CINXE.COM
Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="google" content="notranslate"> <meta http-equiv="Content-Language" content="en"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="csrf-token" content="8CLRz3Jb8DJA8zQMpKBJ9xFoSZAnMLXbPl3KBXhW"> <link rel="canonical" href="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6"> <meta name="DC.Publisher" content="Schloss Dagstuhl – Leibniz-Zentrum für Informatik" > <meta name="DC.Title" xml:lang="en" content="Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction" > <meta name="DC.Creator.PersonalName" content="Fan, Wenfei" > <meta name="DC.Creator.PersonalName" content="Liu, Shuhao" > <meta name="DC.Subject" content="graph analytics" > <meta name="DC.Subject" content="data cleaning" > <meta name="DC.Subject" content="association analysis" > <meta name="DC.Date.created" scheme="ISO8601" content="2024-06-07" > <meta name="DC.Date.issued" scheme="ISO8601" content="2024-06-07" > <meta name="DC.Date.modified" scheme="ISO8601" content="2024-06-07" > <meta name="DC.Type" content="InProceedings" > <meta name="DC.Format" scheme="IMT" content="application/pdf" > <meta name="DC.Identifier" scheme="urn:nbn:de" content="urn:nbn:de:0030-drops-201025" > <meta name="DC.Identifier" scheme="DOI" content="10.4230/OASIcs.Tannen.6" > <meta name="DC.Identifier" scheme="URL" content="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6" > <meta name="DC.Source" content="The Provenance of Elegance in Computation - Essays Dedicated to Val Tannen (2024)" > <meta name="DC.Source.URI" content="https://drops.dagstuhl.de/entities/volume/OASIcs-volume-119" > <meta name="DC.Language" scheme="ISO639-1" content="en" > <meta name="DC.Description" xml:lang="en" content="This paper reports Fishing Fort, a graph analytic system developed in response to the following questions. What practical value can we get out of graph analytics? How can we effectively deduce the value from a real-life graph? Where can we get clean graphs to make accurate analyses possible? To answer these questions, Fishing Fort advocates to unify logic deduction and ML prediction by proposing Graph Association Rules (GARs), a class of logic rules in which ML models can be embedded as predicates. It employs GARs to deduce graph associations, enrich graphs and clean graphs. It has been deployed in production lines and proven effective in online recommendation, drug discovery, credit risk assessment, battery manufacturing and cybersecurity, among other things." > <meta name="DC.Rights" scheme="DCTERMS.URI" content="https://creativecommons.org/licenses/by/4.0/legalcode" > <meta name="citation_conference_title" content="The Provenance of Elegance in Computation - Essays Dedicated to Val Tannen (2024)" > <meta name="citation_doi" content="10.4230/OASIcs.Tannen.6" > <meta name="citation_firstpage" content="6:1" > <meta name="citation_lastpage" content="6:18" > <meta name="citation_title" content="Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction" > <meta name="citation_language" content="en" > <meta name="citation_keyword" content="graph analytics" > <meta name="citation_keyword" content="data cleaning" > <meta name="citation_keyword" content="association analysis" > <meta name="citation_author" content="Fan, Wenfei" > <meta name="citation_author_institution" content="Shenzhen Institute of Computing Sciences, China; University of Edinburgh, UK; Beihang University, Beijing, China" > <meta name="citation_author" content="Liu, Shuhao" > <meta name="citation_author_institution" content="Shenzhen Institute of Computing Sciences, China" > <meta name="citation_date" content="2024" > <meta name="citation_keyword" xml:lang="en" content="graph analytics" > <meta name="citation_keyword" xml:lang="en" content="data cleaning" > <meta name="citation_keyword" xml:lang="en" content="association analysis" > <meta name="citation_abstract_html_url" content="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6" > <meta name="citation_pdf_url" content="https://drops.dagstuhl.de/storage/01oasics/oasics-vol119-tannens-festschrift/OASIcs.Tannen.6/OASIcs.Tannen.6.pdf" > <meta name="citation_reference" content="Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995." > <meta name="citation_reference" content="BioGRID, 2024. URL: https://thebiogrid.org/." > <meta name="citation_reference" content="Businesswire. Over 80 percent of companies rely on stale data for decision-making, 2022. https://www.businesswire.com/news/home/20220511005403/en/Over-80-Percent-of-Companies-Rely-on-Stale-Data-for-Decision-Making." > <meta name="citation_reference" content="Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identifications. Comb., 12(4):389-410, 1992." > <meta name="citation_reference" content="Comparative Toxicogenomics Database (CTD), 2024. URL: https://ctdbase.org/." > <meta name="citation_reference" content="A Dairam, Edith M Antunes, KS Saravanan, and Santylal Daya. Non-steroidal anti-inflammatory agents, tolmetin and sulindac, inhibit liver tryptophan 2, 3-dioxygenase activity and alter brain neurotransmitter levels. Life sciences, 79(24):2269-2274, 2006." > <meta name="citation_reference" content="Brian Dean. Social network usage and growth statistics. https://backlinko.com/social-media-users, 2023." > <meta name="citation_reference" content="Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018." > <meta name="citation_reference" content="Exasol. Exasol research finds 58% of organizations make decisions based on outdated data, 2020. https://www.exasol.com/news-exasol-research-finds-organizations-make-decisions-based-on-outdated-data/." > <meta name="citation_reference" content="Lihang Fan, Wenfei Fan, Ping Lu, Chao Tian, and Qiang Yin. Enriching recommendation models with logic conditions. Proc. ACM Manag. Data, 2024." > <meta name="citation_reference" content="Wenfei Fan. Big graphs: Challenges and opportunities. PVLDB, 15(12):3782-3797, 2022." > <meta name="citation_reference" content="Wenfei Fan, Wenzhi Fu, Ruochun Jin, Muyang Liu, Ping Lu, and Chao Tian. Making it tractable to catch duplicates and conflicts in graphs. Proc. ACM Manag. Data, 1(1):86:1-86:28, 2023." > <meta name="citation_reference" content="Wenfei Fan, Wenzhi Fu, Ruochun Jin, Ping Lu, and Chao Tian. Discovering association rules from big graphs. PVLDB, 15(7):1479-1492, 2022." > <meta name="citation_reference" content="Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional functional dependencies for capturing data inconsistencies. ACM Trans. on Database Systems, 33(1), 2008." > <meta name="citation_reference" content="Wenfei Fan, Liang Geng, Ruochun Jin, Ping Lu, Resul Tugey, and Wenyuan Yu. Linking entities across relations and graphs. In ICDE, pages 634-647. IEEE, 2022." > <meta name="citation_reference" content="Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian, Chao Tian, Lei Wang, Jingbo Xu, Youyang Yao, Qiang Yin, Wenyuan Yu, Kai Zeng, Kun Zhao, Jingren Zhou, Diwen Zhu, and Rong Zhu. GraphScope: A unified engine for big graph processing. PVLDB, 14(12):2879-2892, 2021." > <meta name="citation_reference" content="Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian, and Jingren Zhou. Capturing associations in graphs. PVLDB, 13(11):1863-1876, 2020." > <meta name="citation_reference" content="Wenfei Fan, Ruochun Jin, Ping Lu, Chao Tian, and Ruiqi Xu. Towards event prediction in temporal graphs. PVLDB, 15(9):1861-1874, 2022." > <meta name="citation_reference" content="Wenfei Fan, Muyang Liu, Shuhao Liu, and Chao Tian. Capturing more associations by referencing knowledge graphs. PVLDB, 2024." > <meta name="citation_reference" content="Wenfei Fan and Ping Lu. Dependencies for graphs. ACM Trans. Database Syst., 44(2):5:1-5:40, 2019." > <meta name="citation_reference" content="Wenfei Fan, Ping Lu, Chao Tian, and Jingren Zhou. Deducing certain fixes to graphs. PVLDB, 12(7):752-765, 2019." > <meta name="citation_reference" content="Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. Association rules with graph patterns. PVLDB, 8(12):1502-1513, 2015." > <meta name="citation_reference" content="Wenfei Fan, Yinghui Wu, and Jingbo Xu. Functional dependencies for graphs. In SIGMOD, pages 1843-1857. ACM, 2016." > <meta name="citation_reference" content="Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, Xiaojian Luo, Qiang Yin, Ping Lu, Yang Cao, and Ruiqi Xu. Parallelizing sequential graph computations. ACM Trans. Database Syst., 43(4):18:1-18:39, 2018." > <meta name="citation_reference" content="Chris Fotis, Asier Antoranz, Dimitris Hatziavramidis, Theodore Sakellaropoulos, and Leonidas G. Alexopoulos. Pathway-based technologies for early drug discovery. Drug Discovery Today, 2017." > <meta name="citation_reference" content="Martin Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. In PODS, pages 1-16. ACM, 2020." > <meta name="citation_reference" content="Yang Hu, Xiyuan Wang, Zhouchen Lin, Pan Li, and Muhan Zhang. Two-dimensional Weisfeiler-Lehman graph neural networks for link prediction. CoRR, abs/2206.09567, 2022." > <meta name="citation_reference" content="Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In NeurIPS, 2017." > <meta name="citation_reference" content="Clyde P. Kruskal, Larry Rudolph, and Marc Snir. A complexity theory of efficient parallel algorithms. Theor. Comput. Sci., 71(1):95-132, 1990." > <meta name="citation_reference" content="Market Research Intellignece Lab. Battery formation and grading system market size, outlook: Share, growth, and forecast (2024-2031), 2024. https://www.linkedin.com/pulse/battery-formation-grading-system-market-yae8f/." > <meta name="citation_reference" content="Ying Lai, Giorgio Fois, Jose R Flores, Michael J Tuvim, Qiangjun Zhou, Kailu Yang, Jeremy Leitz, John Peters, Yunxiang Zhang, Richard A Pfuetzner, Luis Esquivies, Philip Jones, Manfred Frick, Burton F. Dickey, and Axel T. Brunger. Inhibition of calcium-triggered secretion by hydrocarbon-stapled peptides. Nature, 603(7903):949-956, 2022." > <meta name="citation_reference" content="Jeanne C Latourelle, Merete Dybdahl, Anita L Destefano, Richard H Myers, and Timothy L Lash. Risk of parkinson’s disease after tamoxifen treatment. BMC neurology, 10(1):1-7, 2010." > <meta