CINXE.COM
Search results for: mean-field homogenization
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mean-field homogenization</title> <meta name="description" content="Search results for: mean-field homogenization"> <meta name="keywords" content="mean-field homogenization"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mean-field homogenization" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mean-field homogenization"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 101</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mean-field homogenization</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Homogenization of a Non-Linear Problem with a Thermal Barrier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Samadi">Hassan Samadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20El%20Jarroudi"> Mustapha El Jarroudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we consider the homogenization of a non-linear problem in periodic medium with two periodic connected media exchanging a heat flux throughout their common interface. The interfacial exchange coefficient λ is assumed to tend to zero or to infinity following a rate λ=λ(ε) when the size ε of the basic cell tends to zero. Three homogenized problems are determined according to some critical value depending of λ and ε. Our method is based on Γ-Convergence techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variational%20methods" title="variational methods">variational methods</a>, <a href="https://publications.waset.org/abstracts/search?q=epiconvergence" title=" epiconvergence"> epiconvergence</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization" title=" homogenization"> homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence%20technique" title=" convergence technique"> convergence technique</a> </p> <a href="https://publications.waset.org/abstracts/29054/homogenization-of-a-non-linear-problem-with-a-thermal-barrier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> A Novel Geometrical Approach toward the Mechanical Properties of Particle Reinforced Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Khezrzadeh">Hamed Khezrzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many investigations on the micromechanical structure of materials indicate that there exist fractal patterns at the micro scale in some of the main construction and industrial materials. A recently presented micro-fractal theory brings together the well-known periodic homogenization and the fractal geometry to construct an appropriate model for determination of the mechanical properties of particle reinforced composite materials. The proposed multi-step homogenization scheme considers the mechanical properties of different constituent phases in the composite together with the interaction between these phases throughout a step-by-step homogenization technique. In the proposed model the interaction of different phases is also investigated. By using this method the effect of fibers grading on the mechanical properties also could be studied. The theory outcomes are compared to the experimental data for different types of particle-reinforced composites which very good agreement with the experimental data is observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20geometry" title="fractal geometry">fractal geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization" title=" homogenization"> homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=micromehcanics" title=" micromehcanics"> micromehcanics</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20composites" title=" particulate composites"> particulate composites</a> </p> <a href="https://publications.waset.org/abstracts/39176/a-novel-geometrical-approach-toward-the-mechanical-properties-of-particle-reinforced-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Coupled Space and Time Homogenization of Viscoelastic-Viscoplastic Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Haouala">Sarra Haouala</a>, <a href="https://publications.waset.org/abstracts/search?q=Issam%20Doghri"> Issam Doghri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a multiscale computational strategy is proposed for the analysis of structures, which are described at a refined level both in space and in time. The proposal is applied to two-phase viscoelastic-viscoplastic (VE-VP) reinforced thermoplastics subjected to large numbers of cycles. The main aim is to predict the effective long time response while reducing the computational cost considerably. The proposed computational framework is a combination of the mean-field space homogenization based on the generalized incrementally affine formulation for VE-VP composites, and the asymptotic time homogenization approach for coupled isotropic VE-VP homogeneous solids under large numbers of cycles. The time homogenization method is based on the definition of micro and macro-chronological time scales, and on asymptotic expansions of the unknown variables. First, the original anisotropic VE-VP initial-boundary value problem of the composite material is decomposed into coupled micro-chronological (fast time scale) and macro-chronological (slow time-scale) problems. The former is purely VE, and solved once for each macro time step, whereas the latter problem is nonlinear and solved iteratively using fully implicit time integration. Second, mean-field space homogenization is used for both micro and macro-chronological problems to determine the micro and macro-chronological effective behavior of the composite material. The response of the matrix material is VE-VP with J2 flow theory assuming small strains. The formulation exploits the return-mapping algorithm for the J2 model, with its two steps: viscoelastic predictor and plastic corrections. The proposal is implemented for an extended Mori-Tanaka scheme, and verified against finite element simulations of representative volume elements, for a number of polymer composite materials subjected to large numbers of cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20expansions" title="asymptotic expansions">asymptotic expansions</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loadings" title=" cyclic loadings"> cyclic loadings</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion-reinforced%20thermoplastics" title=" inclusion-reinforced thermoplastics"> inclusion-reinforced thermoplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=mean-field%20homogenization" title=" mean-field homogenization"> mean-field homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20homogenization" title=" time homogenization"> time homogenization</a> </p> <a href="https://publications.waset.org/abstracts/30198/coupled-space-and-time-homogenization-of-viscoelastic-viscoplastic-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Palizvan">M. Palizvan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Abadi"> M. T. Abadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Sadr"> M. H. Sadr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homogenization" title="homogenization">homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title=" cohesive zone model"> cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-matrix%20debonding" title=" fiber-matrix debonding"> fiber-matrix debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=RVE" title=" RVE"> RVE</a> </p> <a href="https://publications.waset.org/abstracts/99817/micromechanical-modeling-of-fiber-matrix-debonding-in-unidirectional-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Numerical Homogenization of Nacre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Arunachalam">M. Arunachalam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pandey"> M. