CINXE.COM

JCI - Welcome

<!DOCTYPE html> <!--[if lt IE 7]> <html lang='en' class='no-js lt-ie10 lt-ie9 lt-ie8 lt-ie7'> <![endif]--> <!--[if IE 7]> <html lang='en' class='no-js lt-ie10 lt-ie9 lt-ie8'> <![endif]--> <!--[if IE 8]> <html lang='en' class='no-js lt-ie10 lt-ie9'> <![endif]--> <!--[if IE 9]> <html lang='en' class='no-js lt-ie10'> <![endif]--> <!--[if (gt IE 9)|!(IE)]><!--> <html lang='en' class='no-js'> <!--<![endif]--> <head> <meta charset='utf-8'> <meta content='text/html; charset=UTF-8' http-equiv='Content-Type'> <meta content='The Journal of Clinical Investigation' name='AUTHOR'> <!-- Set the viewport width to device width for mobile --> <meta content='width=device-width, initial-scale=1.0' name='viewport'> <link href='/rss' rel='alternate' title='JCI New Article RSS' type='application/rss+xml'> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="r4fqWaVVcOnYG8WWh4ryOiCEGlDikz4ERKCJn08OHpw+3zTvUxvEcJcunUgvOCGdYFsNme6zF00jzcm/nAjOaA==" /> <link rel="shortcut icon" type="image/x-icon" href="/assets/jci-favicon-378ea4dd43f03bc78136c6a261d9b28f6811fe59d12db426eae78cf0691b0008.ico" /> <title> JCI - Welcome </title> <!--[if gt IE 8]><!--><link rel="stylesheet" media="all" href="/assets/application-4e3473ed7442aa1dc35d11f58ed4edfbd690fa57a3eb3a1daca0cd68dc7fb1e0.css" /><!--<![endif]--> <!--[if (lt IE 9)]> <link rel="stylesheet" media="all" href="/assets/ie8/application-c9c1df9dc6f969fb6db3e6e1316b9ac163cdd7a9a2bd67746820c5d31a80258f.css" /> <script src="/assets/ie8/ie8-head-e4cc6664a4e806f330a789c9756cfe50f1bb936ea97fe6e2dde7db04b3daa038.js"></script> <![endif]--> <style> @font-face { font-family: "klavika-bold"; src: url("///var/www/jci/jci/releases/20250404161853/vendor/common/fonts/klavika/eot/KlavikaWebBasicBold.eot") format('eot'), src: url("///var/www/jci/jci/releases/20250404161853/vendor/common/fonts/klavika/eot/KlavikaWebBasicBold.eot?#iefix") format("embedded-opentype"), url("///var/www/jci/jci/releases/20250404161853/vendor/common/fonts/klavika/woff/KlavikaWebBasicBold.woff") format("woff") } </style> <script> //Google Tag Manager Data Layer //Values must be set before GTM tags are triggered window.dataLayer = window.dataLayer || []; window.dataLayer.push({ 'siteName': 'content-jci', 'ipAddress': '8.222.208.146', 'environment': 'production', }); </script> <script src="/assets/vendor/modernizr-2f68aa04c7424c280c5bc9db8b68f7f6ff70bcd38254c5b89383eac8e89b1781.js"></script> <script type='text/javascript'> var googletag = googletag || {}; googletag.cmd = googletag.cmd || []; (function () { var gads = document.createElement('script'); gads.async = true; gads.type = 'text/javascript'; var useSSL = 'https:' == document.location.protocol; gads.src = (useSSL ? 'https:' : 'http:') + '//www.googletagservices.com/tag/js/gpt.js'; var node = document.getElementsByTagName('script')[0]; node.parentNode.insertBefore(gads, node); })(); googletag.cmd.push(function () { // NOTE: This script manages google ads, more info at doc/GoogleAds.md var mapping = googletag.sizeMapping().addSize([800, 600], [300, 250]).addSize([640, 480], [260, 217]).build(); var mapping2 = googletag.sizeMapping() .addSize([1920, 1080], [728, 90])//All desktop like resolutions are set to 728x90 .addSize([800, 600], [728, 90]) .addSize([640, 480], [728, 90]) .addSize([0, 0], [320, 50]) //Smaller than 640x480 screens .build(); googletag.defineSlot('/82117132/jci-homepage-med-rectangle-left-col-top', [[300, 250],[260, 217]], 'jci-homepage-med-rectangle-left-col-top').defineSizeMapping(mapping).addService(googletag.pubads()); googletag.defineSlot('/82117132/jci-article-interior-leaderboard-top', [[728, 90],[320, 50]], 'jci-article-interior-leaderboard-top').defineSizeMapping(mapping2).addService(googletag.pubads()); googletag.defineSlot('/82117132/jci-article-interior-leaderboard-bottom', [728, 90], 'jci-article-interior-leaderboard-bottom').addService(googletag.pubads()); googletag.defineSlot('/82117132/jci-article-interior-skyscraper-right-col', [160, 600], 'jci-article-interior-skyscraper-right-col').addService(googletag.pubads()); googletag.defineSlot('/82117132/jci-interior-skyscraper-right-col', [160, 600], 'jci-interior-skyscraper-right-col').addService(googletag.pubads()); // collapseEmptyDivs requires all slots be defined above. googletag.pubads().collapseEmptyDivs(true); googletag.enableServices(); }); </script> </head> <body class='' id='tags_controller'> <div class='off-canvas-wrap' data-offcanvas=''> <div class='inner-wrap'> <div class='fixed show-for-large-up'> <div class='row menu-align' id='logo-bar'> <div class='small-12 columns'> <div class='cross-journal-container'> Go to <a href='http://insight.jci.org'>JCI Insight</a> </div> <a href="/"><img src="/assets/common/jci-spelled-out-white-on-transparent.20160208-958617d51a205b239bcef41eae5703962aee0ae2fcc9fbda0237e635a09ac7f3.png" /></a> </div> </div> <div class='row menu-align' id='journal-bar'> <div class='small-12 columns'> <ul class='inline-list'> <li><a href="/kiosks/about">About</a></li> <li><a href="/kiosks/editorial-board">Editors</a></li> <li><a href="/kiosks/about/consulting-editors">Consulting Editors</a></li> <li><a href="/kiosks/authors">For authors</a></li> <li><a href="/kiosks/ethics">Publication ethics</a></li> <li><a href="/kiosks/connect">Publication alerts by email</a></li> <li><a href="/kiosks/advertise">Advertising</a></li> <li><a href="https://the-asci.org/controllers/asci/JobBoard.php">Job board</a></li> <li><a href="/kiosks/contact">Contact</a></li> </ul> </div> </div> <div id='content-bar'> <nav class='top-bar' data-topbar=''> <section class='top-bar-section'> <ul class='left'> <li class='not-click'> <a href="/tags/141">Clinical Research and Public Health</a> </li> <li class='not-click'> <a id="topmenu_current_issue" href="/current">Current issue</a> </li> <li class='not-click'> <a href="/archive">Past issues</a> </li> <li class='has-dropdown not-click'> <a>By specialty</a> <ul class='dropdown'> <li><a href="/tags/118">COVID-19</a></li> <li><a href="/tags/15">Cardiology</a></li> <li><a href="/tags/21">Gastroenterology</a></li> <li><a href="/tags/25">Immunology</a></li> <li><a href="/tags/28">Metabolism</a></li> <li><a href="/tags/31">Nephrology</a></li> <li><a href="/tags/32">Neuroscience</a></li> <li><a href="/tags/33">Oncology</a></li> <li><a href="/tags/36">Pulmonology</a></li> <li><a href="/tags/42">Vascular biology</a></li> <li><a href="/specialties">All ...</a></li> </ul> </li> <li class='has-dropdown not-click'> <a href="/videos">Videos</a> <ul class='dropdown'> <li><a href="/videos/cgms">Conversations with Giants in Medicine</a></li> <li><a href="/videos/video_abstracts">Video Abstracts</a></li> </ul> </li> <li class='has-dropdown not-click'> <a href="/tags/reviews">Reviews</a> <ul class='dropdown'> <li> <label>Reviews</label> </li> <li><a href="/tags/reviews">View all reviews ...