CINXE.COM
Search results for: ultraviolet
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ultraviolet</title> <meta name="description" content="Search results for: ultraviolet"> <meta name="keywords" content="ultraviolet"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ultraviolet" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ultraviolet"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 223</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ultraviolet</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Numerical Simulation of Solar Reactor for Water Disinfection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sebti%20Bouzid">A. Sebti Bouzid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Igoud"> S. Igoud</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Aoudjit"> L. Aoudjit</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Lebik"> H. Lebik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematical modeling and numerical simulation have emerged over the past two decades as one of the key tools for design and optimize performances of physical and chemical processes intended to water disinfection. Water photolysis is an efficient and economical technique to reduce bacterial contamination. It exploits the germicidal effect of solar ultraviolet irradiation to inactivate pathogenic microorganisms. The design of photo-reactor operating in continuous disinfection system, required tacking in account the hydrodynamic behavior of water in the reactor. Since the kinetic of disinfection depends on irradiation intensity distribution, coupling the hydrodynamic and solar radiation distribution is of crucial importance. In this work we propose a numerical simulation study for hydrodynamic and solar irradiation distribution in a tubular photo-reactor. We have used the Computational Fluid Dynamic code Fluent under the assumption of three-dimensional incompressible flow in unsteady turbulent regimes. The results of simulation concerned radiation, temperature and velocity fields are discussed and the effect of inclination angle of reactor relative to the horizontal is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20disinfection" title="solar water disinfection">solar water disinfection</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20modeling" title=" hydrodynamic modeling"> hydrodynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20irradiation%20modeling" title=" solar irradiation modeling"> solar irradiation modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20Fluent" title=" CFD Fluent"> CFD Fluent</a> </p> <a href="https://publications.waset.org/abstracts/11937/numerical-simulation-of-solar-reactor-for-water-disinfection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Physicochemical and Antioxidative Characteristics of Black Bean Protein Hydrolysates Obtained from Different Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaojun%20Zheng">Zhaojun Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanfa%20Liu"> Yuanfa Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiaxin%20Li"> Jiaxin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwei%20Li"> Jinwei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-jiang%20Xu"> Yong-jiang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Cao"> Chen Cao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black bean is an excellent protein source for preparing hydrolysates, which attract much attention due to their biological activity. The objective of this study was to characterize the physicochemical and antioxidant properties of black bean protein, hydrolyzed by ficin, bromelain or alcalase until 300 min of hydrolysis. Results showed that bromelain and alcalase hydrolysates possessed a higher degree of hydrolysis (DH) than that of ficin, thereby presenting different ultraviolet absorption, fluorescence intensity, and circular dichroism. Moreover, all hydrolysates possessed the capacity to scavenge DPPH radical with the lowest IC₅₀ of 21.11 µg/mL, as well as to chelate ferrous ion (Fe²⁺) with the IC₅₀ values ranging from 6.82 to 30.68 µg/mL. Intriguingly, the oxidation of linoleic acid, sunflower oil, and sunflower oil-in-water emulsion was remarkedly retarded by the three selected protein hydrolysates, especially by bromelain-treated protein hydrolysate, which might attribute to their high hydrophobicity and emulsifying properties. These findings can provide strong support for black bean protein hydrolysates to be employed in food products acting as natural antioxidant alternatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20bean%20protein%20hydrolysate" title=" black bean protein hydrolysate"> black bean protein hydrolysate</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion%20physicochemical%20properties" title=" emulsion physicochemical properties"> emulsion physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower%20oil" title=" sunflower oil"> sunflower oil</a> </p> <a href="https://publications.waset.org/abstracts/105885/physicochemical-and-antioxidative-characteristics-of-black-bean-protein-hydrolysates-obtained-from-different-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Effectiveness of the Resistance to Irradiance Test on Sunglasses Standards</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mauro%20Masili">Mauro Masili</a>, <a href="https://publications.waset.org/abstracts/search?q=Liliane%20Ventura"> Liliane Ventura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is still controversial in the literature the ultraviolet (UV) radiation effects on the ocular media, but the World Health Organization has established safe limits on the exposure of eyes to UV radiation based on reports in literature. Sunglasses play an important role in providing safety, and their lenses should provide adequate UV filters. Regarding UV protection for ocular media, the resistance-to-irradiance test for sunglasses under many national standards requires irradiating lenses for 50 uninterrupted hours with a 450 W solar simulator. This artificial aging test may provide a corresponding evaluation of exposure to the sun. Calculating the direct and diffuse solar irradiance at a vertical surface and the corresponding radiant exposure for the entire year, we compare the latter with the 50-hour radiant exposure of a 450 W xenon arc lamp from a solar simulator required by national standards. Our calculations indicate that this stress test is ineffective in its present form. We provide evidence of the need to re-evaluate the