CINXE.COM
3DNA Homepage -- Nucleic Acid Structures
<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>3DNA Homepage -- Nucleic Acid Structures</title> <link rel="home" href="https://x3dna.org/" /> <meta name="keywords" content="3DNA,DNA, RNA, protein-DNA complexes, structural analysis, model rebuilding, rectangular block, simplified visualization, dinucleotide platform, Curves, Calladine, NewHelix, FreeHelix, NDB, PDB" /> <meta name="description" content="Homepage of the 3DNA suite of software programs for the analysis, rebuilding and visualization of 3-dimensional nucleic acid structures" /> <meta name="author" content="Dr. Xiang-Jun Lu; x3dna.org"> <link rel="stylesheet" type="text/css" media="screen" href="/css/tachyons.min.css" /> <link rel="stylesheet" type="text/css" media="screen" href="/css/x3dna.css" /> <link rel="stylesheet" type="text/css" media="print" href="/css/x3dna-print.css" /> <link href="http://fonts.googleapis.com/css?family=Arvo|PT+Sans" rel="stylesheet" type="text/css" /> <script type="text/javascript" src="/js/jquery-min.js"></script> <script type="text/javascript" src="/js/jquery.expander.min.js"> </script> <script type="text/javascript" src="/js/x3dna.js"></script> </head> <body id="front"> <div id="container"> <div id="head"> <h1 id="site-name"><a rel="home" href="https://x3dna.org/"><img class= "alignleft" src="/images/3dna-logo.png" alt="x3dna-dssr logo" title= "Welcome to the X3DNA-DSSR Resource" /></a>X3DNA-DSSR: a resource for structural bioinformatics of nucleic acids<br><span class="subtitle">(An NIGMS National Resource supported by NIH grant R24GM153869)</span></h1> </div> <div id="sidebar-1"> <ul class="section_list"><li> » <a href="https://x3dna.org/">Home</a> </li> <li> <a href="https://x3dna.org/about/">About</a> </li> <li> <a href="https://x3dna.org/articles/">Articles</a> </li> <li> <a href="https://x3dna.org/citations/">Citations</a> </li> <li> <a href="https://x3dna.org/contact/">Contact</a> </li> <li> <a href="https://x3dna.org/highlights/">Highlights</a> </li> <li> <a href="https://x3dna.org/miscs/">Misc. items</a> </li> <li> <a href="https://x3dna.org/posts-list/">Posts list</a> </li></ul> <br /> <p style="margin-bottom:10px;font-weight:bold;"><a href="https://inventions.techventures.columbia.edu/technologies/dssr-an-integrated--CU20391">DSSR <span class="pa1 br3 bg-moon-gray">v2.5.0-2025feb12</span></a> <br /><a href="http://docs.x3dna.org/dssr-manual.pdf">DSSR Manual</a> <br /><a href="http://docs.x3dna.org/release-note.pdf">Release notes</a> <br /> <br /><a href="http://forum.x3dna.org/">Forum</a> <br /><a href="http://forum.x3dna.org/rna-structures/">DSSR (RNA)</a> <br /><a href="http://wdssr.x3dna.org/">Web-DSSR</a> <br /><a href="http://jmol.x3dna.org/">DSSR-Jmol</a> <br /><a href="http://skmatic.x3dna.org">DSSR-PyMOL</a> <br /> <br /><a style="color: blue;" href="http://docs.x3dna.org/dssr-overview/">{DSSR-Video}</a> </p> <br /> <p id="text-size"> <input style="font-weight: bold;" type='button' value='+SIZE' id='large' /><br /> <input type='button' value='-size' id='small' /> </p> </div> <div id="sidebar-2"> <form role="search" method="get" action="https://x3dna.org/"> <p class="search_input">Search<br /> <input name="q" required="required" size="15" type="search" value="" /></p> </form> <p class="linklist"><a href="http://x3dna.org/about/what-is-new" title="3DNA-related news items">What's new?</a><br /><a href="http://x3dna.org/articles/welcome" title="DSSR-PyMOL cover images in the RNA Journal">Cover image</a><br /><a href="http://x3dna.org/articles/seeing-is-understanding-as-well-as-believing" title="Representative images illustrating selected features of 3DNA">Illustrations</a><br /><a href="http://x3dna.org/highlights/schematic-diagrams-of-base-pair-parameters" title="Schematic diagrams of base-pair and step parameters for download.">Base parameters</a><br /><a href="http://x3dna.org/highlights/dssr-what-is-it-and-why-bother" title="What makes DSSR unique?">Why DSSR?</a><br /><a href="http://web.x3dna.org/" title="Web-interface to 3DNA, version 2">Web-3DNA</a><br /><a href="http://x3dna.org/highlights/pauling-triplex-model-of-nucleic-acids-is-available-in-3dna" title="Pauling triplex model">Pauling triplex</a><br /><a href="http://g4.x3dna.org/" title="A list of G4 structures auto-identified by DSSR from the PDB">G4 structures</a><br /><a href="http://x3dna.org/articles/outside-links" title="Links to third-part tools relevant to 3DNA">Outside links</a><br /><a href="http://skmatic.x3dna.org/pdb_entries?num_examples=36" title="A random sample of 36 PDB entries in DSSR-enhanced schematics rendered with PyMOL.">PDB schematics</a><br /><a href="http://docs.x3dna.org/dssr2-overview.pdf" title="Overview of DSSR 2.0">DSSR2 overview</a><br /></p> <p class="newpost">Latest posts</p> <p class="newpost-link">· <a rel="bookmark" href="https://x3dna.org/articles/the-structure-title-option-for-dssr-ct-output">“The --structure-title option for DSSR .ct output”</a> <br /> on 2024-11-25</p> <p class="newpost-link">· <a rel="bookmark" href="https://x3dna.org/articles/the-bpseq-option-in-dssr">“The `--bpseq` option in DSSR”</a> <br /> on 2024-11-17</p> <p class="newpost-link">· <a rel="bookmark" href="https://x3dna.org/citations/dssr-cited-in-the-design-of-rna-aptamers">“DSSR cited in the design of RNA aptamers”</a> <br /> on 2024-11-15</p> <p class="newpost-link">· <a rel="bookmark" href="https://x3dna.org/highlights/torsion-angles-from-dssr">“Torsion angles from DSSR”</a> <br /> on 2024-10-19</p> <p class="newpost-link">· <a rel="bookmark" href="https://x3dna.org/highlights/dssr-enabled-innovative-pymol-schematics-in-the-covers-of-the-rna-journal">“DSSR-enabled innovative PyMOL schematics in the covers of the RNA Journal”</a> <br /> on 2021-12-20</p> <p class="newpost-link">· <a rel="bookmark" href="https://x3dna.org/highlights/bioexcel-webinar-on-dssr">“BioExcel webinar on DSSR”</a> <br /> on 2021-11-23</p> </div> <div id="content"> <div class="home-body"> <blockquote> <p>Cover image provided by X3DNA-DSSR, an NIGMS National Resource for structural bioinformatics of nucleic acids (R24GM153869; <a href="http://skmatics.x3dna.org">skmatics.x3dna.org</a>). Image generated using DSSR and PyMOL (Lu XJ. 2020. [Nucleic Acids Res 48: e74(<a href="https://doi.org/10.1093/nar/gkaa426">https://doi.org/10.1093/nar/gkaa426</a>)).</p> </blockquote> <p>See the 2020 paper titled "<a href="https://doi.org/10.1093/nar/gkaa426">DSSR-enabled innovative schematics of 3D nucleic acid structures with PyMOL</a>" in <em>Nucleic Acids Research</em> and the corresponding <a href="http://skmatics.x3dna.org/gkaa426-supp.pdf">Supplemental PDF</a> for details. Many thanks to Drs. Wilma Olson and Cathy Lawson for their help in the preparation of the illustrations.</p> <p><a href="http://forum.x3dna.org/index.php?topic=1035.0">Details on how to reproduce the cover images are available on the 3DNA Forum</a>.</p> <hr /> <ol> <li><a href="https://rnajournal.cshlp.org/content/31/2/F1.medium.gif">February 2025</a></li> </ol> <p><img src="https://rnajournal.cshlp.org/content/31/2/F1.medium.gif" alt="February 2025" /></p> <p>Structure of the Hendra henipavirus (HeV) nucleoprotein (N) protein-RNA double-ring assembly (PDB id: 8C4H; Passchier TC, White JB, Maskell DP, Byrne MJ, Ranson NA, Edwards TA, Barr JN. 2024. The cryoEM structure of the Hendra henipavirus nucleoprotein reveals insights into paramyxoviral nucleocapsid architectures. <a href="https://pubmed.ncbi.nlm.nih.gov/38890308/">Sci Rep 14: 14099</a>). The HeV N protein adopts a bi-lobed fold, where the N- and C-terminal globular domains are bisected by an RNA binding cleft. Neighboring N proteins assemble laterally and completely encapsidate the viral genomic and antigenomic RNAs. The two RNAs are depicted by green and red ribbons. The U bases of the poly(U) model are shown as cyan blocks. Proteins are represented as semitransparent gold ribbons. Cover image provided by X3DNA-DSSR, an NIGMS National Resource for structural bioinformatics of nucleic acids (R24GM153869; <a href="http://skmatics.x3dna.org">skmatics.x3dna.org</a>). Image generated using DSSR and PyMOL (Lu XJ. 2020. <a href="https://doi.org/10.1093/nar/gkaa426">Nucleic Acids Res 48: e74</a>).</p> <hr /> <ol> <li><a href="https://rnajournal.cshlp.org/content/31/1/F1.medium.gif">January 2025</a></li> </ol> <p><img src="https://rnajournal.cshlp.org/content/31/1/F1.medium.gif" alt="January 2025" /></p> <p>Structure of the helicase and C-terminal domains of Dicer-related helicase-1 (DRH-1) bound to dsRNA (PDB id: <a href="[url=https://nakb.org/atlas=8T5S">8T5S</a>; Consalvo CD, Aderounmu AM, Donelick HM, Aruscavage PJ, Eckert DM, Shen PS, Bass BL. 2024. Caenorhabditis elegans Dicer acts with the RIG-I-like helicase DRH-1 and RDE-4 to cleave dsRNA. <a href="https://pubmed.ncbi.nlm.nih.gov/38747717/">eLife 13: RP93979</a>. Cryo-EM structures of Dicer-1 in complex with DRH-1, RNAi deficient-4 (RDE-4), and dsRNA provide mechanistic insights into how these three proteins cooperate in antiviral defense. The dsRNA backbone is depicted by green and red ribbons. The U-A pairs of the poly(A)·poly(U) model are shown as long rectangular cyan blocks, with minor-groove edges colored white. The ADP ligand is represented by a red block and the protein by a gold ribbon. Cover image provided by X3DNA-DSSR, an NIGMS National Resource for structural bioinformatics of nucleic acids (R24GM153869; <a href="http://skmatics.x3dna.org">skmatics.x3dna.org</a>). Image generated using DSSR and PyMOL (Lu XJ. 2020. <a href="https://doi.org/10.1093/nar/gkaa426">Nucleic Acids Res 48: e74</a>).</p> <hr /> <p>Moreover, the following 30 [12(2021) + 12(2022) + 6(2023)] cover images of the <em>RNA Journal</em> were generated by the <a href="https://nakb.org">NAKB (nakb.org)</a>.</p> <blockquote> <p>Cover image provided by the Nucleic Acid Database (NDB)/Nucleic Acid Knowledgebase (NAKB; nakb.org). Image generated using DSSR and PyMOL (Lu XJ. 2020. Nucleic Acids Res 48: e74).</p> </blockquote> <p class="tc"><a href="http://docs.x3dna.org/images/RNAcovers.png"><img src="http://docs.x3dna.org/images/RNAcovers.png" alt="DSSR-PyMOL cartoon blocks generated by the NDB/NAKB" width="600"></a></p> </div> <div class="divider"><img src="https://x3dna.org/images/1.gif" alt="---" width="400" height="1" /></div><div class="home-body"> <p>It gives me great pleasure to announce that the 3DNA/DSSR project is now funded by the NIH R24GM153869 grant, titled "X3DNA-DSSR: a resource for structural bioinformatics of nucleic acids". I am deeply grateful for the opportunity to continue working on a project that has basically defined who I am. It was a tough time during the funding gap over the past few years. Nevertheless, I have experienced and learned a lot, and witnessed miracles enabled by enthusiastic users.