</a></li> <li class='divider'></li> <li> <label>Review Series</label> </li> <li><a href="/review_series/131">Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)</a></li> <li><a href="/review_series/130">Microbiome in Health and Disease (Feb 2025)</a></li> <li><a href="/review_series/127">Substance Use Disorders (Oct 2024)</a></li> <li><a href="/review_series/128">Clonal Hematopoiesis (Oct 2024)</a></li> <li><a href="/review_series/129">Sex Differences in Medicine (Sep 2024)</a></li> <li><a href="/review_series/126">Vascular Malformations (Apr 2024)</a></li> <li><a href="/review_series/125">Lung inflammatory injury and tissue repair (Jul 2023)</a></li> <li> <a href="/review_series">View all review series ...</a> </li> </ul> </li> <li class='not-click'> <a href="/tags/111">Viewpoint</a> </li> <li class='has-dropdown not-click'> <a>Collections</a> <ul class='dropdown'> <li><a href="/in-press-preview">In-Press Preview</a></li> <li><a href="/tags/141">Clinical Research and Public Health</a></li> <li><a href="/tags/127">Research Letters</a></li> <li><a href="/tags/75">Letters to the Editor</a></li> <li><a href="/tags/56">Editorials</a></li> <li><a href="/tags/44">Commentaries</a></li> <li><a href="/tags/123">Editor&#39;s notes</a></li> <li><a href="/tags/2">Reviews</a></li> <li><a href="/tags/111">Viewpoints</a></li> <li><a href="/collections/topic/jci-100th-anniversary">100th anniversary</a></li> <li><a href="/top_articles">Top read articles</a></li> </ul> </li> </ul> <ul class='right'> <li class='has-form'> <div id='search-area'> <form action="/search/results" accept-charset="UTF-8" method="get"> <input type="text" name="q" id="q" value="" placeholder="Search the JCI" /> <input type="image" src="/assets/search-black-ba9b554d6f74b1c93d6e6ab71d1c9830c18a20fc6b7e72393f136f5d875141ac.png" value="" /> </form> </div> </li> </ul> </section> </nav> </div> </div> <!--[if gt IE 8]><!--><nav class='tab-bar hide-for-large-up fixed' id='small-navbar'> <section class='left-small'> <a class='left-off-canvas-toggle menu-icon'> <span></span> </a> </section> <section class='middle tab-bar-section'> <h1 class='title'><a href="/"><img width="40" src="/assets/common/jci-only-white-6c989e8f9744a714482158b82319d50aa8437aa4c8524c4f3dcf8450299cd4b7.png" /></a></h1> </section> </nav> <aside class='left-off-canvas-menu'> <ul class='off-canvas-list'> <li> <label>The Journal of Clinical Investigation</label> </li> <li><form action="/search/results" accept-charset="UTF-8" method="get"> <div class='row collapse' id='search-div-offcanvas'> <div class='small-8 columns'> <input name='q' placeholder='Search the JCI' type='text'> </div> <div class='small-4 columns'> <input type="image" src="/assets/common/search-white-530f3f95b9080d73eba51eaeffdf1a3922af42ccc277a2d1d987b8aa24423c96.png" id="search-icon-offcanvas" /> </div> </div> </form> </li> <li><a id="offcanvas_current_issue" href="/current">Current issue</a></li> <li><a href="/archive">Past issues</a></li> <li><a href="/specialties">Specialties</a></li> <li><a href="/tags/reviews">Reviews</a></li> <li><a href="/review_series">Review series</a></li> <li> <label>Videos</label> </li> <li><a href="/videos/cgms">Conversations with Giants in Medicine</a></li> <li><a href="/videos/video_abstracts">Video Abstracts</a></li> <li> <label>Collections</label> </li> <li><a href="/in-press-preview">In-Press Preview</a></li> <li><a href="/tags/141">Clinical Research and Public Health</a></li> <li><a href="/tags/127">Research Letters</a></li> <li><a href="/tags/75">Letters to the Editor</a></li> <li><a href="/tags/56">Editorials</a></li> <li><a href="/tags/44">Commentaries</a></li> <li><a href="/tags/123">Editor&#39;s notes</a></li> <li><a href="/tags/2">Reviews</a></li> <li><a href="/tags/111">Viewpoints</a></li> <li><a href="/collections/topic/jci-100th-anniversary">100th anniversary</a></li> <li><a href="/top_articles">Top read articles</a></li> <li> <label>Journal Details</label> </li> <li><a href="/kiosks/about">About</a></li> <li><a href="/kiosks/editorial-board">Editors</a></li> <li><a href="/kiosks/about/consulting-editors">Consulting Editors</a></li> <li><a href="/kiosks/authors">For authors</a></li> <li><a href="/kiosks/ethics">Publication ethics</a></li> <li><a href="/kiosks/connect">Publication alerts by email</a></li> <li><a href="/kiosks/advertise">Advertising</a></li> <li><a href="https://the-asci.org/controllers/asci/JobBoard.php">Job board</a></li> <li><a href="/kiosks/contact">Contact</a></li> </ul> </aside> <a class='exit-off-canvas'></a><!--<![endif]--> <!--[if (lt IE 9)]> <div class='alert-box info' data-alert=''> Please note that the JCI no longer supports your version of Internet Explorer. We recommend upgrading to the latest version of <a href="http://windows.microsoft.com/en-us/internet-explorer/download-ie">Internet Explorer</a>, <a href="https://www.google.com/chrome/browser/desktop/index.html">Google Chrome</a>, or <a href="https://www.mozilla.org/en-US/firefox/new/">Firefox</a> <a class='close' href='#'>&times;</a> </div> <![endif]--> <div class='row content-wrapper'> <div class='small-12 columns'> <div class='menu-align'> <div class='row'> <div class='large-10 medium-9 small-12 columns'> <h3>Vascular biology</h3> <div class='row'> <div class='small-10 medium-7 large-5 small-centered columns'> <ul class='tabs row' data-tab> <li class='tab-title small-6 centered active'> <a href='#articles'>318 Articles</a> </li> <li class='tab-title small-6 centered '> <a href='#posts'>8 Posts</a> </li> </ul> </div> </div> <div class='tabs-content'> <div class='content active' id='articles'> <div class='row'> <div class='small-12 columns'> <div role="navigation" aria-label="Pagination" class="pagination-centered" previous_label="&lt;--" next_label="--&gt;"><ul class="pagination"><li class="arrow unavailable"><a class="arrow unavailable">&#8592; Previous</a></li> <li class="current"><a class="current">1</a></li> <li><a rel="next" href="/tags/42?content=articles&amp;page=2">2</a></li> <li><a href="/tags/42?content=articles&amp;page=3">3</a></li> <li class="unavailable"><a>&hellip;</a></li> <li><a href="/tags/42?content=articles&amp;page=31">31</a></li> <li><a href="/tags/42?content=articles&amp;page=32">32</a></li> <li class="arrow"><a class="arrow" rel="next" href="/tags/42?content=articles&amp;page=2">Next &#8594;</a></li></ul></div> </div> </div> <div class='row'> <div class='small-12 columns'> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/186628">HINT1 aggravates aortic aneurysm by targeting ITGA6/FAK axis in vascular smooth muscle cells</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/186628">Yan Zhang, … , Liping Xie, Yong Ji</a> <a class='hide-for-small show-more' data-reveal-id='article45952-more' href='#'> <div class='article-authors'> Yan Zhang, … , Liping Xie, Yong Ji </div> </a> <span class='article-published-at'> Published