parameters of the tests to establish appropriate safe limits against UV radiation. This work is potentially significant for scientists and legislators in the field of sunglasses standards to improve the requirements of sunglasses quality and safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ISO%2012312-1" title="ISO 12312-1">ISO 12312-1</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20simulator" title=" solar simulator"> solar simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=sunglasses%20standards" title=" sunglasses standards"> sunglasses standards</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20protection" title=" UV protection"> UV protection</a> </p> <a href="https://publications.waset.org/abstracts/55247/effectiveness-of-the-resistance-to-irradiance-test-on-sunglasses-standards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Efficacy of TiO₂ in the Removal of an Acid Dye by Photo Catalytic Degradation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laila%20Mahtout">Laila Mahtout</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerami%20Ahmed"> Kerami Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabhi%20Souhila"> Rabhi Souhila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to reduce the impact on the environment of an acid dye (Black Eriochrome T) using catalytic photo-degradation in the presence of the semiconductor powder (TiO₂) previously characterized. A series of tests have been carried out in order to demonstrate the influence of certain parameters on the degree of dye degradation by titanium dioxide in the presence of UV rays, such as contact time, the powder mass and the pH of the solution. X-ray diffraction analysis of the powder showed that the anatase structure is predominant and the rutile phase is presented by peaks of low intensity. The various chemical groups which characterize the presence of the bands corresponding to the anatase and rutile form and other chemical functions have been detected by the Fourier Transform Infrared spectroscopy. The photo degradation of the NET by TiO₂ is very interesting because it gives encouraging results. The study of photo-degradation at different concentrations of the dye showed that the lower concentrations give better removal rates. The degree of degradation of the dye increases with increasing pH; it reaches the maximum value at pH = 9. The ideal mass of TiO₂ which gives the high removal rate is 1.2 g/l. Thermal treatment of TiO₂ with the addition of CuO with contents of 5%, 10%, and 15% respectively gives better results of degradation of the NET dye. The high percentage of elimination is observed at a CuO content of 15%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20dye" title="acid dye">acid dye</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20rays" title=" ultraviolet rays"> ultraviolet rays</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyse" title=" photocatalyse"> photocatalyse</a> </p> <a href="https://publications.waset.org/abstracts/89224/efficacy-of-tio2-in-the-removal-of-an-acid-dye-by-photo-catalytic-degradation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Poly (Acrylonitrile-Co-Methylacrylate)/Poly N-Methyl Pyrrole and Pyrrole Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Zehra%20Engin%20Sagirli">Fatma Zehra Engin Sagirli</a>, <a href="https://publications.waset.org/abstracts/search?q=Eyup%20Sabri%20Kayali"> Eyup Sabri Kayali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sezai%20Sarac"> A. Sezai Sarac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Poly (acrylonitrile-co-methylacrylate)/N-Methyl Pyrrole and Pyrrole ([P(AN-co-MA)]-NMPy and [P(AN-co-MA)]-PPy) core–shell nanoparticles were obtained by in situ emulsion polymerization in the presence of Sodium dodecyl benzene sulfonate and sodium dodecyl sulfate (SDBS and SDS) by using ammonium per sulphate in the aqueous medium. The spectroscopic characterizations during the formation of nanocomposites were studied using Attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy, ultraviolet–visible spectrophotometer (Uv-Vis). Electrical conductivity of the emulsion solution was measured by Conductivity Meter from aqueous sample solution. Also, yield of the powder nanocomposites was measured. SDBS and SDS used for investigation of surfactant effect on yield, electrical conductivity and polymerization process. Determination of polymerization yield, (FTIR-ATR) and (Uv-Vis) prove that the SDBS surfactant become more incorporated into the conducting polymers and there is strong interaction between the [P(AN-co-MA)]-PPy derivatives which prepared by these surfactants. The similar inclusion of SDS into conducting polymers was not observed, there is a remarkable difference at nanocomposites which prepared with SDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell" title=" core-shell"> core-shell</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrole" title=" pyrole"> pyrole</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a> </p> <a href="https://publications.waset.org/abstracts/56074/poly-acrylonitrile-co-methylacrylatepoly-n-methyl-pyrrole-and-pyrrole-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ChoLiang%20Chung">ChoLiang Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=YuMin%20Chen"> YuMin Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a> </p> <a href="https://publications.waset.org/abstracts/42233/carbon-doped-tio2-nanofibers-prepared-by-electrospinning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Characterization of Urban Ozone Pollution in Summer and Analysis of Influencing Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gao%20Fangting">Gao Fangting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ozone acts as an atmospheric shield, protecting organisms from ultraviolet radiation by absorbing it. Currently, a large amount of international environmental epidemiology has confirmed that short- and long-term exposure to ozone has significant effects on population health. Near-surface ozone, as a secondary pollutant in the atmosphere, not only negatively affects the production activities of living organisms but also damages ecosystems and affects climate change to some extent. In this paper, using the hour-by-hour ozone observations given by ground meteorological stations in four cities, namely Beijing, Kunming, Xining, and Guangzhou, from 2015 to 2017, the number of days of exceedance and the long-term change characteristics of ozone are analyzed by using the time series analysis