CINXE.COM
DreamBooth
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="description" content="Keras documentation"> <meta name="author" content="Keras Team"> <link rel="shortcut icon" href="https://keras.io/img/favicon.ico"> <link rel="canonical" href="https://keras.io/examples/generative/dreambooth/" /> <!-- Social --> <meta property="og:title" content="Keras documentation: DreamBooth"> <meta property="og:image" content="https://keras.io/img/logo-k-keras-wb.png"> <meta name="twitter:title" content="Keras documentation: DreamBooth"> <meta name="twitter:image" content="https://keras.io/img/k-keras-social.png"> <meta name="twitter:card" content="summary"> <title>DreamBooth</title> <!-- Bootstrap core CSS --> <link href="/css/bootstrap.min.css" rel="stylesheet"> <!-- Custom fonts for this template --> <link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600;700;800&display=swap" rel="stylesheet"> <!-- Custom styles for this template --> <link href="/css/docs.css" rel="stylesheet"> <link href="/css/monokai.css" rel="stylesheet"> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5DNGF4N'); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-175165319-128', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Tag Manager --> <script async defer src="https://buttons.github.io/buttons.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5DNGF4N" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class='k-page'> <div class="k-nav" id="nav-menu"> <a href='/'><img src='/img/logo-small.png' class='logo-small' /></a> <div class="nav flex-column nav-pills" role="tablist" aria-orientation="vertical"> <a class="nav-link" href="/about/" role="tab" aria-selected="">About Keras</a> <a class="nav-link" href="/getting_started/" role="tab" aria-selected="">Getting started</a> <a class="nav-link" href="/guides/" role="tab" aria-selected="">Developer guides</a> <a class="nav-link active" href="/examples/" role="tab" aria-selected="">Code examples</a> <a class="nav-sublink" href="/examples/vision/">Computer Vision</a> <a class="nav-sublink" href="/examples/nlp/">Natural Language Processing</a> <a class="nav-sublink" href="/examples/structured_data/">Structured Data</a> <a class="nav-sublink" href="/examples/timeseries/">Timeseries</a> <a class="nav-sublink active" href="/examples/generative/">Generative Deep Learning</a> <a class="nav-sublink2" href="/examples/generative/ddim/">Denoising Diffusion Implicit Models</a> <a class="nav-sublink2" href="/examples/generative/random_walks_with_stable_diffusion_3/">A walk through latent space with Stable Diffusion 3</a> <a class="nav-sublink2 active" href="/examples/generative/dreambooth/">DreamBooth</a> <a class="nav-sublink2" href="/examples/generative/ddpm/">Denoising Diffusion Probabilistic Models</a> <a class="nav-sublink2" href="/examples/generative/fine_tune_via_textual_inversion/">Teach StableDiffusion new concepts via Textual Inversion</a> <a class="nav-sublink2" href="/examples/generative/finetune_stable_diffusion/">Fine-tuning Stable Diffusion</a> <a class="nav-sublink2" href="/examples/generative/vae/">Variational AutoEncoder</a> <a class="nav-sublink2" href="/examples/generative/dcgan_overriding_train_step/">GAN overriding Model.train_step</a> <a class="nav-sublink2" href="/examples/generative/wgan_gp/">WGAN-GP overriding Model.train_step</a> <a class="nav-sublink2" href="/examples/generative/conditional_gan/">Conditional GAN</a> <a class="nav-sublink2" href="/examples/generative/cyclegan/">CycleGAN</a> <a class="nav-sublink2" href="/examples/generative/gan_ada/">Data-efficient GANs with Adaptive Discriminator Augmentation</a> <a class="nav-sublink2" href="/examples/generative/deep_dream/">Deep Dream</a> <a class="nav-sublink2" href="/examples/generative/gaugan/">GauGAN for conditional image generation</a> <a class="nav-sublink2" href="/examples/generative/pixelcnn/">PixelCNN</a> <a class="nav-sublink2" href="/examples/generative/stylegan/">Face image generation with StyleGAN</a> <a class="nav-sublink2" href="/examples/generative/vq_vae/">Vector-Quantized Variational Autoencoders</a> <a class="nav-sublink2" href="/examples/generative/random_walks_with_stable_diffusion/">A walk through latent space with Stable Diffusion</a> <a class="nav-sublink2" href="/examples/generative/neural_style_transfer/">Neural style transfer</a> <a class="nav-sublink2" href="/examples/generative/adain/">Neural Style Transfer with AdaIN</a> <a class="nav-sublink2" href="/examples/generative/gpt2_text_generation_with_keras_hub/">GPT2 Text Generation with KerasHub</a> <a class="nav-sublink2" href="/examples/generative/text_generation_gpt/">GPT text generation from scratch with KerasHub</a> <a class="nav-sublink2" href="/examples/generative/text_generation_with_miniature_gpt/">Text generation with a miniature GPT</a> <a class="nav-sublink2" href="/examples/generative/lstm_character_level_text_generation/">Character-level text generation with LSTM</a> <a class="nav-sublink2" href="/examples/generative/text_generation_fnet/">Text Generation using FNet</a> <a class="nav-sublink2" href="/examples/generative/midi_generation_with_transformer/">Music Generation with Transformer Models</a> <a class="nav-sublink2" href="/examples/generative/molecule_generation/">Drug Molecule Generation with VAE</a> <a class="nav-sublink2" href="/examples/generative/wgan-graphs/">WGAN-GP with R-GCN for the generation of small molecular graphs</a> <a class="nav-sublink2" href="/examples/generative/real_nvp/">Density estimation using Real NVP</a> <a class="nav-sublink" href="/examples/audio/">Audio Data</a> <a class="nav-sublink" href="/examples/rl/">Reinforcement Learning</a> <a class="nav-sublink" href="/examples/graph/">Graph Data</a> <a class="nav-sublink" href="/examples/keras_recipes/">Quick Keras Recipes</a> <a class="nav-link" href="/api/" role="tab" aria-selected="">Keras 3 API documentation</a> <a class="nav-link" href="/2.18/api/" role="tab" aria-selected="">Keras 2 API documentation</a> <a class="nav-link" href="/keras_tuner/" role="tab" aria-selected="">KerasTuner: Hyperparam Tuning</a> <a class="nav-link" href="/keras_hub/" role="tab" aria-selected="">KerasHub: Pretrained Models</a> </div> </div> <div class='k-main'> <div class='k-main-top'> <script> function displayDropdownMenu() { e = document.getElementById("nav-menu"); if (e.style.display == "block") { e.style.display = "none"; } else { e.style.display = "block"; document.getElementById("dropdown-nav").style.display = "block"; } } function resetMobileUI() { if (window.innerWidth <= 840) { document.getElementById("nav-menu").style.display = "none"; document.getElementById("dropdown-nav").style.display = "block"; } else { document.getElementById("nav-menu").style.display = "block"; document.getElementById("dropdown-nav").style.display = "none"; } var navmenu = document.getElementById("nav-menu"); var menuheight = navmenu.clientHeight; var kmain = document.getElementById("k-main-id"); kmain.style.minHeight = (menuheight + 100) + 'px'; } window.onresize = resetMobileUI; window.addEventListener("load", (event) => { resetMobileUI() }); </script> <div id='dropdown-nav' onclick="displayDropdownMenu();"> <svg viewBox="-20 -20 120 120" width="60" height="60"> <rect width="100" height="20"></rect> <rect y="30" width="100" height="20"></rect> <rect y="60" width="100" height="20"></rect> </svg> </div> <form class="bd-search d-flex align-items-center k-search-form" id="search-form"> <input type="search" class="k-search-input" id="search-input" placeholder="Search Keras documentation..." aria-label="Search Keras documentation..." autocomplete="off"> <button class="k-search-btn"> <svg width="13" height="13" viewBox="0 0 13 13"><title>search</title><path d="m4.8495 7.8226c0.82666 0 1.5262-0.29146 2.0985-0.87438 0.57232-0.58292 0.86378-1.2877 0.87438-2.1144 0.010599-0.82666-0.28086-1.5262-0.87438-2.0985-0.59352-0.57232-1.293-0.86378-2.0985-0.87438-0.8055-0.010599-1.5103 0.28086-2.1144 0.87438-0.60414 0.59352-0.8956 1.293-0.87438 2.0985 0.021197 0.8055 0.31266 1.5103 0.87438 2.1144 0.56172 0.60414 1.2665 0.8956 2.1144 0.87438zm4.4695 0.2115 3.681 3.6819-1.259 1.284-3.6817-3.7 0.0019784-0.69479-0.090043-0.098846c-0.87973 0.76087-1.92 1.1413-3.1207 1.1413-1.3553 0-2.5025-0.46363-3.4417-1.3909s-1.4088-2.0686-1.4088-3.4239c0-1.3553 0.4696-2.4966 1.4088-3.4239 0.9392-0.92727 2.0864-1.3969 3.4417-1.4088 1.3553-0.011889 2.4906 0.45771 3.406 1.4088 0.9154 0.95107 1.379 2.0924 1.3909 3.4239 0 1.2126-0.38043 2.2588-1.1413 3.1385l0.098834 0.090049z"></path></svg> </button> </form> <script> var form = document.getElementById('search-form'); form.onsubmit = function(e) { e.preventDefault(); var query = document.getElementById('search-input').value; window.location.href = '/search.html?query=' + query; return False } </script> </div> <div class='k-main-inner' id='k-main-id'> <div class='k-location-slug'> <span class="k-location-slug-pointer">►</span> <a href='/examples/'>Code examples</a> / <a href='/examples/generative/'>Generative Deep Learning</a> / DreamBooth </div> <div class='k-content'> <h1 id="dreambooth">DreamBooth</h1> <p><strong>Author:</strong> <a href="https://twitter.com/RisingSayak">Sayak Paul</a>, <a href="https://twitter.com/algo_diver">Chansung Park</a><br> <strong>Date created:</strong> 2023/02/01<br> <strong>Last modified:</strong> 2023/02/05<br> <strong>Description:</strong> Implementing DreamBooth.