April 8, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI186628">https://doi.org/10.1172/JCI186628</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/186628">Text</a> | <a href="/articles/view/186628/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI186628' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45952-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/186628">HINT1 aggravates aortic aneurysm by targeting ITGA6/FAK axis in vascular smooth muscle cells</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/186628">Text</a></li> <li><a class="button tiny" href="/articles/view/186628/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Aortic aneurysm is a high-risk cardiovascular disease without effective cure. Vascular Smooth Muscle Cell (VSMC) phenotypic switching is a key step in the pathogenesis of aortic aneurysm. Here, we revealed the role of histidine triad nucleotide-binding protein 1 (HINT1) in aortic aneurysm. HINT1 was upregulated both in aortic tissue from patients with aortic aneurysm and Ang II-induced aortic aneurysm mice. VSMC-specific HINT1 deletion alleviated aortic aneurysm via preventing VSMC phenotypic switching. With the stimulation of pathological factors, the increased nuclear translocation of HINT1 mediated by nucleoporin 98 (Nup98) promoted the interaction between HINT1 and transcription factor AP-2 alpha (TFAP2A) and further triggered the transcription of integrin alpha 6 (ITGA6) mediated by TFAP2A, and consequently activated the downstream focal adhesion kinase (FAK)/STAT3 signal pathway, leading to aggravation of VSMC phenotypic switching and aortic aneurysm. Importantly, Defactinib treatment was demonstrated to limit aortic aneurysm development by inhibiting the FAK signal pathway. Thus, HINT1/ITGA6/FAK axis emerges as potential therapeutic strategies in aortic aneurysm.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Yan Zhang, Wencheng Wu, Xuehui Yang, Shanshan Luo, Xiaoqian Wang, Qiang Da, Ke Yan, Lulu Hu, Shixiu Sun, Xiaolong Du, Xiaoqiang Li, Zhijian Han, Feng Chen, Aihua Gu, Liansheng Wang, Zhiren Zhang, Bo Yu, Chenghui Yan, Yaling Han, Yi Han, Liping Xie, Yong Ji</p> </div> </div> <a class='close-reveal-modal'>&#215;</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/181928">Endothelial MICU1 protects against vascular inflammation and atherosclerosis by inhibiting mitochondrial calcium uptake</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/181928">Lu Sun, … , Suowen Xu, Jianping Weng</a> <a class='hide-for-small show-more' data-reveal-id='article45921-more' href='#'> <div class='article-authors'> Lu Sun, … , Suowen Xu, Jianping Weng </div> </a> <span class='article-published-at'> Published April 1, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025;<a id="article_metadata" href="http://www.jci.org/135/7">135(7)</a>:e181928. <a href="https://doi.org/10.1172/JCI181928">https://doi.org/10.1172/JCI181928</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/181928">Text</a> | <a href="/articles/view/181928/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI181928' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> <div class='medium-3 hide-for-small columns'> <a href='https://www.jci.org/articles/view/181928/ga' ref='group' title='Graphical abstract'> <img src='//dm5migu4zj3pb.cloudfront.net/manuscripts/181000/181928/small/JCI181928.ga.gif'> </a> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45921-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/181928">Endothelial MICU1 protects against vascular inflammation and atherosclerosis by inhibiting mitochondrial calcium uptake</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/181928">Text</a></li> <li><a class="button tiny" href="/articles/view/181928/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Mitochondrial dysfunction fuels vascular inflammation and atherosclerosis. Mitochondrial calcium uptake 1 (MICU1) maintains mitochondrial Ca2+ homeostasis. However, the role of MICU1 in vascular inflammation and atherosclerosis remains unknown. Here, we report that endothelial MICU1 prevents vascular inflammation and atherosclerosis by maintaining mitochondrial homeostasis. We observed that vascular inflammation was aggravated in endothelial cell–specific Micu1 knockout mice (Micu1ECKO) and attenuated in endothelial cell–specific Micu1 transgenic mice (Micu1ECTg). Furthermore, hypercholesterolemic Micu1ECKO mice also showed accelerated development of atherosclerosis, while Micu1ECTg mice were protected against atherosclerosis. Mechanistically, MICU1 depletion increased mitochondrial Ca2+ influx, thereby decreasing the expression of the mitochondrial deacetylase sirtuin 3 (SIRT3) and the ensuing deacetylation of superoxide dismutase 2 (SOD2), leading to the burst of mitochondrial reactive oxygen species (mROS). Of clinical relevance, we observed decreased MICU1 expression in the endothelial layer covering human atherosclerotic plaques and in human aortic endothelial cells exposed to serum from patients with coronary artery diseases (CAD). Two-sample Wald ratio Mendelian randomization further revealed that increased expression of MICU1 was associated with decreased risk of CAD and coronary artery bypass grafting (CABG). Our findings support MICU1 as an endogenous endothelial resilience factor that protects against vascular inflammation and atherosclerosis by maintaining mitochondrial Ca2+ homeostasis.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Lu Sun, Ruixue Leng, Monan Liu, Meiming Su, Qingze He, Zhidan Zhang, Zhenghong Liu, Zhihua Wang, Hui Jiang, Li Wang, Shuai Guo, Yiming Xu, Yuqing Huo, Clint L. Miller, Maciej Banach, Yu Huang, Paul C. Evans, Jaroslav Pelisek, Giovanni G. Camici, Bradford C. Berk, Stefan Offermanns, Junbo Ge, Suowen Xu, Jianping Weng</p> </div> </div> <a class='close-reveal-modal'>&#215;</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/180900">Erythrocyte-derived extracellular vesicles induce endothelial dysfunction through arginase-1 and oxidative stress in type 2 diabetes</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/180900">Aida Collado, … , Zhichao Zhou, John Pernow</a> <a class='hide-for-small show-more' data-reveal-id='article45885-more' href='#'> <div class='article-authors'> Aida Collado, … , Zhichao Zhou, John Pernow </div> </a> <span class='article-published-at'> Published March 20, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI180900">https://doi.org/10.1172/JCI180900</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/180900">Text</a> | <a href="/articles/view/180900/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI180900' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45885-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/180900">Erythrocyte-derived extracellular vesicles induce endothelial dysfunction through arginase-1 