name="citation_reference" content="Bing Li, Wei Wang, Yifang Sun, Linhan Zhang, Muhammad Asif Ali, and Yi Wang. GraphER: Token-centric entity resolution with graph convolutional neural networks. In AAAI, pages 8172-8179, 2020." > <meta name="citation_reference" content="Yu Li, Hiroyuki Kuwahara, Peng Yang, Le Song, and Xin Gao. PGCN: Disease gene prioritization by disease and gene embedding through graph convolutional neural networks. biorxiv, page 532226, 2019." > <meta name="citation_reference" content="Medical Subject Headings (MeSH), 2024. URL: https://www.nlm.nih.gov/mesh/." > <meta name="citation_reference" content="R Sandyk and MA Gillman. Acute exacerbation of parkinson’s disease with sulindac. Annals of neurology, 17(1):104-105, 1985." > <meta name="citation_reference" content="Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. Modeling relational data with graph convolutional networks. In The Semantic Web (ESWC), pages 593-607. Springer, 2018." > <meta name="citation_reference" content="Feichen Shen and Yugyung Lee. Knowledge discovery from biomedical ontologies in cross domains. PloS one, 11(8):e0160005, 2016." > <meta name="citation_reference" content="Kartik Shenoy, Filip Ilievski, Daniel Garijo, Daniel Schwabe, and Pedro A. Szekely. A study of the quality of Wikidata. J. Web Semant., 72:100679, 2022." > <meta name="citation_reference" content="Juan Shu, Yu Li, Sheng Wang, Bowei Xi, and Jianzhu Ma. Disease gene prediction with privileged information and heteroscedastic dropout. Bioinformatics, 37(Supplement_1):i410-i417, 2021." > <meta name="citation_reference" content="Kai Shu, Suhang Wang, Jiliang Tang, Reza Zafarani, and Huan Liu. User identity linkage across online social networks: A review. SIGKDD Explor., 18(2):5-17, 2016." > <meta name="citation_reference" content="Julie Smiley. Missing data and its impact on clinical research, 2016. https://blogs.oracle.com/health-sciences/post/missing-data-and-its-impact-on-clinical-research." > <meta name="citation_reference" content="Bo-Tao Tan, Li Wang, Sen Li, Zai-Yun Long, Ya-Min Wu, and Yuan Liu. Retinoic acid induced the differentiation of neural stem cells from embryonic spinal cord into functional neurons in vitro. International journal of clinical and experimental pathology, 8(7), 2015." > <meta name="citation_reference" content="Xiaochan Wang, Yuchong Gong, Jing Yi, and Wen Zhang. Predicting gene-disease associations from the heterogeneous network using graph embedding. In IEEE International conference on bioinformatics and biomedicine (BIBM), pages 504-511, 2019." > <meta name="citation_reference" content="Antony J Williams, Lee Harland, Paul Groth, Stephen Pettifer, Christine Chichester, Egon L Willighagen, Chris T Evelo, Niklas Blomberg, Gerhard Ecker, Carole Goble, and Barend Mons. Open PHACTS: semantic interoperability for drug discovery. Drug discovery today, 17(21-22):1188-1198, 2012." > <meta name="citation_reference" content="Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer: Generating explanations for graph neural networks. In NeurIPS, pages 9240-9251, 2019." > <meta name="citation_reference" content="Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural networks via subgraph explorations. In ICML, pages 12241-12252. PMLR, 2021." > <meta name="citation_reference" content="Yuebo Yuan, Xiangdong Kong, Jianfeng Hua, Yue Pan, Yukun Sun, Xuebing Han, Hongxin Yang, Yihui Li, Xiaoan Liu, Xiaoyi Zhou, Languang Lu, and Hewu Wang. Fast grading method based on data driven capacity prediction for high-efficient lithium-ion battery manufacturing. Journal of Energy Storage, 73:109143, 2023." > <meta name="citation_reference" content="Reza Zafarani and Huan Liu. Users joining multiple sites: Friendship and popularity variations across sites. Inf. Fusion, 28:83-89, 2016." > <meta name="citation_reference" content="Xiangxiang Zeng, Xinqi Tu, Yuansheng Liu, Xiangzheng Fu, and Yansen Su. Toward better drug discovery with knowledge graph. Current opinion in structural biology, 72:114-126, 2022." > <meta name="citation_reference" content="Qianyi Zhan, Jiawei Zhang, Senzhang Wang, Philip S. Yu, and Junyuan Xie. Influence maximization across partially aligned heterogenous social networks. In PAKDD, pages 58-69, 2015." > <meta name="citation_reference" content="Qinggang Zhang, Junnan Dong, Keyu Duan, Xiao Huang, Yezi Liu, and Linchuan Xu. Contrastive knowledge graph error detection. In CIKM, 2022." > <meta name="citation_reference" content="Jie Zhao, Manish Kumar, Jeevan Sharma, and Zhihai Yuan. Arbutin effectively ameliorates the symptoms of parkinson’s disease: The role of adenosine receptors and cyclic adenosine monophosphate. Neural regeneration research, 16(10):2030, 2021." > <meta name="citation_publisher" content="Schloss Dagstuhl – Leibniz-Zentrum für Informatik" > <script type="application/ld+json"> { "@context": "https://schema.org/", "@type": "WebPage", "mainEntity": { "@type": "ScholarlyArticle", "url": "https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6", "headline": "Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction", "name": "Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction", "abstract": "This paper reports Fishing Fort, a graph analytic system developed in response to the following questions. What practical value can we get out of graph analytics? How can we effectively deduce the value from a real-life graph? Where can we get clean graphs to make accurate analyses possible? To answer these questions, Fishing Fort advocates to unify logic deduction and ML prediction by proposing Graph Association Rules (GARs), a class of logic rules in which ML models can be embedded as predicates. It employs GARs to deduce graph associations, enrich graphs and clean graphs. It has been deployed in production lines and proven effective in online recommendation, drug discovery, credit risk assessment, battery manufacturing and cybersecurity, among other things.", "keywords": [ "graph analytics", "data cleaning", "association analysis" ], "author": [ { "@type": "Person", "name": "Fan, Wenfei", "givenName": "Wenfei", "familyName": "Fan", "email": "mailto:wenfei@inf.ed.ac.uk", "sameAs": "https://orcid.org/0000-0001-5149-2656", "affiliation": "Shenzhen Institute of Computing Sciences, China" }, { "@type": "Person", "name": "Liu, Shuhao", "givenName": "Shuhao", "familyName": "Liu", "email": "mailto:shuhao@sics.ac.cn", "sameAs": "https://orcid.org/0000-0002-4892-0979", "affiliation": "Shenzhen Institute of Computing Sciences, China" } ], "position": 6, "dateCreated": "2024-06-07", "datePublished": "2024-06-07", "isAccessibleForFree": true, "license": "https://creativecommons.org/licenses/by/4.0/legalcode", "copyrightHolder": [ { "@type": "Person", "name": "Fan, Wenfei", "givenName": "Wenfei", "familyName": "Fan", "email": "mailto:wenfei@inf.ed.ac.uk", "sameAs": "https://orcid.org/0000-0001-5149-2656", "affiliation": "Shenzhen Institute of Computing Sciences, China" }, { "@type": "Person", "name": "Liu, Shuhao", "givenName": "Shuhao", "familyName": "Liu", "email": "mailto:shuhao@sics.ac.cn", "sameAs": "https://orcid.org/0000-0002-4892-0979", "affiliation": "Shenzhen Institute of Computing Sciences, China" } ], "copyrightYear": "2024", "creativeWorkStatus": "Published", "inLanguage": "en-US", "identifier": "https://doi.org/10.4230/OASIcs.Tannen.6", "publisher": { "@type": "Organization", "name": "Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik", "alternateName": [ "Schloss Dagstuhl - Leibniz Center for Informatics", "Schloss Dagstuhl - LZI GmbH" ], "identifier": "https://ror.org/00k4h2615", "sameAs": [ "https://isni.org/isni/0000000100093196", "https://www.dagstuhl.de", "https://de.wikipedia.org/wiki/Leibniz-Zentrum_f%C3%BCr_Informatik" ], "department": { "@type": "Organization", "name": "Dagstuhl Publishing", "logo": { "@type": "ImageObject", "url": "https://www.dagstuhl.de/storage/media/0005/5660/publishing-logo.jpg" }, "contactPoint": { "@type": "ContactPoint", "contactType": "customer support", "email": "mailto:publishing@dagstuhl.de", "url": "https://www.dagstuhl.de/en/publishing/team" } }, "contactPoint": { "@type": "ContactPoint", "contactType": "customer support", "email": "mailto:lzi@dagstuhl.de", "url": "https://www.dagstuhl.de/en/institute/team" } }, "citation": [ "https://thebiogrid.org/", "https://ctdbase.org/", "https://www.nlm.nih.gov/mesh/" ], "pageStart": "6:1", "pageEnd": "6:18", "accessMode": "textual", "accessModeSufficient": "textual", "thumbnailUrl": "https://drops.dagstuhl.de/storage/01oasics/oasics-vol119-tannens-festschrift/thumbnails/OASIcs.Tannen.6/OASIcs.Tannen.6.png", "potentialAction": { "@type": "ReadAction", "target": { "@type": "EntryPoint", "urlTemplate": "https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6", "actionPlatform": [ "https://schema.org/DesktopWebPlatform", "https://schema.org/AndroidPlatform", "https://schema.org/IOSPlatform" ] } }, "isPartOf": { "@type": "PublicationVolume", "@id": "https://drops.dagstuhl.de/entities/volume/OASIcs-volume-119", "url": "https://drops.dagstuhl.de/entities/volume/OASIcs-volume-119", "volumeNumber": 119, "name": "The Provenance of Elegance in Computation - Essays Dedicated to Val Tannen", "dateCreated": "2024-06-07", "datePublished": "2024-06-07", "editor": [ { "@type": "Person", "name": "Amarilli, Antoine", "givenName": "Antoine", "familyName": "Amarilli", "email": "mailto:a3nm@a3nm.net", "sameAs": "https://orcid.org/0000-0002-7977-4441", "affiliation": "T\u00e9l\u00e9com Paris, France" }, { "@type": "Person", "name": "Deutsch, Alin", "givenName": "Alin", "familyName": "Deutsch", "email": "mailto:abdeutsch@ucsd.edu", "affiliation": "University of California, San Diego, USA" } ], "isAccessibleForFree": true, "publisher": { "@type": "Organization", "name": "Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik", "alternateName": [ "Schloss Dagstuhl - Leibniz Center for Informatics", "Schloss Dagstuhl - LZI GmbH" ], "identifier": "https://ror.org/00k4h2615", "sameAs": [ "https://isni.org/isni/0000000100093196", "https://www.dagstuhl.de", "https://de.wikipedia.org/wiki/Leibniz-Zentrum_f%C3%BCr_Informatik" ], "department": { "@type": "Organization", "name": "Dagstuhl