</p> <div class='example_version_banner keras_2'>ⓘ This example uses Keras 2</div> <p><img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> <a href="https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/generative/ipynb/dreambooth.ipynb"><strong>View in Colab</strong></a> <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> <a href="https://github.com/keras-team/keras-io/blob/master/examples/generative/dreambooth.py"><strong>GitHub source</strong></a></p> <hr /> <h2 id="introduction">Introduction</h2> <p>In this example, we implement DreamBooth, a fine-tuning technique to teach new visual concepts to text-conditioned Diffusion models with just 3 - 5 images. DreamBooth was proposed in <a href="https://arxiv.org/abs/2208.12242">DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation</a> by Ruiz et al.</p> <p>DreamBooth, in a sense, is similar to the <a href="https://keras.io/examples/generative/finetune_stable_diffusion/">traditional way of fine-tuning a text-conditioned Diffusion model except</a> for a few gotchas. This example assumes that you have basic familiarity with Diffusion models and how to fine-tune them. Here are some reference examples that might help you to get familiarized quickly:</p> <ul> <li><a href="https://keras.io/guides/keras_cv/generate_images_with_stable_diffusion/">High-performance image generation using Stable Diffusion in KerasCV</a></li> <li><a href="https://keras.io/examples/generative/fine_tune_via_textual_inversion/">Teach StableDiffusion new concepts via Textual Inversion</a></li> <li><a href="https://keras.io/examples/generative/finetune_stable_diffusion/">Fine-tuning Stable Diffusion</a></li> </ul> <p>First, let's install the latest versions of KerasCV and TensorFlow.</p> <div class="codehilite"><pre><span></span><code><span class="err">!</span><span class="n">pip</span> <span class="n">install</span> <span class="o">-</span><span class="n">q</span> <span class="o">-</span><span class="n">U</span> <span class="n">keras_cv</span><span class="o">==</span><span class="mf">0.6.0</span> <span class="err">!</span><span class="n">pip</span> <span class="n">install</span> <span class="o">-</span><span class="n">q</span> <span class="o">-</span><span class="n">U</span> <span class="n">tensorflow</span> </code></pre></div> <p>If you're running the code, please ensure you're using a GPU with at least 24 GBs of VRAM.</p> <hr /> <h2 id="initial-imports">Initial imports</h2> <div class="codehilite"><pre><span></span><code><span class="kn">import</span><span class="w"> </span><span class="nn">math</span> <span class="kn">import</span><span class="w"> </span><span class="nn">keras_cv</span> <span class="kn">import</span><span class="w"> </span><span class="nn">matplotlib.pyplot</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">plt</span> <span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span> <span class="kn">import</span><span class="w"> </span><span class="nn">tensorflow</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">tf</span> <span class="kn">from</span><span class="w"> </span><span class="nn">imutils</span><span class="w"> </span><span class="kn">import</span> <span class="n">paths</span> <span class="kn">from</span><span class="w"> </span><span class="nn">tensorflow</span><span class="w"> </span><span class="kn">import</span> <span class="n">keras</span> </code></pre></div> <hr /> <h2 id="usage-of-dreambooth">Usage of DreamBooth</h2> <p>... is very versatile. By teaching Stable Diffusion about your favorite visual concepts, you can</p> <ul> <li> <p>Recontextualize objects in interesting ways:</p> <p><img alt="" src="https://i.imgur.com/4Da9ozw.png" /></p> </li> </ul> <ul> <li> <p>Generate artistic renderings of the underlying visual concept:</p> <p><img alt="" src="https://i.imgur.com/nI2N8bI.png" /></p> </li> </ul> <p>And many other applications. We welcome you to check out the original <a href="https://arxiv.org/abs/2208.12242">DreamBooth paper</a> in this regard.</p> <hr /> <h2 id="download-the-instance-and-class-images">Download the instance and class images</h2> <p>DreamBooth uses a technique called "prior preservation" to meaningfully guide the training procedure such that the fine-tuned models can still preserve some of the prior semantics of the visual concept you're introducing. To know more about the idea of "prior preservation" refer to <a href="https://dreambooth.github.io/">this document</a>.</p> <p>Here, we need to introduce a few key terms specific to DreamBooth:</p> <ul> <li><strong>Unique class</strong>: Examples include "dog", "person", etc. In this example, we use "dog".</li> <li><strong>Unique identifier</strong>: A unique identifier that is prepended to the unique class while forming the "instance prompts". In this example, we use "sks" as this unique identifier.</li> <li><strong>Instance prompt</strong>: Denotes a prompt that best describes the "instance images". An example prompt could be - "f"a photo of {unique_id} {unique_class}". So, for our example, this becomes - "a photo of sks dog".</li> <li><strong>Class prompt</strong>: Denotes a prompt without the unique identifier. This prompt is used for generating "class images" for prior preservation. For our example, this prompt is - "a photo of dog".</li> <li><strong>Instance images</strong>: Denote the images that represent the visual concept you're trying to teach aka the "instance prompt". This number is typically just 3 - 5. We typically gather these images ourselves.</li> <li><strong>Class images</strong>: Denote the images generated using the "class prompt" for using prior preservation in DreamBooth training. We leverage the pre-trained model before fine-tuning it to generate these class images. Typically, 200 - 300 class images are enough.</li> </ul> <p>In code, this generation process looks quite simply:</p> <div class="codehilite"><pre><span></span><code><span class="kn">from</span><span class="w"> </span><span class="nn">tqdm</span><span class="w"> </span><span class="kn">import</span> <span class="n">tqdm</span> <span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span> <span class="kn">import</span><span class="w"> </span><span class="nn">hashlib</span> <span class="kn">import</span><span class="w"> </span><span class="nn">keras_cv</span> <span class="kn">import</span><span class="w"> </span><span class="nn">PIL</span> <span class="kn">import</span><span class="w"> </span><span class="nn">os</span> <span class="n">class_images_dir</span> <span class="o">=</span> <span class="s2">"class-images"</span> <span class="n">os</span><span class="o">.</span><span class="n">makedirs</span><span class="p">(</span><span class="n">class_images_dir</span><span class="p">,</span> <span class="n">exist_ok</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> <span class="n">model</span> <span class="o">=</span> <span class="n">keras_cv</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">StableDiffusion</span><span class="p">(</span><span class="n">img_width</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">img_height</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">jit_compile</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> <span class="n">class_prompt</span> <span class="o">=</span> <span class="s2">"a photo of dog"</span> <span class="n">num_imgs_to_generate</span> <span class="o">=</span> <span class="mi">200</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">num_imgs_to_generate</span><span class="p">)):</span> <span class="n">images</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">text_to_image</span><span class="p">(</span> <span class="n">class_prompt</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="p">)</span> <span class="n">idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">images</span><span class="p">))</span> <span class="n">selected_image</span> <span class="o">=</span> <span class="n">PIL</span><span class="o">.</span><span class="n">Image</span><span class="o">.</span><span class="n">fromarray</span><span class="p">(</span><span class="n">images</span><span class="p">[</span><span class="n">idx</span><span class="p">])</span> <span class="n">hash_image</span> <span class="o">=</span> <span class="n">hashlib</span><span class="o">.</span><span class="n">sha1</span><span class="p">(</span><span class="n">selected_image</span><span class="o">.</span><span class="n">tobytes</span><span class="p">())</span><span class="o">.</span><span class="n">hexdigest</span><span class="p">()</span> <span class="n">image_filename</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">class_images_dir</span><span class="p">,</span> <span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">hash_image</span><span class="si">}</span><span class="s2">.jpg"</span><span class="p">)</span> <span class="n">selected_image</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">image_filename</span><span class="p">)</span> </code></pre></div> <p>To keep the runtime of this example short, the authors of this example have gone ahead and generated some class images using <a href="https://colab.research.google.com/gist/sayakpaul/6b5de345d29cf5860f84b6d04d958692/generate_class_priors.ipynb">this notebook</a>.