and oxidative stress in type 2 diabetes</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/180900">Text</a></li> <li><a class="button tiny" href="/articles/view/180900/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Red blood cells (RBCs) induce endothelial dysfunction in type 2 diabetes (T2D), but the mechanism by which RBCs communicate with the vessel is unknown. This study tested the hypothesis that extracellular vesicles (EVs) secreted by RBCs act as mediators of endothelial dysfunction in T2D. Despite a lower production of EVs derived from RBCs of T2D patients (T2D RBC-EVs), their uptake by endothelial cells was greater than that of EVs derived from RBCs of healthy individuals (H RBC-EVs). T2D RBC-EVs impaired endothelium-dependent relaxation and this effect was attenuated following inhibition of arginase in EVs. Inhibition of vascular arginase or oxidative stress also attenuated endothelial dysfunction induced by T2D RBC-EVs. Arginase-1 was detected in RBC-derived EVs, and arginase-1 and oxidative stress were increased in endothelial cells following co-incubation with T2D RBC-EVs. T2D RBC-EVs also increased arginase-1 protein in endothelial cells following mRNA silencing and in the endothelium of aortas from endothelial cell arginase 1 knockout mice. It is concluded that T2D-RBCs induce endothelial dysfunction through increased uptake of EVs that transfer arginase-1 from RBCs to the endothelium to induce oxidative stress and endothelial dysfunction. These results shed important light on the mechanism underlying endothelial injury mediated by RBCs in T2D.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Aida Collado, Rawan Humoud, Eftychia Kontidou, Maria Eldh, Jasmin Swaich, Allan Zhao, Jiangning Yang, Tong Jiao, Elena Domingo, Emelie Carlestål, Ali Mahdi, John Tengbom, Ákos Végvári, Qiaolin Deng, Michael Alvarsson, Susanne Gabrielsson, Per Eriksson, Zhichao Zhou, John Pernow</p> </div> </div> <a class='close-reveal-modal'>&#215;</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/188743">Differential aortic aneurysm formation provoked by chemogenetic oxidative stress</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/188743">Apabrita Ayan Das, … , Taylor A. Covington, Thomas Michel</a> <a class='hide-for-small show-more' data-reveal-id='article45878-more' href='#'> <div class='article-authors'> Apabrita Ayan Das, … , Taylor A. Covington, Thomas Michel </div> </a> <span class='article-published-at'> Published March 18, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI188743">https://doi.org/10.1172/JCI188743</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/188743">Text</a> | <a href="/articles/view/188743/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI188743' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45878-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/188743">Differential aortic aneurysm formation provoked by chemogenetic oxidative stress</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/188743">Text</a></li> <li><a class="button tiny" href="/articles/view/188743/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Aortic aneurysms are potentially fatal focal enlargements of the aortic lumen; the disease burden disease is increasing as the human population ages. Pathological oxidative stress is implicated in development of aortic aneurysms. We pursued a chemogenetic approach to create an animal model of aortic aneurysm formation using a transgenic mouse line DAAO-TGTie2 that expresses yeast D-amino acid oxidase (DAAO) under control of the endothelial Tie2 promoter. In DAAO-TGTie2 mice, DAAO generates the reactive oxygen species hydrogen peroxide (H2O2) in endothelial cells only when provided with D-amino acids. When DAAO-TGTie2 mice are chronically fed D-alanine, the animals become hypertensive and develop abdominal but not thoracic aortic aneurysms. Generation of H2O2 in the endothelium leads to oxidative stress throughout the vascular wall. Proteomic analyses indicate that the oxidant-modulated protein kinase JNK1 is dephosphorylated by the phophoprotein phosphatase DUSP3 in abdominal but not thoracic aorta, causing activation of KLF4-dependent transcriptional pathways that trigger phenotypic switching and aneurysm formation. Pharmacological DUSP3 inhibition completely blocks aneurysm formation caused by chemogenetic oxidative stress. These studies establish that regional differences in oxidant-modulated signaling pathways lead to differential disease progression in discrete vascular beds, and identify DUSP3 as a potential pharmacological target for the treatment of aortic aneurysms.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Apabrita Ayan Das, Markus Waldeck-Weiermair, Shambhu Yadav, Fotios Spyropoulos, Arvind Pandey, Tanoy Dutta, Taylor A. Covington, Thomas Michel</p> </div> </div> <a class='close-reveal-modal'>&#215;</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/186673">TET2 suppresses vascular calcification by forming inhibitory complex with HDAC1/2 and SNIP1 independent of demethylation</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/186673">Dayu He, … , Tingting Zhang, Hui Huang</a> <a class='hide-for-small show-more' data-reveal-id='article45841-more' href='#'> <div class='article-authors'> Dayu He, … , Tingting Zhang, Hui Huang </div> </a> <span class='article-published-at'> Published March 11, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI186673">https://doi.org/10.1172/JCI186673</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/186673">Text</a> | <a href="/articles/view/186673/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI186673' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45841-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/186673">TET2 suppresses vascular calcification by forming inhibitory complex with HDAC1/2 and SNIP1 independent of demethylation</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/186673">Text</a></li> <li><a class="button tiny" href="/articles/view/186673/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) has been recognized as the principal mechanism underlying vascular calcification (VC). Runt-related transcription factor 2 (RUNX2) in VSMCs plays a pivotal role because it constitutes an essential osteogenic transcription factor for bone formation. As a key DNA demethylation enzyme, ten-eleven translocation 2 (TET2) is crucial in maintaining the VSMC phenotype. However, whether TET2 involves in VC progression remains elusive. Here we identified a substantial downregulation of TET2 in calcified human and mouse arteries, as well as human primary VSMCs. In vitro gain- and loss-of function experiments demonstrated TET2 regulated VC. Subsequently, in vivo knockdown of TET2 significantly exacerbated VC in both vitamin D3 and adenine-diet-induced chronic kidney disease (CKD) mice models. Mechanistically, TET2 binds to and suppresses the activity of the P2 promoter within the RUNX2 gene, whereas an enzymatic loss-of-function mutation of TET2 has a comparable effect. Furthermore, TET2 forms a complex with histone deacetylases 1/2 (HDAC1/2 ) to deacetylate H3K27ac on the P2 promoter, thereby inhibiting its transcription. Moreover, SNIP1 is indispensable for TET2 to interact with HDAC1/2 to exert inhibitory effect on VC, and knockdown of SNIP1 accelerated VC in mice. Collectively, our findings imply that TET2 might serve as a potential therapeutic target for VC.