</p> <p>Since late 2020 when I lost my R01 grant, DSSR has been licensed by the Columbia Technology Ventures (CTV). I appreciate the numerous users (including big pharma) who purchased a DSSR Pro License or a DSSR Basic paid License. Thanks to the NIH R24GM153869 grant, we are pleased to provide DSSR Basic free of charge to the academic community. <a href="https://inventions.techventures.columbia.edu/technologies/dssr-an-integrated--CU20391">Academic Users may submit a license request for DSSR Basic or DSSR Pro by clicking "Express Licensing" on the CTV landing page</a>. Commercial users may inquire about pricing and licensing terms by emailing techtransfer@columbia.edu, copying xiangjun@x3dna.org.</p> <p>DSSR v2.4.5-2024sep24 was released to synchronize with the new R24 funding, which will bring the project to an entirely new level. All existing users are encouraged to upgrade their installation to this release which contains miscellaneous bug fixes (e.g., chain id with > 4 chars) and numerous minor improvements.</p> <p>Lots of exciting things will happen for the project. The first thing is to make DSSR freely accessible to the academic community. In the past couple of weeks, CTV have already issued quite a few DSSR Basic Academic licenses to users from all over the world. So the demand is high, and it will become stronger as more academic users become aware of DSSR. I'm closely monitoring the <a href="http://forum.x3dna.org/">3DNA Forum</a>, and is always ready to answer users questions.</p> <p>I am committed to making DSSR a brand that stands for quality and value. By virtue of its unmatched functionality, usability, and support, DSSR saves users a substantial amount of time and effort when compared to other options. My track record throughout the years has unambiguously demonstrated my dedication to this <em>solid software product</em>.</p> <hr /> <p>DSSR Basic contains all features described in the three DSSR-related papers, and includes the originally separate SNAP program (still unpublished) for analyzing DNA/RNA-protein complexes. The Pro version integrates the classic 3DNA functionality, plus advanced modeling routines, with email/Zoom/phone support.</p> </div> <div class="divider"><img src="https://x3dna.org/images/1.gif" alt="---" width="400" height="1" /></div> <!-- --> <div class="lists"> <h3 class="entry-title"><a rel="bookmark" href="https://x3dna.org/articles/the-structure-title-option-for-dssr-ct-output">The --structure-title option for DSSR .ct output</a> </h3> <div class="entry-content"> <p>DSSR produces RNA secondary structures in connect table (.ct) format. According to <a href="https://rna.urmc.rochester.edu/Text/File_Formats.html">"<em>RNAstructure</em> Command Line Help: File Formats"</a> (with slight editing):</p> <hr /> <blockquote> <h2>CT File Format</h2> <p>A CT (Connectivity Table) file contains secondary structure information for a sequence. These files are saved with a CT extension. When entering a structure to calculate the free energy, the following format must be followed.</p> <ol> <li>Start of first line: number of bases in the sequence</li> <li><strong>End of first line: title of the structure</strong></li> <li>Each of the following lines provides information about a given base in the sequence. Each base has its own line, with these elements in order: <ul> <li>Base number: index n</li> <li>Base (A, C, G, T, U, X)</li> <li>Index n-1</li> <li>Index n+1</li> <li>Number of the base to which n is paired. No pairing is indicated by 0 (zero).</li> <li><strong>Natural numbering</strong>. <em>RNAstructure</em> ignores the actual value given in natural numbering, so it is easiest to repeat n here.</li> </ul></li> </ol> </blockquote> <p>Using <a href="https://www.rcsb.org/structure/1MSY">PDB entry 1msy</a> as an example (see <strong>Figure 1</strong> below):</p> <hr /> <p><img src="http://docs.x3dna.org/images/1msy-3d-2d.png" alt="1msy-in-3d-2d" /></p> <p><strong>Figure 1</strong>. 3D and 2D structures of PDB entry 1msy. (A) 3D schematic auto-created via the DSSR-PyMOL integration. The labeled residues follow PDB coordinates. (B) 2D diagram rendered with VARNA using DSSR-derived 2D structural information in the .ct format. This figure was annotated using <a href="https://inkscape.org">Inkscape</a>.</p> <hr /> <p>With commands:</p> <pre><code>x3dna-dssr -i=1msy.pdb cp dssr-2ndstrs.ct 1msy-dssr-default.ct</code></pre> <p>The file <a href="http://docs.x3dna.org/files/1msy-dssr-default.ct">1msy-dssr-default.ct</a> has the following contents:</p> <pre><code> 27 ENERGY = 0.0 [1msy] -- secondary structure derived by DSSR 1 U 0 2 0 2647 2 G 1 3 26 2648 3 C 2 4 25 2649 4 U 3 5 24 2650 5 C 4 6 23 2651 6 C 5 7 22 2652 7 U 6 8 0 2653 8 A 7 9 0 2654 9 G 8 10 0 2655 10 U 9 11 0 2656 11 A 10 12 0 2657 12 C 11 13 17 2658 13 G 12 14 0 2659 14 U 13 15 0 2660 15 A 14 16 0 2661 16 A 15 17 0 2662 17 G 16 18 12 2663 18 G 17 19 0 2664 19 A 18 20 0 2665 20 C 19 21 0 2666 21 C 20 22 0 2667 22 G 21 23 6 2668 23 G 22 24 5 2669 24 A 23 25 4 2670 25 G 24 26 3 2671 26 U 25 27 2 2672 27 G 26 0 0 2673</code></pre> <p>Here the first line contains <strong>27</strong> (as the number of bases) and <strong>ENERGY = 0.0 [1msy] -- secondary structure derived by DSSR</strong> (as the title). While <em>RNAstructure</em> ignores the actual values given in natural numbering, DSSR outputs the residue numbers of the nucleotides (e.g. U2467 and G2673) in the PDB file.</p> <p>With the DSSR option <code>--structure-title</code> (or <code>--str-title</code>, actually via regex <code>"^-?-?str(ucture)?[-_]?title"</code>), users can set the title for the derived .ct file, as shown below:</p> <pre><code>x3dna-dssr -I=1msy.pdb --structure-title='CT file derived from DSSR' cp dssr-2ndstrs.ct 1msy-dssr-title.ct 27 CT file derived from DSSR 1 U 0 2 0 2647 2 G 1 3 26 2648 ...... 26 U 25 27 2 2672 27 G 26 0 0 2673</code></pre> <p>One can also remove the title, by using an empty string "" (i.e., <code>--str-title=""</code>) or simply <code>--str-title</code> (or <code>--str-title=</code>).</p> <pre><code>x3dna-dssr -I=1msy.pdb --structure-title="" cp dssr-2ndstrs.ct 1msy-dssr-notitle.ct 27 1 U 0 2 0 2647 2 G 1 3 26 2648 ......</code></pre> <p>With the <code>--more</code> option, DSSR also outputs additional info that can be used to easily identify a nucleotide and its pairing partner.</p> <pre><code>x3dna-dssr -I=1msy.pdb --more --structure-title="1msy with extra info" cp dssr-2ndstrs.ct 1msy-dssr-extra.ct 27 1msy with extra info 1 U 0 2 0 2647 # name=A.U2647 2 G 1 3 26 2648 # name=A.G2648, pairedNt=A.U2672 3 C 2 4 25 2649 # name=A.C2649, pairedNt=A.G2671 ......</code></pre> <p>Note that unlike for the <a href="https://x3dna.org/articles/the-bpseq-option-in-dssr"><code>.bpseq</code> format with extra info</a> which cannot be fed directly into <a href="https://varna.lisn.upsaclay.fr/">VARNA</a>, the extra info for the <code>.ct</code> format causes no troubles for <a href="https://varna.lisn.upsaclay.fr/">VARNA</a> to visualize the 2d structure.</p> <p>The <code>--structure-title</code> option is another small feature implemented in DSSR. It is currently not documented in the DSSR User Manual since this feature is unlikely of general interest.</p> <hr /> <p>DSSR commands used, and the output .ct files:</p> <pre><code>x3dna-dssr -i=1msy.pdb cp dssr-2ndstrs.ct 1msy-dssr-default.ct x3dna-dssr -I=1msy.pdb --structure-title='CT file derived from DSSR' cp dssr-2ndstrs.ct 1msy-dssr-title.ct x3dna-dssr -I=1msy.pdb --structure-title="" cp dssr-2ndstrs.ct 1msy-dssr-notitle.ct x3dna-dssr -I=1msy.pdb --more --structure-title="1msy with extra info" cp dssr-2ndstrs.ct 1msy-dssr-extra.ct</code></pre> <ul> <li><a href="http://docs.x3dna.org/files/1msy-dssr-default.ct">1msy-dssr-default.ct</a></li> <li><a href="http://docs.x3dna.org/files/1msy-dssr-title.ct">1msy-dssr-title.ct</a></li> <li><a href="http://docs.x3dna.org/files/1msy-dssr-notitle.ct">1msy-dssr-notitle.ct</a></li> <li><a href="http://docs.x3dna.org/files/1msy-dssr-extra.ct">1msy-dssr-extra.ct</a></li> </ul> </div> <p class="comments_invite"><a href="https://x3dna.org/articles/the-structure-title-option-for-dssr-ct-output#Comment" class="comments_invite">Comment</a></p> <div class="divider"><img src="https://x3dna.org/images/1.gif" alt="---" width="400" height="1" /></div> <h3 class="entry-title"><a rel="bookmark" href="https://x3dna.org/articles/the-bpseq-option-in-dssr">The `--bpseq` option in DSSR</a> </h3> <div class="entry-content"> <p>By default, DSSR produces RNA secondary structures in three commonly used file formats––ViennaRNA package dbn, Mfold connect table (.ct), and CRW bpseq––that can be fed directly into visualization tools such as <a href="https://varna.lisn.upsaclay.fr">VARNA</a>. In this blog post, I want to dig deeper into the bpseq format, and show the variations available from DSSR.</p> <p>According to <a href="http://www.rnasoft.ca/sstrand/help.php">"RNA STRAND v2.0 - The RNA secondary STRucture and statistical ANalysis Database"</a> (with slight editing):</p> <hr /> <blockquote> <p><strong>BPSEQ format</strong>:The file name should end with the suffix <code>".bpseq"</code>, as in <code>"mystr.bpseq"</code>. The bpseq format is a simple text format in which there is one line per base in the molecule, listing the <strong><em>position</em></strong> of the base (<strong><em>leftmost position is 1</em></strong>), the base name (A,C,G,U, or other alphabetical characters), and the position number of the base to which it is paired, with a 0 denoting that the base is unpaired. For more information, see the <a href="https://crw2-comparative-rna-web.org">Comparative RNA Web Site</a>. An example is as follows:</p> </blockquote> <pre><code>1 G 8 2 G 7 3 C 0 4 A 0 5 U 0 6 U 0 7 C 2 8 C 1 </code></pre> <blockquote> <p>For complexes with more than one molecule, the molecules are listed in sequence, with the base pairs numbers of each successive molecule following in order from the previous molecule.</p> </blockquote> <hr /> <p>The bases in <code>bpseq</code> format are identified by <strong>position</strong> numbers starting from 1 for the leftmost position. That is the convention DSSR follows by default in its <code>.bpseq</code> output. For example, for the PDB entry <a href="https://www.rcsb.org/structure/1MSY">1msy</a>, which contains 27 nucleotides, the command <code>x3dna-dssr -i=1msy.pdb</code> will generate a file named <code>dssr-2ndstrs.bpseq</code> with the following contents (abbreviated):</p> <pre><code> 1 U 0 2 G 26 3 C 25 ...... 