</p> <p><strong>Note</strong> that prior preservation is an optional technique used in DreamBooth, but it almost always helps in improving the quality of the generated images.</p> <div class="codehilite"><pre><span></span><code><span class="n">instance_images_root</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">get_file</span><span class="p">(</span> <span class="n">origin</span><span class="o">=</span><span class="s2">"https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/instance-images.tar.gz"</span><span class="p">,</span> <span class="n">untar</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="p">)</span> <span class="n">class_images_root</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">get_file</span><span class="p">(</span> <span class="n">origin</span><span class="o">=</span><span class="s2">"https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/class-images.tar.gz"</span><span class="p">,</span> <span class="n">untar</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="p">)</span> </code></pre></div> <hr /> <h2 id="visualize-images">Visualize images</h2> <p>First, let's load the image paths.</p> <div class="codehilite"><pre><span></span><code><span class="n">instance_image_paths</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">paths</span><span class="o">.</span><span class="n">list_images</span><span class="p">(</span><span class="n">instance_images_root</span><span class="p">))</span> <span class="n">class_image_paths</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">paths</span><span class="o">.</span><span class="n">list_images</span><span class="p">(</span><span class="n">class_images_root</span><span class="p">))</span> </code></pre></div> <p>Then we load the images from the paths.</p> <div class="codehilite"><pre><span></span><code><span class="k">def</span><span class="w"> </span><span class="nf">load_images</span><span class="p">(</span><span class="n">image_paths</span><span class="p">):</span> <span class="n">images</span> <span class="o">=</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">keras</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">load_img</span><span class="p">(</span><span class="n">path</span><span class="p">))</span> <span class="k">for</span> <span class="n">path</span> <span class="ow">in</span> <span class="n">image_paths</span><span class="p">]</span> <span class="k">return</span> <span class="n">images</span> </code></pre></div> <p>And then we make use a utility function to plot the loaded images.</p> <div class="codehilite"><pre><span></span><code><span class="k">def</span><span class="w"> </span><span class="nf">plot_images</span><span class="p">(</span><span class="n">images</span><span class="p">,</span> <span class="n">title</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">20</span><span class="p">))</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">images</span><span class="p">)):</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">images</span><span class="p">),</span> <span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="k">if</span> <span class="n">title</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span> <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="n">title</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">images</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="n">plt</span><span class="o">.</span><span class="n">axis</span><span class="p">(</span><span class="s2">"off"</span><span class="p">)</span> </code></pre></div> <p><strong>Instance images</strong>:</p> <div class="codehilite"><pre><span></span><code><span class="n">plot_images</span><span class="p">(</span><span class="n">load_images</span><span class="p">(</span><span class="n">instance_image_paths</span><span class="p">[:</span><span class="mi">5</span><span class="p">]))</span> </code></pre></div> <p><img alt="png" src="/img/examples/generative/dreambooth/dreambooth_16_0.png" /></p> <p><strong>Class images</strong>:</p> <div class="codehilite"><pre><span></span><code><span class="n">plot_images</span><span class="p">(</span><span class="n">load_images</span><span class="p">(</span><span class="n">class_image_paths</span><span class="p">[:</span><span class="mi">5</span><span class="p">]))</span> </code></pre></div> <p><img alt="png" src="/img/examples/generative/dreambooth/dreambooth_18_0.png" /></p> <hr /> <h2 id="prepare-datasets">Prepare datasets</h2> <p>Dataset preparation includes two stages: (1): preparing the captions, (2) processing the images.</p> <h3 id="prepare-the-captions">Prepare the captions</h3> <div class="codehilite"><pre><span></span><code><span class="c1"># Since we're using prior preservation, we need to match the number</span> <span class="c1"># of instance images we're using. We just repeat the instance image paths</span> <span class="c1"># to do so.</span> <span class="n">new_instance_image_paths</span> <span class="o">=</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">index</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">class_image_paths</span><span class="p">)):</span> <span class="n">instance_image</span> <span class="o">=</span> <span class="n">instance_image_paths</span><span class="p">[</span><span class="n">index</span> <span class="o">%</span> <span class="nb">len</span><span class="p">(</span><span class="n">instance_image_paths</span><span class="p">)]</span> <span class="n">new_instance_image_paths</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">instance_image</span><span class="p">)</span> <span class="c1"># We just repeat the prompts / captions per images.</span> <span class="n">unique_id</span> <span class="o">=</span> <span class="s2">"sks"</span> <span class="n">class_label</span> <span class="o">=</span> <span class="s2">"dog"</span> <span class="n">instance_prompt</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">"a photo of </span><span class="si">{</span><span class="n">unique_id</span><span class="si">}</span><span class="s2"> </span><span class="si">{</span><span class="n">class_label</span><span class="si">}</span><span class="s2">"</span> <span class="n">instance_prompts</span> <span class="o">=</span> <span class="p">[</span><span class="n">instance_prompt</span><span class="p">]</span> <span class="o">*</span> <span class="nb">len</span><span class="p">(</span><span class="n">new_instance_image_paths</span><span class="p">)</span> <span class="n">class_prompt</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">"a photo of </span><span class="si">{</span><span class="n">class_label</span><span class="si">}</span><span class="s2">"</span> <span class="n">class_prompts</span> <span class="o">=</span> <span class="p">[</span><span class="n">class_prompt</span><span class="p">]</span> <span class="o">*</span> <span class="nb">len</span><span class="p">(</span><span class="n">class_image_paths</span><span class="p">)</span> </code></pre></div> <p>Next, we embed the prompts to save some compute.</p> <div class="codehilite"><pre><span></span><code><span class="kn">import</span><span class="w"> </span><span class="nn">itertools</span> <span class="c1"># The padding token and maximum prompt length are specific to the text encoder.</span> <span class="c1"># If you're using a different text encoder be sure to change them accordingly.</span> <span class="n">padding_token</span> <span class="o">=</span> <span class="mi">49407</span> <span class="n">max_prompt_length</span> <span class="o">=</span> <span class="mi">77</span> <span class="c1"># Load the tokenizer.</span> <span class="n">tokenizer</span> <span class="o">=</span> <span class="n">keras_cv</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">stable_diffusion</span><span class="o">.</span><span class="n">SimpleTokenizer</span><span class="p">()</span> <span class="c1"># Method to tokenize and pad the tokens.</span> <span class="k">def</span><span class="w"> </span><span class="nf">process_text</span><span class="p">(</span><span class="n">caption</span><span class="p">):</span> <span class="n">tokens</span> <span class="o">=</span> <span class="n">tokenizer</span><span class="o">.</span><span class="n">encode</span><span class="p">(</span><span class="n">caption</span><span class="p">)</span> <span class="n">tokens</span> <span class="o">=</span> <span class="n">tokens</span> <span class="o">+</span> <span class="p">[</span><span class="n">padding_token</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">max_prompt_length</span> <span class="o">-</span> <span class="nb">len</span><span class="p">(</span><span class="n">tokens</span><span class="p">))</span> <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">tokens</span><span class="p">)</span> <span class="c1"># Collate the tokenized captions into an array.