Publishing", "logo": { "@type": "ImageObject", "url": "https://www.dagstuhl.de/storage/media/0005/5660/publishing-logo.jpg" }, "contactPoint": { "@type": "ContactPoint", "contactType": "customer support", "email": "mailto:publishing@dagstuhl.de", "url": "https://www.dagstuhl.de/en/publishing/team" } }, "contactPoint": { "@type": "ContactPoint", "contactType": "customer support", "email": "mailto:lzi@dagstuhl.de", "url": "https://www.dagstuhl.de/en/institute/team" } }, "isPartOf": { "@type": "BookSeries", "url": "https://drops.dagstuhl.de/entities/series/OASIcs", "name": "Open Access Series in Informatics", "issn": "2190-6807", "isAccessibleForFree": true, "publisher": { "@type": "Organization", "name": "Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik", "alternateName": [ "Schloss Dagstuhl - Leibniz Center for Informatics", "Schloss Dagstuhl - LZI GmbH" ], "identifier": "https://ror.org/00k4h2615", "sameAs": [ "https://isni.org/isni/0000000100093196", "https://www.dagstuhl.de", "https://de.wikipedia.org/wiki/Leibniz-Zentrum_f%C3%BCr_Informatik" ], "department": { "@type": "Organization", "name": "Dagstuhl Publishing", "logo": { "@type": "ImageObject", "url": "https://www.dagstuhl.de/storage/media/0005/5660/publishing-logo.jpg" }, "contactPoint": { "@type": "ContactPoint", "contactType": "customer support", "email": "mailto:publishing@dagstuhl.de", "url": "https://www.dagstuhl.de/en/publishing/team" } }, "contactPoint": { "@type": "ContactPoint", "contactType": "customer support", "email": "mailto:lzi@dagstuhl.de", "url": "https://www.dagstuhl.de/en/institute/team" } }, "hasPart": "https://drops.dagstuhl.de/entities/volume/OASIcs-volume-119" } } } } </script> <link rel="alternate" type="application/xml" title="Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction / XML" href="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6/metadata/xml"> <link rel="alternate" type="application/x-bibtex" title="Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction / BibTeX" href="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6/metadata/bibtex/download"> <link rel="alternate" type="application/ld+json" title="Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction / Schema.org" href="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6/metadata/schema-org"> <link rel="alternate" type="application/xml" title="Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction / OAI-DublinCore" href="/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=20102"> <title>Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction</title> <link rel="icon" href="https://drops.dagstuhl.de/favicon.ico"> <link rel="stylesheet" href="https://drops.dagstuhl.de/css/app.css?drops-core-2025-01-23.1"> </head> <body> <nav class="navbar main fixed-top navbar-expand-lg navbar-light bg-light"> <div class="container-fluid"> <a class="navbar-brand" href="https://www.dagstuhl.de"> <img class="lzi-logo" src="https://drops.dagstuhl.de/images/LZI-Logo.jpg" width="84" height="62" alt="Schloss Dagstuhl - LZI - Logo"> </a> <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="navbarSupportedContent"> <ul class="navbar-nav me-auto mb-2 mb-lg-0"> <li class="nav-item" style="white-space: nowrap"> <a class="nav-link" href="https://drops.dagstuhl.de"> <i class="bi bi-house large-icon"></i> DROPS </a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownSeries" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi bi-journals large-icon"></i> Series </a> <ul class="dropdown-menu" aria-labelledby="navbarDropdown"> <li><a class="dropdown-item" href="https://drops.dagstuhl.de/entities/series/LIPIcs"> LIPIcs – Leibniz International Proceedings in Informatics </a> </li> <li><a class="dropdown-item" href="https://drops.dagstuhl.de/entities/series/OASIcs"> OASIcs – Open Access Series in Informatics </a> </li> <li><a class="dropdown-item" href="https://drops.dagstuhl.de/entities/series/DFU"> Dagstuhl Follow-Ups </a> </li> <li><a class="dropdown-item" href="https://drops.dagstuhl.de/entities/series/DagAnnRep"> Schloss Dagstuhl Jahresbericht </a> </li> <li class="dropdown-divider"></li> <li> <a class="dropdown-item" href="/#discontinued-series">Discontinued Series</a> </li> </ul> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownJournals" role="button" data-bs-toggle="dropdown" aria-expanded="false" data-fix-width=" JournalsXXXXX "> <i class="bi bi-journal large-icon"></i> Journals </a> <ul class="dropdown-menu" aria-labelledby="navbarDropdown"> <li><a class="dropdown-item" href="https://drops.dagstuhl.de/entities/journal/DARTS"> DARTS – Dagstuhl Artifacts Series </a> </li> <li><a class="dropdown-item" href="https://drops.dagstuhl.de/entities/journal/DagRep"> Dagstuhl Reports </a> </li> <li><a class="dropdown-item" href="https://drops.dagstuhl.de/entities/journal/DagMan"> Dagstuhl Manifestos </a> </li> <li><a class="dropdown-item" href="https://drops.dagstuhl.de/entities/journal/LITES"> LITES – Leibniz Transactions on Embedded Systems </a> </li> <li><a class="dropdown-item" href="https://drops.dagstuhl.de/entities/journal/TGDK"> TGDK – Transactions on Graph Data and Knowledge </a> </li> </ul> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownConferences" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi bi-people large-icon"></i> Conferences </a> <ul class="dropdown-menu conference-dropdown" aria-labelledby="navbarDropdown"> <div class="row"> <div class="col-sm-4 nav-conference-col"> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/AFT"> AFT </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/AIB"> AIB </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/AofA"> AofA </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/APPROX"> APPROX </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/ATMOS"> ATMOS </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/CALCO"> CALCO </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/CCC"> CCC </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/CONCUR"> CONCUR </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/COSIT"> COSIT </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/CP"> CP </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/CPM"> CPM </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/CSL"> CSL </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/DISC"> DISC </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/DITAM"> DITAM </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/DNA"> DNA </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/ECOOP"> ECOOP </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/ECRTS"> ECRTS </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/ESA"> ESA </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/FAB"> FAB </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/FMBC"> FMBC </a> </li> </div> <div class="col-sm-4 nav-conference-col"> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/FORC"> FORC </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/FSCD"> FSCD </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/FSTTCS"> FSTTCS </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/FUN"> FUN </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/GD"> GD </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/GIScience"> GIScience </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/ICALP"> ICALP </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/ICDT"> ICDT </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/ICPEC"> ICPEC </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/IPEC"> IPEC </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/iPMVM"> iPMVM </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/ISAAC"> ISAAC </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/ITC"> ITC </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/ITCS"> ITCS </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/ITP"> ITP </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/LDK"> LDK </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/MFCS"> MFCS </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/Microservices"> Microservices </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/NG-RES"> NG-RES </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/OPODIS"> OPODIS </a> </li> </div> <div class="col-sm-4 nav-conference-col"> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/PARMA"> PARMA </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/RANDOM"> RANDOM </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/SAND"> SAND </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/SAT"> SAT </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/SEA"> SEA </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/SLATE"> SLATE </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/SNAPL"> SNAPL </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/SoCG"> SoCG </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/STACS"> STACS </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/SWAT"> SWAT </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/TIME"> TIME </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/Tokenomics"> Tokenomics </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/TQC"> TQC </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/TYPES"> TYPES </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/WABI"> WABI </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/conference/WCET"> WCET </a> </li> </div> </div> </ul> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownArtifacts" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi bi-braces-asterisk large-icon"></i> Artifacts </a> <ul class="dropdown-menu" aria-labelledby="navbarDropdown"> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/collection/supplementary-materials"> Supplementary Materials (Software, Datasets, ...) </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/collection/dblp"> dblp Artifacts </a> </li> <li class="dropdown-divider"></li> <li> <a class="dropdown-item" href="/entities/journal/DARTS"> DARTS (Evaluated Artifacts) </a> </li> </ul> </li> </ul> <form class="navbar-search d-flex" action="https://drops.dagstuhl.de/search" method="post"> <input type="hidden" name="_token" value="8CLRz3Jb8DJA8zQMpKBJ9xFoSZAnMLXbPl3KBXhW" autocomplete="off"> <div