25 G 3 26 U 2 27 G 0</code></pre> <p>However, according to PDB atomic coordinates, the nucleotides are numbered from U2647 (#1) to G2673 (#27) as shown in the <strong>Figure 1</strong> below:</p> <hr /> <p><img src="http://docs.x3dna.org/images/1msy-3d-2d.png" alt="1msy-in-3d-2d" /></p> <p><strong>Figure 1</strong>. 3D and 2D structures of PDB entry 1msy. (A) 3D schematic auto-created via the DSSR-PyMOL integration. The labeled residues follow PDB coordinates. (B) 2D diagram rendered with VARNA using DSSR-derived 2D structural information in the .ct format. This figure was annotated using <a href="https://inkscape.org">Inkscape</a>.</p> <hr /> <p>It makes sense that the labelling of bases in the 2D <code>bpseq</code> format follows those from the 3D atomic coordinates in the PDB. Thus instead of starting from position <code>1</code> as shown above, the bpseq file would start with <code>2647</code>. That's exactly what the DSSR <code>--bpseq</code> option is created for. Thus, with the command <code>x3dna-dssr -i=1msy.pdb --bpseq</code>, the output file <code>dssr-2ndstrs.bpseq</code> now has the following contents (abbreviated):</p> <pre><code> 2647 U 0 2648 G 2672 2649 C 2671 ...... 2671 G 2649 2672 U 2648 2673 G 0</code></pre> <p>This .bpseq file can be read by <a href="https://varna.lisn.upsaclay.fr">VARNA</a> (tested with <code>VARNAv3-93.jar</code>) to generate a 2D image as shown in <strong>Figure 1(B)</strong> above.</p> <p>Moreover, with the command <code>x3dna-dssr -i=1msy.pdb --bpseq=extra</code>, the output file <code>dssr-2ndstrs.bpseq</code> now contains additional info to easily identify a nucleotide and its pairing partner:</p> <pre><code> 2647 U 0 # name=A.U2647 2648 G 2672 # name=A.G2648, pairedNt=A.U2672 2649 C 2671 # name=A.C2649, pairedNt=A.G2671 ...... 2671 G 2649 # name=A.G2671, pairedNt=A.C2649 2672 U 2648 # name=A.U2672, pairedNt=A.G2648 2673 G 0 # name=A.G2673</code></pre> <p>It should be noted that this .bpseq output file is no longer compliant to the standard, and can not be fed into VARNA for visualization.</p> <p>The <code>--bpseq</code> option has been added upon users' request. The <code>--bpseq=extra</code> variation was implemented recently to ensure that the <code>--bpseq</code> option by itself produce a valid .bpseq file without extra info (e.g., enabled with the global <code>--more</code> option). Now the extra info for .bpseq output is enabled only by setting <code>--bpseq=extra</code> explicitly.</p> <p>This <code>--bpseq</code> option and its evolution is a good example of how DSSR responds to community requests. I'm here to listen and I'm always willing to improve DSSR that better fit users' needs. If you make use of DSSR in your pipeline and need some adaptions, please do not hesitate to contact me. I may consider adding a new option or revising the code otherwise that would streamline the integration of DSSR into your project.</p> <hr /> <p>DSSR commands used, and the output .bpseq files:</p> <pre><code>x3dna-dssr -i=1msy.pdb cp dssr-2ndstrs.bpseq 1msy-dssr-default.bpseq x3dna-dssr -i=1msy.pdb --bpseq cp dssr-2ndstrs.bpseq 1msy-dssr-bpseq.bpseq x3dna-dssr -i=1msy.pdb --bpseq=extra cp dssr-2ndstrs.bpseq 1msy-dssr-bpseq-extra.bpseq</code></pre> <ul> <li><a href="http://docs.x3dna.org/files/1msy-dssr-default.bpseq">1msy-dssr-default.bpseq</a></li> <li><a href="http://docs.x3dna.org/files/1msy-dssr-bpseq.bpseq">1msy-dssr-bpseq.bpseq</a></li> <li><a href="http://docs.x3dna.org/files/1msy-dssr-bpseq-extra.bpseq">1msy-dssr-bpseq-extra</a></li> </ul> </div> <p class="comments_invite"><a href="https://x3dna.org/articles/the-bpseq-option-in-dssr#Comment" class="comments_invite">Comment</a></p> <div class="divider"><img src="https://x3dna.org/images/1.gif" alt="---" width="400" height="1" /></div> <h3 class="entry-title"><a rel="bookmark" href="https://x3dna.org/highlights/torsion-angles-from-dssr">Torsion angles from DSSR</a> </h3> <div class="entry-content"> <p>By following citations to 3DNA/DSSR, I recently came across the paper "<a href="https://doi.org/10.1371/journal.pcbi.1012500">RNAtango: Analysing and comparing RNA 3D structures via torsional angles</a>" in <em>PLOS Computational Biology</em> by Mackowiak M, Adamczyk B, Szachniuk M, and Zok T. This work provides a nice summary of definitions of torsion and pseudo-torsion angles in RNA structure, and an angular metrics (MCQ, Mean of Circular Quantities) to score structure similarity. The <a href="https://rnatango.cs.put.poznan.pl">RNAtango web application</a> allows user to explore the distribution of torsion angles in a single structure/fragment (Single model), compare RNA models with a native structure (Models vs Target), or perform a comparative analysis in a set of models (Model vs Model).</p> <p>In the Introduction section, 3DNA/DSSR are mentioned along with other related tools, as below: </p> <blockquote> <p>Several bioinformatics tools have been designed for analyzing torsion and pseudotorsion angles, each with its own strengths and limitations. 3DNA, an open-source toolkit, provides comprehensive functionality, including torsion and pseudotorsion angle calculations [27], but lacks support for the current standard PDBx/mmCIF file format. DSSR, the successor to 3DNA, overcomes this limitation by supporting both PDB and PDBx/mmCIF files. However, it is a closed-source, commercial application that requires licensing, even for research purposes [28]. Curves+, another tool used for torsion angle analysis, is currently inaccessible due to the unavailability of its webpage and source code hosting [29]. Barnaba, a Python library and toolset for analyzing single structures or trajectories, supports torsion angle calculations but, like 3DNA, does not support the PDBx/mmCIF format [30]. For users seeking a more user friendly option, AMIGOS III offers a PyMOL plugin that calculates pseudotorsion angles and presents them in Ramachandran-like plots [17].</p> </blockquote> <p>Every bioinformatic software has been developed for a specific purpose, and no two such tools can be identical. It is a good thing that the community has a choice for RNA backbone analysis. Indeed, 3DNA has been superseded by DSSR, which is licensed by <a href="https://inventions.techventures.columbia.edu/technologies/dssr-an-integrated--CU20391">Columbia Technology Ventures (CTV)</a> to ensure its continuous development and availability. However, DSSR remain competitive due to its unmatched functionality, usability, and support: it saves users a substantial amount of time and effort when compared to other options.</p> <p>From the very beginning, it has been my dream to make DSSR stand out for its quality and value, and be widely accessible. The CTV DSSR distribution by no means follow typical commercial license for a software product: specifically, it does not include a license key to limit DSSR's usage to a specific machine and operating system, and there is no expire date for the software either. Moreover, the Basic Academic license was <em>free</em> of charge when DSSR was initially licensed by the CTV in August 2020, and remained so until around end of 2021 when the web-based "Express Licenses" functionality no longer worked. Manually handling the large number of requests for free academic licenses was not sustainable, and that was when the DSSR Basic Academic free license was removed. Upon user requests, we late on re-introduced DSSR Basic Academic license, but with a <em>one-time</em> fee of $200 to cover the running cost. That may be reason for the remark in the RNAtango paper that DSSR "requires licensing, even for research purposes". </p> <p>With the recent NIH R24 funding support on "X3DNA-DSSR: a resource for structural bioinformatics of nucleic acids", we are providing DSSR Basic free of charge to the academic community. Academic Users may submit a license request for DSSR Basic or DSSR Pro by clicking "<a href="https://inventions.techventures.columbia.edu/technologies/dssr-an-integrated--CU20391/licenses/188">Express Licensing</a>". Checking the list of licensees, I am thrilled to see the many new DSSR users from leading institutions around the world, including Stockholm University, Ghent University, Universitaet Heidelberg, University of Palermo, CSSB-Hamburg, Nicolaus Copernicus University, NIH, Harvard, ... Clearly, DSSR fills a niche, and the demands for it remain strong!</p> <p>Back to torsion angles, it is safe to say that DSSR has unique features not available or easily accessible elsewhere. Here are some use cases using tRNA PDB entry <code>1ehz</code> as an example:</p> <pre><code>x3dna-dssr -i=1ehz.cif # generate dssr-torsions.txt among other output files x3dna-dssr -i=1ehz.cif --torsion-file -o=1ehz-torsions.txt # just the torsion file 1ehz-torsions.txt x3dna-dssr -i=1ehz.cif --json | jq .nts[54] > 1ehz-PSU55.txt # DSSR-derived features for nucleotide PSU55</code></pre> <p>Users can easily run the DSSR commands listed above and get the results in human-readable text and machine-friendly JSON formats. For verification, the contents of <a href="http://docs.x3dna.org/files/1ehz-torsions.txt">1ehz-torsions.txt</a> and <a href="http://docs.x3dna.org/files/1ehz-PSU55.txt">1ehz-PSU55.txt</a> are available by clicking the links.</p> <p>It is worth noting that DSSR has the <code>--nmr</code> option for the analysis of an ensemble of NMR structures, in <code>.pdb</code> or <code>.cif</code> format, as deposited in the PDB. The combination of <code>--nmr</code> and <code>--json</code> renders DSSR easily accessible to the molecular dynamics (MD) community.</p> <p>In principle, calculating torsion angles is a straightforward process. In reality, factors such as modified nucleotides (especially pseudouridine), missing atoms, NMR ensembles or MD trajectories, PDB vs mmCIF formats, etc. make the implementation complicated. Without paying great attention to details, it is easy to make subtle mistakes. For example, with RNAtango the chi (χ) torsion angle for A.PSU55 of <code>1ehz</code> is listed as <code>-152.42°</code>, which is wrong. The correct value should be <code>-147.0°</code> as reported by DSSR (see below and the link <a href="http://docs.x3dna.org/files/1ehz-PSU55.txt">1ehz-PSU55.txt</a> above).