</span> <span class="n">tokenized_texts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span> <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">instance_prompts</span><span class="p">)</span> <span class="o">+</span> <span class="nb">len</span><span class="p">(</span><span class="n">class_prompts</span><span class="p">),</span> <span class="n">max_prompt_length</span><span class="p">)</span> <span class="p">)</span> <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">caption</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">itertools</span><span class="o">.</span><span class="n">chain</span><span class="p">(</span><span class="n">instance_prompts</span><span class="p">,</span> <span class="n">class_prompts</span><span class="p">)):</span> <span class="n">tokenized_texts</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">process_text</span><span class="p">(</span><span class="n">caption</span><span class="p">)</span> <span class="c1"># We also pre-compute the text embeddings to save some memory during training.</span> <span class="n">POS_IDS</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">convert_to_tensor</span><span class="p">([</span><span class="nb">list</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">max_prompt_length</span><span class="p">))],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span> <span class="n">text_encoder</span> <span class="o">=</span> <span class="n">keras_cv</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">stable_diffusion</span><span class="o">.</span><span class="n">TextEncoder</span><span class="p">(</span><span class="n">max_prompt_length</span><span class="p">)</span> <span class="n">gpus</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">list_logical_devices</span><span class="p">(</span><span class="s2">"GPU"</span><span class="p">)</span> <span class="c1"># Ensure the computation takes place on a GPU.</span> <span class="c1"># Note that it's done automatically when there's a GPU present.</span> <span class="c1"># This example just attempts at showing how you can do it</span> <span class="c1"># more explicitly.</span> <span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="n">gpus</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">name</span><span class="p">):</span> <span class="n">embedded_text</span> <span class="o">=</span> <span class="n">text_encoder</span><span class="p">(</span> <span class="p">[</span><span class="n">tf</span><span class="o">.</span><span class="n">convert_to_tensor</span><span class="p">(</span><span class="n">tokenized_texts</span><span class="p">),</span> <span class="n">POS_IDS</span><span class="p">],</span> <span class="n">training</span><span class="o">=</span><span class="kc">False</span> <span class="p">)</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="c1"># To ensure text_encoder doesn't occupy any GPU space.</span> <span class="k">del</span> <span class="n">text_encoder</span> </code></pre></div> <hr /> <h2 id="prepare-the-images">Prepare the images</h2> <div class="codehilite"><pre><span></span><code><span class="n">resolution</span> <span class="o">=</span> <span class="mi">512</span> <span class="n">auto</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">AUTOTUNE</span> <span class="n">augmenter</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span> <span class="n">layers</span><span class="o">=</span><span class="p">[</span> <span class="n">keras_cv</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">CenterCrop</span><span class="p">(</span><span class="n">resolution</span><span class="p">,</span> <span class="n">resolution</span><span class="p">),</span> <span class="n">keras_cv</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">RandomFlip</span><span class="p">(),</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Rescaling</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">1.0</span> <span class="o">/</span> <span class="mf">127.5</span><span class="p">,</span> <span class="n">offset</span><span class="o">=-</span><span class="mi">1</span><span class="p">),</span> <span class="p">]</span> <span class="p">)</span> <span class="k">def</span><span class="w"> </span><span class="nf">process_image</span><span class="p">(</span><span class="n">image_path</span><span class="p">,</span> <span class="n">tokenized_text</span><span class="p">):</span> <span class="n">image</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">read_file</span><span class="p">(</span><span class="n">image_path</span><span class="p">)</span> <span class="n">image</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">decode_png</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span> <span class="n">image</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">image</span><span class="o">.</span><span class="n">resize</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="p">(</span><span class="n">resolution</span><span class="p">,</span> <span class="n">resolution</span><span class="p">))</span> <span class="k">return</span> <span class="n">image</span><span class="p">,</span> <span class="n">tokenized_text</span> <span class="k">def</span><span class="w"> </span><span class="nf">apply_augmentation</span><span class="p">(</span><span class="n">image_batch</span><span class="p">,</span> <span class="n">embedded_tokens</span><span class="p">):</span> <span class="k">return</span> <span class="n">augmenter</span><span class="p">(</span><span class="n">image_batch</span><span class="p">),</span> <span class="n">embedded_tokens</span> <span class="k">def</span><span class="w"> </span><span class="nf">prepare_dict</span><span class="p">(</span><span class="n">instance_only</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span> <span class="k">def</span><span class="w"> </span><span class="nf">fn</span><span class="p">(</span><span class="n">image_batch</span><span class="p">,</span> <span class="n">embedded_tokens</span><span class="p">):</span> <span class="k">if</span> <span class="n">instance_only</span><span class="p">:</span> <span class="n">batch_dict</span> <span class="o">=</span> <span class="p">{</span> <span class="s2">"instance_images"</span><span class="p">:</span> <span class="n">image_batch</span><span class="p">,</span> <span class="s2">"instance_embedded_texts"</span><span class="p">:</span> <span class="n">embedded_tokens</span><span class="p">,</span> <span class="p">}</span> <span class="k">return</span> <span class="n">batch_dict</span> <span class="k">else</span><span class="p">:</span> <span class="n">batch_dict</span> <span class="o">=</span> <span class="p">{</span> <span class="s2">"class_images"</span><span class="p">:</span> <span class="n">image_batch</span><span class="p">,</span> <span class="s2">"class_embedded_texts"</span><span class="p">:</span> <span class="n">embedded_tokens</span><span class="p">,</span> <span class="p">}</span> <span class="k">return</span> <span class="n">batch_dict</span> <span class="k">return</span> <span class="n">fn</span> <span class="k">def</span><span class="w"> </span><span class="nf">assemble_dataset</span><span class="p">(</span><span class="n">image_paths</span><span class="p">,</span> <span class="n">embedded_texts</span><span class="p">,</span> <span class="n">instance_only</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">Dataset</span><span class="o">.</span><span class="n">from_tensor_slices</span><span class="p">((</span><span class="n">image_paths</span><span class="p">,</span> <span class="n">embedded_texts</span><span class="p">))</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">process_image</span><span class="p">,</span> <span class="n">num_parallel_calls</span><span class="o">=</span><span class="n">auto</span><span class="p">)</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="n">reshuffle_each_iteration</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span><span class="n">batch_size</span><span class="p">)</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">apply_augmentation</span><span class="p">,</span> <span class="n">num_parallel_calls</span><span class="o">=</span><span class="n">auto</span><span class="p">)</span> <span class="n">prepare_dict_fn</span> <span class="o">=</span> <span class="n">prepare_dict</span><span class="p">(</span><span class="n">instance_only</span><span class="o">=</span><span class="n">instance_only</span><span class="p">)</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">prepare_dict_fn</span><span class="p">,</span> <span class="n">num_parallel_calls</span><span class="o">=</span><span class="n">auto</span><span class="p">)</span> <span class="k">return</span> <span class="n">dataset</span> </code></pre></div> <hr /> <h2 id="assemble-dataset">Assemble dataset</h2> <div class="codehilite"><pre><span></span><code><span class="n">instance_dataset</span> <span class="o">=</span> <span class="n">assemble_dataset</span><span class="p">(</span> <span class="n">new_instance_image_paths</span><span class="p">,</span> <span class="n">embedded_text</span><span class="p">[:</span> <span class="nb">len</span><span class="p">(</span><span class="n">new_instance_image_paths</span><span class="p">)],</span> <span class="p">)</span> <span class="n">class_dataset</span> <span class="o">=</span> <span class="n">assemble_dataset</span><span class="p">(</span> <span class="n">class_image_paths</span><span class="p">,</span> <span class="n">embedded_text</span><span class="p">[</span><span class="nb">len</span><span class="p">(</span><span class="n">new_instance_image_paths</span><span class="p">)</span> <span class="p">:],</span> <span class="n">instance_only</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="p">)</span> <span class="n">train_dataset</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">Dataset</span><span class="o">.