class="input-group"> <input class="form-control" type="search" placeholder="Search" aria-label="Search" name="term" autocomplete="off" maxlength="600"> <button class="btn btn-outline-success" type="submit"> <i class="bi bi-search" style="color: #000"></i> </button> </div> </form> <ul class="navbar-nav nav-metadata"> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" id="navbarDropdownMetadata" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi bi-database-down large-icon"></i><span class="nav-text-metadata">Metadata Export</span> </a> <ul class="dropdown-menu dropdown-metadata" aria-labelledby="navbarDropdownMetadata"> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/metadata">Metadata Export</a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/oai?verb=Identify" target="_blank">OAI Interface</a> </li> </ul> </li> </ul> </div> </div> </nav> <div id="app" data-release="drops-core-2025-01-23.1" class="container "> <div id="_top-of-page"></div> <div class="fixed-search-button"><i class="bi bi-search"></i></div> <div class="document-details"> <section class="mt-3 mb-5 title"> <div class="entity-type document"> <div class="row"> <div class="col-lg-3 entity-type-name"> <i class="bi bi-file-earmark"></i> Document <img src="https://drops.dagstuhl.de/images/open-access-logo.png" width="80" alt="Open Access Logo" style="transform: translate(1em, -0.2em);"> </div> <div class="col-lg-9"> <input id="doi" type="text" style="position: fixed; top: -50vh" value="https://doi.org/10.4230/OASIcs.Tannen.6"> <div class="sharing-section"> <span class="permalink"> <span> <code><span class="hide-mobile">https://doi.org/</span>10.4230/OASIcs.Tannen.6</code> <span class="btn btn-clipboard copy-to-clipboard" title="Copy to clipboard" data-selector="doi"> <i class="bi bi-clipboard" aria-hidden="true"></i> <i class="bi bi-check -hidden" aria-hidden="true"></i> </span> </span> </span> <span class="sharing-buttons"> <a class="btn sharing-btn facebook" href="https://facebook.com/sharer/sharer.php?u=https%3A%2F%2Fdoi.org%2F10.4230%2FOASIcs.Tannen.6" target="_blank" rel="noopener" aria-hidden="true"> <i class="bi bi-facebook"></i> </a> <a class="btn sharing-btn reddit" href="https://www.reddit.com/submit?url=https%3A%2F%2Fdoi.org%2F10.4230%2FOASIcs.Tannen.6&title=Fishing+Fort%3A+A+System+for+Graph+Analytics+with+ML+Prediction+and+Logic+Deduction" target="_blank" rel="noopener" aria-hidden="true"> <i class="bi bi-reddit"></i> </a> <a class="btn sharing-btn twitter" href="https://twitter.com/intent/tweet/?text=Fishing+Fort%3A+A+System+for+Graph+Analytics+with+ML+Prediction+and+Logic+Deduction&url=https%3A%2F%2Fdoi.org%2F10.4230%2FOASIcs.Tannen.6" target="_blank" rel="noopener" aria-hidden="true"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-twitter-x" viewBox="0 0 16 16"> <path d="M12.6.75h2.454l-5.36 6.142L16 15.25h-4.937l-3.867-5.07-4.425 5.07H.316l5.733-6.57L0 .75h5.063l3.495 4.633L12.601.75Zm-.86 13.028h1.36L4.323 2.145H2.865l8.875 11.633Z"/> </svg> </a> <a class="btn sharing-btn email" href="mailto:?subject=Fishing+Fort%3A+A+System+for+Graph+Analytics+with+ML+Prediction+and+Logic+Deduction&body=https%3A%2F%2Fdoi.org%2F10.4230%2FOASIcs.Tannen.6" target="_self" rel="noopener" aria-hidden="true"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 24 24" fill="currentColor"> <path d="M22 4H2C.9 4 0 4.9 0 6v12c0 1.1.9 2 2 2h20c1.1 0 2-.9 2-2V6c0-1.1-.9-2-2-2zM7.25 14.43l-3.5 2c-.08.05-.17.07-.25.07-.17 0-.34-.1-.43-.25-.14-.24-.06-.55.18-.68l3.5-2c.24-.14.55-.06.68.18.14.24.06.55-.18.68zm4.75.07c-.1 0-.2-.03-.27-.08l-8.5-5.5c-.23-.15-.3-.46-.15-.7.15-.22.46-.3.7-.14L12 13.4l8.23-5.32c.23-.15.54-.08.7.15.14.23.07.54-.16.7l-8.5 5.5c-.08.04-.17.07-.27.07zm8.93 1.75c-.1.16-.26.25-.43.25-.08 0-.17-.02-.25-.07l-3.5-2c-.24-.13-.32-.44-.18-.68s.44-.32.68-.18l3.5 2c.24.13.32.44.18.68z"/> </svg> </a> </span> <span class="sharing-buttons"> <span class="dropdown"> <a class="btn sharing-btn metadata dropdown-toggle" href="#" role="button" data-bs-toggle="dropdown" aria-expanded="false"><i class="bi bi-download"></i></a> <ul class="dropdown-menu dropdown-menu-end"> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6/metadata/xml"> Export XML </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6/metadata/acm-xml"> Export ACM-XML </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6/metadata/doaj-xml"> Export DOAJ-XML </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6/metadata/schema-org"> Export Schema.org </a> </li> <li> <a class="dropdown-item" href="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6/metadata/bibtex"> Export BibTeX </a> </li> </ul> </span> </span> </div> </div> </div> </div> <hr> <h1>Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction</h1> <h3 class="mt-2 authors"> Authors <a href="#author-details" style="font-size: 0.8em; padding-right: 1em"><i class="bi bi-info-circle"></i></a> <span class="author"> <a href="https://drops.dagstuhl.de/search/documents?author=Fan, Wenfei" class="name">Wenfei Fan</a> <a href="https://orcid.org/0000-0001-5149-2656"><img class="orcid-logo" src="https://drops.dagstuhl.de/images/orcid.png" alt="ORCID-Logo"></a><!-- --><!---->, </span> <span class="author"> <a href="https://drops.dagstuhl.de/search/documents?author=Liu, Shuhao" class="name">Shuhao Liu</a> <a href="https://orcid.org/0000-0002-4892-0979"><img class="orcid-logo" src="https://drops.dagstuhl.de/images/orcid.png" alt="ORCID-Logo"></a><!-- --><!----> </span> </h3> <hr> <ul class="mt-4"> <li> <span style="margin-right: 10px; ">Part of:</span> <span style="white-space: nowrap"> <i class="bi bi-book-half"></i> Volume: </span> <a href="https://drops.dagstuhl.de/entities/volume/OASIcs-volume-119">The Provenance of Elegance in Computation - Essays Dedicated to Val Tannen (Tannen's Festschrift)</a> <br> <span style="margin-right: 10px; visibility: hidden;">Part of:</span> <span style="white-space: nowrap"> <i class="bi bi-journals"></i> Series: </span> <a href="https://drops.dagstuhl.de/entities/series/OASIcs">Open Access Series in Informatics (OASIcs)</a> <br> <span style="margin-right: 10px; visibility: hidden;">Part of:</span> <span style="white-space: nowrap"> <i class="bi bi-people"></i> Conference: </span> <a href="https://drops.dagstuhl.de/entities/conference/Tannen">Festschrift Val Tannen </a> </li> <li class="mt-2">License: <a href="https://creativecommons.org/licenses/by/4.0/legalcode"> <img class="license-logo" src="https://drops.dagstuhl.de/images/cc-by.png" alt="CC-BY Logo"> Creative Commons Attribution 4.0 International license </a> </li> <li>Publication Date: 2024-06-07 </li> </ul> <hr> </section> <a class="fixed-pdf-button" href="https://drops.dagstuhl.de/storage/01oasics/oasics-vol119-tannens-festschrift/OASIcs.Tannen.6/OASIcs.Tannen.6.pdf"><i class="bi bi-file-earmark-pdf-fill" style="color:red"></i> PDF </a> <div class="row mt-2"> <div class="col-lg-4 mt-2"> <section class="thumbnail"> <a href="https://drops.dagstuhl.de/storage/01oasics/oasics-vol119-tannens-festschrift/OASIcs.Tannen.6/OASIcs.Tannen.6.pdf"><img src="https://drops.dagstuhl.de/storage/01oasics/oasics-vol119-tannens-festschrift/thumbnails/OASIcs.Tannen.6/OASIcs.Tannen.6.png" alt="Thumbnail PDF"></a> </section> <section class="files mt-5"> <h2>File</h2> <div class="content"> <div> <a href="https://drops.dagstuhl.de/storage/01oasics/oasics-vol119-tannens-festschrift/OASIcs.Tannen.6/OASIcs.Tannen.6.pdf"><i class="bi bi-file-earmark-pdf-fill" style="color:red"></i> OASIcs.Tannen.6.pdf</a> <ul> <li>Filesize: 2.47 MB</li> <li>18 pages</li> </ul> </div> </div> </section> <section class="identifiers mt-3"> <h2>Document Identifiers</h2> <div class="content"> <ul> <li><b>DOI:</b> <a href="https://doi.org/10.4230/OASIcs.Tannen.6">10.4230/OASIcs.Tannen.6</a></li> <li><b>URN:</b> <a href="https://nbn-resolving.org/process-urn-form?identifier=urn:nbn:de:0030-drops-201025&verb=FULL">urn:nbn:de:0030-drops-201025</a></li> </ul> </div> </section> <section class="authors mt-3" id="author-details"> <h2>Author Details</h2> <div class="author person-details"> <div> <i class="bi bi-person-fill"></i> <span class="name"><b>Wenfei Fan</b></span> <a href="https://orcid.org/0000-0001-5149-2656"><img class="orcid-logo" src="https://drops.dagstuhl.de/images/orcid.png" alt="ORCID-Logo"></a> <a href="https://homepages.inf.ed.ac.uk/wenfei/"><i class="bi bi-house"></i></a> <a href="mailto:wenfei@inf.ed.ac.uk"><i class="bi bi-envelope"></i></a> <a href="https://drops.dagstuhl.de/search/documents?author=Fan, Wenfei"><small><i class="bi bi-search"></i></small></a> </div> <ul> <li class="affiliation">Shenzhen Institute of Computing Sciences, China </li> <li class="affiliation">University of Edinburgh, UK </li> <li class="affiliation">Beihang University, Beijing, China </li> </ul> </div> <div class="author person-details"> <div> <i class="bi bi-person-fill"></i> <span class="name"><b>Shuhao Liu</b></span> <a href="https://orcid.org/0000-0002-4892-0979"><img class="orcid-logo" src="https://drops.dagstuhl.de/images/orcid.png" alt="ORCID-Logo"></a> <a href="https://shuhaoliu.github.io/"><i class="bi bi-house"></i></a> <a href="mailto:shuhao@sics.ac.cn"><i class="bi bi-envelope"></i></a> <a href="https://drops.dagstuhl.de/search/documents?author=Liu, Shuhao"><small><i class="bi bi-search"></i></small></a> </div> <ul> <li class="affiliation">Shenzhen Institute of Computing Sciences, China </li> </ul> </div> </section> <section class="acknowledgements mt-3"> <h2>Acknowledgements</h2> <div class="content"> The paper is a tribute to Professor Val Tannen. Val was a professor at UPenn when Fan was doing PhD there, and has been providing Fan with unfailing support ever since. </div> </section> </div> <div class="col-lg-8 mt-2"> <section class="cite-as mt-3"> <h2>Cite As <span class="btn btn-primary btn-xs" style="float: right" data-bs-toggle="modal" data-bs-target="#bibtex-modal">Get BibTex</span></h2> <div class="content"> Wenfei Fan and Shuhao Liu. Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction. In The Provenance of Elegance in Computation - Essays Dedicated to Val Tannen. Open Access Series in Informatics (OASIcs), Volume 119, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) <a href="https://doi.org/10.4230/OASIcs.Tannen.6">https://doi.org/10.4230/OASIcs.Tannen.6</a> </div> <div class="modal fade" id="bibtex-modal" tabindex="-1" aria-labelledby="bibtexModalLabel" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="bibtexModalLabel">BibTex</h5> <button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button> </div> <div class="modal-body"> <pre class="bibtex">@InProceedings{fan_et_al:OASIcs.Tannen.6, author = {Fan, Wenfei and Liu, Shuhao}, title = {{Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction}}, booktitle = {The Provenance of Elegance in Computation - Essays Dedicated to Val Tannen}, pages = {6:1--6:18}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-320-1}, ISSN = {2190-6807}, year = {2024}, volume = {119}, editor = {Amarilli, Antoine and Deutsch, Alin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6}, URN = {urn:nbn:de:0030-drops-201025}, doi = {10.4230/OASIcs.Tannen.6}, annote = {Keywords: graph analytics, data cleaning, association analysis} }</pre> <div style="overflow: hidden"> <textarea style="position: absolute; top: -400vh" id="bibtex-input">@InProceedings{fan_et_al:OASIcs.Tannen.6, author = {Fan, Wenfei and Liu, Shuhao}, title = {{Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction}}, booktitle = {The Provenance of Elegance in Computation - Essays Dedicated to Val Tannen}, pages = {6:1--6:18}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-320-1}, ISSN = {2190-6807}, year = {2024}, volume = {119}, editor = {Amarilli, Antoine and Deutsch, Alin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tannen.6}, URN = {urn:nbn:de:0030-drops-201025}, doi = {10.4230/OASIcs.Tannen.6}, annote = {Keywords: graph analytics, data cleaning, association analysis} }</textarea> </div> </div> <div class="modal-footer"> <button type="button" class="btn btn-secondary" data-bs-dismiss="modal">Close</button> <button type="button" class="btn btn-primary copy-to-clipboard" data-selector="bibtex-input"><i class="bi bi-clipboard"></i> Copy BibTex To Clipboard<span class="bi bi-check -hidden" style="padding-left: 1em; font-weight: bold"></span></button> </div> </div> </div> </div> </section> <section class="abstract"> <h2>Abstract</h2> <pre class="content" style="white-space: -moz-pre-wrap; white-space: -o-pre-wrap; word-wrap: break-word; white-space: pre-wrap;">This paper reports Fishing Fort, a graph analytic system developed in response to the following questions. What practical value can we get out of graph analytics? How can we effectively deduce the value from a real-life graph? Where can we get clean graphs to make accurate analyses possible? To answer these questions, Fishing Fort advocates to unify logic deduction and ML prediction by proposing Graph Association Rules (GARs), a class of logic rules in which ML models can be embedded as predicates. It employs GARs to deduce graph associations, enrich graphs and clean graphs. It has been deployed in production lines and proven effective in online recommendation, drug discovery, credit risk assessment, battery manufacturing and cybersecurity, among other things.</pre> </section> <section class="subject-classifications mt-3"> <h2>Subject Classification</h2> <div class="acm-subject-classifications"> <h5>ACM Subject Classification</h5> <div class="content"> <ul> <li>Information systems → Data mining</li> <li>Information systems → Data management systems</li> <li>Information systems → Information integration</li> </ul> </div> </div> <div class="keywords "> <h5>Keywords</h5> <div class="content"> <ul class="list-style-comma"> <li>graph analytics</li> <li>data cleaning</li> <li>association analysis</li> </ul> </div> </div> </section> <section class="metrics mt-3"> <h2>Metrics</h2> <div class="content"> <ul> <li> <a href="#" class="btn-statistics" data-entity="document/10.4230/OASIcs.Tannen.6" data-title="Fishing Fort: A System for Graph Analytics with ML Prediction and Logic Deduction"> <i class="bi bi-graph-up"></i> Access Statistics </a> </li> <li> Total Accesses (updated on a weekly basis) <div class="stats-total"> <div class="stats total-downloads"> <div class="circle"> <div class="number" data-number="0">0</div> </div> <div class="label">PDF Downloads</div> </div> <div class="stats total-metadata-views"> <div class="circle"> <div class="number" data-number="0">0</div> </div> <div class="label">Metadata Views</div> </div> </div> <!-- must be externally available for the series/journal case --> </li> </ul> </div> </section> <div class="offcanvas offcanvas-bottom" tabindex="-1" id="statistics-offcanvas" aria-labelledby="statistics-offcanvas"> <div class="offcanvas-header"> <h5 class="offcanvas-title"></h5> <button type="button" class="btn-close text-reset" data-bs-dismiss="offcanvas" aria-label="Close"></button> </div> <div class="offcanvas-body small" data-context=""> <div style="margin-top: 20vh" class="centered-loader"><div class="loader"></div></div> <iframe class="-hidden"></iframe> </div> </div> <section class="references mt-3"> <h2>References</h2> <div class="content"> <ol> <li> <span> Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995. <a href="https://scholar.google.com/scholar?hl=en&q=Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> BioGRID, 2024. URL: <a href="https://thebiogrid.org/">https://thebiogrid.org/</a>. </span> </li> <li> <span> Businesswire. Over 80 percent of companies rely on stale data for decision-making, 2022. https://www.businesswire.com/news/home/20220511005403/en/Over-80-Percent-of-Companies-Rely-on-Stale-Data-for-Decision-Making. <a href="https://scholar.google.com/scholar?hl=en&q=Businesswire. Over 80 percent of companies rely on stale data for decision-making, 2022. https://www.businesswire.com/news/home/20220511005403/en/Over-80-Percent-of-Companies-Rely-on-Stale-Data-for-Decision-Making." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identifications. Comb., 12(4):389-410, 1992. <a href="https://scholar.google.com/scholar?hl=en&q=Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identifications. Comb., 12(4):389-410, 1992." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Comparative Toxicogenomics Database (CTD), 2024. URL: <a href="https://ctdbase.org/">https://ctdbase.org/</a>. </span> </li> <li> <span> A Dairam, Edith M Antunes, KS Saravanan, and Santylal Daya. Non-steroidal anti-inflammatory agents, tolmetin and sulindac, inhibit liver tryptophan 2, 3-dioxygenase activity and alter brain neurotransmitter levels. Life sciences, 79(24):2269-2274, 2006. <a href="https://scholar.google.com/scholar?hl=en&q=A Dairam, Edith M Antunes, KS Saravanan, and Santylal Daya. Non-steroidal anti-inflammatory agents, tolmetin and sulindac, inhibit liver tryptophan 2, 3-dioxygenase activity and alter brain neurotransmitter levels. Life sciences, 79(24):2269-2274, 2006." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Brian Dean. Social network usage and growth statistics. https://backlinko.com/social-media-users, 2023. <a href="https://scholar.google.com/scholar?hl=en&q=Brian Dean. Social network usage and growth statistics. https://backlinko.com/social-media-users, 2023." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. <a href="https://scholar.google.com/scholar?hl=en&q=Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Exasol. Exasol research finds 58% of organizations make decisions based on outdated data, 2020. https://www.exasol.com/news-exasol-research-finds-organizations-make-decisions-based-on-outdated-data/. <a href="https://scholar.google.com/scholar?hl=en&q=Exasol. Exasol research finds 58% of organizations make decisions based on outdated data, 2020. https://www.exasol.com/news-exasol-research-finds-organizations-make-decisions-based-on-outdated-data/." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Lihang Fan, Wenfei Fan, Ping Lu, Chao Tian, and Qiang Yin. Enriching recommendation models with logic conditions. Proc. ACM Manag. Data, 2024. <a href="https://scholar.google.com/scholar?hl=en&q=Lihang Fan, Wenfei Fan, Ping Lu, Chao Tian, and Qiang Yin. Enriching recommendation models with logic conditions. Proc. ACM Manag. Data, 2024." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan. Big graphs: Challenges and opportunities. PVLDB, 15(12):3782-3797, 2022. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan. Big graphs: Challenges and opportunities. PVLDB, 15(12):3782-3797, 2022." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan, Wenzhi Fu, Ruochun Jin, Muyang Liu, Ping Lu, and Chao Tian. Making it tractable to catch duplicates and conflicts in graphs. Proc. ACM Manag. Data, 1(1):86:1-86:28, 2023. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan, Wenzhi Fu, Ruochun Jin, Muyang Liu, Ping Lu, and Chao Tian. Making it tractable to catch duplicates and conflicts in graphs. Proc. ACM Manag. Data, 1(1):86:1-86:28, 2023." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan, Wenzhi Fu, Ruochun Jin, Ping Lu, and Chao Tian. Discovering association rules from big graphs. PVLDB, 15(7):1479-1492, 2022. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan, Wenzhi Fu, Ruochun Jin, Ping Lu, and Chao Tian. Discovering association rules from big graphs. PVLDB, 15(7):1479-1492, 2022." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional functional dependencies for capturing data inconsistencies. ACM Trans. on Database Systems, 33(1), 2008. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional functional dependencies for capturing data inconsistencies. ACM Trans. on Database Systems, 33(1), 2008." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan, Liang Geng, Ruochun Jin, Ping Lu, Resul Tugey, and Wenyuan Yu. Linking entities across relations and graphs. In ICDE, pages 634-647. IEEE, 2022. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan, Liang Geng, Ruochun Jin, Ping Lu, Resul Tugey, and Wenyuan Yu. Linking entities across relations and graphs. In ICDE, pages 634-647. IEEE, 2022." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian, Chao Tian, Lei Wang, Jingbo Xu, Youyang Yao, Qiang Yin, Wenyuan Yu, Kai Zeng, Kun Zhao, Jingren Zhou, Diwen Zhu, and Rong Zhu. GraphScope: A unified engine for big graph processing. PVLDB, 14(12):2879-2892, 2021. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian, Chao Tian, Lei Wang, Jingbo Xu, Youyang Yao, Qiang Yin, Wenyuan Yu, Kai Zeng, Kun Zhao, Jingren Zhou, Diwen Zhu, and Rong Zhu. GraphScope: A unified engine for big graph processing. PVLDB, 14(12):2879-2892, 2021." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian, and Jingren Zhou. Capturing associations in graphs. PVLDB, 13(11):1863-1876, 2020. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian, and Jingren Zhou. Capturing associations in graphs. PVLDB, 13(11):1863-1876, 2020." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan, Ruochun Jin, Ping Lu, Chao Tian, and Ruiqi Xu. Towards event prediction in temporal graphs. PVLDB, 15(9):1861-1874, 2022. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan, Ruochun Jin, Ping Lu, Chao Tian, and Ruiqi Xu. Towards event prediction in temporal graphs. PVLDB, 15(9):1861-1874, 2022." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan, Muyang Liu, Shuhao Liu, and Chao Tian. Capturing more associations by referencing knowledge graphs. PVLDB, 2024. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan, Muyang Liu, Shuhao Liu, and Chao Tian. Capturing more associations by referencing knowledge graphs. PVLDB, 2024." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan and Ping Lu. Dependencies for graphs. ACM Trans. Database Syst., 44(2):5:1-5:40, 2019. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan and Ping Lu. Dependencies for graphs. ACM Trans. Database Syst., 44(2):5:1-5:40, 2019." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan, Ping Lu, Chao Tian, and Jingren Zhou. Deducing certain fixes to graphs. PVLDB, 12(7):752-765, 2019. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan, Ping Lu, Chao Tian, and Jingren Zhou. Deducing certain fixes to graphs. PVLDB, 12(7):752-765, 2019." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. Association rules with graph patterns. PVLDB, 8(12):1502-1513, 2015. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. Association rules with graph patterns. PVLDB, 8(12):1502-1513, 2015." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan, Yinghui Wu, and Jingbo Xu. Functional dependencies for graphs. In SIGMOD, pages 1843-1857. ACM, 2016. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan, Yinghui Wu, and Jingbo Xu. Functional dependencies for graphs. In SIGMOD, pages 1843-1857. ACM, 2016." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, Xiaojian Luo, Qiang Yin, Ping Lu, Yang Cao, and Ruiqi Xu. Parallelizing sequential graph computations. ACM Trans. Database Syst., 43(4):18:1-18:39, 2018. <a href="https://scholar.google.com/scholar?hl=en&q=Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, Xiaojian Luo, Qiang Yin, Ping Lu, Yang Cao, and Ruiqi Xu. Parallelizing sequential graph computations. ACM Trans. Database Syst., 43(4):18:1-18:39, 2018." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Chris Fotis, Asier Antoranz, Dimitris Hatziavramidis, Theodore Sakellaropoulos, and Leonidas G. Alexopoulos. Pathway-based technologies for early drug discovery. Drug Discovery Today, 2017. <a href="https://scholar.google.com/scholar?hl=en&q=Chris Fotis, Asier Antoranz, Dimitris Hatziavramidis, Theodore Sakellaropoulos, and Leonidas G. Alexopoulos. Pathway-based technologies for early drug discovery. Drug Discovery Today, 2017." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Martin Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. In PODS, pages 1-16. ACM, 2020. <a href="https://scholar.google.com/scholar?hl=en&q=Martin Grohe. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. In PODS, pages 1-16. ACM, 2020." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Yang Hu, Xiyuan Wang, Zhouchen Lin, Pan Li, and Muhan Zhang. Two-dimensional Weisfeiler-Lehman graph neural networks for link prediction. CoRR, abs/2206.09567, 2022. <a href="https://scholar.google.com/scholar?hl=en&q=Yang Hu, Xiyuan Wang, Zhouchen Lin, Pan Li, and Muhan Zhang. Two-dimensional Weisfeiler-Lehman graph neural networks for link prediction. CoRR, abs/2206.09567, 2022." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In NeurIPS, 2017. <a href="https://scholar.google.com/scholar?hl=en&q=Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In NeurIPS, 2017." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Clyde P. Kruskal, Larry Rudolph, and Marc Snir. A complexity theory of efficient parallel algorithms. Theor. Comput. Sci., 71(1):95-132, 1990. <a href="https://scholar.google.com/scholar?hl=en&q=Clyde P. Kruskal, Larry Rudolph, and Marc Snir. A complexity theory of efficient parallel algorithms. Theor. Comput. Sci., 71(1):95-132, 1990." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Market Research Intellignece Lab. Battery formation and grading system market size, outlook: Share, growth, and forecast (2024-2031), 2024. https://www.linkedin.com/pulse/battery-formation-grading-system-market-yae8f/. <a href="https://scholar.google.com/scholar?hl=en&q=Market Research Intellignece Lab. Battery formation and grading system market size, outlook: Share, growth, and forecast (2024-2031), 2024. https://www.linkedin.com/pulse/battery-formation-grading-system-market-yae8f/." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Ying Lai, Giorgio Fois, Jose R Flores, Michael J Tuvim, Qiangjun Zhou, Kailu Yang, Jeremy Leitz, John Peters, Yunxiang Zhang, Richard A Pfuetzner, Luis Esquivies, Philip Jones, Manfred Frick, Burton F. Dickey, and Axel T. Brunger. Inhibition of calcium-triggered secretion by hydrocarbon-stapled peptides. Nature, 603(7903):949-956, 2022. <a href="https://scholar.google.com/scholar?hl=en&q=Ying Lai, Giorgio Fois, Jose R Flores, Michael J Tuvim, Qiangjun Zhou, Kailu Yang, Jeremy Leitz, John Peters, Yunxiang Zhang, Richard A Pfuetzner, Luis Esquivies, Philip Jones, Manfred Frick, Burton F. Dickey, and Axel T. Brunger. Inhibition of calcium-triggered secretion by hydrocarbon-stapled peptides. Nature, 603(7903):949-956, 2022." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Jeanne C Latourelle, Merete Dybdahl, Anita L Destefano, Richard H Myers, and Timothy L Lash. Risk of parkinson’s disease after tamoxifen treatment. BMC neurology, 10(1):1-7, 2010. <a href="https://scholar.google.com/scholar?hl=en&q=Jeanne C Latourelle, Merete Dybdahl, Anita L Destefano, Richard H Myers, and Timothy L Lash. Risk of parkinson’s disease after tamoxifen treatment. BMC neurology, 10(1):1-7, 2010." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Bing Li, Wei Wang, Yifang Sun, Linhan Zhang, Muhammad Asif Ali, and Yi Wang. GraphER: Token-centric entity resolution with graph convolutional neural networks. In AAAI, pages 8172-8179, 2020. <a href="https://scholar.google.com/scholar?hl=en&q=Bing Li, Wei Wang, Yifang Sun, Linhan Zhang, Muhammad Asif Ali, and Yi Wang. GraphER: Token-centric entity resolution with graph convolutional neural networks. In AAAI, pages 8172-8179, 2020." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Yu Li, Hiroyuki Kuwahara, Peng Yang, Le Song, and Xin Gao. PGCN: Disease gene prioritization by disease and gene embedding through graph convolutional neural networks. biorxiv, page 532226, 2019. <a href="https://scholar.google.com/scholar?hl=en&q=Yu Li, Hiroyuki Kuwahara, Peng Yang, Le Song, and Xin Gao. PGCN: Disease gene prioritization by disease and gene embedding through graph convolutional neural networks. biorxiv, page 532226, 2019." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Medical Subject Headings (MeSH), 2024. URL: <a href="https://www.nlm.nih.gov/mesh/">https://www.nlm.nih.gov/mesh/</a>. </span> </li> <li> <span> R Sandyk and MA Gillman. Acute exacerbation of parkinson’s disease with sulindac. Annals of neurology, 17(1):104-105, 1985. <a href="https://scholar.google.com/scholar?hl=en&q=R Sandyk and MA Gillman. Acute exacerbation of parkinson’s disease with sulindac. Annals of neurology, 17(1):104-105, 1985." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. Modeling relational data with graph convolutional networks. In The Semantic Web (ESWC), pages 593-607. Springer, 2018. <a href="https://scholar.google.com/scholar?hl=en&q=Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. Modeling relational data with graph convolutional networks. In The Semantic Web (ESWC), pages 593-607. Springer, 2018." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Feichen Shen and Yugyung Lee. Knowledge discovery from biomedical ontologies in cross domains. PloS one, 11(8):e0160005, 2016. <a href="https://scholar.google.com/scholar?hl=en&q=Feichen Shen and Yugyung Lee. Knowledge discovery from biomedical ontologies in cross domains. PloS one, 11(8):e0160005, 2016." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Kartik Shenoy, Filip Ilievski, Daniel Garijo, Daniel Schwabe, and Pedro A. Szekely. A study of the quality of Wikidata. J. Web Semant., 72:100679, 2022. <a href="https://scholar.google.com/scholar?hl=en&q=Kartik Shenoy, Filip Ilievski, Daniel Garijo, Daniel Schwabe, and Pedro A. Szekely. A study of the quality of Wikidata. J. Web Semant., 72:100679, 2022." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Juan Shu, Yu Li, Sheng Wang, Bowei Xi, and Jianzhu Ma. Disease gene prediction with privileged information and heteroscedastic dropout. Bioinformatics, 37(Supplement_1):i410-i417, 2021. <a href="https://scholar.google.com/scholar?hl=en&q=Juan Shu, Yu Li, Sheng Wang, Bowei Xi, and Jianzhu Ma. Disease gene prediction with privileged information and heteroscedastic dropout. Bioinformatics, 37(Supplement_1):i410-i417, 2021." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Kai Shu, Suhang Wang, Jiliang Tang, Reza Zafarani, and Huan Liu. User identity linkage across online social networks: A review. SIGKDD Explor., 18(2):5-17, 2016. <a href="https://scholar.google.com/scholar?hl=en&q=Kai Shu, Suhang Wang, Jiliang Tang, Reza Zafarani, and Huan Liu. User identity linkage across online social networks: A review. SIGKDD Explor., 18(2):5-17, 2016." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Julie Smiley. Missing data and its impact on clinical research, 2016. https://blogs.oracle.com/health-sciences/post/missing-data-and-its-impact-on-clinical-research. <a href="https://scholar.google.com/scholar?hl=en&q=Julie Smiley. Missing data and its impact on clinical research, 2016. https://blogs.oracle.com/health-sciences/post/missing-data-and-its-impact-on-clinical-research." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Bo-Tao Tan, Li Wang, Sen Li, Zai-Yun Long, Ya-Min Wu, and Yuan Liu. Retinoic acid induced the differentiation of neural stem cells from embryonic spinal cord into functional neurons in vitro. International journal of clinical and experimental pathology, 8(7), 2015. <a href="https://scholar.google.com/scholar?hl=en&q=Bo-Tao Tan, Li Wang, Sen Li, Zai-Yun Long, Ya-Min Wu, and Yuan Liu. Retinoic acid induced the differentiation of neural stem cells from embryonic spinal cord into functional neurons in vitro. International journal of clinical and experimental pathology, 8(7), 2015." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Xiaochan Wang, Yuchong Gong, Jing Yi, and Wen Zhang. Predicting gene-disease associations from the heterogeneous network using graph embedding. In IEEE International conference on bioinformatics and biomedicine (BIBM), pages 504-511, 2019. <a href="https://scholar.google.com/scholar?hl=en&q=Xiaochan Wang, Yuchong Gong, Jing Yi, and Wen Zhang. Predicting gene-disease associations from the heterogeneous network using graph embedding. In IEEE International conference on bioinformatics and biomedicine (BIBM), pages 504-511, 2019." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Antony J Williams, Lee Harland, Paul Groth, Stephen Pettifer, Christine Chichester, Egon L Willighagen, Chris T Evelo, Niklas Blomberg, Gerhard Ecker, Carole Goble, and Barend Mons. Open PHACTS: semantic interoperability for drug discovery. Drug discovery today, 17(21-22):1188-1198, 2012. <a href="https://scholar.google.com/scholar?hl=en&q=Antony J Williams, Lee Harland, Paul Groth, Stephen Pettifer, Christine Chichester, Egon L Willighagen, Chris T Evelo, Niklas Blomberg, Gerhard Ecker, Carole Goble, and Barend Mons. Open PHACTS: semantic interoperability for drug discovery. Drug discovery today, 17(21-22):1188-1198, 2012." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer: Generating explanations for graph neural networks. In NeurIPS, pages 9240-9251, 2019. <a href="https://scholar.google.com/scholar?hl=en&q=Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer: Generating explanations for graph neural networks. In NeurIPS, pages 9240-9251, 2019." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural networks via subgraph explorations. In ICML, pages 12241-12252. PMLR, 2021. <a href="https://scholar.google.com/scholar?hl=en&q=Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural networks via subgraph explorations. In ICML, pages 12241-12252. PMLR, 2021." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Yuebo Yuan, Xiangdong Kong, Jianfeng Hua, Yue Pan, Yukun Sun, Xuebing Han, Hongxin Yang, Yihui Li, Xiaoan Liu, Xiaoyi Zhou, Languang Lu, and Hewu Wang. Fast grading method based on data driven capacity prediction for high-efficient lithium-ion battery manufacturing. Journal of Energy Storage, 73:109143, 2023. <a href="https://scholar.google.com/scholar?hl=en&q=Yuebo Yuan, Xiangdong Kong, Jianfeng Hua, Yue Pan, Yukun Sun, Xuebing Han, Hongxin Yang, Yihui Li, Xiaoan Liu, Xiaoyi Zhou, Languang Lu, and Hewu Wang. Fast grading method based on data driven capacity prediction for high-efficient lithium-ion battery manufacturing. Journal of Energy Storage, 73:109143, 2023." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Reza Zafarani and Huan Liu. Users joining multiple sites: Friendship and popularity variations across sites. Inf. Fusion, 28:83-89, 2016. <a href="https://scholar.google.com/scholar?hl=en&q=Reza Zafarani and Huan Liu. Users joining multiple sites: Friendship and popularity variations across sites. Inf. Fusion, 28:83-89, 2016." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Xiangxiang Zeng, Xinqi Tu, Yuansheng Liu, Xiangzheng Fu, and Yansen Su. Toward better drug discovery with knowledge graph. Current opinion in structural biology, 72:114-126, 2022. <a href="https://scholar.google.com/scholar?hl=en&q=Xiangxiang Zeng, Xinqi Tu, Yuansheng Liu, Xiangzheng Fu, and Yansen Su. Toward better drug discovery with knowledge graph. Current opinion in structural biology, 72:114-126, 2022." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Qianyi Zhan, Jiawei Zhang, Senzhang Wang, Philip S. Yu, and Junyuan Xie. Influence maximization across partially aligned heterogenous social networks. In PAKDD, pages 58-69, 2015. <a href="https://scholar.google.com/scholar?hl=en&q=Qianyi Zhan, Jiawei Zhang, Senzhang Wang, Philip S. Yu, and Junyuan Xie. Influence maximization across partially aligned heterogenous social networks. In PAKDD, pages 58-69, 2015." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Qinggang Zhang, Junnan Dong, Keyu Duan, Xiao Huang, Yezi Liu, and Linchuan Xu. Contrastive knowledge graph error detection. In CIKM, 2022. <a href="https://scholar.google.com/scholar?hl=en&q=Qinggang Zhang, Junnan Dong, Keyu Duan, Xiao Huang, Yezi Liu, and Linchuan Xu. Contrastive knowledge graph error detection. In CIKM, 2022." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> <li> <span> Jie Zhao, Manish Kumar, Jeevan Sharma, and Zhihai Yuan. Arbutin effectively ameliorates the symptoms of parkinson’s disease: The role of adenosine receptors and cyclic adenosine monophosphate. Neural regeneration research, 16(10):2030, 2021. <a href="https://scholar.google.com/scholar?hl=en&q=Jie Zhao, Manish Kumar, Jeevan Sharma, and Zhihai Yuan. Arbutin effectively ameliorates the symptoms of parkinson’s disease: The role of adenosine receptors and cyclic adenosine monophosphate. Neural regeneration research, 16(10):2030, 2021." target="_blank" title="Google Scholar"><img style="opacity: 0.5" src="https://drops.dagstuhl.de/images/google-scholar.dark.16x16.png" alt="Google Scholar"></a> </span> </li> </ol> </div> </section> </div> </div> </div> </div> <span class="_feedback-button"> <i class="bi bi-question-circle"></i> <span class="text">Questions / Remarks / Feedback</span> </span> <div class="_feedback-form -hidden"> <span class="_feedback-close">X</span> <p>Feedback for Dagstuhl Publishing</p> <div> <textarea class="form-control" name="_feedback"></textarea> <input class="form-control" type="text" name="name" autocomplete="off" placeholder="Name (optional)" maxlength="60"> <input class="form-control" type="email" name="email" autocomplete="off" placeholder="Email (optional)" maxlength="60"> <br> <button class="btn btn-sm btn-default">Send</button> </div> </div> <div class="alert alert-success _feedback-success -hidden"> <span class="glyphicon glyphicon-ok"></span> <h3>Thanks for your feedback!</h3> <div>Feedback submitted</div> <button class="btn btn-white _feedback-done">OK</button> </div> <div class="alert alert-danger _feedback-error -hidden"> <span class="glyphicon glyphicon-remove"></span> <h3>Could not send message</h3> <div>Please try again later or send an <a href="mailto:publishing@dagstuhl.de">E-mail</a></div> <button class="btn btn-white _feedback-done">OK</button> </div> <a class="scroll-up-button -hidden" href="#_top-of-page"> <i class="bi bi-arrow-up-circle"></i> </a> <footer class="page-footer dark"> <div class="container"> <h5>About DROPS</h5> <p>Schloss Dagstuhl - Leibniz Center for Informatics has been operating the Dagstuhl Research Online Publication Server (short: DROPS) since 2004. DROPS enables publication of the latest research findings in a fast, uncomplicated manner, in addition to providing unimpeded, open access to them. All the requisite metadata on each publication is administered in accordance with general guidelines pertaining to online publications (cf. Dublin Core). This enables the online publications to be authorized for citation and made accessible to a wide readership on a permanent basis. Access is free of charge for readers following the open access idea which fosters unimpeded access to scientific publications. </p> <ul style="margin-top: -0.5em"> <li><a href="https://drops.dagstuhl.de/docs/about">More about DROPS</a></li> </ul> </div> <div class="container"> <div class="row"> <div class="col-lg-6"> <h5>Instructions for Authors</h5> <div class="row"> <div class="col-sm-6"> <b>Dagstuhl Series</b><br> <ul> <li><a href="https://submission.dagstuhl.de/series/details/lipics#author">LIPIcs</a></li> <li><a href="https://submission.dagstuhl.de/series/details/oasics#author">OASIcs</a></li> <li><a href="https://submission.dagstuhl.de/series/details/dfu#author">Dagstuhl Follow-Ups</a></li> </ul> </div> <div class="col-sm-6"> <b>Dagstuhl Journals</b><br> <ul> <li><a href="https://submission.dagstuhl.de/series/details/darts#author">DARTS – Dagstuhl Artifacts Series</a></li> <li><a href="https://submission.dagstuhl.de/series/details/dagrep#author">Dagstuhl Reports</a></li> <li><a href="https://submission.dagstuhl.de/series/details/dagman#author">Dagstuhl Manifestos</a></li> <li><a href="https://submission.dagstuhl.de/series/details/lites#author">LITES</a></li> <li><a href="https://submission.dagstuhl.de/series/details/tgdk#author">TGDK – Transactions on Graph Data and Knowledge</a></li> </ul> </div> </div> </div> <div class="col-lg-6"> <h5>Instructions for Editors</h5> <div class="row"> <div class="col-sm-6"> <b>Dagstuhl Series</b><br> <ul> <li><a href="https://submission.dagstuhl.de/series/details/lipics#editor">LIPIcs</a></li> <li><a href="https://submission.dagstuhl.de/series/details/oasics#editor">OASIcs</a></li> <li><a href="https://submission.dagstuhl.de/series/details/dfu#editor">Dagstuhl Follow-Ups</a></li> </ul> </div> <div class="col-sm-6"> <b>Dagstuhl Journals</b><br> <ul> <li><a href="https://submission.dagstuhl.de/series/details/darts#editor">DARTS – Dagstuhl Artifacts Series</a></li> <li><a href="https://submission.dagstuhl.de/series/details/dagrep#editor">Dagstuhl Reports</a></li> <li><a href="https://submission.dagstuhl.de/series/details/dagman#editor">Dagstuhl Manifestos</a></li> <li><a href="https://submission.dagstuhl.de/series/details/lites#editor">LITES</a></li> <li><a href="https://submission.dagstuhl.de/series/details/tgdk#editor">TGDK – Transactions on Graph Data and