</p> <p>DSSR provides a comprehensive list of backbone parameters (as listed below for <code>1ehz</code>). The program is efficient and robust, and has been battle tested. I am always quick to fix any bugs once verified, and am willing to add new features once thoroughly studied. In short, DSSR has been designed to be a reliable tool that the community can trust and build upon. </p> <hr /> <p>DSSR-derived backbone features for tRNA <code>1ehz</code>: </p> <pre><code> Output of DNA/RNA backbone conformational parameters DSSR v2.4.5-2024sep24 by xiangjun@x3dna.org ****************************************************************************************** Main chain conformational parameters: alpha: O3'(i-1)-P-O5'-C5' beta: P-O5'-C5'-C4' gamma: O5'-C5'-C4'-C3' delta: C5'-C4'-C3'-O3' epsilon: C4'-C3'-O3'-P(i+1) zeta: C3'-O3'-P(i+1)-O5'(i+1) e-z: epsilon-zeta (BI/BII backbone classification) chi for pyrimidines(Y): O4'-C1'-N1-C2; purines(R): O4'-C1'-N9-C4 Range [170, -50(310)] is assigned to anti, and [50, 90] to syn phase-angle: the phase angle of pseudorotation and puckering sugar-type: ~C2'-endo for C2'-endo like conformation, or ~C3'-endo for C3'-endo like conformation Note the ONE column offset (for easy visual distinction) ssZp: single-stranded Zp, defined as the z-coordinate of the 3' phosphorus atom (P) expressed in the standard reference frame of the 5' base; the value is POSITIVE when P lies on the +z-axis side (base in anti conformation); NEGATIVE if P is on the -z-axis side (base in syn conformation) Dp: perpendicular distance of the 3' P atom to the glycosidic bond [Ref: Chen et al. (2010): "MolProbity: all-atom structure validation for macromolecular crystallography." Acta Crystallogr D Biol Crystallogr, 66(1):12-21] splay: angle between the bridging P to the two base-origins of a dinucleotide. nt alpha beta gamma delta epsilon zeta e-z chi phase-angle sugar-type ssZp Dp splay 1 G A.G1 --- -128.1 67.8 82.9 -155.6 -68.6 -87(BI) -167.8(anti) 16.1(C3'-endo) ~C3'-endo 4.59 4.57 24.92 2 C A.C2 -67.4 -178.4 53.8 83.4 -145.1 -76.8 -68(BI) -163.8(anti) 16.1(C3'-endo) ~C3'-endo 4.52 4.63 21.15 3 G A.G3 -74.5 169.7 59.5 80.7 -148.3 -80.0 -68(BI) -161.9(anti) 14.6(C3'-endo) ~C3'-endo 4.75 4.69 22.28 4 G A.G4 -64.4 162.2 60.7 82.2 -157.4 -68.7 -89(BI) -168.7(anti) 20.8(C3'-endo) ~C3'-endo 4.68 4.57 25.22 5 A A.A5 -74.7 -176.5 53.4 84.9 -137.5 -81.7 -56(BI) -162.9(anti) 4.8(C3'-endo) ~C3'-endo 4.49 4.76 22.04 6 U A.U6 -48.8 157.6 55.3 81.3 -151.0 -77.0 -74(BI) -160.0(anti) 18.2(C3'-endo) ~C3'-endo 4.31 4.51 22.89 7 U A.U7 -59.5 -178.7 62.5 137.3 -105.9 -52.0 -54(--) -133.1(anti) 156.1(C2'-endo) ~C2'-endo 1.55 1.41 126.99 8 U A.U8 -83.8 -145.6 55.4 78.6 -142.8 -118.6 -24(--) -161.5(anti) 10.5(C3'-endo) ~C3'-endo 4.60 4.76 62.37 9 A A.A9 -69.7 -141.7 52.3 147.8 -106.2 -77.3 -29(--) -70.5(anti) 149.8(C2'-endo) ~C2'-endo 1.00 1.14 57.38 10 g A.2MG10 177.8 147.2 60.1 89.3 -126.2 -88.7 -37(--) 169.6(anti) 6.6(C3'-endo) ~C3'-endo 4.68 4.63 23.87 11 C A.C11 -56.1 167.9 48.2 87.2 -150.5 -69.9 -81(BI) -160.9(anti) 16.8(C3'-endo) ~C3'-endo 4.28 4.46 21.20 12 U A.U12 -67.8 172.9 51.8 80.7 -158.5 -65.2 -93(BI) -158.3(anti) 25.2(C3'-endo) ~C3'-endo 4.29 4.45 21.01 13 C A.C13 166.6 -169.9 178.6 82.5 -153.1 -97.4 -56(BI) -168.3(anti) 23.7(C3'-endo) ~C3'-endo 4.28 4.36 31.59 14 A A.A14 83.4 -158.3 -114.6 92.0 -125.5 -57.3 -68(--) -170.7(anti) 358.9(C2'-exo) ~C3'-endo 4.67 4.74 38.01 15 G A.G15 -55.1 162.5 51.9 79.8 -136.3 -143.9 8(--) -164.5(anti) 16.0(C3'-endo) ~C3'-endo 4.72 4.74 26.17 16 u A.H2U16 -6.1 91.2 76.8 96.8 -61.8 -131.2 69(--) -85.8(anti) 18.8(C3'-endo) ~C3'-endo -0.71 3.38 145.77 17 u A.H2U17 27.8 107.7 174.1 94.8 178.0 76.2 102(--) -142.5(anti) 341.4(C2'-exo) ~C3'-endo -0.90 4.20 105.55 18 G A.G18 45.4 -159.4 59.0 150.6 -95.2 -179.1 84(BII) -99.5(anti) 154.3(C2'-endo) ~C2'-endo 1.60 1.09 51.64 19 G A.G19 -71.4 -178.9 53.8 153.8 -91.6 -83.7 -8(--) -80.3(anti) 167.6(C2'-endo) ~C2'-endo -1.14 0.48 130.30 20 G A.G20 -81.3 -150.7 47.8 89.9 -122.3 -54.1 -68(--) 177.8(anti) 8.7(C3'-endo) ~C3'-endo 4.90 4.76 57.04 21 A A.A21 -75.6 148.6 -176.6 78.2 -168.9 -75.6 -93(BI) -160.2(anti) 13.0(C3'-endo) ~C3'-endo 4.00 4.26 40.66 22 G A.G22 158.8 153.5 179.3 82.0 -145.0 -80.4 -65(BI) -175.5(anti) 353.8(C2'-exo) ~C3'-endo 4.60 4.73 25.62 23 A A.A23 -53.3 174.8 52.5 82.3 -155.3 -66.4 -89(BI) -158.0(anti) 12.6(C3'-endo) ~C3'-endo 4.18 4.61 22.96 24 G A.G24 -68.8 178.2 46.8 83.6 -144.3 -72.8 -71(BI) -160.7(anti) 13.4(C3'-endo) ~C3'-endo 4.63 4.74 20.51 25 C A.C25 -65.1 168.9 53.9 83.3 -145.1 -68.4 -77(BI) -160.3(anti) 17.4(C3'-endo) ~C3'-endo 4.56 4.70 30.70 26 g A.M2G26 -53.8 170.8 47.7 86.0 -136.3 -76.9 -59(BI) -163.4(anti) 9.3(C3'-endo) ~C3'-endo 4.57 4.67 27.36 27 C A.C27 -53.0 166.9 43.6 83.4 -148.5 -73.4 -75(BI) -168.2(anti) 18.3(C3'-endo) ~C3'-endo 4.53 4.62 23.07 28 C A.C28 -72.4 178.3 49.3 80.1 -152.1 -67.0 -85(BI) -160.6(anti) 9.2(C3'-endo) ~C3'-endo 4.55 4.73 21.61 29 A A.A29 -66.6 174.0 55.6 81.4 -155.5 -78.3 -77(BI) -165.9(anti) 13.7(C3'-endo) ~C3'-endo 4.73 4.65 26.96 30 G A.G30 -54.0 165.9 56.9 83.6 -144.7 -62.3 -82(BI) -171.7(anti) 14.5(C3'-endo) ~C3'-endo 4.67 4.65 25.72 31 A A.A31 -69.9 177.8 52.3 83.7 -137.0 -75.5 -61(BI) -156.7(anti) 14.6(C3'-endo) ~C3'-endo 4.24 4.72 21.52 32 c A.OMC32 -52.7 161.4 49.3 80.1 -145.9 -71.2 -75(BI) -149.9(anti) 20.4(C3'-endo) ~C3'-endo 4.16 4.63 25.94 33 U A.U33 -67.7 -177.0 47.0 82.1 -148.0 -53.7 -94(BI) -148.2(anti) 13.3(C3'-endo) ~C3'-endo 4.19 4.64 75.47 34 g A.OMG34 171.1 148.1 52.5 83.4 -132.5 -71.8 -61(BI) -171.2(anti) 12.2(C3'-endo) ~C3'-endo 4.15 4.58 22.09 35 A A.A35 -47.7 163.7 40.2 80.9 -143.7 -59.5 -84(BI) -154.4(anti) 21.9(C3'-endo) ~C3'-endo 4.20 4.54 20.57 36 A A.A36 -52.4 165.7 51.3 72.2 -160.4 -85.2 -75(BI) -158.4(anti) 45.8(C4'-exo) ~C3'-endo 4.49 4.31 24.48 37 g A.YYG37 -57.5 163.0 47.8 81.1 -148.1 -67.0 -81(BI) -168.8(anti) 15.4(C3'-endo) ~C3'-endo 4.63 4.65 32.08 38 A A.A38 -61.8 -180.0 46.9 82.5 -136.8 -76.4 -60(BI) -169.4(anti) 2.4(C3'-endo) ~C3'-endo 4.63 4.78 23.75 39 P A.PSU39 -47.7 160.4 53.3 79.3 -140.1 -68.6 -72(BI) -165.6(anti) 15.8(C3'-endo) ~C3'-endo 4.55 4.68 26.68 40 c A.5MC40 -67.4 172.0 56.2 83.2 -154.2 -74.9 -79(BI) -162.6(anti) 17.3(C3'-endo) ~C3'-endo 4.52 4.60 27.71 41 U A.U41 -68.2 -179.4 52.4 78.9 -137.3 -84.7 -53(BI) -169.0(anti) 13.4(C3'-endo) ~C3'-endo 4.54 4.75 24.14 42 G A.G42 -47.9 158.7 55.6 79.8 -160.3 -70.3 -90(BI) -169.0(anti) 20.9(C3'-endo) ~C3'-endo 4.43 4.51 23.54 43 G A.G43 -67.0 -178.3 55.6 81.6 -154.9 -76.4 -78(BI) -160.2(anti) 12.6(C3'-endo) ~C3'-endo 4.24 4.61 20.95 44 A A.A44 -59.7 162.1 60.0 85.3 -142.8 -57.2 -86(BI) -159.4(anti) 16.9(C3'-endo) ~C3'-endo 4.25 4.61 31.07 45 G A.G45 -71.9 -176.9 51.0 87.6 -135.1 -78.7 -56(BI) -149.3(anti) 15.4(C3'-endo) ~C3'-endo 4.01 4.58 40.27 46 g A.7MG46 -56.8 -146.5 48.4 141.6 -102.7 -137.9 35(--) -65.8(anti) 154.5(C2'-endo) ~C2'-endo 0.21 0.96 139.04 47 U A.U47 62.4 -164.0 44.4 146.1 -93.7 -78.0 -16(--) -112.0(anti) 164.9(C2'-endo) ~C2'-endo 0.26 0.39 157.37 48 C A.C48 -73.5 -174.3 161.5 145.6 -143.5 75.6 141(--) -140.1(anti) 158.2(C2'-endo) ~C2'-endo 1.92 1.80 147.54 49 c A.5MC49 50.7 168.5 42.2 84.3 -145.0 -82.1 -63(BI) -173.6(anti) 10.1(C3'-endo) ~C3'-endo 4.77 4.75 25.83 50 U A.U50 -51.7 177.2 42.1 80.4 -150.6 -67.8 -83(BI) -165.3(anti) 5.6(C3'-endo) ~C3'-endo 4.38 4.75 23.15 51 G A.G51 -63.9 176.8 52.8 79.4 -150.4 -71.3 -79(BI) -156.6(anti) 11.5(C3'-endo) ~C3'-endo 4.44 4.67 21.28 52 U A.U52 -64.7 173.6 48.5 80.3 -156.5 -69.4 -87(BI) -164.0(anti) 14.1(C3'-endo) ~C3'-endo 4.64 4.74 25.47 53 G A.G53 -56.9 171.5 56.2 83.9 -159.4 -64.9 -95(BI) -169.2(anti) 19.8(C3'-endo) ~C3'-endo 4.59 4.57 24.53 54 t A.5MU54 -79.7 -172.8 57.7 77.6 -128.6 -70.7 -58(BI) -161.5(anti) 20.6(C3'-endo) ~C3'-endo 4.56 4.80 30.73 55 P A.PSU55 -49.7 168.8 44.1 76.6 -140.8 -69.9 -71(BI) -147.0(anti) 10.1(C3'-endo) ~C3'-endo 4.15 4.74 71.28 56 C A.C56 166.4 171.8 53.3 83.4 -132.7 -70.6 -62(BI) -161.5(anti) 12.6(C3'-endo) ~C3'-endo 4.37 4.76 28.07 57 G A.G57 -65.7 167.1 57.5 81.7 -145.2 -67.6 -78(BI) -159.3(anti) 12.8(C3'-endo) ~C3'-endo 4.36 4.65 42.47 58 a A.1MA58 -60.8 -146.1 71.8 156.7 -78.3 -169.3 91(BII) -86.3(anti) 161.1(C2'-endo) ~C2'-endo 0.48 0.68 73.92 59 U A.U59 72.6 -158.8 63.7 84.6 -148.8 -53.7 -95(BI) -165.6(anti) 25.8(C3'-endo) ~C3'-endo 4.67 4.42 27.88 60 C A.C60 -72.2 179.5 66.0 148.3 -97.1 -66.4 -31(--) -117.8(anti) 154.8(C2'-endo) ~C2'-endo 0.99 0.86 90.64 61 C A.C61 -84.3 179.8 38.2 83.0 -152.3 -74.5 -78(BI) -166.7(anti) 14.8(C3'-endo) ~C3'-endo 4.45 4.52 25.80 62 A A.A62 -60.1 179.6 46.9 80.5 -145.6 -74.1 -71(BI) -158.7(anti) 9.9(C3'-endo) ~C3'-endo 4.18 4.66 19.23 63 C A.C63 -62.0 167.3 50.9 80.7 -152.3 -70.7 -82(BI) -152.6(anti) 10.7(C3'-endo) ~C3'-endo 4.32 4.62 23.62 64 A A.A64 -66.9 180.0 44.1 75.8 -147.5 -76.5 -71(BI) -161.8(anti) 12.9(C3'-endo) ~C3'-endo 4.68 4.86 25.64 65 G A.G65 -44.0 164.2 49.9 79.8 -152.0 -73.3 -79(BI) -172.8(anti) 16.5(C3'-endo) ~C3'-endo 4.92 4.76 25.20 66 A A.A66 -57.9 178.5 52.0 81.7 -151.0 -73.5 -77(BI) -164.9(anti) 22.5(C3'-endo) ~C3'-endo 4.56 4.60 22.73 67 A A.A67 -62.0 164.1 54.2 83.2 -152.2 -78.3 -74(BI) -162.8(anti) 15.0(C3'-endo) ~C3'-endo 4.71 4.67 23.30 68 U A.U68 -59.8 175.3 47.3 82.2 -152.9 -65.4 -88(BI) -160.1(anti) 11.2(C3'-endo) ~C3'-endo 4.30 4.60 24.35 69 U A.U69 -63.8 168.1 55.1 79.1 -155.4 -85.6 -70(BI) -161.4(anti) 14.7(C3'-endo) ~C3'-endo 4.55 4.61 19.23 70 C A.C70 -61.7 164.6 53.1 79.0 -158.5 -64.5 -94(BI) -152.0(anti) 15.0(C3'-endo) ~C3'-endo 4.20 4.56 20.96 71 G A.G71 -78.4 173.6 60.3 80.3 -149.6 -68.4 -81(BI) -162.8(anti) 13.5(C3'-endo) ~C3'-endo 4.50 4.71 22.80 72 C A.C72 -73.2 176.2 62.1 83.0 -152.3 -67.9 -84(BI) -161.6(anti) 19.5(C3'-endo) ~C3'-endo 4.56 4.63 26.14 73 A A.A73 -63.3 177.7 50.4 81.6 -148.2 -66.1 -82(BI) -167.4(anti) 15.0(C3'-endo) ~C3'-endo 4.65 4.71 26.33 74 C A.C74 -66.9 -174.9 50.7 85.9 -145.0 -58.8 -86(BI) -153.1(anti) 11.8(C3'-endo) ~C3'-endo 4.22 4.61 33.45 75 C A.C75 -52.3 175.7 42.3 85.6 -131.9 163.9 64(BII) -151.7(anti) 15.1(C3'-endo) ~C3'-endo 3.96 4.60 159.78 76 A A.A76 -71.0 130.2 164.6 160.9 --- --- --- 138.5(anti) 176.1(C2'-endo) ~C2'-endo --- --- --- ****************************************************************************************** Virtual eta/theta torsion angles: eta: C4'(i-1)-P(i)-C4'(i)-P(i+1) theta: P(i)-C4'(i)-P(i+1)-C4'(i+1) [Ref: Olson (1980): "Configurational statistics of polynucleotide chains. An updated virtual bond model to treat effects of base stacking." Macromolecules, 13(3):721-728] eta': C1'(i-1)-P(i)-C1'(i)-P(i+1) theta': P(i)-C1'(i)-P(i+1)-C1'(i+1) [Ref: Keating et al. (2011): "A new way to see RNA." Quarterly Reviews of Biophysics, 44(4):433-466] eta": base(i-1)-P(i)-base(i)-P(i+1) theta": P(i)-base(i)-P(i+1)-base(i+1) nt