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nacre, a biological material that forms the inner-layer of sea shells can achieve high toughness and strength by way of staggered arrangement of strong tablets with soft and weak organic interface. Under applied loads the tablets slide over the adjacent tablets, thus generating inelastic deformation and toughness on macroscopic scale. A two dimensional finite element based homogenization methodology is adopted for obtaining the effective material properties of Nacre using a representative volume element (RVE) at finite deformations. In this work, the material behaviour for tablet and interface are assumed to be Isotropic elastic and Isotropic elastic-perfectly plastic with strain softening respectively. Numerical experiments such as uniaxial tension test along X, Y directions and simple shear test are performed on the RVE with uniform displacement and periodic constraints applied at the RVE boundaries to obtain the anisotropic homogenized response and maximum local stresses within each constituents of Nacre. Homogenized material model is then tested for macroscopic structure under three point bending condition and the results obtained are comparable with the results obtained for detailed microstructure based structure, thus homogenization provides a bridge between macroscopic scale and microscopic scale and homogenized material properties obtained from microstructural (RVE) analysis could be used in large scale structural analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization" title=" homogenization"> homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=inelastic%20deformation" title=" inelastic deformation"> inelastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20arrangement" title=" staggered arrangement"> staggered arrangement</a> </p> <a href="https://publications.waset.org/abstracts/37390/numerical-homogenization-of-nacre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Corrosion and Microstructural Properties of Vanadium-Microalloyed High-Manganese Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temitope%20Olumide%20Olugbade">Temitope Olumide Olugbade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low resistance and delayed fracture to corrosion, especially in harsh environmental conditions, often limit the wide application of high-manganese (high-Mn) steels. To address this issue, the present work investigates the influence of microalloying on the corrosion properties of high-Mn steels. Microalloyed and base high-Mn steels were synthesized through an arc melting process under an argon atmosphere. To generate different microstructures, the temperature and duration were varied via thermal homogenization treatments. The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to determine the corrosion properties in 0.6 M NaCl aqueous solution at room temperature. The relationship between the microstructures and corrosion properties was investigated via Scanning Kelvin Probe Microscopy (SKPFM), energy dispersive X-ray spectroscopy (EDX), and Scanning electron microscopy (SEM) techniques. The local corrosion properties were investigated via in situ atomic force spectroscopy (AFM), considering the homogenization treatments. The results indicate that microalloying is a successful technique for enhancing the corrosion behavior of high-Mn steels. Compared to other alloying elements, Vanadium has shown improvement in corrosion properties for both general and local corrosion in chloride environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=high-manganese%20steel" title=" high-manganese steel"> high-manganese steel</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization" title=" homogenization"> homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=microalloying" title=" microalloying"> microalloying</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium" title=" vanadium"> vanadium</a> </p> <a href="https://publications.waset.org/abstracts/174119/corrosion-and-microstructural-properties-of-vanadium-microalloyed-high-manganese-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Limit State of Heterogeneous Smart Structures under Unknown Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Chen">M. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=S-Q.%20Zhang"> S-Q. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Wang"> X. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Tate"> D. Tate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a numerical solution, namely limit and shakedown analysis, to predict the safety state of smart structures made of heterogeneous materials under unknown cyclic loadings, for instance, the flexure hinge in the micro-positioning stage driven by piezoelectric actuator. In combination of homogenization theory and finite-element method (FEM), the safety evaluation problem is converted to a large-scale nonlinear optimization programming for an acceptable bounded loading as the design reference. Furthermore, a general numerical scheme integrated with the FEM and interior-point-algorithm based optimization tool is developed, which makes the practical application possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=limit%20state" title="limit state">limit state</a>, <a href="https://publications.waset.org/abstracts/search?q=shakedown%20analysis" title=" shakedown analysis"> shakedown analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization" title=" homogenization"> homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20structure" title=" heterogeneous structure"> heterogeneous structure</a> </p> <a href="https://publications.waset.org/abstracts/60785/limit-state-of-heterogeneous-smart-structures-under-unknown-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Enhancing the Rollability of Cu-Ge-Ni Alloy through Heat Treatment Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Hadi">Morteza Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the potential enhancement of the rollability of Cu-Ge-Ni alloy through the mitigation of microstructural and compositional inhomogeneities via two distinct heat treatment methods: homogenization and solution treatment. To achieve this objective, the alloy with the desired composition was fabricated using a vacuum arc remelting furnace (VAR), followed by sample preparation for microstructural, compositional, and heat treatment analyses at varying temperatures and durations. Characterization was conducted employing optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and Vickers hardness testing. The results obtained indicate that a minimum duration of 10 hours is necessary for adequate homogenization of the alloy at 750°C. This heat treatment effectively removes coarse dendrites from the casting microstructure and significantly reduces elemental separations. However, despite these improvements, the presence of a second phase with markedly different hardness from the matrix results in poor rolling ability for the alloy. The optimal time for solution treatment at various temperatures was determined, with the most effective cycle identified as 750°C for 2 hours, followed by rapid quenching in water. This process induces the formation of a single-phase microstructure and complete elimination of the second phase, as confirmed by X-ray diffraction analysis. Results demonstrate a reduction in hardness by 30 Vickers, and the elimination of microstructural unevenness enables successful thickness reduction by up to 50% through rolling without encountering cracking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Ge-Ni%20alloy" title="Cu-Ge-Ni alloy">Cu-Ge-Ni alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization.%20solution%20treatment" title=" homogenization. solution treatment"> homogenization. solution treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=rollability" title=" rollability"> rollability</a> </p> <a href="https://publications.waset.org/abstracts/184647/enhancing-the-rollability-of-cu-ge-ni-alloy-through-heat-treatment-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Micromechanics Modeling of 3D Network Smart Orthotropic Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Hassan">E. M. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Kalamkarov"> A. L. Kalamkarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20homogenization%20method" title="asymptotic homogenization method">asymptotic homogenization method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20piezothermoelastic%20coefficients" title=" effective piezothermoelastic coefficients"> effective piezothermoelastic coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20smart%20network%20composite%20structures" title=" 3D smart network composite structures"> 3D smart network composite structures</a> </p> <a href="https://publications.waset.org/abstracts/18190/micromechanics-modeling-of-3d-network-smart-orthotropic-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Effects of Different Mechanical Treatments on the Physical and Chemical Properties of Turmeric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serpa%20A.