Knowledge</a></li> </ul> </div> </div> </div> </div> </div> </footer> <div class="copyright"> © 2023-2024 <a href="https://www.dagstuhl.de">Schloss Dagstuhl – LZI GmbH</a> <a href="https://drops.dagstuhl.de/docs/about">About DROPS</a> <a href="https://drops.dagstuhl.de/docs/imprint">Imprint</a> <a href="https://drops.dagstuhl.de/docs/privacy">Privacy</a> <a href="https://www.dagstuhl.de/en/publishing/team">Contact</a> </div> <script type="text/javascript" src="https://drops.dagstuhl.de/js/jquery-3.6.0.min.js"></script> <script type="text/javascript" src="https://drops.dagstuhl.de/js/app.js?drops-core-2025-01-23.1"></script> <script type="text/javascript" src="https://drops.dagstuhl.de/js/popper.min.js"></script> <script type="text/javascript" src="https://drops.dagstuhl.de/js/circle-progress.js"></script> <script type="text/javascript"> $(document).ready(function() { const view = { statsServer: 'https://drops-stats.dagstuhl.de', animationStarted: false, isScrolledIntoView: function (elem) { const rect = elem.getBoundingClientRect(); const elemTop = rect.top; //const elemBottom = rect.bottom; // const elemHeight = rect.height; return (elemTop >= 0) && (elemTop <= window.innerHeight); }, progressCircle: function ($el) { $el.find('.circle').circleProgress({ value: 1, size: 80, fill: { color: '#555' }, animation: { duration: 1200 } }); }, countUp: function($el) { $el.find('.number').each(function() { const $this = $(this); const number = parseInt($this.attr('data-number')); let suffix = ''; if (number > 90000) { $this.text(Math.ceil(number/1000)+' k'); suffix = ' k'; } else if (number > 90000000) { $this.text(Math.ceil(number/1000000)+' m'); suffix = ' m'; } else { $this.text(Math.ceil(number)) } $({ Counter: 0 }).animate({ Counter: $this.text().replace(suffix, '').replace(',', '') }, { duration: 1000, easing: 'swing', step: function() { $this.text(Math.ceil(this.Counter).toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",") + suffix); } }); }); }, checkVisibility: function() { const $container = $('.stats-total'); if (view.isScrolledIntoView($container[0])) { if (!view.animationStarted) { view.animationStarted = true; view.progressCircle($container); setTimeout(function() { view.countUp($container) }, 200); } } }, initialize: function() { $.ajax({ type: 'get', url: view.statsServer + '/api/external/drops2/document/10.4230/OASIcs.Tannen.6/-/stats', success: function (result) { $('.total-downloads .number').attr('data-number', result.total.downloads); $('.total-metadata-views .number').attr('data-number', result.total.clicks); window.addEventListener('scroll', view.checkVisibility); view.checkVisibility(); }, error: function () { $('.total-downloads .number').text(0); $('.total-metadata-views .number').text(0); window.addEventListener('scroll', view.checkVisibility); view.checkVisibility(); } }); } }; view.initialize(); }); </script> <script type="text/javascript"> $(document).ready(function() { const statistics = { statsServer: 'https://drops-stats.dagstuhl.de', showStatistics: function(e) { e.preventDefault(); const $offCanvas = $('#statistics-offcanvas'); const $iframe = $offCanvas.find('iframe'); const $loader = $offCanvas.find('.centered-loader'); $iframe.addClass('-hidden'); $loader.removeClass('-hidden'); $iframe[0].onload = function () { $iframe.removeClass('-hidden'); $loader.addClass('-hidden'); }.bind(this); const modeParameter = ''; const $target = $(e.currentTarget); const entityId = $target.attr('data-entity'); const title = $target.attr('data-title'); const embedUrl = statistics.statsServer + '/embed/external/drops2/' + entityId + modeParameter; let context = $offCanvas.find('.offcanvas-body').attr('data-context'); if (context === title) { context = ''; } if (context !== '') { context += '<br>'; } $offCanvas.find('.offcanvas-title').html(context + '<h2 style="font-weight: bold">' + title + '</h2>'); $offCanvas.offcanvas('show'); $offCanvas.find('iframe').attr('src', embedUrl); return false; }, initialize: function() { $('.btn-statistics').on('click', this.showStatistics); } }; statistics.initialize(); }); </script> <script type="text/javascript"> function _enableFeedback() { var $feedbackButton = $('._feedback-button, .fixed-beta-button'); var $feedbackClose = $('._feedback-close'); var $feedbackForm = $('._feedback-form'); var $feedbackSubmit = $('._feedback-form button'); var $textarea = $feedbackForm.find('textarea'); var $feedbackSuccess = $('._feedback-success'); var $feedbackError = $('._feedback-error'); var $feedbackDoneButton = $('._feedback-done'); $feedbackButton.addClass('_show'); $feedbackButton.on('click', function () { $feedbackButton.addClass('-hidden'); $feedbackForm.removeClass('-hidden'); $textarea.focus(); }); $feedbackClose.on('click', function () { $feedbackSuccess.addClass('-hidden'); $feedbackForm.addClass('-hidden'); $feedbackButton.removeClass('-hidden'); }); $feedbackDoneButton.on('click', function () { $feedbackError.addClass('-hidden'); $feedbackSuccess.addClass('-hidden'); $feedbackForm.addClass('-hidden'); $feedbackButton.removeClass('-hidden'); }); $feedbackSubmit.on('click', function () { var message = $textarea.val(); if (message === undefined) { message = ''; } if (message.trim() !== '') { $.ajax({ url: '/api/v1/feedback', type: 'post', data: { content: message, context: window.location.href, name: $('input[name="name"]').val(), email: $('input[name="email"]').val(), }, success: function (result) { if (result === 'success') { $textarea.val(''); $feedbackSuccess.removeClass('-hidden'); } else { $feedbackError.removeClass('-hidden'); } }, error: function () { $feedbackError.removeClass('-hidden'); } }); } }); } var _defer_counter = 0; function _defer(method) { if (window.jQuery) { method(); } else { if (_defer_counter < 20) { setTimeout(function () { _defer(method); console.log(_defer_counter); _defer_counter++; }, 500); } } } setTimeout(function() { _defer(_enableFeedback); }, 1000); </script> <script type="text/javascript"> $(document).ready(function() { const app = { maxScrollPos: window.innerWidth < 500 ? 100 // mobile : 400, // desktop $el : { navbarSearch: $('nav .navbar-search'), fixedSearchButton: $('.fixed-search-button'), copyToClipboard: $('.copy-to-clipboard') }, methods: { hideMenuOnScroll: function(scrollPos) { const $menu = $('nav.navbar.main'); const $stickySearch = $('.search.sticky'); const $banner = $('#_banner'); const $fixedSearchButton = $('.fixed-search-button'); if (scrollPos > app.maxScrollPos) { $menu.addClass('-hide'); $banner.addClass('-hide'); $stickySearch.addClass('-top'); $fixedSearchButton.addClass('-show'); } else { app.methods.showMenu(null, false); } }, showMenu: function(e, focus) { const $menu = $('nav.navbar.main'); const $stickySearch = $('.search.sticky'); const $banner = $('#_banner'); const $fixedSearchButton = $('.fixed-search-button'); $menu.removeClass('-hide'); $banner.removeClass('-hide'); $stickySearch.removeClass('-top'); $fixedSearchButton.removeClass('-show'); if (focus !== false) { $('.navbar-search').find('input[name="term"]').focus(); } }, showUpLinkOnScroll: function(scrollPos) { const $upLink = $('.scroll-up-button'); if (scrollPos > app.maxScrollPos) { $upLink.removeClass('-hidden'); } else { $upLink.addClass('-hidden'); } }, scrollHandler: function() { const scrollPos = $(document).scrollTop(); app.methods.hideMenuOnScroll(scrollPos); app.methods.showUpLinkOnScroll(scrollPos); }, copyToClipboard: function(e) { e.preventDefault(); const $current = $(e.currentTarget); // console.log($current.attr('data-selector')); const element = $('#'+$current.attr('data-selector'))[0]; console.log(element); element.select(); document.execCommand("copy"); const $success = $current.find('.bi-check'); $success.removeClass('-hidden'); setTimeout(function() { $success.addClass('-hidden'); }, 1000); }, initTooltips: function() { const tooltipTriggerList = [].slice.call(document.querySelectorAll('[data-bs-toggle="tooltip"]')) const tooltipList = tooltipTriggerList.map(function (tooltipTriggerEl) { return new bootstrap.Tooltip(tooltipTriggerEl) }); }, expandSearch: function() { app.$el.navbarSearch.addClass('expanded'); }, collapseSearch: function(e) { if (!$(e.currentTarget).is('button.btn-outline-success')) { app.$el.navbarSearch.removeClass('expanded'); } }, initDeepLinksTabs: function() { app.methods.initTabLinks(); const innerAnchors =[]; $('.tab-pane').find('[id]').each(function() { innerAnchors.push(this.getAttribute('id')); }); const anchors = []; $('a[role="tab"]').each(function() { anchors.push($(this).attr('aria-controls')); }); innerAnchors.forEach(function(anchor) { if ($('#'+anchor).length > 0) { anchors.push(anchor); } }); if (anchors.length === 0) { return; } let selectedAnchor = window.location.hash.substring(1); if (anchors.indexOf(selectedAnchor) === -1) { $('#publications-tab').tab('show'); window.scrollTo(0,0); return; } if (selectedAnchor !== 'publications') { const innerAnchorIndex = innerAnchors.indexOf(selectedAnchor); // anchor sits inside tab -> open the tab first, then scroll to anchor if (innerAnchorIndex > -1) { const $tab = $('#'+selectedAnchor).closest('.tab-pane'); console.log($tab); try { $('#'+$tab.attr('id')+'-tab').tab('show'); } catch (e) { } setTimeout(function () { $('#' + selectedAnchor)[0].scrollIntoView(); }, 800); } else { try { $('#' + selectedAnchor + '-tab').tab('show'); } catch (e) { } window.scrollTo(0, 0); } } }, initTabLinks: function() { $('[data-tab-link]').on('click', function(e) { e.preventDefault(); const $target = $(e.currentTarget); document.location.href = $target.attr('href'); document.location.reload(); }); }, }, initialize: function() { $(window).on('scroll', app.methods.scrollHandler); $(window).on('scroll-to-top', function() { window.scrollTo(0,0) }); $(document).trigger('scroll'); // set correct status for scroll-related parts (navbar/back-to-top) on page reload app.$el.copyToClipboard.on('click', app.methods.copyToClipboard); app.$el.fixedSearchButton.on('click', app.methods.showMenu); app.$el.navbarSearch.find('input').on('click', app.methods.expandSearch) app.$el.navbarSearch.find('input').on('blur', app.methods.collapseSearch); app.methods.initTooltips(); app.methods.initDeepLinksTabs(); } }; app.initialize(); }); </script> </body> </html>