eta theta eta' theta' eta" theta" 1 G A.G1 --- -139.3 --- -136.5 --- -110.8 2 C A.C2 171.9 -144.6 -175.5 -144.1 -136.1 -118.1 3 G A.G3 160.2 -151.4 173.9 -153.9 -145.0 -143.7 4 G A.G4 164.3 -144.6 177.7 -144.1 -154.8 -98.7 5 A A.A5 166.9 -138.1 -178.3 -135.8 -116.3 -111.6 6 U A.U6 172.1 -149.7 -170.8 -143.9 -130.1 -126.5 7 U A.U7 -158.0 -42.7 -138.7 -60.7 -120.5 -31.5 8 U A.U8 162.7 160.7 -159.9 -163.8 -142.6 176.2 9 A A.A9 -140.6 -38.9 -159.3 -112.7 157.1 -105.5 10 g A.2MG10 27.8 -130.3 97.2 -130.1 134.8 -110.3 11 C A.C11 170.3 -135.8 -175.7 -136.7 -137.8 -119.9 12 U A.U12 159.9 -121.6 176.5 -130.6 -148.5 -101.4 13 C A.C13 178.1 -179.1 -166.8 176.7 -118.5 178.4 14 A A.A14 171.9 -146.5 172.1 -133.4 -179.7 -74.6 15 G A.G15 164.3 -177.9 -166.6 -161.0 -92.6 -101.8 16 u A.H2U16 -124.1 -77.5 -114.2 -108.3 -72.5 -127.0 17 u A.H2U17 -10.5 -64.3 7.7 -94.7 17.3 -125.4 18 G A.G18 -21.0 -167.4 45.3 -160.9 61.3 -124.2 19 G A.G19 -127.4 -43.3 -122.0 -72.9 -105.8 -7.8 20 G A.G20 165.3 -100.4 -160.4 -101.1 -177.9 -115.4 21 A A.A21 -78.3 152.7 -68.0 155.1 -61.1 154.8 22 G A.G22 159.5 167.6 156.6 178.8 157.1 -162.6 23 A A.A23 178.4 -141.8 -173.5 -141.2 -156.1 -112.0 24 G A.G24 163.7 -139.5 177.7 -137.6 -137.6 -103.8 25 C A.C25 161.4 -132.6 179.2 -131.0 -128.2 -89.0 26 g A.M2G26 173.0 -133.0 -167.7 -130.4 -106.9 -93.6 27 C A.C27 163.5 -142.3 -178.0 -141.5 -123.6 -105.6 28 C A.C28 157.5 -143.8 171.1 -144.3 -136.3 -125.5 29 A A.A29 163.5 -152.9 179.0 -150.8 -142.9 -124.7 30 G A.G30 178.3 -127.8 -167.7 -126.5 -128.2 -72.5 31 A A.A31 165.4 -133.9 -174.3 -131.0 -101.0 -93.9 32 c A.OMC32 164.5 -139.2 -175.9 -138.0 -122.3 -108.9 33 U A.U33 165.1 -114.0 177.8 -158.5 -141.1 138.3 34 g A.OMG34 27.3 -121.7 50.5 -123.7 22.7 -84.4 35 A A.A35 162.5 -127.7 -177.7 -128.5 -116.8 -113.4 36 A A.A36 164.9 -172.7 -174.4 -169.2 -142.3 -115.1 37 g A.YYG37 163.1 -135.2 174.1 -131.3 -119.8 -79.8 38 A A.A38 170.2 -133.9 -173.3 -129.0 -104.3 -105.5 39 P A.PSU39 174.0 -132.6 -168.6 -131.2 -127.5 -89.6 40 c A.5MC40 163.1 -148.5 -177.6 -149.3 -115.9 -131.7 41 U A.U41 169.4 -148.8 177.2 -144.0 -152.9 -120.5 42 G A.G42 171.2 -150.4 -171.5 -151.6 -133.9 -124.5 43 G A.G43 174.2 -151.6 -174.4 -150.0 -134.0 -124.5 44 A A.A44 173.2 -120.4 -171.8 -120.0 -133.3 -72.6 45 G A.G45 168.6 -141.6 -168.3 -128.4 -103.4 -133.4 46 g A.7MG46 -143.2 -107.3 -133.6 -149.6 -148.2 -162.7 47 U A.U47 -31.5 -56.8 4.8 -91.0 24.9 -110.7 48 C A.C48 -82.5 53.9 -29.3 17.5 1.5 -107.6 49 c A.5MC49 -56.7 -145.3 -36.6 -142.8 103.2 -130.2 50 U A.U50 174.8 -146.6 -176.9 -142.8 -153.6 -113.8 51 G A.G51 170.3 -147.3 -175.5 -148.2 -134.2 -122.1 52 U A.U52 160.3 -145.8 173.9 -144.3 -141.8 -119.6 53 G A.G53 174.9 -141.5 -167.2 -142.4 -124.7 -111.6 54 t A.5MU54 171.1 -129.2 -177.4 -122.6 -133.3 -76.4 55 P A.PSU55 165.3 -115.2 -173.6 -155.4 -112.1 145.1 56 C A.C56 31.4 -126.9 51.6 -124.1 25.3 -87.4 57 G A.G57 164.3 -142.5 -174.1 -131.9 -119.2 -113.8 58 a A.1MA58 -131.5 -108.7 -105.3 -171.2 -104.2 159.8 59 U A.U59 1.8 -119.4 26.8 -109.9 49.0 -56.9 60 C A.C60 -171.8 -40.7 -130.1 -68.5 -70.2 -35.8 61 C A.C61 122.4 -148.3 168.6 -144.1 -158.2 -117.4 62 A A.A62 173.0 -146.6 -176.9 -144.9 -142.0 -119.6 63 C A.C63 164.5 -148.3 177.9 -149.6 -143.9 -128.6 64 A A.A64 158.4 -151.0 168.5 -148.2 -154.8 -122.8 65 G A.G65 173.6 -147.3 -172.0 -145.4 -130.5 -121.2 66 A A.A66 177.6 -145.4 -170.1 -142.7 -133.5 -111.9 67 A A.A67 165.6 -149.3 -176.9 -149.8 -129.8 -126.7 68 U A.U68 168.9 -138.2 179.4 -136.1 -143.2 -96.5 69 U A.U69 165.6 -160.5 -176.0 -161.2 -118.8 -156.9 70 C A.C70 166.7 -146.2 173.6 -149.0 -171.6 -127.0 71 G A.G71 161.0 -143.0 174.0 -142.3 -146.3 -113.4 72 C A.C72 166.1 -141.5 -177.5 -141.9 -131.5 -110.2 73 A A.A73 167.6 -137.8 -177.2 -133.3 -127.1 -89.8 74 C A.C74 171.2 -122.1 -172.8 -116.5 -116.2 -72.1 75 C A.C75 174.9 106.5 -161.9 109.8 -102.9 -139.3 76 A A.A76 --- --- --- --- --- --- ****************************************************************************************** Sugar conformational parameters: v0: C4'-O4'-C1'-C2' v1: O4'-C1'-C2'-C3' v2: C1'-C2'-C3'-C4' v3: C2'-C3'-C4'-O4' v4: C3'-C4'-O4'-C1' tm: the amplitude of pucker P: the phase angle of pseudorotation [Ref: Altona & Sundaralingam (1972): "Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation." J Am Chem Soc, 94(23):8205-8212] nt v0 v1 v2 v3 v4 tm P Puckering 1 G A.G1 1.7 -23.4 35.1 -35.2 21.1 36.5 16.1 C3'-endo 2 C A.C2 1.6 -23.2 34.8 -34.8 20.9 36.2 16.1 C3'-endo 3 G A.G3 2.7 -25.1 36.8 -36.1 21.2 38.1 14.6 C3'-endo 4 G A.G4 -1.6 -22.3 36.3 -38.2 25.0 38.8 20.8 C3'-endo 5 A A.A5 10.1 -32.6 41.5 -36.6 16.7 41.7 4.8 C3'-endo 6 U A.U6 0.3 -24.0 37.3 -38.1 23.9 39.2 18.2 C3'-endo 7 U A.U7 -24.4 35.4 -32.4 18.9 3.3 35.4 156.1 C2'-endo 8 U A.U8 5.8 -28.7 39.7 -37.2 19.7 40.4 10.5 C3'-endo 9 A A.A9 -31.7 41.8 -35.6 18.1 8.4 41.2 149.8 C2'-endo 10 g A.2MG10 7.8 -28.0 36.7 -33.0 15.9 37.0 6.6 C3'-endo 11 C A.C11 1.2 -21.2 32.1 -32.5 19.8 33.5 16.8 C3'-endo 12 U A.U12 -4.6 -19.3 34.5 -37.9 26.7 38.1 25.2 C3'-endo 13 C A.C13 -3.4 -19.4 33.8 -36.4 25.1 36.9 23.7 C3'-endo 14 A A.A14 12.6 -30.8 36.8 -30.2 11.0 36.8 358.9 C2'-exo 15 G A.G15 1.9 -24.6 36.8 -36.8 22.2 38.3 16.0 C3'-endo 16 u A.H2U16 0.0 -18.7 29.2 -30.2 19.2 30.9 18.8 C3'-endo 17 u A.H2U17 23.0 -36.7 35.1 -23.2 0.2 37.0 341.4 C2'-exo 18 G A.G18 -27.9 39.5 -35.0 20.2 4.8 38.9 154.3 C2'-endo 19 G A.G19 -17.6 31.0 -31.9 23.1 -3.8 32.7 167.6 C2'-endo 20 G A.G20 6.6 -27.8 36.6 -34.2 17.5 37.0 8.7 C3'-endo 21 A A.A21 3.8 -25.0 35.1 -34.4 19.4 36.0 13.0 C3'-endo 22 G A.G22 16.4 -34.1 38.1 -29.5 8.3 38.3 353.8 C2'-exo 23 A A.A23 4.2 -26.6 37.4 -36.5 20.1 38.3 12.6 C3'-endo 24 G A.G24 3.9 -28.4 40.3 -39.3 22.4 41.5 13.4 C3'-endo 25 C A.C25 0.6 -24.5 37.8 -38.0 23.6 39.6 17.4 C3'-endo 26 g A.M2G26 6.3 -27.5 37.1 -34.7 17.9 37.6 9.3 C3'-endo 27 C A.C27 0.2 -23.5 36.5 -37.2 23.6 38.4 18.3 C3'-endo 28 C A.C28 6.6 -29.0 39.1 -36.3 18.8 39.6 9.2 C3'-endo 29 A A.A29 3.4 -26.6 38.4 -37.4 21.4 39.5 13.7 C3'-endo 30 G A.G30 2.6 -24.2 35.7 -34.9 20.4 36.9 14.5 C3'-endo 31 A A.A31 2.6 -24.0 35.0 -34.6 20.2 36.2 14.6 C3'-endo 32 c A.OMC32 -1.2 -21.7 35.1 -36.7 23.9 37.4 20.4 C3'-endo 33 U A.U33 3.5 -25.4 36.5 -35.3 20.1 37.5 13.3 C3'-endo 34 g A.OMG34 3.9 -22.7 32.2 -30.8 17.1 32.9 12.2 C3'-endo 35 A A.A35 -2.0 -19.9 32.7 -34.9 23.4 35.2 21.9 C3'-endo 36 A A.A36 -20.6 -7.3 30.6 -43.2 40.5 43.9 45.8 C4'-exo 37 g A.YYG37 2.1 -24.1 36.0 -35.6 21.0 37.4 15.4 C3'-endo 38 A A.A38 10.9 -30.3 37.6 -32.5 13.6 37.7 2.4 C3'-endo 39 P A.PSU39 2.1 -25.6 38.5 -38.4 22.8 40.0 15.8 C3'-endo 40 c A.5MC40 0.8 -22.5 34.6 -35.0 21.5 36.3 17.3 C3'-endo 41 U A.U41 3.8 -27.7 39.9 -38.6 22.0 41.0 13.4 C3'-endo 42 G A.G42 -1.7 -22.4 36.8 -38.6 25.4 39.4 20.9 C3'-endo 43 G A.G43 4.3 -27.6 39.1 -37.6 21.1 40.1 12.6 C3'-endo 44 A A.A44 1.0 -23.0 35.2 -35.4 21.6 36.8 16.9 C3'-endo 45 G A.G45 2.1 -24.3 35.7 -35.4 21.2 37.0 15.4 C3'-endo 46 g A.7MG46 -27.4 38.6 -34.7 19.7 4.7 38.5 154.5 C2'-endo 47 U A.U47 -20.9 34.8 -35.1 24.3 -2.2 36.4 164.9 C2'-endo 48 C A.C48 -25.6 38.4 -35.6 22.1 2.1 38.4 158.2 C2'-endo 49 c A.5MC49 5.8 -28.1 38.7 -36.0 19.1 39.3 10.1 C3'-endo 50 U A.U50 9.4 -32.2 41.0 -36.4 17.6 41.2 5.6 C3'-endo 51 G A.G51 4.9 -27.9 38.9 -36.8 20.3 39.7 11.5 C3'-endo 52 U A.U52 3.2 -28.5 41.4 -40.1 23.6 42.7 14.1 C3'-endo 53 G A.G53 -1.0 -23.1 37.0 -38.3 24.9 39.4 19.8 C3'-endo 54 t A.5MU54 -1.4 -22.2 35.9 -37.7 24.8 38.3 20.6 C3'-endo 55 P A.PSU55 6.2 -29.9 40.9 -38.3 20.4 41.5 10.1 C3'-endo 56 C A.C56 3.8 -25.3 35.7 -34.5 19.2 36.6 12.6 C3'-endo 57 G A.G57 4.0 -26.7 37.9 -36.5 20.6 38.9 12.8 C3'-endo 58 a A.1MA58 -24.3 38.4 -36.9 23.9 0.2 39.0 161.1 C2'-endo 59 U A.U59 -4.4 -18.3 31.8 -35.7 25.4 35.3 25.8 C3'-endo 60 C A.C60 -28.8 40.5 -36.4 21.2 4.7 40.3 154.8 C2'-endo 61 C A.C61 2.6 -25.5 36.8 -36.6 21.5 38.1 14.8 C3'-endo 62 A A.A62 5.9 -27.8 38.1 -35.4 18.8 38.7 9.9 C3'-endo 63 C A.C63 5.4 -27.3 37.5 -35.5 19.1 38.1 10.7 C3'-endo 64 A A.A64 4.1 -28.6 40.2 -38.8 22.2 41.2 12.9 C3'-endo 65 G A.G65 1.5 -26.6 39.5 -39.9 24.3 41.2 16.5 C3'-endo 66 A A.A66 -2.9 -21.6 36.5 -38.8 26.5 39.5 22.5 C3'-endo 67 A A.A67 2.4 -24.9 36.5 -36.1 21.4 37.8 15.0 C3'-endo 68 U A.U68 5.3 -28.4 39.5 -37.5 20.3 40.3 11.2 C3'-endo 69 U A.U69 2.9 -26.3 38.3 -37.9 22.3 39.6 14.7 C3'-endo 70 C A.C70 2.4 -25.9 38.7 -37.9 22.4 40.1 15.0 C3'-endo 71 G A.G71 3.7 -27.4 39.2 -38.3 21.8 40.3 13.5 C3'-endo 72 C A.C72 -0.6 -21.9 34.9 -36.2 23.1 37.0 19.5 C3'-endo 73 A A.A73 2.4 -25.4 37.3 -36.9 21.8 38.6 15.0 C3'-endo 74 C A.C74 4.4 -25.4 35.6 -34.0 18.6 36.4 11.8 C3'-endo 75 C A.C75 2.3 -22.5 33.1 -33.0 19.2 34.3 15.1 C3'-endo 76 A A.A76 -13.6 30.5 -34.8 27.7 -9.1 34.8 176.1 C2'-endo ****************************************************************************************** Assignment of sugar-phosphate backbone suites bin: name of the 12 bins based on [delta(i-1), delta, gamma], where delta(i-1) and delta can be either 3 (for C3'-endo sugar) or 2 (for C2'-endo) and gamma can be p/t/m (for gauche+/trans/gauche- conformations, respectively) (2x2x3=12 combinations: 33p, 33t, ... 22m); 'inc' refers to incomplete cases (i.e., with missing torsions), and 'trig' to triages (i.e., with torsion angle outliers) cluster: 2-char suite name, for one of 53 reported clusters (46 certain and 7 wannabes), '__' for incomplete cases, and '!!' for outliers suiteness: measure of conformer-match quality (low to high in range 0 to 1) [Ref: Richardson et al. (2008): "RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution)." RNA, 14(3):465-481] nt bin cluster suiteness 1 G A.G1 inc __ 0 2 C A.C2 33p 1a 0.935 3 G A.G3 33p 1a 0.868 4 G A.G4 33p 1a 0.842 5 A A.A5 33p 1a 0.847 6 U A.U6 33p 1a 0.664 7 U A.U7 32p 1b 0.803 8 U A.U8 23p 2a 0.509 9 A A.A9 32p 1[ 0.046 10 g A.2MG10 23p 2g 0.640 11 C A.C11 33p 1a 0.507 12 U A.U12 33p 1a 0.898 13 C A.C13 33t 1c 0.824 14 A A.A14 trig !! 0 15 G A.G15 33p 1a 0.484 16 u A.H2U16 trig !! 0 17 u A.H2U17 33t !! 0 18 G A.G18 32p 5p 0.026 19 G A.G19 22p 4b 0.512 20 G A.G20 23p 2a 0.623 21 A A.A21 33t !! 