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Dayu He, Jianshuai Ma, Ziting Zhou, Yanli Qi, Yaxin Lian, Feng Wang, Huiyong Yin, Huanji Zhang, Tingting Zhang, Hui Huang</p> </div> </div> <a class='close-reveal-modal'>&#215;</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/174135">Cathepsin K cleavage of Angiopoietin-2 creates detrimental Tie2 antagonist fragments in sepsis</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/174135">Takashi Suzuki, … , Sascha David, Samir M. Parikh</a> <a class='hide-for-small show-more' data-reveal-id='article45808-more' href='#'> <div class='article-authors'> Takashi Suzuki, … , Sascha David, Samir M. Parikh </div> </a> <span class='article-published-at'> Published March 3, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI174135">https://doi.org/10.1172/JCI174135</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/174135">Text</a> | <a href="/articles/view/174135/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI174135' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45808-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/174135">Cathepsin K cleavage of Angiopoietin-2 creates detrimental Tie2 antagonist fragments in sepsis</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/174135">Text</a></li> <li><a class="button tiny" href="/articles/view/174135/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Elevated Angiopoietin-2 is associated with diverse inflammatory conditions including sepsis, a leading global cause of mortality. During inflammation, Angiopoietin-2 antagonizes the endothelium-enriched receptor Tie2 to destabilize the vasculature. In other contexts, Angiopoietin-2 stimulates Tie2. The basis for context-dependent antagonism remains incompletely understood. Here we show that inflammation-induced proteolytic cleavage of Angiopoietin-2 converts this ligand from Tie2 agonist to antagonist. Conditioned media from stimulated macrophages induced endothelial Angiopoietin-2 secretion. Unexpectedly, this was associated with reduction of the 75 kDa full-length protein and appearance of new 25 and 50 kDa C-terminal fragments. Peptide sequencing proposed cathepsin K as a candidate protease. Cathepsin K was necessary and sufficient to cleave Angiopoietin-2. Recombinant 25 and 50 kDa Angiopoietin-2 fragments (cANGPT225, cANGPT250) bound and antagonized Tie2. Cathepsin K inhibition with the Phase-3 small molecule inhibitor odanacatib improved survival in distinct murine sepsis models. Full-length Angiopoietin-2 enhanced survival in endotoxemic mice administered odanacatib and, conversely, increased mortality in the drug’s absence. Odanacatib’s benefit was reversed by heterologous cANGPT225. Septic humans accumulated circulating Angiopoietin-2 fragments, which were associated with adverse outcomes. These results identify cathepsin K as a candidate marker of sepsis and a proteolytic mechanism for the conversion of Angiopoietin-2 from Tie2 agonist to antagonist with therapeutic implications for inflammatory conditions associated with Angiopoietin-2 induction.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Takashi Suzuki, Erik Loyde, Sara Chen, Valerie Etzrodt, Temitayo O. Idowu, Amanda J. Clark, Marie Christelle Saade, Brenda Mendoza Flores, Shulin Lu, Gabriel Birrane, Vamsidhara Vemireddy, Benjamin Seeliger, Sascha David, Samir M. Parikh</p> </div> </div> <a class='close-reveal-modal'>&#215;</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/179782">An endothelial SOX18-mevalonate pathway axis enables repurposing of statins for infantile hemangioma</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/179782">Annegret Holm, … , Mathias Francois, Joyce Bischoff</a> <a class='hide-for-small show-more' data-reveal-id='article45812-more' href='#'> <div class='article-authors'> Annegret Holm, … , Mathias Francois, Joyce Bischoff </div> </a> <span class='article-published-at'> Published February 25, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI179782">https://doi.org/10.1172/JCI179782</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/179782">Text</a> | <a href="/articles/view/179782/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI179782' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45812-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/179782">An endothelial SOX18-mevalonate pathway axis enables repurposing of statins for infantile hemangioma</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/179782">Text</a></li> <li><a class="button tiny" href="/articles/view/179782/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Infantile hemangioma (IH) is the most common tumor in children and a paradigm for pathological vasculogenesis, angiogenesis, and regression. Propranolol, the mainstay treatment, inhibits IH vessel formation via a β-adrenergic receptor independent off-target effect of its R(+) enantiomer on the endothelial SRY box transcription factor 18 (SOX18). Transcriptomic profiling of patient-derived hemangioma stem cells (HemSC) uncovered the mevalonate pathway (MVP) as a target of R(+) propranolol. Loss and gain of function of SOX18 confirmed it is both necessary and sufficient for R(+) propranolol suppression of the MVP, including regulation of sterol regulatory element binding protein 2 (SREBP2) and the rate-limiting enzyme HMG-CoA reductase (HMGCR). AThe biological relevance of the endothelial SOX18-MVP axis in IH patient tissue was demonstrated by nuclear co-localization of SOX18 and SREBP2. Functional validation in a preclinical IH xenograft model revealed that statins – competitive inhibitors of HMGCR – efficiently suppress IH vessel formation. We propose an novel endothelial SOX18-MVP-axis as a central regulator of IH pathogenesis and suggest statin repurposing to treat IH. The pleiotropic effects of R(+) propranolol and statins along the SOX18-MVP axis to disable an endothelial-specific program may have therapeutic implications for other vascular disease entities involving pathological vasculogenesis and angiogenesis.