2C+S">S. Weyeneth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bukowski%2C+Z">Z. Bukowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karpinski%2C+J">J. Karpinski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+H">H. Keller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0803.1384v2-abstract-short" style="display: inline;"> We present reversible magnetization data of a YBa2Cu4O8 single crystal and analyze the evidence for 3D-xy critical behavior and a magnetic field induced 3D to 1D crossover. Remarkable consistency with these phenomena is observed in agreement with a magnetic field induced finite size effect, whereupon the correlation length transverse to the applied magnetic field cannot grow beyond the limiting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0803.1384v2-abstract-full').style.display = 'inline'; document.getElementById('0803.1384v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0803.1384v2-abstract-full" style="display: none;"> We present reversible magnetization data of a YBa2Cu4O8 single crystal and analyze the evidence for 3D-xy critical behavior and a magnetic field induced 3D to 1D crossover. Remarkable consistency with these phenomena is observed in agreement with a magnetic field induced finite size effect, whereupon the correlation length transverse to the applied magnetic field cannot grow beyond the limiting magnetic length scale L_H. By applying the appropriate scaling form we obtain the zero-field critical temperature, the 3D to 1D crossover, the vortex melting line and the universal ratios of the related scaling variables. Accordingly there is no continuous phase transition in the (H,T)-plane along the H_c2-lines as predicted by the mean-field treatment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0803.1384v2-abstract-full').style.display = 'none'; document.getElementById('0803.1384v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2008; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 20, 345210 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0711.4720">arXiv:0711.4720</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0711.4720">pdf</a>, <a href="https://arxiv.org/ps/0711.4720">ps</a>, <a href="https://arxiv.org/format/0711.4720">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2834714">10.1063/1.2834714 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Realization of XNOR and NAND spin-wave logic gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Serga%2C+A+A">A. A. Serga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leven%2C+B">B. Leven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hillebrands%2C+B">B. Hillebrands</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stamps%2C+R+L">R. L. Stamps</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kostylev%2C+M+P">M. P. Kostylev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0711.4720v1-abstract-short" style="display: inline;"> We demonstrate the functionality of spin-wave logic XNOR and NAND gates based on a Mach-Zehnder type interferometer which has arms implemented as sections of ferrite film spin-wave waveguides. Logical input signals are applied to the gates by varying either the phase or the amplitude of the spin waves in the interferometer arms. This phase or amplitude variation is produced by Oersted fields of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.4720v1-abstract-full').style.display = 'inline'; document.getElementById('0711.4720v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0711.4720v1-abstract-full" style="display: none;"> We demonstrate the functionality of spin-wave logic XNOR and NAND gates based on a Mach-Zehnder type interferometer which has arms implemented as sections of ferrite film spin-wave waveguides. Logical input signals are applied to the gates by varying either the phase or the amplitude of the spin waves in the interferometer arms. This phase or amplitude variation is produced by Oersted fields of dc current pulses through conductors placed on the surface of the magnetic films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.4720v1-abstract-full').style.display = 'none'; document.getElementById('0711.4720v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 92, 022505 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0706.0420">arXiv:0706.0420</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0706.0420">pdf</a>, <a href="https://arxiv.org/ps/0706.0420">ps</a>, <a href="https://arxiv.org/format/0706.0420">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/79/57005">10.1209/0295-5075/79/57005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic field induced 3D to 1D crossover in Sr0:9La0:1CuO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+T">T. Schneider</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0706.0420v1-abstract-short" style="display: inline;"> The effect of the magnetic field on the critical behavior of Sr0:9La0:1CuO2 is explored in terms of reversible magnetization data. As the correlation length transverse to the magnetic field Hi,applied along the i-axis, cannot grow beyond the limiting magnetic length LHi, related to the average distance between vortex lines, one expects a magnetic field induced finite size effect. Invoking the sc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0706.0420v1-abstract-full').style.display = 'inline'; document.getElementById('0706.0420v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0706.0420v1-abstract-full" style="display: none;"> The effect of the magnetic field on the critical behavior of Sr0:9La0:1CuO2 is explored in terms of reversible magnetization data. As the correlation length transverse to the magnetic field Hi,applied along the i-axis, cannot grow beyond the limiting magnetic length LHi, related to the average distance between vortex lines, one expects a magnetic field induced finite size effect. Invoking the scaling theory of critical phenomena we provide clear evidence for this effect. It implies that in type II superconductors there is a 3D to 1D crossover line Hpi(T). Consequently, below Tc and above Hpi(T) uperconductivity is confined to cylinders with diameter LHi(1D). Accordingly, there is no continuous phase transition in the (H,T)-plane along the Hc2-lines as predicted by the mean-field treatment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0706.0420v1-abstract-full').style.display = 'none'; document.getElementById('0706.0420v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Schneider%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Schneider%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10