0 22 G A.G22 33t 1f 0.714 23 A A.A23 33p 1a 0.840 24 G A.G24 33p 1a 0.881 25 C A.C25 33p 1a 0.967 26 g A.M2G26 33p 1a 0.819 27 C A.C27 33p 1a 0.698 28 C A.C28 33p 1a 0.923 29 A A.A29 33p 1a 0.973 30 G A.G30 33p 1a 0.838 31 A A.A31 33p 1a 0.914 32 c A.OMC32 33p 1a 0.782 33 U A.U33 33p 1a 0.897 34 g A.OMG34 33p 1g 0.784 35 A A.A35 33p 1a 0.517 36 A A.A36 33p 1a 0.670 37 g A.YYG37 33p 1a 0.625 38 A A.A38 33p 1a 0.903 39 P A.PSU39 33p 1a 0.680 40 c A.5MC40 33p 1a 0.942 41 U A.U41 33p 1a 0.945 42 G A.G42 33p 1a 0.630 43 G A.G43 33p 1a 0.882 44 A A.A44 33p 1a 0.837 45 G A.G45 33p 1a 0.749 46 g A.7MG46 32p 1[ 0.849 47 U A.U47 22p 4p 0.589 48 C A.C48 22t 2u 0.283 49 c A.5MC49 23p 6d 0.520 50 U A.U50 33p 1a 0.656 51 G A.G51 33p 1a 0.981 52 U A.U52 33p 1a 0.945 53 G A.G53 33p 1a 0.896 54 t A.5MU54 33p 1a 0.720 55 P A.PSU55 33p 1a 0.586 56 C A.C56 33p 1g 0.894 57 G A.G57 33p 1a 0.837 58 a A.1MA58 32p 1[ 0.332 59 U A.U59 23p 4d 0.411 60 C A.C60 32p 1b 0.662 61 C A.C61 23p 2a 0.553 62 A A.A62 33p 1a 0.895 63 C A.C63 33p 1a 0.964 64 A A.A64 33p 1a 0.791 65 G A.G65 33p 1a 0.586 66 A A.A66 33p 1a 0.940 67 A A.A67 33p 1a 0.941 68 U A.U68 33p 1a 0.891 69 U A.U69 33p 1a 0.951 70 C A.C70 33p 1a 0.809 71 G A.G71 33p 1a 0.761 72 C A.C72 33p 1a 0.832 73 A A.A73 33p 1a 0.965 74 C A.C74 33p 1a 0.886 75 C A.C75 33p 1a 0.639 76 A A.A76 32t !! 0 Concatenated suite string per chain. To avoid confusion of lower case modified nucleotide name (e.g., 'a') with suite cluster (e.g., '1a'), use --suite-delimiter to add delimiters (matched '()' by default). 1 A RNA nts=76 G1aC1aG1aG1aA1aU1bU2aU1[A2gg1aC1aU1cC!!A1aG!!u!!u5pG4bG2aG!!A1fG1aA1aG1aC1ag1aC1aC1aA1aG1aA1ac1aU1gg1aA1aA1ag1aA1aP1ac1aU1aG1aG1aA1aG1[g4pU2uC6dc1aU1aG1aU1aG1at1aP1gC1aG1[a4dU1bC2aC1aA1aC1aA1aG1aA1aA1aU1aU1aC1aG1aC1aA1aC1aC!!A</code></pre> </div> <p class="comments_invite"><a href="https://x3dna.org/highlights/torsion-angles-from-dssr#Comment" class="comments_invite">Comment</a></p> <div class="divider"><img src="https://x3dna.org/images/1.gif" alt="---" width="400" height="1" /></div> <h3 class="entry-title"><a rel="bookmark" href="https://x3dna.org/highlights/dssr-enabled-innovative-pymol-schematics-in-the-covers-of-the-rna-journal">DSSR-enabled innovative PyMOL schematics in the covers of the RNA Journal</a> </h3> <div class="entry-content"> <p>The <span class="caps">DSSR</span>-PyMOL schematics have been featured in all 12 cover images (January to December) of the <em><span class="caps">RNA</span> Journal</em> in 2021. Moreover, the January 2022 issue of <em><span class="caps">RNA</span></em> continues to highlight <span class="caps">DSSR</span>-enabled schematics (see the note below). In the current Covid-19 pandemic, this cover seems to be a fit for the upcoming Christmas holiday season.</p> <blockquote> <p>Ebola virus matrix protein octameric ring (<span class="caps">PDB</span> id: 7K5L; Landeras-Bueno S, Wasserman H, Oliveira G, VanAernum ZL, Busch F, Salie ZL, Wysocki VH, Andersen K, Saphire EO. 2021. Cellular mRNA triggers structural transformation of Ebola virus matrix protein VP40 to its essential regulatory form. Cell Rep 35: 108986). The Ebola virus matrix protein (VP40) forms distinct structures linked to distinct functions in the virus life cycle. VP40 forms an octameric ring-shaped (D4 symmetry) assembly upon binding of <span class="caps">RNA</span> and is associated with transcriptional control. <span class="caps">RNA</span> backbone is displayed as a red ribbon; block bases use <span class="caps">NDB</span> colors: A—red, G—green, U—cyan; protein is displayed as a gold ribbon. <strong>Cover image provided by the Nucleic Acid Database (ndbserver.rutgers.edu).</strong> Image generated using <span class="caps">DSSR</span> and PyMOL (Lu XJ. 2020. <em>Nucleic Acids Res</em> <strong>48</strong>: e74).</p> </blockquote> <p>Thanks to Dr. Cathy Lawson at the <span class="caps">NDB</span> for generating these cover images using <span class="caps">DSSR</span> and PyMOL for the <em><span class="caps">RNA</span> Journal</em>. I’m gratified that the 2020 <span class="caps">NAR</span> paper is explicitly acknowledged: it’s the first time I’ve published as a single author in my scientific career.</p> <p class="clean" style="text-align:center;"><img width=100% src="http://docs.x3dna.org/images/RNAcovers2021-jan2022.png" title="DSSR-enabled innovative schematics with PyMOL, featured in the RNA Journal in 2021 and January 2022 " /></p> <p>Did you know that you can easily generate similar <span class="caps">DSSR</span>-PyMOL schematics via the <a href="http://skmatic.x3dna.org/">http://skmatic.x3dna.org/</a> website? It is “simple and effective”, “good for teaching”, and has been highly recommended by Dr. Quentin Vicens (CU Denver) in <a href="https://facultyopinions.com/prime/738001682">FacultyOpinions.com</a>.</p> <hr> <p>The 12 <span class="caps">PDB</span> structures illustrated in the 2021 covers are:</p> <ol> <li><a href="https://rnajournal.cshlp.org/content/27/1.cover-expansion">January 2021</a> “iMango-<span class="caps">III</span> fluorescent aptamer (<span class="caps">PDB</span> id: 6PQ7; Trachman <span class="caps">III</span> RJ, Stagno JR, Conrad C, Jones CP, Fischer P, Meents A, Wang YX, Ferre-D’Amare AR. 2019. Co-crystal structure of the iMango-<span class="caps">III</span> fluorescent <span class="caps">RNA</span> aptamer using an X-ray free-electron laser. Acta Cryst F 75: 547). Upon binding TO1-biotin, the iMango-<span class="caps">III</span> aptamer achieves the largest fluorescence enhancement reported for turn-on aptamers (over 5000-fold).”</li> <li><a href="https://rnajournal.cshlp.org/content/27/2.cover-expansion">February 2021</a> “Human adenosine deaminase (E488Q mutant) acting on dsRNA (<span class="caps">PDB</span> id: 6VFF; Thuy-Boun AS, Thomas JM, Grajo HL, Palumbo CM, Park S, Nguyen LT, Fisher AJ, Beal PA. 2020. Asymmetric dimerization of adenosine deaminase acting on <span class="caps">RNA</span> facilitates substrate recognition. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa532). Adenosine deaminase enzymes convert adenosine to inosine in duplex <span class="caps">RNA</span>, a modification that strongly affects <span class="caps">RNA</span> structure and function in multiple ways.”</li> <li><a href="https://rnajournal.cshlp.org/content/27/3.cover-expansion">March 2021</a> “Hepatitis A virus <span class="caps">IRES</span> domain V in complex with Fab (<span class="caps">PDB</span> id: 6MWN; Koirala D, Shao Y, Koldobskaya Y, Fuller JR, Watkins AM, Shelke SA, Pilipenko EV, Das R, Rice PA, Piccirilli JA. 2019. A conserved <span class="caps">RNA</span> structural motif for organizing topology within picornaviral internal ribosome entry sites. Nat Commun 10: 3629).”</li> <li><a href="https://rnajournal.cshlp.org/content/27/4.cover-expansion">April 2021</a> “Mouse endonuclease V in complex with 23mer <span class="caps">RNA</span> (<span class="caps">PDB</span> id: 6OZO; Wu J, Samara NL, Kuraoka I, Yang W. 2019. Evolution of inosine-specific endonuclease V from bacterial DNase to eukaryotic RNase. Mol Cell 76: 44). Endonuclease V cleaves the second phosphodiester bond 3′ to a deaminated adenosine (inosine). Although highly conserved, EndoV change substrate preference from <span class="caps">DNA</span> in bacteria to <span class="caps">RNA</span> in eukaryotes.”</li> <li><a href="https://rnajournal.cshlp.org/content/27/5.cover-expansion">May 2021</a> “Manganese riboswitch from Xanthmonas oryzae (<span class="caps">PDB</span> id: 6N2V; Suddala KC, Price IR, Dandpat SS, Janeček M, Kührová P, Šponer J, Banáš P, Ke A, Walter NG. 2019. Local-to-global signal transduction at the core of a Mn2+ sensing riboswitch. Nat Commun 10: 4304). Bacterial manganese riboswitches control the expression of Mn2+ homeostasis genes. Using <span class="caps">FRET</span>, it was shown that an extended 4-way-junction samples transient docked states in the presence of Mg2+ but can only dock stably upon addition of submillimolar Mn2+.”</li> <li><a href="https://rnajournal.cshlp.org/content/27/6.cover-expansion">June 2021</a> “Sulfolobus islandicus Csx1 RNase in complex with cyclic <span class="caps">RNA</span> activator (<span class="caps">PDB</span> id: 6R9R; Molina R, Stella S, Feng M, Sofos N, Jauniskis V, Pozdnyakova I, Lopez-Mendez B, She Q, Montoya G. 2019. Structure of Csx1-cOA4 complex reveals the basis of <span class="caps">RNA</span> decay in Type <span class="caps">III</span>-B <span class="caps">CRISPR</span>-Cas. Nat Commun 10: 4302). <span class="caps">CRISPR</span>-Cas multisubunit complexes cleave ssRNA and ssDNA, promoting the generation of cyclic oligoadenylate (cOA), which activates associated <span class="caps">CRISPR</span>-Cas RNases. The Csx1 RNase dimer is shown with cyclic (A4) <span class="caps">RNA</span> bound.”</li> <li><a href="https://rnajournal.cshlp.org/content/27/7.cover-expansion">July 2021</a> “M. tuberculosis ileS T-box riboswitch in complex with tRNA (<span class="caps">PDB</span> id: 6UFG; Battaglia RA, Grigg JC, Ke A. 2019. Structural basis for tRNA decoding and aminoacylation sensing by T-box riboregulators. Nat Struct Mol Biol 26: 1106). T-box riboregulators are a class of cis-regulatory <span class="caps">RNA</span>s that govern the bacterial response to amino acid starvation by binding, decoding, and reading the aminoacylation status of specific transfer <span class="caps">RNA</span>s.”</li> <li><a href="https://rnajournal.cshlp.org/content/27/8.cover-expansion">August 2021</a> “CAG repeats recognized by cyclic mismatch binding ligand (<span class="caps">PDB</span> id: 6QIV; Mukherjee S, Blaszczyk L, Rypniewski W, Falschlunger C, Micura R, Murata A, Dohno C, Nakatan K, Kiliszek A. 2019. Structural insights into synthetic ligands targeting A–A pairs in disease-related <span class="caps">CAG</span> <span class="caps">RNA</span> repeats. Nucleic Acids Res 47:10906). A large number of hereditary neurodegenerative human diseases are associated with abnormal expansion of repeated sequences. <span class="caps">RNA</span> containing <span class="caps">CAG</span> repeats can be recognized by synthetic cyclic mismatch-binding ligands such as the structure shown.”</li> <li><a href="https://rnajournal.cshlp.org/content/27/9.cover-expansion">September 2021</a> “Corn aptamer complex with fluorophore Thioflavin T (<span class="caps">PDB</span> id: 6E81; Sjekloca L, Ferre-D’Amare AR. 2019. Binding between G quadruplexes at the homodimer interface of the Corn <span class="caps">RNA</span> aptamer strongly activates Thioflavin T fluorescence. Cell Chem Biol 26: 1159). The fluorescent compound Thioflavin T, widely used for the detection of amyloids, is bound at the dimer interface of the homodimeric G-quadruplex-containing <span class="caps">RNA</span> Corn aptamer.”</li> <li><a href="https://rnajournal.cshlp.org/content/27/10.cover-expansion">October 2021</a> “Cas9 nuclease-sgRNA complex with anti-<span class="caps">CRISPR</span> protein inhibitor (<span class="caps">PDB</span> id: 6JE9; Sun W, Yang J, Cheng Z, Amrani N, Liu C, Wang K, Ibraheim R, Edraki A, Huang X, Wang M, et al. 2019. Structures of Neisseria meningitidis Cas9 complexes in catalytically poised and anti-<span class="caps">CRISPR</span>-inhibited states. Mol Cell 76: 938–952.e5). Nme1Cas9, a compact nuclease for in vivo genome editing. AcrIIC3 is an anti-<span class="caps">CRISPR</span> protein inhibitor.”