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Annegret Holm, Matthew S. Graus, Jill Wylie-Sears, Jerry Wei Heng Tan, Maya Alvarez-Harmon, Luke Borgelt, Sana Nasim, Long Chung, Ashish Jain, Mingwei Sun, Liang Sun, Pascal Brouillard, Ramrada Lekwuttikarn, Yanfei Qi, Joyce Teng, Miikka Vikkula, Harry Kozakewich, John B. Mulliken, Mathias Francois, Joyce Bischoff</p> </div> </div> <a class='close-reveal-modal'>&#215;</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/183440">Endothelial-specific postnatal deletion of Nos3 preserves intraocular pressure homeostasis via macrophage recruitment and NOS2 upregulation</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/183440">Ruth A. Kelly, … , Darryl R. Overby, W. Daniel Stamer</a> <a class='hide-for-small show-more' data-reveal-id='article45754-more' href='#'> <div class='article-authors'> Ruth A. Kelly, … , Darryl R. Overby, W. Daniel Stamer </div> </a> <span class='article-published-at'> Published February 11, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI183440">https://doi.org/10.1172/JCI183440</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/183440">Text</a> | <a href="/articles/view/183440/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI183440' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45754-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/183440">Endothelial-specific postnatal deletion of Nos3 preserves intraocular pressure homeostasis via macrophage recruitment and NOS2 upregulation</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/183440">Text</a></li> <li><a class="button tiny" href="/articles/view/183440/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Polymorphisms in Nos3 increases risk for glaucoma, the leading cause of irreversible blindness worldwide. A key modifiable risk factor for glaucoma is intraocular pressure (IOP), which is regulated by nitric oxide (NO), a product of nitric oxide synthase-3 (Nos3) in Schlemm’s canal of the conventional outflow pathway. We studied the effects of a conditional, endothelial-specific postnatal deletion of Nos3 (Endo-SclCre-ERT;Nos3flox/flox) on tissues of the outflow pathway. We observed that Cre-ERT expression spontaneously and gradually increased with time in vascular endothelia including Schlemm’s canal, beginning at P10, with complete Nos3 deletion occurring around P90. Unlike the reduced outflow resistance in global Nos3 knockout mice, outflow resistance and IOP in Endo-SclCre-ERT;Nos3flox/flox mice were normal. Coinciding with Nos3 deletion, we observed recruitment of macrophages to, and induction of both ELAM-1 and NOS2 expression by endothelia in the distal portion of the outflow pathway, which increased vessel diameter. These adjustments reduced outflow resistance to maintain IOP in these Endo-SclCre-ERT;Nos3flox/flox mice. Selective inhibition of iNOS by 1400W resulted in narrowing of distal vessels and IOP elevation. Together, results emphasize the pliability of the outflow system, the importance of NO signaling in IOP control and implicates an important role for macrophages in IOP homeostasis.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Ruth A. Kelly, Megan S. Kuhn, Ester Reina-Torres, Revathi Balasubramanian, Kristin M. Perkumas, Guorong Li, Takamune Takahashi, Simon W.M. John, Michael H. Elliott, Darryl R. Overby, W. Daniel Stamer</p> </div> </div> <a class='close-reveal-modal'>&#215;</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/175972">TRIB3 mediates vascular calcification through facilitating self-ubiquitination and dissociation of Smurf1 in chronic renal disease</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/175972">Yihui Li, … , Hao Wang, Ming Zhong</a> <a class='hide-for-small show-more' data-reveal-id='article45758-more' href='#'> <div class='article-authors'> Yihui Li, … , Hao Wang, Ming Zhong </div> </a> <span class='article-published-at'> Published February 11, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI175972">https://doi.org/10.1172/JCI175972</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/175972">Text</a> | <a href="/articles/view/175972/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI175972' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45758-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/175972">TRIB3 mediates vascular calcification through facilitating self-ubiquitination and dissociation of Smurf1 in chronic renal disease</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/175972">Text</a></li> <li><a class="button tiny" href="/articles/view/175972/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>The osteogenic environment promotes vascular calcium phosphate deposition and aggregation of unfolded and misfolded proteins, resulting in endoplasmic reticulum (ER) stress in chronic renal disease (CKD). Controlling ER stress through genetic intervention is a promising approach for treating vascular calcification. In this study, we demonstrated a positive correlation between ER stress-induced tribble 3 (TRIB3) expression and progression of vascular calcification in human and rodent CKD. Increased TRIB3 expression promoted vascular smooth muscle cell (VSMC) calcification by interacting with the C2 domain of the E3 ubiquitin-protein ligase Smurf1, facilitating its K48-related self-ubiquitination at Lys381 and Lys383 and subsequent dissociation from the plasma membrane and nuclei. This degeneration of Smurf1 accelerated the stabilization of the osteogenic transcription factors RUNX Family Transcription Factor 2 (Runx2) and SMAD Family Member 1 (Smad1). C/EBP homologous protein and activating transcription factor 4 are upstream transcription factors of TRIB3 in an osteogenic environment. Genetic knockout of TRIB3 or rescue of Smurf1 ameliorated VSMC and vascular calcification by stabilizing Smurf1 and enhancing the degradation of Runx2 and Smad1. Our findings shed light on the vital role of TRIB3 as a scaffold in ER stress and vascular calcification and offer a potential therapeutic option for chronic renal disease.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Yihui Li, Chang Ma, Yanan Sheng, Shanying Huang, Huaibing Sun, Yun Ti, Zhihao Wang, Feng Wang, Fangfang Chen, Chen Li, Haipeng Guo, Mengxiong Tang, Fangqiang Song, Hao Wang, Ming Zhong</p> </div> </div> <a class='close-reveal-modal'>&#215;</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/168730">Translational regulation of SND1 governs endothelial homeostasis during stress</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/168730">Zhenbo Han, … , Soroush Tahmasebi, Sang-Ging Ong</a> <a class='hide-for-small show-more' data-reveal-id='article45710-more' href='#'> <div class='article-authors'> Zhenbo Han, … , Soroush Tahmasebi, Sang-Ging Ong </div> </a> <span class='article-published-at'> Published February 3, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025;<a id="article_metadata" href="http://www.jci.org/135/3">135(3)</a>:e168730. <a href="https://doi.org/10.1172/JCI168730">https://doi.org/10.1172/JCI168730</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/168730">Text</a> | <a