%20M.">Serpa A. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B3mez%20Hoyos%20C."> Gómez Hoyos C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Vel%C3%A1squez-Cock%20J.%20A."> Velásquez-Cock J. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruiz%20L.%20F."> Ruiz L. F.</a>, <a href="https://publications.waset.org/abstracts/search?q=V%C3%A9lez%20Acosta%20L.%20M."> Vélez Acosta L. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga%C3%B1an%20P."> Gañan P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuluaga%20R."> Zuluaga R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turmeric (Curcuma Longa L) is an Indian rhizome known for its biological properties, derived from its active compounds such as curcuminoids. Curcumin, the main polyphenol in turmeric, only represents around 3.5% of the dehydrated rhizome and extraction yields between 41 and 90% have been reported. Therefore, for every 1000 tons of turmeric powder used for the extraction of curcumin, around 970 tons of residues are generated. The present study evaluates the effect of different mechanical treatments (waring blender, grinder and high-pressure homogenization) on the physical and chemical properties of turmeric, as an alternative for the transformation of the entire rhizome. Suspensions of turmeric (10, 20 y 30%) were processed by waring blender during 3 min at 12000 rpm, while the samples treated by grinder were processed evaluating two different Gaps (-1 and -1,5). Finally, the process by high-pressure homogenization, was carried out at 500 bar. According to the results, the luminosity of the samples increases with the severity of the mechanical treatment, due to the stabilization of the color associated with the inactivation of the oxidative enzymes. Additionally, according to the microstructure of the samples, the process by grinder (Gap -1,5) and by high-pressure homogenization allowed the largest size reduction, reaching sizes up to 3 m (measured by optical microscopy). This processes disrupts the cells and breaks their fragments into small suspended particles. The infrared spectra obtained from the samples using an attenuated total reflectance accessory indicates changes in the 800-1200 cm⁻¹ region, related mainly to changes in the starch structure. Finally, the thermogravimetric analysis shows the presence of starch, curcumin and some minerals in the suspensions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20treatments" title=" mechanical treatments"> mechanical treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=suspensions" title=" suspensions"> suspensions</a>, <a href="https://publications.waset.org/abstracts/search?q=turmeric%20rhizome" title=" turmeric rhizome"> turmeric rhizome</a> </p> <a href="https://publications.waset.org/abstracts/91180/effects-of-different-mechanical-treatments-on-the-physical-and-chemical-properties-of-turmeric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Beusink">M. Beusink</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20W.%20C.%20Coenen"> E. W. C. Coenen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=first-order%20computational%20homogenization" title="first-order computational homogenization">first-order computational homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20analysis" title=" planar analysis"> planar analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale" title=" multiscale"> multiscale</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrucutures" title=" microstrucutures"> microstrucutures</a> </p> <a href="https://publications.waset.org/abstracts/11554/computational-homogenization-of-thin-walled-structures-on-the-influence-of-the-global-vs-local-applied-plane-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Influence of a Pulsatile Electroosmotic Flow on the Dispersivity of a Non-Reactive Solute through a Microcapillary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Mu%C3%B1oz">Jaime Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Arcos"> José Arcos</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Bautista%20Federico%20M%C3%A9ndez"> Oscar Bautista Federico Méndez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of a pulsatile electroosmotic flow (PEOF) at the rate of spread, or dispersivity, for a non-reactive solute released in a microcapillary with slippage at the boundary wall (modeled by the Navier-slip condition) is theoretically analyzed. Based on the flow velocity field developed under such conditions, the present study implements an analytical scheme of scaling known as the Theory of Homogenization, in order to obtain a mathematical expression for the dispersivity, valid at a large time scale where the initial transients have vanished and the solute spreads under the Taylor dispersion influence. Our results show the dispersivity is a function of a slip coefficient, the amplitude of the imposed electric field, the Debye length and the angular Reynolds number, highlighting the importance of the latter as an enhancement/detrimental factor on the dispersivity, which allows to promote the PEOF as a strong candidate for chemical species separation at lab-on-a-chip devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersivity" title="dispersivity">dispersivity</a>, <a href="https://publications.waset.org/abstracts/search?q=microcapillary" title=" microcapillary"> microcapillary</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-slip%20condition" title=" Navier-slip condition"> Navier-slip condition</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20electroosmotic%20flow" title=" pulsatile electroosmotic flow"> pulsatile electroosmotic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20dispersion" title=" Taylor dispersion"> Taylor dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=Theory%20of%20Homogenization" title=" Theory of Homogenization"> Theory of Homogenization</a> </p> <a href="https://publications.waset.org/abstracts/95021/influence-of-a-pulsatile-electroosmotic-flow-on-the-dispersivity-of-a-non-reactive-solute-through-a-microcapillary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> A Numerical Method to Evaluate the Elastoplastic Material Properties of Fiber Reinforced Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Palizvan">M. Palizvan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Sadr"> M. H. Sadr</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Abadi"> M. T. Abadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The representative volume element (RVE) plays a central role in the mechanics of random heterogeneous materials with a view to predicting their effective properties. In this paper, a computational homogenization methodology, developed to determine effective linear elastic properties of composite materials, is extended to predict the effective nonlinear elastoplastic response of long fiber reinforced composite. Finite element simulations of volumes of different sizes and fiber volume fractures are performed for calculation of the overall response RVE. The dependencies of the overall stress-strain curves on the number of fibers inside the RVE are studied in the 2D cases. Volume averaged stress-strain responses are generated from RVEs and compared with the finite element calculations available in the literature at moderate and high fiber volume fractions. For these materials, the existence of an RVE is demonstrated for the sizes of RVE corresponding to 10–100 times the diameter of the fibers. In addition, the response of small size RVE is found anisotropic, whereas the average of all large ones leads to recover the isotropic material properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homogenization" title="homogenization">homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20boundary%20condition" title=" periodic boundary condition"> periodic boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=elastoplastic%20properties" title=" elastoplastic properties"> elastoplastic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=RVE" title=" RVE"> RVE</a> </p> <a href="https://publications.waset.org/abstracts/99844/a-numerical-method-to-evaluate-the-elastoplastic-material-properties-of-fiber-reinforced-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Homogenization of Cocoa Beans Fermentation to Upgrade Quality Using an Original Improved Fermenter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aka%20S.