</li> <li><a href="https://rnajournal.cshlp.org/content/27/11.cover-expansion">November 2021</a> “Two-quartet <span class="caps">RNA</span> parallel G-quadruplex complexed with porphyrin (<span class="caps">PDB</span> id: 6JJI; Zhang Y, Omari KE, Duman R, Liu S, Haider S, Wagner A, Parkinson GN, Wei D. 2020. Native de novo structural determinations of non-canonical nucleic acid motifs by X-ray crystallography at long wavelengths. Nucleic Acids Res 48: 9886–9898).”</li> <li><a href="https://rnajournal.cshlp.org/content/27/12.cover-expansion">December 2021</a> “Structure of S. pombe Lsm1–7 with <span class="caps">RNA</span>, polyuridine with 3’ guanosine (<span class="caps">PDB</span> id: 6PPV; Montemayor EJ, Virta JM, Hayes SM, Nomura Y, Brow DA, Butcher SE. 2020. Molecular basis for the distinct cellular functions of the Lsm1–7 and Lsm2–8 complexes. <span class="caps">RNA</span> 26: 1400–1413). Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind <span class="caps">RNA</span>, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1–7 complex initiates mRNA decay, while the nuclear Lsm2–8 complex acts as a chaperone for U6 spliceosomal <span class="caps">RNA</span>.”</li> </ol> </div> <p class="comments_invite"><a href="https://x3dna.org/highlights/dssr-enabled-innovative-pymol-schematics-in-the-covers-of-the-rna-journal#Comment" class="comments_invite">Comment</a></p> <div class="divider"><img src="https://x3dna.org/images/1.gif" alt="---" width="400" height="1" /></div> <h3 class="entry-title"><a rel="bookmark" href="https://x3dna.org/highlights/bioexcel-webinar-on-dssr">BioExcel webinar on DSSR</a> </h3> <div class="entry-content"> <p>On December 9, 2021, at 15:00 <span class="caps">CET</span>, I will present a <a href="https://bioexcel.eu/category/webinar/">BioExcel webinar</a> titled “X3DNA-<span class="caps">DSSR</span>, a resource for structural bioinformatics of nucleic acids.” </p> <ul> <li>Here is <a href="https://bioexcel.eu/webinar-x3dna-dssr-a-resource-for-structural-bioinformatics-of-nucleic-acids-2021-12-09/">the announcement link</a>.</li> <li>Here is <a href="https://us02web.zoom.us/webinar/register/WN_g55wmd9ETmeQwQuLfjH57g">the registration <span class="caps">URL</span></a>.</li> </ul> <p><hr><br /> For the record, the screenshot of the announcement is shown below:</p> <p class="clean" style="text-align:center;"><img width=100% src="http://docs.x3dna.org/images/Webinar-X3DNA-DSSR-BioExcel.png" title="BioExcel webinar on DSSR" alt="BioExcel webinar on DSSR" /></p> </div> <p class="comments_invite"><a href="https://x3dna.org/highlights/bioexcel-webinar-on-dssr#Comment" class="comments_invite">Comment</a></p> <div class="divider"><img src="https://x3dna.org/images/1.gif" alt="---" width="400" height="1" /></div> <h3 class="entry-title"><a rel="bookmark" href="https://x3dna.org/highlights/a-video-overview-of-dssr">A video overview of DSSR</a> </h3> <div class="entry-content"> <p>Today, I released a <a href="http://docs.x3dna.org/dssr-overview/">video overview of <span class="caps">DSSR</span></a> (http://docs.x3dna.org/dssr-overview/).</p> <p><span class="caps">DSSR</span> has a sizable user base. However, in my opinion, <span class="caps">DSSR</span> is still underutilized for what it has to offer. This overview video is intended not only to attract new <span class="caps">DSSR</span> users, but also to highlight features that even experienced users may overlook.</p> </div> <div class="divider"><img src="https://x3dna.org/images/1.gif" alt="---" width="400" height="1" /></div> <h3 class="entry-title"><a rel="bookmark" href="https://x3dna.org/highlights/the-dssr-jmol-and-dssr-pymol-integrations">The DSSR-Jmol and DSSR-PyMOL integrations</a> </h3> <div class="entry-content"> <p>As documented in the <a href="http://docs.x3dna.org/dssr2-overview.pdf">Overview <span class="caps">PDF</span></a>, <span class="caps">DSSR</span> can be easily incorporated into other structural bioinformatics pipelines. Working with Robert Hanson and Thomas Holder respectively, I initiated the integrations of <span class="caps">DSSR</span> into Jmol and PyMOL, two of the most popular molecular viewers. The <span class="caps">DSSR</span>-Jmol and <span class="caps">DSSR</span>-PyMOL integrations lead to unparalleled search capabilities and innovative visualization styles of 3D nucleic acid structures. They also exemplify the critical roles that a domain-specific analysis engine may play in general-purpose molecular visualization tools.</p> <p>On January 27, 2016, I wrote the blogpost <a href="http://x3dna.org/highlights/integrating-dssr-into-jmol-and-pymol"><cite>Integrating <span class="caps">DSSR</span> into Jmol and PyMOL</cite></a>. Four years later, these integrations have led to two peer-reviewed articles, both published in <em>Nucleic Acids Research</em> (<span class="caps">NAR</span>). This blogpost (dated 2020-09-15) highlights key features in each case and reflects on my experience in these two exciting collaborations.</p> <h4 class="underline">The <span class="caps">DSSR</span>-Jmol integration</h4> <p>Hanson RM and Lu XJ (2017). <a href="https://doi.org/10.1093/nar/gkx365"><cite><span class="caps">DSSR</span>-enhanced visualization of nucleic acid structures in Jmol</cite></a>. The <span class="caps">DSSR</span>-Jmol integration excels in its <span class="caps">SQL</span>-like, flexible searching capability of structural features, as demonstrated at the website <a href="http://jmol.x3dna.org">http://jmol.x3dna.org</a>. This work fills a gap in <span class="caps">RNA</span> structural bioinformatics by enabling deep analyses and <span class="caps">SQL</span>-like queries of <span class="caps">RNA</span> structural characteristics, interactively. Here are some simple examples:</p> <pre>SELECT WITHIN(dssr, "nts WHERE is_modified = true") # modified nucleotides SELECT pairs # all pairs Select WITHIN(dssr, "pairs WHERE name = 'Hoogsteen'") # Hoogsteen pairs SELECT WITHIN(dssr, "pairs WHERE name != 'WC'") # non-Watson-Crick pairs SELECT junctions # all junctions loops select within(dssr, "junctions WHERE num_stems = 4") # four-way junction loops </pre> <p>In a recently email communication, Bob wrote:</p> <blockquote> <p>How are you doing? I’m smiling, because I am remembering our incredible, animated discussions and how fun it was to work together with you on Jmol and <span class="caps">DSSR</span>.</p> </blockquote> <h4 class="underline">The <span class="caps">DSSR</span>-PyMOL integration</h4> <p>Lu XJ (2020). <a href="https://doi.org/10.1093/nar/gkaa426"><cite><span class="caps">DSSR</span>-enabled innovative schematics of 3D nucleic acid structures with PyMOL</cite></a>. The <span class="caps">DSSR</span>-PyMOL integration brings unprecedented visual clarity to 3D nucleic acid structures, especially for G-quadruplexes. The four interfaces cover virtually all conceivable use cases. The easiest way to get started and quickly benefit from this work is via the web application at <a href="http://skmatic.x3dna.org">http://skmatic.x3dna.org</a>.</p> <p>I approached Thomas to write the <span class="caps">DSSR</span>-PyMOL manuscript together, in a similar way as the <span class="caps">DSSR</span>-Jmol paper. He wrote back, saying “I’m not interesting in being co-author of the paper”, adding:</p> <blockquote> <p>But, if there is anything I can help you with, like revising the `dssr_block.py` script, or proof-reading the PyMOL related parts of the manuscript, I’ll be happy to do so.</p> </blockquote> <p>Indeed, Thomas helped in several aspects of the <span class="caps">DSSR</span>-PyMOL project, as acknowledged in the paper:</p> <blockquote> <p>I appreciate Thomas Holder (PyMOL Principal Developer, Schrödinger, Inc.) for writing the <span class="caps">DSSR</span> plugin for PyMOL, and for providing insightful comments on the manuscript and the web application interface.</p> </blockquote> <h4 class="underline">Enhanced vs Innovative</h4> <p>Some viewers may noticed the difference in titles of the two <span class="caps">NAR</span> papers: “<span class="caps">DSSR</span>-enhanced visualization of nucleic acid structures in Jmol” vs. “<span class="caps">DSSR</span>-enabled innovative schematics of 3D nucleic acid structures with PyMOL”. As a matter of fact, the initial title of the <span class="caps">DSSR</span>-PyMOL paper was <a href="http://forum.x3dna.org/site-announcements/dssr-enhanced-visualization-of-nucleic-acid-structures-in-pymol/"><span class="caps">DSSR</span>-enhanced visualization of nucleic acid structures in PyMOL</a>, as shown in the December 02, 2019 announcement post on the 3DNA Forum.</p> <p>In an era where reproducibility of “scientific” publications has become an issue and “break-throughs” are often broken or hardly held, I hesitate to use phrases such as “innovative”, “novel”, “paradigm shift” etc. Instead, I often use the modest words “refinement”, “enhance”, “improved”, “revised” etc, and try to deliver more than claimed. However, reviewers may take solid work but modest writing as “incremental” or “unexciting”. Before submitting the <span class="caps">DSSR</span>-PyMOL paper, I changed the title to <a href="https://doi.org/10.1093/nar/gkaa426"><cite><span class="caps">DSSR</span>-enabled innovative schematics of 3D nucleic acid structures with PyMOL</cite></a>. Does it mean that the <span class="caps">DSSR</span>-PyMOL integration is more innovative than the <span class="caps">DSSR</span>-Jmol case? Not necessarily. I do have a paper with “innovative” in its title.</p> </div> <p class="comments_invite"><a href="https://x3dna.org/highlights/the-dssr-jmol-and-dssr-pymol-integrations#Comment" class="comments_invite">Comment</a></p> <div class="divider"><img src="https://x3dna.org/images/1.gif" alt="---" width="400" height="1" /></div> <h3 class="entry-title"><a rel="bookmark" href="https://x3dna.org/highlights/dssr-g4db-at-http-g4x3dnaorg">DSSR-G4DB at http://G4.x3dna.org</a> </h3> <div class="entry-content"> <p>Recently, while reading the Miskiewicz <em>et al.