</span><span class="n">zip</span><span class="p">((</span><span class="n">instance_dataset</span><span class="p">,</span> <span class="n">class_dataset</span><span class="p">))</span> </code></pre></div> <hr /> <h2 id="check-shapes">Check shapes</h2> <p>Now that the dataset has been prepared, let's quickly check what's inside it.</p> <div class="codehilite"><pre><span></span><code><span class="n">sample_batch</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="nb">iter</span><span class="p">(</span><span class="n">train_dataset</span><span class="p">))</span> <span class="nb">print</span><span class="p">(</span><span class="n">sample_batch</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">keys</span><span class="p">(),</span> <span class="n">sample_batch</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">sample_batch</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span> <span class="nb">print</span><span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">sample_batch</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">k</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">sample_batch</span><span class="p">[</span><span class="mi">1</span><span class="p">]:</span> <span class="nb">print</span><span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">sample_batch</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="n">k</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>dict_keys(['instance_images', 'instance_embedded_texts']) dict_keys(['class_images', 'class_embedded_texts']) instance_images (1, 512, 512, 3) instance_embedded_texts (1, 77, 768) class_images (1, 512, 512, 3) class_embedded_texts (1, 77, 768) </code></pre></div> </div> <p>During training, we make use of these keys to gather the images and text embeddings and concat them accordingly.</p> <hr /> <h2 id="dreambooth-training-loop">DreamBooth training loop</h2> <p>Our DreamBooth training loop is very much inspired by <a href="https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py">this script</a> provided by the Diffusers team at Hugging Face. However, there is an important difference to note. We only fine-tune the UNet (the model responsible for predicting noise) and don't fine-tune the text encoder in this example. If you're looking for an implementation that also performs the additional fine-tuning of the text encoder, refer to <a href="https://github.com/sayakpaul/dreambooth-keras/">this repository</a>.</p> <div class="codehilite"><pre><span></span><code><span class="kn">import</span><span class="w"> </span><span class="nn">tensorflow.experimental.numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">tnp</span> <span class="k">class</span><span class="w"> </span><span class="nc">DreamBoothTrainer</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">Model</span><span class="p">):</span> <span class="c1"># Reference:</span> <span class="c1"># https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py</span> <span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span> <span class="bp">self</span><span class="p">,</span> <span class="n">diffusion_model</span><span class="p">,</span> <span class="n">vae</span><span class="p">,</span> <span class="n">noise_scheduler</span><span class="p">,</span> <span class="n">use_mixed_precision</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">prior_loss_weight</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">max_grad_norm</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">,</span> <span class="p">):</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">diffusion_model</span> <span class="o">=</span> <span class="n">diffusion_model</span> <span class="bp">self</span><span class="o">.</span><span class="n">vae</span> <span class="o">=</span> <span class="n">vae</span> <span class="bp">self</span><span class="o">.</span><span class="n">noise_scheduler</span> <span class="o">=</span> <span class="n">noise_scheduler</span> <span class="bp">self</span><span class="o">.</span><span class="n">prior_loss_weight</span> <span class="o">=</span> <span class="n">prior_loss_weight</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_grad_norm</span> <span class="o">=</span> <span class="n">max_grad_norm</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_mixed_precision</span> <span class="o">=</span> <span class="n">use_mixed_precision</span> <span class="bp">self</span><span class="o">.</span><span class="n">vae</span><span class="o">.</span><span class="n">trainable</span> <span class="o">=</span> <span class="kc">False</span> <span class="k">def</span><span class="w"> </span><span class="nf">train_step</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">):</span> <span class="n">instance_batch</span> <span class="o">=</span> <span class="n">inputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="n">class_batch</span> <span class="o">=</span> <span class="n">inputs</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="n">instance_images</span> <span class="o">=</span> <span class="n">instance_batch</span><span class="p">[</span><span class="s2">"instance_images"</span><span class="p">]</span> <span class="n">instance_embedded_text</span> <span class="o">=</span> <span class="n">instance_batch</span><span class="p">[</span><span class="s2">"instance_embedded_texts"</span><span class="p">]</span> <span class="n">class_images</span> <span class="o">=</span> <span class="n">class_batch</span><span class="p">[</span><span class="s2">"class_images"</span><span class="p">]</span> <span class="n">class_embedded_text</span> <span class="o">=</span> <span class="n">class_batch</span><span class="p">[</span><span class="s2">"class_embedded_texts"</span><span class="p">]</span> <span class="n">images</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">instance_images</span><span class="p">,</span> <span class="n">class_images</span><span class="p">],</span> <span class="mi">0</span><span class="p">)</span> <span class="n">embedded_texts</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">instance_embedded_text</span><span class="p">,</span> <span class="n">class_embedded_text</span><span class="p">],</span> <span class="mi">0</span><span class="p">)</span> <span class="n">batch_size</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">shape</span><span class="p">(</span><span class="n">images</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span> <span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">GradientTape</span><span class="p">()</span> <span class="k">as</span> <span class="n">tape</span><span class="p">:</span> <span class="c1"># Project image into the latent space and sample from it.</span> <span class="n">latents</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sample_from_encoder_outputs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">vae</span><span class="p">(</span><span class="n">images</span><span class="p">,</span> <span class="n">training</span><span class="o">=</span><span class="kc">False</span><span class="p">))</span> <span class="c1"># Know more about the magic number here:</span> <span class="c1"># https://keras.io/examples/generative/fine_tune_via_textual_inversion/</span> <span class="n">latents</span> <span class="o">=</span> <span class="n">latents</span> <span class="o">*</span> <span class="mf">0.18215</span> <span class="c1"># Sample noise that we'll add to the latents.</span> <span class="n">noise</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">shape</span><span class="p">(</span><span class="n">latents</span><span class="p">))</span> <span class="c1"># Sample a random timestep for each image.</span> <span class="n">timesteps</span> <span class="o">=</span> <span class="n">tnp</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">noise_scheduler</span><span class="o">.</span><span class="n">train_timesteps</span><span class="p">,</span> <span class="p">(</span><span class="n">batch_size</span><span class="p">,)</span> <span class="p">)</span> <span class="c1"># Add noise to the latents according to the noise magnitude at each timestep</span> <span class="c1"># (this is the forward diffusion process).</span> <span class="n">noisy_latents</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">noise_scheduler</span><span class="o">.