%20Koffi">Aka S. Koffi</a>, <a href="https://publications.waset.org/abstracts/search?q=N%E2%80%99Goran%20Yao"> N’Goran Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Bastide"> Philippe Bastide</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Bruneau"> Denis Bruneau</a>, <a href="https://publications.waset.org/abstracts/search?q=Diby%20Kadjo"> Diby Kadjo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cocoa beans (<em>Theobroma cocoa</em> L.) are the main components for chocolate manufacturing. The beans must be correctly fermented at first. Traditional process to perform the first fermentation (lactic fermentation) often consists in confining cacao beans using banana leaves or a fermentation basket, both of them leading to a poor product thermal insulation and to an inability to mix the product. Box fermenter reduces this loss by using a wood with large thickness (e>3cm), but mixing to homogenize the product is still hard to perform. Automatic fermenters are not rentable for most of producers. Heat (T>45°C) and acidity produced during the fermentation by microbiology activity of yeasts and bacteria are enabling the emergence of potential flavor and taste of future chocolate. In this study, a cylindro-rotative fermenter (FCR-V1) has been built and coconut fibers were used in its structure to confine heat. An axis of rotation (360°) has been integrated to facilitate the turning and homogenization of beans in the fermenter. This axis permits to put fermenter in a vertical position during the anaerobic alcoholic phase of fermentation, and horizontally during acetic phase to take advantage of the mid height filling. For circulation of air flow during turning in acetic phase, two woven rattan with grid have been made, one for the top and second for the bottom of the fermenter. In order to reduce air flow during acetic phase, two airtight covers are put on each grid cover. The efficiency of the turning by this kind of rotation, coupled with homogenization of the temperature, caused by the horizontal position in the acetic phase of the fermenter, contribute to having a good proportion of well-fermented beans (83.23%). In addition, beans’pH values ranged between 4.5 and 5.5. These values are ideal for enzymatic activity in the production of the aromatic compounds inside beans. The regularity of mass loss during all fermentation makes it possible to predict the drying surface corresponding to the amount being fermented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cocoa%20fermentation" title="cocoa fermentation">cocoa fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=fermenter" title=" fermenter"> fermenter</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activity" title=" microbial activity"> microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=turning" title=" turning"> turning</a> </p> <a href="https://publications.waset.org/abstracts/74406/homogenization-of-cocoa-beans-fermentation-to-upgrade-quality-using-an-original-improved-fermenter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Microthermometry of Carbonated Rocks of the Hondita-Lomagorda Formations, the Tiger Cave Sector, Municipality of Yaguara, Colombia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camila%20Lozano-Vivas">Camila Lozano-Vivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Camila%20Quevedo-Villamil"> Camila Quevedo-Villamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20Munoz-Quijano"> Ingrid Munoz-Quijano</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Loaiza"> Diego Loaiza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colombia's limited oil reserves make the finding of new fields of extraction or the potentiate of the existing ones a more important task to do every day; the exploration projects that allow to have a better knowledge of the oil basins are essential. The upper Magdalena Valley basin - VSM, whose reserves are limited, has been one of the first basins for the exploration and production of hydrocarbons in Colombia. The Hondita and Lomagorda formations were deposited in the Late Cretaceous Middle Albian to the Coniacian and are characterized by being the hydrocarbon-generating rocks in the VSM basin oil system along with the Shale de Bambucá; therefore multiple studies have been made. In the oil industry, geochemical properties are used to understand the origin, migration, accumulation, and alteration of hydrocarbons and, in general, the evolution of the basin containing them. One of the most important parameters to understand this evolution is the formation temperature of the oil system. For this reason, a microthermometric study of fluid inclusions was carried out to recognize formation temperatures and to determine certain basic physicochemical variables, homogenization temperature, pressure, density and salinity of the fluid at the time of entrapment, providing evidence on the history of different events in different geological environments in the evolution of a sedimentary basin. Prior to this study, macroscopic and microscopic petrographic analyses of the samples collected in the field were performed. The results of the mentioned properties of the fluid inclusions in the different samples analyzed have salinities ranging from 20.22% to 26.37% eq. by weight NaCl, similar densities found in the ranges of 1.05 to 1.16 g/cc and an average homogenization temperature at 142.92°C, indicating that, at the time of their entanglement, the rock was in the window of generation of medium hydrocarbons –light with fragile characteristics of the rock that would make it useful to treat them as naturally fractured reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homogenization%20temperature" title="homogenization temperature">homogenization temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20inclusions" title=" fluid inclusions"> fluid inclusions</a>, <a href="https://publications.waset.org/abstracts/search?q=microthermometry" title=" microthermometry"> microthermometry</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a> </p> <a href="https://publications.waset.org/abstracts/122651/microthermometry-of-carbonated-rocks-of-the-hondita-lomagorda-formations-the-tiger-cave-sector-municipality-of-yaguara-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Digital Material Characterization Using the Quantum Fourier Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felix%20Givois">Felix Givois</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20R.%20Gauger"> Nicolas R. Gauger</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Kabel"> Matthias Kabel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=most%20likelihood%20amplitude%20estimation%20%28MLQAE%29" title="most likelihood amplitude estimation (MLQAE)">most likelihood amplitude estimation (MLQAE)</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20homogenization" title=" numerical homogenization"> numerical homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20Fourier%20transformation%20%28QFT%29" title=" quantum Fourier transformation (QFT)"> quantum Fourier transformation (QFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=NISQ%20devises" title=" NISQ devises"> NISQ devises</a> </p> <a href="https://publications.waset.org/abstracts/163241/digital-material-characterization-using-the-quantum-fourier-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Preparation and Characterization of Diclofenac Sodium Loaded Solid Lipid Nanoparticle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oktavia%20Eka%20Puspita">Oktavia Eka Puspita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possibility of using Solid Lipid Nanoparticles (SLN) for topical use is an interesting feature concerning this system has occlusive properties on the skin surface therefore enhance the penetration of drugs through the stratum corneum by increased hydration. This advantage can be used to enhance the drug penetration of topical delivery such as