href="/articles/view/168730/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI168730' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> <div class='medium-3 hide-for-small columns'> <a href='https://www.jci.org/articles/view/168730/figure/1' ref='group' title='Generation of sunitinib-induced endothelial dysfunction model using hiPSCs. (A) Schematic representation of the hiPSC-to-EC (iPSC-EC) differentiation workflow. (B) hiPSC-ECs were treated with various concentrations of sunitinib for 48 hours. Cell viability was determined using the PrestoBlue cell viability reagent. One-way ANOVA. Data are presented as mean ± SD. ***P &lt; 0.001; ns, not significant. n = 12 replicates from the differentiation of 3 individual hiPSC lines. (C and D) hiPSC-ECs were treated with 2 μM sunitinib for 48 hours. EC function was determined by tube-formation assay. n = 9 replicates from the differentiation of 3 individual hiPSC lines. Scale bar: 220 μm. Two-tailed Student’s t test. Data are presented as mean ± SD. *P &lt; 0.05, **P &lt; 0.01. (E and F) Representative images and quantification of wound-healing ability of hiPSC-ECs in response to treatment with DMSO or sunitinib (2 μM) for 16 hours. The yellow lines indicate the edges of the scratch wound. The scratched areas were quantified as a percentage relative to the initial area at 0 hours. n = 9 replicates from the differentiation of 3 individual hiPSC lines. Scale bars: 220 μm. Two-tailed Student’s t test. Data are presented as mean ± SD. ***P &lt; 0.001. (G and H) Representative images of immunostaining of the DNA damage marker γ-H2AX (red) in hiPSC-ECs after sunitinib treatment (2 μM) for 48 hours. Cells were counterstained with CD31 (green), an EC marker. n = 9 replicates from the differentiation of 3 individual hiPSC lines. Scale bars: 20 and 10 μm. Two-tailed Student’s t test. Data are presented as mean ± SD. ***P &lt; 0.001.'> <img src='//dm5migu4zj3pb.cloudfront.net/manuscripts/168000/168730/small/JCI168730.f1.gif'> </a> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45710-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/168730">Translational regulation of SND1 governs endothelial homeostasis during stress</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/168730">Text</a></li> <li><a class="button tiny" href="/articles/view/168730/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Translational control shapes the proteome and is particularly important in regulating gene expression under stress. A key source of endothelial stress is treatment with tyrosine kinase inhibitors (TKIs), which lowers cancer mortality but increases cardiovascular mortality. Using a human induced pluripotent stem cell–derived endothelial cell (hiPSC-EC) model of sunitinib-induced vascular dysfunction combined with ribosome profiling, we assessed the role of translational control in hiPSC-ECs in response to stress. We identified staphylococcal nuclease and tudor domain–containing protein 1 (SND1) as a sunitinib-dependent translationally repressed gene. SND1 translational repression was mediated by the mTORC1/4E-BP1 pathway. SND1 inhibition led to endothelial dysfunction, whereas SND1 OE protected against sunitinib-induced endothelial dysfunction. Mechanistically, SND1 transcriptionally regulated UBE2N, an E2-conjugating enzyme that mediates K63-linked ubiquitination. UBE2N along with the E3 ligases RNF8 and RNF168 regulated the DNA damage repair response pathway to mitigate the deleterious effects of sunitinib. In silico analysis of FDA-approved drugs led to the identification of an ACE inhibitor, ramipril, that protected against sunitinib-induced vascular dysfunction in vitro and in vivo, all while preserving the efficacy of cancer therapy. Our study established a central role for translational control of SND1 in sunitinib-induced endothelial dysfunction that could potentially be therapeutically targeted to reduce sunitinib-induced vascular toxicity.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Zhenbo Han, Gege Yan, Jordan Jousma, Sarath Babu Nukala, Mehdi Amiri, Stephen Kiniry, Negar Tabatabaei, Youjeong Kwon, Sen Zhang, Jalees Rehman, Sandra Pinho, Sang-Bing Ong, Pavel V. Baranov, Soroush Tahmasebi, Sang-Ging Ong</p> </div> </div> <a class='close-reveal-modal'>&#215;</a> </div> </div> </div> <div class='row'> <div class='small-12 columns'> <div role="navigation" aria-label="Pagination" class="pagination-centered" previous_label="&lt;--" next_label="--&gt;"><ul class="pagination"><li class="arrow unavailable"><a class="arrow unavailable">&#8592; Previous</a></li> <li class="current"><a class="current">1</a></li> <li><a rel="next" href="/tags/42?content=articles&amp;page=2">2</a></li> <li><a href="/tags/42?content=articles&amp;page=3">3</a></li> <li class="unavailable"><a>&hellip;</a></li> <li><a href="/tags/42?content=articles&amp;page=31">31</a></li> <li><a href="/tags/42?content=articles&amp;page=32">32</a></li> <li class="arrow"><a class="arrow" rel="next" href="/tags/42?content=articles&amp;page=2">Next &#8594;</a></li></ul></div> </div> </div> </div> <div class='content ' id='posts'> <div class='row'> <div class='small-12 columns'> </div> </div> <div class='row'> <div class='small-12 columns'> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/342">MiR-33 fine-tunes atherosclerotic plaque inflammation</a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/342"><div class='article-metadata'> Mireille Ouimet, Hasini Ediriweera, and colleagues show that miR-33 controls the macrophage inflammatory program and promotes atherosclerotic plaque development… <br> <span class='published-at smaller'> Published October 26, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/42"><span style='margin-right: 6px' class="label-specialty">Vascular biology</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/342"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/404/thumb_JCI_Figure_3F_unlabeled.jpg" /></a> </div> </div> <hr> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/339">Contracting lacteals send lipids down the drain</a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/339"><div class='article-metadata'> Kibaek Choe, Jeon Yeob Jang, Intae Park and colleagues visualize lipid drainage through lacteals using intravital, video-rate microscopy… <br> <span class='published-at smaller'> Published October 5, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/42"><span style='margin-right: 6px' class="label-specialty">Vascular biology</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/339"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/401/thumb_JCI76509.f4.jpg" /></a> </div> </div> <hr> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/330">FOXC2 keeps lymphatic vessels leak-proof</a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/330"><div class='article-metadata'> Amélie