</span><span class="n">add_noise</span><span class="p">(</span> <span class="n">tf</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="n">latents</span><span class="p">,</span> <span class="n">noise</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span> <span class="n">noise</span><span class="p">,</span> <span class="n">timesteps</span> <span class="p">)</span> <span class="c1"># Get the target for loss depending on the prediction type</span> <span class="c1"># just the sampled noise for now.</span> <span class="n">target</span> <span class="o">=</span> <span class="n">noise</span> <span class="c1"># noise_schedule.predict_epsilon == True</span> <span class="c1"># Predict the noise residual and compute loss.</span> <span class="n">timestep_embedding</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">map_fn</span><span class="p">(</span> <span class="k">lambda</span> <span class="n">t</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_timestep_embedding</span><span class="p">(</span><span class="n">t</span><span class="p">),</span> <span class="n">timesteps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">float32</span> <span class="p">)</span> <span class="n">model_pred</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">diffusion_model</span><span class="p">(</span> <span class="p">[</span><span class="n">noisy_latents</span><span class="p">,</span> <span class="n">timestep_embedding</span><span class="p">,</span> <span class="n">embedded_texts</span><span class="p">],</span> <span class="n">training</span><span class="o">=</span><span class="kc">True</span> <span class="p">)</span> <span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">compute_loss</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">model_pred</span><span class="p">)</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_mixed_precision</span><span class="p">:</span> <span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">get_scaled_loss</span><span class="p">(</span><span class="n">loss</span><span class="p">)</span> <span class="c1"># Update parameters of the diffusion model.</span> <span class="n">trainable_vars</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">diffusion_model</span><span class="o">.</span><span class="n">trainable_variables</span> <span class="n">gradients</span> <span class="o">=</span> <span class="n">tape</span><span class="o">.</span><span class="n">gradient</span><span class="p">(</span><span class="n">loss</span><span class="p">,</span> <span class="n">trainable_vars</span><span class="p">)</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_mixed_precision</span><span class="p">:</span> <span class="n">gradients</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">get_unscaled_gradients</span><span class="p">(</span><span class="n">gradients</span><span class="p">)</span> <span class="n">gradients</span> <span class="o">=</span> <span class="p">[</span><span class="n">tf</span><span class="o">.</span><span class="n">clip_by_norm</span><span class="p">(</span><span class="n">g</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_grad_norm</span><span class="p">)</span> <span class="k">for</span> <span class="n">g</span> <span class="ow">in</span> <span class="n">gradients</span><span class="p">]</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">apply_gradients</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="n">gradients</span><span class="p">,</span> <span class="n">trainable_vars</span><span class="p">))</span> <span class="k">return</span> <span class="p">{</span><span class="n">m</span><span class="o">.</span><span class="n">name</span><span class="p">:</span> <span class="n">m</span><span class="o">.</span><span class="n">result</span><span class="p">()</span> <span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">metrics</span><span class="p">}</span> <span class="k">def</span><span class="w"> </span><span class="nf">get_timestep_embedding</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timestep</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">320</span><span class="p">,</span> <span class="n">max_period</span><span class="o">=</span><span class="mi">10000</span><span class="p">):</span> <span class="n">half</span> <span class="o">=</span> <span class="n">dim</span> <span class="o">//</span> <span class="mi">2</span> <span class="n">log_max_period</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">math</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="n">max_period</span><span class="p">,</span> <span class="n">tf</span><span class="o">.</span><span class="n">float32</span><span class="p">))</span> <span class="n">freqs</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">math</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span> <span class="o">-</span><span class="n">log_max_period</span> <span class="o">*</span> <span class="n">tf</span><span class="o">.</span><span class="n">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">half</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span> <span class="o">/</span> <span class="n">half</span> <span class="p">)</span> <span class="n">args</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">convert_to_tensor</span><span class="p">([</span><span class="n">timestep</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span> <span class="o">*</span> <span class="n">freqs</span> <span class="n">embedding</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">tf</span><span class="o">.</span><span class="n">math</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">args</span><span class="p">),</span> <span class="n">tf</span><span class="o">.</span><span class="n">math</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">args</span><span class="p">)],</span> <span class="mi">0</span><span class="p">)</span> <span class="k">return</span> <span class="n">embedding</span> <span class="k">def</span><span class="w"> </span><span class="nf">sample_from_encoder_outputs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">outputs</span><span class="p">):</span> <span class="n">mean</span><span class="p">,</span> <span class="n">logvar</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span> <span class="n">logvar</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">clip_by_value</span><span class="p">(</span><span class="n">logvar</span><span class="p">,</span> <span class="o">-</span><span class="mf">30.0</span><span class="p">,</span> <span class="mf">20.0</span><span class="p">)</span> <span class="n">std</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="mf">0.5</span> <span class="o">*</span> <span class="n">logvar</span><span class="p">)</span> <span class="n">sample</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">shape</span><span class="p">(</span><span class="n">mean</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">mean</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span> <span class="k">return</span> <span class="n">mean</span> <span class="o">+</span> <span class="n">std</span> <span class="o">*</span> <span class="n">sample</span> <span class="k">def</span><span class="w"> </span><span class="nf">compute_loss</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">model_pred</span><span class="p">):</span> <span class="c1"># Chunk the noise and model_pred into two parts and compute the loss</span> <span class="c1"># on each part separately.</span> <span class="c1"># Since the first half of the inputs has instance samples and the second half</span> <span class="c1"># has class samples, we do the chunking accordingly.</span> <span class="n">model_pred</span><span class="p">,</span> <span class="n">model_pred_prior</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">split</span><span class="p">(</span> <span class="n">model_pred</span><span class="p">,</span> <span class="n">num_or_size_splits</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span> <span class="p">)</span> <span class="n">target</span><span class="p">,</span> <span class="n">target_prior</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">num_or_size_splits</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># Compute instance loss.</span> <span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">compiled_loss</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">model_pred</span><span class="p">)</span> <span class="c1"># Compute prior loss.</span> <span class="n">prior_loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">compiled_loss</span><span class="p">(</span><span class="n">target_prior</span><span class="p">,</span> <span class="n">model_pred_prior</span><span class="p">)</span> <span class="c1"># Add the prior loss to the instance loss.</span> <span class="n">loss</span> <span class="o">=</span> <span class="n">loss</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">prior_loss_weight</span> <span class="o">*</span> <span class="n">prior_loss</span> <span class="k">return</span> <span class="n">loss</span> <span class="k">def</span><span class="w"> </span><span class="nf">save_weights</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">filepath</span><span class="p">,</span> <span class="n">overwrite</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">save_format</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">options</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span> <span class="c1"># Overriding this method will allow us to use the `ModelCheckpoint`</span> <span class="c1"># callback directly with this trainer class. In this case, it will</span> <span class="c1"># only checkpoint the `diffusion_model` since that's what we're training</span> <span class="c1"># during fine-tuning.