Diclofenac sodium for the relief of signs and symptoms of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. The purpose of this study was focused on the preparation and physical characterization of Diclofenac sodium loaded SLN (D-SLN). D loaded SLN were prepared by hot homogenization followed by ultrasonication technique. Since the occlusion factor of SLN is related to its particle size the formulation of D-SLN in present study two formulations different in its surfactant contents were prepared to investigate the difference of the particle size resulted. Surfactants selected for preparation of formulation A (FA) were lecithin soya and Tween 80 whereas formulation B (FB) were lecithin soya, Tween 80, and Sodium Lauryl Sulphate. D-SLN were characterized for particle size and distribution, polydispersity index (PI), zeta potential using Beckman-Coulter Delsa™ Nano. Overall, the particle size obtained from FA was larger than FB. FA has 90% of the particles were above 1000 nm, while FB has 90% were below 100 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20lipid%20nanoparticles" title="solid lipid nanoparticles">solid lipid nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20homogenization%20technique" title=" hot homogenization technique"> hot homogenization technique</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20analysis" title=" particle size analysis"> particle size analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=topical%20administration" title=" topical administration"> topical administration</a> </p> <a href="https://publications.waset.org/abstracts/16904/preparation-and-characterization-of-diclofenac-sodium-loaded-solid-lipid-nanoparticle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Non-Linear Free Vibration Analysis of Laminated Composite Beams Resting on Non-Linear Pasternak Elastic Foundation: A Homogenization Procedure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merrimi%20El%20Bekkaye">Merrimi El Bekkaye</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Bikri%20Khalid"> El Bikri Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Benamar%20Rhali"> Benamar Rhali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, the problem of geometrically non-linear free vibration of symmetrically and asymmetrically laminated composite beams (LCB) resting on nonlinear Pasternak elastic Foundation with immovable ends is studied. A homogenization procedure has been performed to reduce the problem under consideration to that of the isotropic homogeneous beams with effective bending stiffness and axial stiffness parameters. This simple formulation is developed using the governing axial equation of the beam in which the axial inertia and damping are ignored. The theoretical model is based on Hamilton’s principle and spectral analysis. Iterative form solutions are presented to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear frequency to the linear frequency ratio of the LCB has been studied. The non-dimensional curvatures associated to the fundamental mode are also given in the case of clamped-clamped symmetrically and asymmetrically laminated composite beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20vibration%20amplitudes" title="large vibration amplitudes">large vibration amplitudes</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20composite%20beam" title=" laminated composite beam"> laminated composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasternak%20foundation" title=" Pasternak foundation"> Pasternak foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20beams" title=" composite beams"> composite beams</a> </p> <a href="https://publications.waset.org/abstracts/19481/non-linear-free-vibration-analysis-of-laminated-composite-beams-resting-on-non-linear-pasternak-elastic-foundation-a-homogenization-procedure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Thermo-Mechanical Processing Scheme to Obtain Micro-Duplex Structure Favoring Superplasticity in an As-Cast and Homogenized Medium Alloyed Nickel Base Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sahithya">K. Sahithya</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Balasundar"> I. Balasundar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritapant"> Pritapant</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Raghua"> T. Raghua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ni-based superalloy with a nominal composition Ni-14% Cr-11% Co-5.8% Mo-2.4% Ti-2.4% Nb-2.8% Al-0.26 % Fe-0.032% Si-0.069% C (all in wt %) is used as turbine discs in a variety of aero engines. Like any other superalloy, the primary processing of the as-cast superalloy poses a major challenge due to its complex alloy chemistry. The challenge was circumvented by characterizing the different phases present in the material, optimizing the homogenization treatment, identifying a suitable thermomechanical processing window using dynamic materials modeling. The as-cast material was subjected to homogenization at 1200°C for a soaking period of 8 hours and quenched using different media. Water quenching (WQ) after homogenization resulted in very fine spherical γꞌ precipitates of sizes 30-50 nm, whereas furnace cooling (FC) after homogenization resulted in bimodal distribution of precipitates (primary gamma prime of size 300nm and secondary gamma prime of size 5-10 nm). MC type primary carbides that are stable till the melting point of the material were found in both WQ and FC samples. Deformation behaviour of both the materials below (1000-1100°C) and above gamma prime solvus (1100-1175°C) was evaluated by subjecting the material to series of compression tests at different constant true strain rates (0.0001/sec-1/sec). An in-detail examination of the precipitate dislocation interaction mechanisms carried out using TEM revealed precipitate shearing and Orowan looping as the mechanisms governing deformation in WQ and FC, respectively. Incoherent/semi coherent gamma prime precipitates in the case of FC material facilitates better workability of the material, whereas the coherent precipitates in WQ material contributed to higher resistance to deformation of the material. Both the materials exhibited discontinuous dynamic recrystallization (DDRX) above gamma prime solvus temperature. The recrystallization kinetics was slower in the case of WQ material. Very fine grain boundary carbides ( ≤ 300 nm) retarded the recrystallisation kinetics in WQ. Coarse carbides (1-5 µm) facilitate particle stimulated nucleation in FC material. The FC material was cogged (primary hot working) 1120˚C, 0.03/sec resulting in significant grain refinement, i.e., from 3000 μm to 100 μm. The primary processed material was subjected to intensive thermomechanical deformation subsequently by reducing the temperature by 50˚C in each processing step with intermittent heterogenization treatment at selected temperatures aimed at simultaneous coarsening of the gamma prime precipitates and refinement of the gamma matrix grains. The heterogeneous annealing treatment carried out, resulted in gamma grains of 10 μm and gamma prime precipitates of 1-2 μm. Further thermo mechanical processing of the material was carried out at 1025˚C to increase the homogeneity of the obtained micro-duplex structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superalloys" title="superalloys">superalloys</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20material%20modeling" title=" dynamic material modeling"> dynamic material modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20alloys" title=" nickel alloys"> nickel alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20recrystallization" title=" dynamic recrystallization"> dynamic recrystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticity" title=" superplasticity"> superplasticity</a> </p> <a href="https://publications.waset.org/abstracts/121172/thermo-mechanical-processing-scheme-to-obtain-micro-duplex-structure-favoring-superplasticity-in-an-as-cast-and-homogenized-medium-alloyed-nickel-base-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Design of a New Architecture of IDS Called BiIDS (IDS Based on Two Principles of Detection)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Farhaoui">Yousef Farhaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An IDS is a tool which is used to improve the level of security.In this paper we present different architectures of IDS. We will also discuss measures that define the effectiveness of IDS and the very recent works of standardization and homogenization of IDS. At the end, we propose a new model of IDS called BiIDS (IDS Based on the two principles of detection). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection" title="intrusion detection">intrusion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=architectures" title=" architectures"> architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic" title=" characteristic"> characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=tools" title=" tools"> tools</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/12298/design-of-a-new-architecture-of-ids-called-biids-ids-based-on-two-principles-of-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed.%20S.%20Alasmari">Ahmed. S. Alasmari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Soliman"> M. S. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdy%20M.%20El-Rayes"> Magdy M. El-Rayes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 2<sup>2</sup>; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precipitation%20hardening" title="precipitation hardening">precipitation hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloys" title=" aluminum alloys"> aluminum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title=" design of experiments"> design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis%20of%20variance" title=" analysis of variance"> analysis of variance</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatments" title=" heat treatments"> heat treatments</a> </p> <a href="https://publications.waset.org/abstracts/102070/a-study-on-the-effect-of-mg-and-ag-additions-and-age-hardening-treatment-on-the-properties-of-as-cast-al-cu-mg-ag-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Development and Evaluation of Naringenin Nanosuspension to Improve Antioxidant Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shadab">Md. Shadab</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariyam%20N.%20Nashid"> Mariyam N. Nashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Srikanth%20Meka"> Venkata Srikanth Meka</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiagarajan%20Madheswaran"> Thiagarajan Madheswaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Naringenin (NAR), is a naturally occurring plant flavonoid, found predominantly in citrus fruits, that possesses a wide range of pharmacological properties including anti-oxidant, anti-inflammatory behaviour, cholesterol-lowering and anticarcinogenic activities. However, despite the therapeutic potential of naringenin shown in a number of animal models, its clinical development has been hindered due to its low aqueous solubility, slow dissolution rate and inefficient transport across biological membranes resulting in low bioavailability. Naringenin nanosuspension were produced using stabilizers Tween® 80 by high pressure homogenization techniques. The nanosuspensions were characterized with regard to size (photon correlation spectroscopy (PCS), size distribution, charge (zeta potential measurements), morphology, short term physical stability, dissolution profile and antioxidant potential. A nanocrystal PCS size of about 500 nm was obtained after 20 homogenization cycles at 1500 bar. The short-term stability was assessed by storage of the nanosuspensions at 4 ◦C, room temperature and 40 ◦C. Result showed that naringenin nanosuspension was physically unstable due to large fluctuations in the particle size and zeta potential after 30 days. Naringenin nanosuspension demonstrated higher drug dissolution (97.90%) compared to naringenin powder (62.76%) after 120 minutes of testing. Naringenin nanosuspension showed increased antioxidant activity compared to naringenin powder with a percentage DPPH radical scavenging activity of 49.17% and 31.45% respectively at the lowest DPPH concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title="bioavailability">bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=naringenin" title=" naringenin"> naringenin</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosuspension" title=" nanosuspension"> nanosuspension</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20delivery" title=" oral delivery"> oral delivery</a> </p> <a href="https://publications.waset.org/abstracts/43738/development-and-evaluation-of-naringenin-nanosuspension-to-improve-antioxidant-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Processing Methods for Increasing the Yield, Nutritional Value and Stability of Coconut Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archana%20G.%20Lamdande">Archana G. Lamdande</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyam%20R.%20Garud"> Shyam R. Garud</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20M.%20S.%20Raghavarao"> K. S. M. S. Raghavarao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coconut has two edible parts, that is, a white kernel (solid endosperm) and coconut water (liquid endosperm). The white kernel is generally used in fresh or dried form for culinary purposes. Coconut testa, is the brown skin, covering the coconut kernel. It is removed by paring of wet coconut and obtained as a by-product in coconut processing industries during the production of products such as desiccated coconut, coconut milk, whole coconut milk powder and virgin coconut oil. At present, it is used as animal feed component after drying and recovering the residual oil (by expelling). Experiments were carried out on expelling of coconut milk for shredded coconut with and without testa removal, in order to explore the possibility of increasing the milk yield and value addition in terms of increased polyphenol content. The color characteristics of coconut milk obtained from the grating without removal of testa were observed to be L* 82.79, a* 0.0125, b* 6.245, while that obtained from grating with removal of testa were L* 83.24, a* -0.7925, b* 3.1. A significant increase was observed in total phenol content of coconut milk obtained from the grating with testa (833.8 µl/ml) when compared to that from without testa (521.3 µl/ml). However, significant difference was not observed in protein content of coconut milk obtained from the grating with and without testa (4.9 and 5.0% w/w, respectively). Coconut milk obtained from grating without removal of testa showed higher milk yield (62% w/w) when compared to that obtained from grating with removal of testa (60% w/w). The fat content in coconut milk was observed to be 32% (w/w), and it is unstable due to such a high fat content. Therefore, several experiments were carried out for examining its stability by adjusting the fat content at different levels (32, 28, 24, and 20% w/w). It was found that the coconut milk was more stable with a fat content of 24 % (w/w). Homogenization and ultrasonication and their combinations were used for exploring the possibility of increasing the stability of coconut milk. The microscopic study was carried out for analyzing the size of fat globules and the degree of their uniform distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20milk" title="coconut milk">coconut milk</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization" title=" homogenization"> homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=testa" title=" testa"> testa</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonication" title=" ultrasonication"> ultrasonication</a> </p> <a href="https://publications.waset.org/abstracts/65342/processing-methods-for-increasing-the-yield-nutritional-value-and-stability-of-coconut-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Securing Web Servers by the Intrusion Detection System (IDS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Farhaoui">Yousef Farhaoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An IDS is a tool which is used to improve the level of security. We present in this paper different architectures of IDS. We will also discuss measures that define the effectiveness of IDS and the very recent works of standardization and homogenization of IDS. At the end, we propose a new model of IDS called BiIDS (IDS Based on the two principles of detection) for securing web servers and applications by the Intrusion Detection System (IDS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection" title="intrusion detection">intrusion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=architectures" title=" architectures"> architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic" title=" characteristic"> characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=tools" title=" tools"> tools</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20server" title=" web server"> web server</a> </p> <a href="https://publications.waset.org/abstracts/13346/securing-web-servers-by-the-intrusion-detection-system-ids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Famotidine Loaded Solid Lipid Nanoparticles (SLN) for Oral Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Mauludin">Rachmat Mauludin</a>, <a href="https://publications.waset.org/abstracts/search?q=Novita%20R.