Sabine and colleagues demonstrate that disturbed flow in lymphatic vasculature induces expression of the transcription factor FOXC2, which is essential for maintaining normal endothelial cell morphology and vessel integrity… <br> <span class='published-at smaller'> Published September 21, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/42"><span style='margin-right: 6px' class="label-specialty">Vascular biology</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/330"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/394/thumb_SSSSPetrova.jpeg" /></a> </div> </div> <hr> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/321">Venous malformation model provides therapeutic insight </a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/321"><div class='article-metadata'> Elisa Boscolo and colleagues develop a murine model of venous malformation and demonstrate that rapamycin improves clinical symptoms of in this model and in patients… <br> <span class='published-at smaller'> Published August 10, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/42"><span style='margin-right: 6px' class="label-specialty">Vascular biology</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/321"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/387/thumb_76004.jpg" /></a> </div> </div> <hr> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/309">Lymphatic valves grow with the flow</a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/309"><div class='article-metadata'> Daniel Sweet and colleagues reveal that lymph flow is essential for lymphatic vessel maturation… <br> <span class='published-at smaller'> Published July 27, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/42"><span style='margin-right: 6px' class="label-specialty">Vascular biology</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/309"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/380/thumb_79386-RG-RV_Kahn_August_D__1_.jpg" /></a> </div> </div> <hr> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/310">GATA2 serves as a lymphatic rheostat</a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/310"><div class='article-metadata'> Jan Kazenwadel, Kelly Betterman, and colleagues reveal that the transcription factor GATA2 is essential for lymphatic valve development and maintenance… <br> <span class='published-at smaller'> Published July 27, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/42"><span style='margin-right: 6px' class="label-specialty">Vascular biology</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/310"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/382/thumb_78888_Harvey_August_D__1_.jpg" /></a> </div> </div> <hr> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/308">Factoring in factor XII in hereditary angioedema III</a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/308"><div class='article-metadata'> Jenny Björkqvist and colleagues elucidate the mechanism by which hereditary angioedema III-associated factor XII promotes vascular leakage… <br> <span class='published-at smaller'> Published July 20, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/42"><span style='margin-right: 6px' class="label-specialty">Vascular biology</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/308"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/379/thumb_Pictures__1_.jpg" /></a> </div> </div> <hr> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/303">Regional regulation of atherosclerosis</a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/303"><div class='article-metadata'> Yogendra Kanthi, Matthew Hyman, and colleagues reveal that CD39 is regulated by blood flow and is protective against atherosclerosis… <br> <span class='published-at smaller'> Published June 29, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/42"><span style='margin-right: 6px' class="label-specialty">Vascular biology</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/303"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/376/thumb_JCI_Figures_2D_062315.jpg" /></a> </div> </div> </div> </div> <div class='row'> <div class='small-12 columns'> </div> </div> </div> </div> </div> <div class='large-2 medium-3 hide-for-small columns' style='padding: 12px 9px 12px 9px;'> <div style='width:100%; text-align: center;'> <div id='jci-interior-skyscraper-right-col'> <span class='secondary label'>Advertisement</span> <script> try { googletag.cmd.push(function () { googletag.display('jci-interior-skyscraper-right-col'); }); } catch(e){} </script> </div> </div> </div> </div> </div> </div> </div> </div> <div id='footer'> <div class='row panel-padding'> <div class='small-6 columns'> <div id='social-links'> <a onclick="trackOutboundLink(&#39;/twitter?ref=footer&#39;);" href="/twitter"><img title="Twitter" src="/assets/social/twitter-round-blue-78025a92064e3594e44e4ccf5446aefeafba696cd3c8e4a7be1850c7c9f62aba.png" /></a> <a onclick="trackOutboundLink(&#39;/facebook?ref=footer&#39;);" href="/facebook"><img title="Facebook" src="/assets/social/facebook-round-blue-2787910d46dcbdbee4bd34030fee044e5a77cfda2221af9191d437b2f5fadeb1.png" /></a> <a href="/rss"><img title="RSS" src="/assets/social/rss-round-color-6f5fa8e93dc066ee4923a36ba6a7cb97d53c5b77de78a2c7b2a721adc603f342.png" /></a> </div> <br> Copyright &#169; 2025 <a href="http://www.the-asci.org">American Society for Clinical Investigation</a> <br> ISSN: 0021-9738 (print), 1558-8238 (online) </div> <div class='small-6 columns'> <div class='row'> <div class='small-12 columns'> <h4 class='notices-signup'>Sign up for email alerts</h4> <form action='https://notices.jci.org/subscribers/new' method='get'> <input name='utm_source' type='hidden' value='jci'> <input name='utm_medium' type='hidden' value='web'> <input name='utm_campaign' type='hidden' value='email_signup'> <input name='utm_content' type='hidden' value='footer'> <div class='row'> <div class='small-12 medium-9 columns'> <input name='email_address' placeholder='Your email address' required type='text'> </div> <div class='small-12 medium-3 columns'> <input class='button tiny orange' type='submit' value='Sign up'> </div> </div> </form> </div> </div> </div> </div> </div> </div> <!--[if gt IE 8]><!--><script src="/assets/application-27f18b5fe3b7302e5b3e3c6d7cf9bb3f54759fad32679209f5aef429b89f3aef.js"></script><!--<![endif]--> <!--[if (lt IE 9)]> <script src="/assets/ie8/application-8c033a599105d459c98ea08bf9ef15e25d3fed26e913e4a8de4a5101d04025fd.js"></script> <![endif]--> <script src="//s7.addthis.com/js/300/addthis_widget.js#pubid=ra-4d8389db4b0bb592" async="async"></script> <script src="//d1bxh8uas1mnw7.cloudfront.net/assets/embed.js" async="async"></script> <!--[if lt IE 9]> <script src="/assets/ie8/ie8-1af1fadfa0df4a7f5fcf8fc444742398e0579e1d8aede97903d74bad8167eb5f.js"></script> <![endif]--> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10