</span> <span class="bp">self</span><span class="o">.</span><span class="n">diffusion_model</span><span class="o">.</span><span class="n">save_weights</span><span class="p">(</span> <span class="n">filepath</span><span class="o">=</span><span class="n">filepath</span><span class="p">,</span> <span class="n">overwrite</span><span class="o">=</span><span class="n">overwrite</span><span class="p">,</span> <span class="n">save_format</span><span class="o">=</span><span class="n">save_format</span><span class="p">,</span> <span class="n">options</span><span class="o">=</span><span class="n">options</span><span class="p">,</span> <span class="p">)</span> <span class="k">def</span><span class="w"> </span><span class="nf">load_weights</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">filepath</span><span class="p">,</span> <span class="n">by_name</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">skip_mismatch</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">options</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span> <span class="c1"># Similarly override `load_weights()` so that we can directly call it on</span> <span class="c1"># the trainer class object.</span> <span class="bp">self</span><span class="o">.</span><span class="n">diffusion_model</span><span class="o">.</span><span class="n">load_weights</span><span class="p">(</span> <span class="n">filepath</span><span class="o">=</span><span class="n">filepath</span><span class="p">,</span> <span class="n">by_name</span><span class="o">=</span><span class="n">by_name</span><span class="p">,</span> <span class="n">skip_mismatch</span><span class="o">=</span><span class="n">skip_mismatch</span><span class="p">,</span> <span class="n">options</span><span class="o">=</span><span class="n">options</span><span class="p">,</span> <span class="p">)</span> </code></pre></div> <hr /> <h2 id="trainer-initialization">Trainer initialization</h2> <div class="codehilite"><pre><span></span><code><span class="c1"># Comment it if you are not using a GPU having tensor cores.</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">mixed_precision</span><span class="o">.</span><span class="n">set_global_policy</span><span class="p">(</span><span class="s2">"mixed_float16"</span><span class="p">)</span> <span class="n">use_mp</span> <span class="o">=</span> <span class="kc">True</span> <span class="c1"># Set it to False if you're not using a GPU with tensor cores.</span> <span class="n">image_encoder</span> <span class="o">=</span> <span class="n">keras_cv</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">stable_diffusion</span><span class="o">.</span><span class="n">ImageEncoder</span><span class="p">()</span> <span class="n">dreambooth_trainer</span> <span class="o">=</span> <span class="n">DreamBoothTrainer</span><span class="p">(</span> <span class="n">diffusion_model</span><span class="o">=</span><span class="n">keras_cv</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">stable_diffusion</span><span class="o">.</span><span class="n">DiffusionModel</span><span class="p">(</span> <span class="n">resolution</span><span class="p">,</span> <span class="n">resolution</span><span class="p">,</span> <span class="n">max_prompt_length</span> <span class="p">),</span> <span class="c1"># Remove the top layer from the encoder, which cuts off the variance and only</span> <span class="c1"># returns the mean.</span> <span class="n">vae</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">Model</span><span class="p">(</span> <span class="n">image_encoder</span><span class="o">.</span><span class="n">input</span><span class="p">,</span> <span class="n">image_encoder</span><span class="o">.</span><span class="n">layers</span><span class="p">[</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">output</span><span class="p">,</span> <span class="p">),</span> <span class="n">noise_scheduler</span><span class="o">=</span><span class="n">keras_cv</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">stable_diffusion</span><span class="o">.</span><span class="n">NoiseScheduler</span><span class="p">(),</span> <span class="n">use_mixed_precision</span><span class="o">=</span><span class="n">use_mp</span><span class="p">,</span> <span class="p">)</span> <span class="c1"># These hyperparameters come from this tutorial by Hugging Face:</span> <span class="c1"># https://github.com/huggingface/diffusers/tree/main/examples/dreambooth</span> <span class="n">learning_rate</span> <span class="o">=</span> <span class="mf">5e-6</span> <span class="n">beta_1</span><span class="p">,</span> <span class="n">beta_2</span> <span class="o">=</span> <span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.999</span> <span class="n">weight_decay</span> <span class="o">=</span> <span class="p">(</span><span class="mf">1e-2</span><span class="p">,)</span> <span class="n">epsilon</span> <span class="o">=</span> <span class="mf">1e-08</span> <span class="n">optimizer</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">optimizers</span><span class="o">.</span><span class="n">experimental</span><span class="o">.</span><span class="n">AdamW</span><span class="p">(</span> <span class="n">learning_rate</span><span class="o">=</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">weight_decay</span><span class="p">,</span> <span class="n">beta_1</span><span class="o">=</span><span class="n">beta_1</span><span class="p">,</span> <span class="n">beta_2</span><span class="o">=</span><span class="n">beta_2</span><span class="p">,</span> <span class="n">epsilon</span><span class="o">=</span><span class="n">epsilon</span><span class="p">,</span> <span class="p">)</span> <span class="n">dreambooth_trainer</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">optimizer</span><span class="o">=</span><span class="n">optimizer</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s2">"mse"</span><span class="p">)</span> </code></pre></div> <hr /> <h2 id="train">Train!</h2> <p>We first calculate the number of epochs, we need to train for.</p> <div class="codehilite"><pre><span></span><code><span class="n">num_update_steps_per_epoch</span> <span class="o">=</span> <span class="n">train_dataset</span><span class="o">.</span><span class="n">cardinality</span><span class="p">()</span> <span class="n">max_train_steps</span> <span class="o">=</span> <span class="mi">800</span> <span class="n">epochs</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">ceil</span><span class="p">(</span><span class="n">max_train_steps</span> <span class="o">/</span> <span class="n">num_update_steps_per_epoch</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Training for </span><span class="si">{</span><span class="n">epochs</span><span class="si">}</span><span class="s2"> epochs."</span><span class="p">)</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Training for 4 epochs. </code></pre></div> </div> <p>And then we start training!</p> <div class="codehilite"><pre><span></span><code><span class="n">ckpt_path</span> <span class="o">=</span> <span class="s2">"dreambooth-unet.h5"</span> <span class="n">ckpt_callback</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">callbacks</span><span class="o">.</span><span class="n">ModelCheckpoint</span><span class="p">(</span> <span class="n">ckpt_path</span><span class="p">,</span> <span class="n">save_weights_only</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">monitor</span><span class="o">=</span><span class="s2">"loss"</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s2">"min"</span><span class="p">,</span> <span class="p">)</span> <span class="n">dreambooth_trainer</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train_dataset</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="n">epochs</span><span class="p">,</span> <span class="n">callbacks</span><span class="o">=</span><span class="p">[</span><span class="n">ckpt_callback</span><span class="p">])</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Epoch 1/4 200/200 [==============================] - 301s 462ms/step - loss: 0.1203 Epoch 2/4 200/200 [==============================] - 94s 469ms/step - loss: 0.1139 Epoch 3/4 200/200 [==============================] - 94s 469ms/step - loss: 0.1016 Epoch 4/4 200/200 [==============================] - 94s 469ms/step - loss: 0.1231 <keras.callbacks.History at 0x7f19726600a0> </code></pre></div> </div> <hr /> <h2 id="experiments-and-inference">Experiments and inference</h2> <p>We ran various experiments with a slightly modified version of this example. Our experiments are based on <a href="https://github.com/sayakpaul/dreambooth-keras/">this repository</a> and are inspired by <a href="https://huggingface.co/blog/dreambooth">this blog post</a> from Hugging Face.