%20Kusuma"> Novita R. Kusuma</a>, <a href="https://publications.waset.org/abstracts/search?q=Diky%20Mudhakir"> Diky Mudhakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Famotidine (FMT) is one of used substances in the treatment of hiperacidity and peptic ulcer, administered orally and parenterally via intravenous injection. Oral administration, which is more favorable, has been reported to have many obstacles in the process of the treatment, includes decreasing the bioavailability of FMT. This research was aimed to prepare FMT in form of solid lipid nanoparticles (SLN) with size ranging between 100-200 nm. The research was carried out also by optimizing factors that may affect physical stability of SLN. Formulation of Famotidine SLN was carried out by optimizing factors, such as duration of homogenization and sonication, lipid concentration, stabilizer composition and stabilizer concentration. SLN physical stability was evaluated (particle size distribution) for 42 days in 3 diferent temperatures. Entrapment efficiency and drug loading was determined indirectly and directly. The morphology of SLN was visualized by transmission electron microscope (TEM). In vitro release study of FMT was conducted in 2 mediums, at pH of 1.2 and 7.4. Chemical stability of FMT was determined by quantifying the concentration of FMT within 42 days. Famotidin SLN consisted of GMS as lipid and poloxamer 188, lecithin, and polysorbate 80 as stabilizers. Homogenization and sonication was performed for 5 minutes and 10 minutes. Physyical stability of nanoparticles at 3 different temperatures was no significant difference. The best formula was physically stable until 42 days with mean particle size below 200 nm. Nanoparticles produced was able to entrap FMT until 86.6%. Evaluation by TEM showed that nanoparticles was spherical and solid. In medium pH of 1.2, FMT was released only 30% during 4 hour. On the other hand, within 4 hours SLN could release FMT completely in medium pH of 7.4. The FMT concentration in nanoparticles dispersion was maintained until 95% in 42 days (40oC, RH 75%). Famotidine SLN was able to be produced with mean particle size ranging between 100-200 nm and physically stable for 42 days. SLN could be loaded by 86,6% of FMT. Morphologically, obtained SLN was spheric and solid. During 4 hours in medium pH of 1.2 and 7.4, FMT was released until 30% and 100%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20lipid%20nanoparticle%20%28SLN%29" title="solid lipid nanoparticle (SLN)">solid lipid nanoparticle (SLN)</a>, <a href="https://publications.waset.org/abstracts/search?q=famotidine%20%28FMT%29" title=" famotidine (FMT)"> famotidine (FMT)</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties" title=" physicochemical properties"> physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20study" title=" release study"> release study</a> </p> <a href="https://publications.waset.org/abstracts/19816/famotidine-loaded-solid-lipid-nanoparticles-sln-for-oral-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Formulation of Famotidine Solid Lipid Nanoparticles (SLN): Preparation, Evaluation and Release Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Mauludin">Rachmat Mauludin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurmazidah"> Nurmazidah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and purpose: Famotidine is an H2 receptor blocker. Absorption orally is rapid enough, but famotidine can be degraded by stomach acid causing dose reduction until 35.8% after 50 minutes. This drug also undergoes first-pass metabolism which reduced its bio availability only until 40-50%. To overcome these problems, Solid Lipid Nano particles (SLNs) as alternative delivery systems can be formulated. SLNs is a lipid-based drug delivery technology with 50-1000 nm particle size, where the drug incorporated into the bio compatible lipids and the lipid particles are stabilized using appropriate stabilizers. When the particle size is 200 nm or below, lipid containing famotidine can be absorbed through the lymphatic vessels to the subclavian vein, so first-pass metabolism can be avoided. Method: Famotidine SLNs with various compositions of stabilizer was prepared using a high-speed homogenization and sonication method. Then, the particle size distribution, zeta potential, entrapment efficiency, particle morphology and in vitro release profiles were evaluated. Optimization of sonication time also carried out. Result: Particle size of SLN by Particle Size Analyzer was in range 114.6 up to 455.267 nm. Ultrasonicated SLNs within 5 minutes generated smaller particle size than SLNs which was ultrasonicated for 10 and 15 minutes. Entrapment efficiency of SLNs were 74.17 up to 79.45%. Particle morphology of the SLNs was spherical and distributed individually. Release study of Famotidine revealed that in acid medium, 28.89 up to 80.55% of famotidine could be released after 2 hours. Nevertheless in basic medium, famotidine was released 40.5 up to 86.88% in the same period. Conclusion: The best formula was SLNs which stabilized by 4% Poloxamer 188 and 1 % Span 20, that had particle size 114.6 nm in diameter, 77.14% famotidine entrapped, and the particle morphology was spherical and distributed individually. SLNs with the best drug release profile was SLNs which stabilized by 4% Eudragit L 100-55 and 1% Tween 80 which had released 36.34 % in pH 1.2 solution, and 74.13% in pH 7.4 solution after 2 hours. The optimum sonication time was 5 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=famotodine" title="famotodine">famotodine</a>, <a href="https://publications.waset.org/abstracts/search?q=SLN" title=" SLN"> SLN</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20homogenization" title=" high speed homogenization"> high speed homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20study" title=" release study"> release study</a> </p> <a href="https://publications.waset.org/abstracts/20331/formulation-of-famotidine-solid-lipid-nanoparticles-sln-preparation-evaluation-and-release-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">860</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Preparation and in vivo Assessment of Nystatin-Loaded Solid Lipid Nanoparticles for Topical Delivery against Cutaneous Candidiasis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rawia%20M.%20Khalil">Rawia M. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Abd%20El%20Rahman"> Ahmed A. Abd El Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfouz%20A.%20Kassem"> Mahfouz A. Kassem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20El%20Ridi"> Mohamed S. El Ridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20M.%20Abou%20Samra"> Mona M. Abou Samra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20E.%20A.%20Awad"> Ghada E. A. Awad</a>, <a href="https://publications.waset.org/abstracts/search?q=Soheir%20S.