</em> review article <a href="https://doi.org/10.1093/bib/bbaa201"><cite>How bioinformatics resources work with G4 <span class="caps">RNA</span>s</cite></a>, I noticed the term <strong><span class="caps">DSSR</span>-G4DB</strong> under the category <code>Databases with G4-related data</code>. It refers to the website <a href="http://G4.x3dna.org">http://G4.x3dna.org</a> (or <code>g4.x3dna.org</code>) that has been there since 2017 and weekly updated with new G-quadruplexes from the <span class="caps">PDB</span>. The <span class="caps">DSSR</span>-G4 resource, <a href="http://g4.x3dna.org/DSSR-G4-poster.pdf"><cite><span class="caps">DSSR</span>-Enabled Automatic Identification and Annotation of G-quadruplexes in the <span class="caps">PDB</span></cite></a>, has already been cited several times in literature. However, I have not written up a paper on it yet, and thus have never thought carefully on a name for the resource. The term <span class="caps">DSSR</span>-G4DB sounds good to me, and I may well use it in the future.</p> <p>Given below are the relevant quotations on <span class="caps">DSSR</span> and the <span class="caps">DSSR</span>-G4DB resource in the <a href="https://doi.org/10.1093/bib/bbaa201">Miskiewicz <em>et al.</em> review article</a> and my notes. The underlined <strong>headings</strong> (e.g., “Conclusion”) are those of the Miskiewicz <em>et al.</em> review article.</p> <h4 class="underline"><em>Methods</em>: Databases with G4-related data</h4> <blockquote> <p>Currently, there exist 16 databases, which store information concerning quadruplexes. They fall into three categories: databases that collect primary or tertiary structures with experimentally verified G4s (<span class="caps">DSSR</span>-G4DB, G4IPDB, G4LDB, G4RNA, Lit392 and Lit638); databases storing data from high-throughput sequencing with mapped quadruplexes (GSE63874, GSE77282, GSE110582 and GSE129281); and databases of sequences with G4s identified in silico (Greglist, GRSDB2, G4-virus, Non-B DB v2.0, Plant-GQ and QuadBase2)</p> </blockquote> <blockquote> <p><span class="caps">DSSR</span>-G4DB [38] contains quadruplex nucleic acid structures found by <span class="caps">DSSR</span> in the Protein Data Bank [30], currently 354 entries. The data are annotated. Users can find information about G-tetrads, G4 helices and G4-stems and visualize the 3D models of G4 structures. Availability: webserver (http://g4.x3 dna.org). Recent update: 5 June 2020.</p> </blockquote> <p><em><strong>Note</strong>: <span class="caps">DSSR</span>-G4DB is updated weekly. The latest update is on 2020-09-09, with 362 G-quadruplexes auto-curated with <span class="caps">DSSR</span> from the <span class="caps">PDB</span>.</em></p> <h4 class="underline"><em>Methods</em>: Tools that analyze and visualize 2D and 3D structure</h4> <blockquote> <p>Currently, four tools can analyze and visualize G4 structures. <span class="caps">DSSR</span> [38] … ElTetrado [31] … <span class="caps">RNA</span>pdbee [66, 69] … 3D-NuS [65]</p> </blockquote> <blockquote> <p><span class="caps">DSSR</span> [38] processes the 3D structure of the <span class="caps">RNA</span> molecule and annotates its secondary structure. It is a part of the 3DNA suite [67] designed to work with the structures of nucleic acids. <span class="caps">DSSR</span> identifies, classifies and describes base pairs, multiplets and characteristic motifs of the secondary structure; helices, stems, hairpin loops, bulges, internal loops, junctions and others. It can also detect modules and tertiary structure patterns, includ- ing pseudoknots and kink-turns. The recent extension, <span class="caps">DSSR</span>- PyMOL [68], allows drawing cartoon-block schemes of the 3D structure and responds to the need for simplified visualization of quadruplexes. Input data formats: <span class="caps">PDB</span>, mmCIF and <span class="caps">PDB</span> ID. Availability: standalone program, web application (http://dssr.x3 dna.org/, http://skmatic.x3dna.org/).</p> </blockquote> <p><em><strong>Note</strong>: The other three tools all depend on or make use of <span class="caps">DSSR</span> and 3DNA:</em> <ul> <li><a href="https://github.com/tzok/eltetrado">ElTetrado</a> “ElTetrado depends on <span class="caps">DSSR</span> (Lu, Bussemaker and Olson, 2015) in terms of detection of base pairing and stacking.”</li> <li><a href="http://rnapdbee.cs.put.poznan.pl"><span class="caps">RNA</span>pdbee</a> uses 3DNA/DSSR as the default to identify base pairs.</li> <li><a href="http://iith.ac.in/3dnus/">3D-NuS</a> employs 3DNA for structural analysis and model building.<br /> <em>“These filtrated structures (225 <span class="caps">DNA</span> and 166 <span class="caps">RNA</span> structures) have been used to derive the local base pair step and base pair parameters (Table S2 for <span class="caps">DNA</span> and Table S3 for <span class="caps">RNA</span>) using 3DNA software package [35] and are stored in the server for 3D-NuS modeling.”</em><br /> <em>“Soon after the user submits input for sequence-specific modeling, the server fetches the appropriate base pair step and base pair parameters from the database and creates a 3DNA style input file. Subsequently, the template model is built using the rebuild module of 3DNA software package and subjected to energy optimization using X-plor [56] to remove steric hindrance, specifically in the mismatch- containing duplexes (Fig. 1).”</em></li> </ul></p> <h4 class="underline"><em>Results</em>: Computational experiments with structure-based tools</h4> <blockquote> <p><span class="caps">DSSR</span> and ElTetrado identified quadruplexes in the input <span class="caps">PDB</span> files. Both programs focused on structural aspects of the input molecule, explicitly informing about quadruplexes and tetrads within the structure. <span class="caps">DSSR</span> provided an extensive analysis of 3D structures and output the data about G-tetrads, G-helices and G4-stems. It computed planarity for each G-tetrad and gave the sections area, rise and twist parameters for G4-helix and G4-stems. The program automatically assigned loop topologies according to the predefined types (P—parallel, D—diagonal and L—lateral) and their orientation (+/−). <span class="caps">DSSR</span>-PyMOL generated block schemes of both quadruplexes (Figure 4A3 and B3). ElTetrado also calculated planarity, rise and twist parameters and identified strand directions for both quadruplexes. It classified the quadruplexes and their component tetrads to <span class="caps">ONZ</span> classes. Finally, it generated the arc diagram (Figure 4A1 and B1) and two-line dot-bracket encoding of every quadruplex.</p> </blockquote> <p><em><strong>Note</strong>: <span class="caps">DSSR</span> contains an undocumented option <code>--G4</code>. With the <code>ONZ</code> variant, i.e., <code>--g4=onz</code> (case does not matter), <span class="caps">DSSR</span> also outputs the <span class="caps">ONZ</span> classification of G-tetrads from the same chain.</em></p> <h4 class="underline">Conclusion</h4> <blockquote> <p><span class="caps">DSSR</span> comprehensively examines the G4 structure, determines a variety of its parameters and provides the schematic 3D view.</p> </blockquote> <p>It is worth noting that <span class="caps">DSSR</span> has been categorized under “Databases with G4-related data” and “Tools that analyze and visualize 2D and 3D structure” of the <strong>Methods</strong> section. It is <strong><em>not</em></strong> a tool that <em>predicts G4 location in the sequence</em>. There are 14 tools listed in “<strong>Table 2</strong>. Selected features of <span class="caps">PQS</span> prediction tools”, including G4Hunter and <span class="caps">QGRS</span> Mapper etc.</p> </div> <p class="comments_invite"><a href="https://x3dna.org/highlights/dssr-g4db-at-http-g4x3dnaorg#Comment" class="comments_invite">Comment</a></p> <div class="divider"><img src="https://x3dna.org/images/1.gif" alt="---" width="400" height="1" /></div> <h3 class="entry-title"><a rel="bookmark" href="https://x3dna.org/highlights/dssr-pymol-schematics-recommended-in-faculty-opinions">DSSR-PyMOL schematics recommended in Faculty Opinions</a> </h3> <div class="entry-content"> <p>Recently, while visiting the <span class="caps">NAR</span> website on <a href="https://doi.org/10.1093/nar/gkaa426"><cite><span class="caps">DSSR</span>-enabled innovative schematics of 3D nucleic acid structures with PyMOL</cite></a>, I noticed a big red circle <span style="font-weight:bold;color:red;">①</span> near “View Metrics”. I was quite curious to see what it meant. After a few clicks, I was delighted to read <a href="https://facultyopinions.com/prime/738001682">the following recommendation in Faculty Opinions</a> by Quentin Vicens:</p> <blockquote> <p>I really enjoyed “playing” with the revised and expanded version of Dissecting the Spatial Structure of <span class="caps">RNA</span> (<span class="caps">DSSR</span>) described by Xiang-Jun Lu in this July issue of <span class="caps">NAR</span>. The software is known to generate ‘block view’ representations of nucleic acids that make many parameters more immediately visible, such as base composition, stacking, and groove depth. This new version includes Watson-Crick pairs shown as single rectangles, and G quadruplexes as large squares, making such regions more quickly distinguishable from other regions within an overall tertiary structure. I was amazed at how simple and effective the <a href="http://skmatic.x3dna.org">web interface</a> was, and I liked the possibility to download a PyMOL session to look at molecules under different angles. If need be, blocks can be further edited in PyMOL using the provided plugin (see on page 35). I highly recommend it!</p> </blockquote> <p><span style="color:red;">The <span class="caps">DSSR</span>-PyMOL schematics paper/website has been rated “Very Good”, and classified as “Good for Teaching”</span>. See Vicens Q: Faculty Opinions Recommendation of [Lu XJ, Nucleic Acids Res 2020 48(13):e74]. In Faculty Opinions, 14 Aug 2020; 10.3410/f.738001682.793577327.</p> </div> <p class="comments_invite"><a href="https://x3dna.org/highlights/dssr-pymol-schematics-recommended-in-faculty-opinions#Comment" class="comments_invite">Comment</a></p> <div class="divider"><img src="https://x3dna.org/images/1.gif" alt="---" width="400" height="1" /></div> </div> <p><a href="https://x3dna.org/?pg=2">« Older </a> · </p> </div> <div id="foot"> Created and maintained by Dr. Xiang-Jun Lu [律祥俊] (xiangjun@x3dna.org) · Powered by <a href="http://textpattern.com/">Textpattern</a><br><span style="color:#c0c0c0;">Dr. Lu is currently affiliated with the Bussemaker Laboratory at the Department of Biological Sciences, Columbia University.</span> </div> <p id="printMsg">Thank you for printing this article from http://x3dna.org/. Please do not forget to visit back for more 3DNA-related information. — Xiang-Jun Lu </p> </div> </body> </html>