</p> <p>First, let's see how we can use the fine-tuned checkpoint for running inference.</p> <div class="codehilite"><pre><span></span><code><span class="c1"># Initialize a new Stable Diffusion model.</span> <span class="n">dreambooth_model</span> <span class="o">=</span> <span class="n">keras_cv</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">StableDiffusion</span><span class="p">(</span> <span class="n">img_width</span><span class="o">=</span><span class="n">resolution</span><span class="p">,</span> <span class="n">img_height</span><span class="o">=</span><span class="n">resolution</span><span class="p">,</span> <span class="n">jit_compile</span><span class="o">=</span><span class="kc">True</span> <span class="p">)</span> <span class="n">dreambooth_model</span><span class="o">.</span><span class="n">diffusion_model</span><span class="o">.</span><span class="n">load_weights</span><span class="p">(</span><span class="n">ckpt_path</span><span class="p">)</span> <span class="c1"># Note how the unique identifier and the class have been used in the prompt.</span> <span class="n">prompt</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">"A photo of </span><span class="si">{</span><span class="n">unique_id</span><span class="si">}</span><span class="s2"> </span><span class="si">{</span><span class="n">class_label</span><span class="si">}</span><span class="s2"> in a bucket"</span> <span class="n">num_imgs_to_gen</span> <span class="o">=</span> <span class="mi">3</span> <span class="n">images_dreamboothed</span> <span class="o">=</span> <span class="n">dreambooth_model</span><span class="o">.</span><span class="n">text_to_image</span><span class="p">(</span><span class="n">prompt</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">num_imgs_to_gen</span><span class="p">)</span> <span class="n">plot_images</span><span class="p">(</span><span class="n">images_dreamboothed</span><span class="p">,</span> <span class="n">prompt</span><span class="p">)</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>By using this model checkpoint, you acknowledge that its usage is subject to the terms of the CreativeML Open RAIL-M license at https://raw.githubusercontent.com/CompVis/stable-diffusion/main/LICENSE 50/50 [==============================] - 42s 160ms/step </code></pre></div> </div> <p><img alt="png" src="/img/examples/generative/dreambooth/dreambooth_40_1.png" /></p> <p>Now, let's load checkpoints from a different experiment we conducted where we also fine-tuned the text encoder along with the UNet:</p> <div class="codehilite"><pre><span></span><code><span class="n">unet_weights</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">get_file</span><span class="p">(</span> <span class="n">origin</span><span class="o">=</span><span class="s2">"https://huggingface.co/chansung/dreambooth-dog/resolve/main/lr</span><span class="si">%409e</span><span class="s2">-06-max_train_steps%40200-train_text_encoder%40True-unet.h5"</span> <span class="p">)</span> <span class="n">text_encoder_weights</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">get_file</span><span class="p">(</span> <span class="n">origin</span><span class="o">=</span><span class="s2">"https://huggingface.co/chansung/dreambooth-dog/resolve/main/lr</span><span class="si">%409e</span><span class="s2">-06-max_train_steps%40200-train_text_encoder%40True-text_encoder.h5"</span> <span class="p">)</span> <span class="n">dreambooth_model</span><span class="o">.</span><span class="n">diffusion_model</span><span class="o">.</span><span class="n">load_weights</span><span class="p">(</span><span class="n">unet_weights</span><span class="p">)</span> <span class="n">dreambooth_model</span><span class="o">.</span><span class="n">text_encoder</span><span class="o">.</span><span class="n">load_weights</span><span class="p">(</span><span class="n">text_encoder_weights</span><span class="p">)</span> <span class="n">images_dreamboothed</span> <span class="o">=</span> <span class="n">dreambooth_model</span><span class="o">.</span><span class="n">text_to_image</span><span class="p">(</span><span class="n">prompt</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">num_imgs_to_gen</span><span class="p">)</span> <span class="n">plot_images</span><span class="p">(</span><span class="n">images_dreamboothed</span><span class="p">,</span> <span class="n">prompt</span><span class="p">)</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>Downloading data from https://huggingface.co/chansung/dreambooth-dog/resolve/main/lr%409e-06-max_train_steps%40200-train_text_encoder%40True-unet.h5 3439088208/3439088208 [==============================] - 67s 0us/step Downloading data from https://huggingface.co/chansung/dreambooth-dog/resolve/main/lr%409e-06-max_train_steps%40200-train_text_encoder%40True-text_encoder.h5 492466760/492466760 [==============================] - 9s 0us/step 50/50 [==============================] - 8s 159ms/step </code></pre></div> </div> <p><img alt="png" src="/img/examples/generative/dreambooth/dreambooth_42_1.png" /></p> <p>The default number of steps for generating an image in <code>text_to_image()</code> <a href="https://github.com/keras-team/keras-cv/blob/3575bc3b944564fe15b46b917e6555aa6a9d7be0/keras_cv/models/stable_diffusion/stable_diffusion.py#L73">is 50</a>. Let's increase it to 100.</p> <div class="codehilite"><pre><span></span><code><span class="n">images_dreamboothed</span> <span class="o">=</span> <span class="n">dreambooth_model</span><span class="o">.</span><span class="n">text_to_image</span><span class="p">(</span> <span class="n">prompt</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">num_imgs_to_gen</span><span class="p">,</span> <span class="n">num_steps</span><span class="o">=</span><span class="mi">100</span> <span class="p">)</span> <span class="n">plot_images</span><span class="p">(</span><span class="n">images_dreamboothed</span><span class="p">,</span> <span class="n">prompt</span><span class="p">)</span> </code></pre></div> <div class="k-default-codeblock"> <div class="codehilite"><pre><span></span><code>100/100 [==============================] - 16s 159ms/step </code></pre></div> </div> <p><img alt="png" src="/img/examples/generative/dreambooth/dreambooth_44_1.png" /></p> <p>Feel free to experiment with different prompts (don't forget to add the unique identifier and the class label!) to see how the results change. We welcome you to check out our codebase and more experimental results <a href="https://github.com/sayakpaul/dreambooth-keras#results">here</a>. You can also read <a href="https://huggingface.co/blog/dreambooth">this blog post</a> to get more ideas.</p> <hr /> <h2 id="acknowledgements">Acknowledgements</h2> <ul> <li>Thanks to the <a href="https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py">DreamBooth example script</a> provided by Hugging Face which helped us a lot in getting the initial implementation ready quickly.</li> <li>Getting DreamBooth to work on human faces can be challenging. We have compiled some general recommendations <a href="https://github.com/sayakpaul/dreambooth-keras#notes-on-preparing-data-for-dreambooth-training-of-faces">here</a>. Thanks to <a href="https://no.linkedin.com/in/abhi1thakur">Abhishek Thakur</a> for helping with these.</li> </ul> </div> <div class='k-outline'> <div class='k-outline-depth-1'> <a href='#dreambooth'>DreamBooth</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#introduction'>Introduction</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#initial-imports'>Initial imports</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#usage-of-dreambooth'>Usage of DreamBooth</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#download-the-instance-and-class-images'>Download the instance and class images</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#visualize-images'>Visualize images</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#prepare-datasets'>Prepare datasets</a> </div> <div class='k-outline-depth-3'> <a href='#prepare-the-captions'>Prepare the captions</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#prepare-the-images'>Prepare the images</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#assemble-dataset'>Assemble dataset</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#check-shapes'>Check shapes</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#dreambooth-training-loop'>DreamBooth training loop</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#trainer-initialization'>Trainer initialization</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#train'>Train!</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#experiments-and-inference'>Experiments and inference</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#acknowledgements'>Acknowledgements</a> </div> </div> </div> </div> </div> </body> <footer style="float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb;"> <a href="https://policies.google.com/terms">Terms</a> | <a href="https://policies.google.com/privacy">Privacy</a> </footer> </html>