%20Mansy"> Soheir S. Mansy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid lipid nanoparticles (SLNs) have gained great attention for the topical treatment of skin associated fungal infection as they facilitate the skin penetration of loaded drugs. Our work deals with the preparation of nystatin loaded solid lipid nanoparticles (NystSLNs) using the hot homogenization and ultrasonication method. The prepared NystSLNs were characterized in terms of entrapment efficiency, particle size, zeta potential, transmission electron microscopy, differential scanning calorimetry, rheological behavior and in vitro drug release. A stability study for 6 months was performed. A microbiological study was conducted in male rats infected with Candida albicans, by counting the colonies and examining the histopathological changes induced on the skin of infected rats. The results showed that SLNs dispersions are spherical in shape with particle size ranging from 83.26±11.33 to 955.04±1.09 nm. The entrapment efficiencies are ranging from 19.73±1.21 to 72.46±0.66% with zeta potential ranging from -18.9 to -38.8 mV and shear-thinning rheological Behavior. The stability studies done for 6 months showed that nystatin (Nyst) is a good candidate for topical SLN formulations. A least number of colony forming unit/ ml (cfu/ml) was recorded for the selected NystSLN compared to the drug solution and the commercial Nystatin® cream present in the market. It can be fulfilled from this work that SLNs provide a good skin targeting effect and may represent promising carrier for topical delivery of Nyst offering the sustained release and maintaining the localized effect, resulting in an effective treatment of cutaneous fungal infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=candida%20infections" title="candida infections">candida infections</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20homogenization" title=" hot homogenization"> hot homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=nystatin" title=" nystatin"> nystatin</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20lipid%20nanoparticles" title=" solid lipid nanoparticles"> solid lipid nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=topical%20delivery" title=" topical delivery"> topical delivery</a> </p> <a href="https://publications.waset.org/abstracts/3539/preparation-and-in-vivo-assessment-of-nystatin-loaded-solid-lipid-nanoparticles-for-topical-delivery-against-cutaneous-candidiasis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Mineralogy and Fluid Inclusion Study of the Kebbouch South Pb-Zn Deposit, Northwest Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Salhi">Imen Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Bouhlel"> Salah Bouhlel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernrd%20Lehmann"> Bernrd Lehmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Kebbouch South Pb-Zn deposit is located 20 km to the east of El Kef (NW) in the southeastern part of the Triassic diapir belt in the Tunisian Atlas. The deposit is composed of sulfide and non-sulfide zinc-lead ore bodies. The aim of this study is to provide petrographic results, mineralogy, as well as fluid inclusion data of the carbonate-hosted Pb-Zn Kebbouch South deposit. Mineralization forms two major ore types: (1) lenticular dolostones and clay breccias in the contact zone between Triassic and Upper Cretaceous strata;, it consists of small-scale lenticular, strata-or fault-controlled mineralization mainly composed of marcasite, galena, sphalerite, pyrite, and (2) stratiform mineralization in the Bahloul Formation (Upper Cenomanian-Lower Turonian) consisting of framboidal and cubic pyrite, disseminated sphalerite and galena. Non-metalliferous and/or gangue minerals are represented by dolomite, calcite, celestite and quartz. Fluid inclusion petrography study has been carried out on calcite and celestite. Fluid inclusions hosted in celestite are less than 20 µm large and show two types of aqueous inclusions: monophase liquid aqueous inclusions (L), abundant and very small, generally less than 15 µm and liquid-rich two phase inclusions (L+V). The gas phase forms a mobile vapor bubble. Microthermometric analyses of (L+V) fluid inclusions for celestite indicate that the homogenization temperature ranges from 121 to 156°C, and final ice melting temperatures are in the range of – 19 to -9°C corresponding to salinities of 12 to 21 wt% NaCl eq. (L+V) fluid inclusions from calcite are frequently localized along the growth zones; their homogenization temperature ranges from 96 to 164°C with final ice melting temperatures between -16 and -7°C corresponding to salinities of 9 to 19 wt% NaCl eq. According to mineralogical and fluid inclusion studies, mineralization in the Pb – Zn Kebbouch South deposit formed between 96 to 164°C with salinities ranging from 9 to 21 wt% NaCl eq. A contribution of basinal brines in the ore formation of the kebbouch South Pb–Zn deposit is likely. The deposit is part of the family of MVT deposits associated with the salt diapir environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20inclusion" title="fluid inclusion">fluid inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Kebbouch%20South" title=" Kebbouch South"> Kebbouch South</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=MVT%20deposits" title=" MVT deposits"> MVT deposits</a>, <a href="https://publications.waset.org/abstracts/search?q=Pb-Zn" title=" Pb-Zn"> Pb-Zn</a> </p> <a href="https://publications.waset.org/abstracts/68088/mineralogy-and-fluid-inclusion-study-of-the-kebbouch-south-pb-zn-deposit-northwest-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Study of the Nanostructured Fe₅₀Cr₃₅Ni₁₅ Powder Alloy Developed by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salim%20Triaa">Salim Triaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fella%20Kali-Ali"> Fella Kali-Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanostructured Fe₅₀Cr3₃₅Ni₁₅ alloys were prepared from pure elemental powders using high energy mechanical alloying. The mixture powders obtained are characterized by several techniques. X-ray diffraction analysis revelated the formation of the Fe₁Cr₁ compound with BBC structure after one hour of milling. A second compound Fe₃Ni₂ with FCC structure was observed after 12 hours of milling. The size of crystallite determined by Williamson Hall method was about 5.1 nm after 48h of mill. SEM observations confirmed the growth of crushed particles as a function of milling time, while the homogenization of our powders into different constituent elements was verified by the EDX analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe-Cr-Ni%20alloy" title="Fe-Cr-Ni alloy">Fe-Cr-Ni alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/101771/study-of-the-nanostructured-fe50cr35ni15-powder-alloy-developed-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> A Numerical Study on Micromechanical Aspects in Short Fiber Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Ioannou">I. Ioannou</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Gitman"> I. M. Gitman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on the contribution of micro-mechanical parameters on the macro-mechanical response of short fiber composites, namely polypropylene matrix reinforced by glass fibers. In the framework of this paper, an attention has been given to the glass fibers length, as micromechanical parameter influences the overall macroscopic material’s behavior. Three dimensional numerical models were developed and analyzed through the concept of a Representative Volume Element (RVE). Results of the RVE-based approach were compared with analytical Halpin-Tsai’s model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20properties" title="effective properties">effective properties</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization" title=" homogenization"> homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=representative%20volume%20element" title=" representative volume element"> representative volume element</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20fiber%20reinforced%20composites" title=" short fiber reinforced composites"> short fiber reinforced composites</a> </p> <a href="https://publications.waset.org/abstracts/60377/a-numerical-study-on-micromechanical-aspects-in-short-fiber-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mean-field%20homogenization&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mean-field%20homogenization&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mean-field%20homogenization&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mean-field%20homogenization&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>