method. On this basis, the effects of changes in meteorological conditions on ozone concentration were discussed in conjunction with the same period of meteorological data, and the similarities and differences of near-surface ozone in different cities were comparatively analyzed to establish a relevant quantitative model of near-surface ozone. This study found that ozone concentrations were highest during the summer months of the year, that ozone concentrations were strongly correlated with meteorological conditions, and that none of the four cities had ozone concentrations that reached the threshold for causing disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ozone" title="ozone">ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20conditions" title=" meteorological conditions"> meteorological conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a> </p> <a href="https://publications.waset.org/abstracts/188385/characterization-of-urban-ozone-pollution-in-summer-and-analysis-of-influencing-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Templating Copper on Polymer/DNA Hybrid Nanowires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Almaky">Mahdi Almaky</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20Hassanin"> Reda Hassanin</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Horrocks"> Benjamin Horrocks</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Houlton"> Andrew Houlton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DNA-templated poly(N-substituted pyrrole)bipyridinium nanowires were synthesised at room temperature using the chemical oxidation method. The resulting CPs/DNA hybrids have been characterised using electronic and vibrational spectroscopic methods especially Ultraviolet-Visible (UV-Vis) spectroscopy and FTIR spectroscpy. The nanowires morphology was characterised using Atomic Force Microscopy (AFM). The electrical properties of the prepared nanowires were characterised using Electrostatic Force Microscopy (EFM), and measured using conductive AFM (c-AFM) and two terminal I/V technique, where the temperature dependence of the conductivity was probed. The conductivities of the prepared CPs/DNA nanowires are generally lower than PPy/DNA nanowires showingthe large effect on N-alkylation in decreasing the conductivity of the polymer, butthese are higher than the conductivity of their corresponding bulk films.This enhancement in conductivity could be attributed to the ordering of the polymer chains on DNA during the templating process. The prepared CPs/DNA nanowires were used as templates for the growth of copper nanowires at room temperature using aqueous solution of Cu(NO3)2as a source of Cu2+ and ascorbic acid as reducing agent. AFM images showed that these nanowires were uniform and continuous compared to copper nanowires prepared using the templating method directly onto DNA. Electrical characterization of the nanowires by c AFM revealed slight improvement in conductivity of these nanowires (Cu-CPs/DNA) compared to CPs/DNA nanowires before metallisation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=templating" title="templating">templating</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20nanowires" title=" copper nanowires"> copper nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%2FDNA%20hybrid" title=" polymer/DNA hybrid"> polymer/DNA hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxidation%20method" title=" chemical oxidation method"> chemical oxidation method</a> </p> <a href="https://publications.waset.org/abstracts/18138/templating-copper-on-polymerdna-hybrid-nanowires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Effect of Alkalinity of Water on the Aggregation of Colloidal Silver Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fedda%20Y.%20Alzoubi">Fedda Y. Alzoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihsan%20A.%20Aljarrah"> Ihsan A. Aljarrah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in different applications, especially in biomedical applications. Samples of different alkaline water were prepared in order to study the effect of alkalinity of water on the optical properties, size, and morphology of colloidal AgNPs prepared according to the chemical reduction method using the prepared water samples. Ultraviolet-Visible spectrophotometer, Zeta-sizer, and Scanning electron microscope (SEM) have been utilized to carry out this study. Absorption spectra AgNPs in different alkaline water show a surface Plasmon resonance (SPR) peak at the wavelength of 420 nm. The position of this peak is sensitive to the shape of the particles, and in our case, it indicates that the particles are spherical. As the alkalinity increases, the intensity of the SPR peak decreases, indicating the aggregation of particles. Zeta-sizer measurements show that the average diameter for AgNPs in pure water is found to be 53.51 nm, and this value increases as the alkalinity increases. Zeta potential values of samples show that the negatively coated particles are stable in the solution. SEM images insure the spherical shape of the prepared nanoparticles and show that as the alkalinity increases the particles aggregate into larger particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregation" title="aggregation">aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=alkalinity" title=" alkalinity"> alkalinity</a>, <a href="https://publications.waset.org/abstracts/search?q=colloid" title=" colloid"> colloid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a> </p> <a href="https://publications.waset.org/abstracts/120826/effect-of-alkalinity-of-water-on-the-aggregation-of-colloidal-silver-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Mechanistic Structural Insights into the UV Induced Apoptosis via Bcl-2 proteins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akash%20Bera">Akash Bera</a>, <a href="https://publications.waset.org/abstracts/search?q=Suraj%20Singh"> Suraj Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacinta%20Dsouza"> Jacinta Dsouza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramakrishna%20V.%20Hosur"> Ramakrishna V. Hosur</a>, <a href="https://publications.waset.org/abstracts/search?q=Pushpa%20Mishra"> Pushpa Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultraviolet C (UVC) radiation induces apoptosis in mammalian cells and it is suggested that the mechanism by which this occurs is the mitochondrial pathway of apoptosis through the release of cytochrome c from the mitochondria into the cytosol. The Bcl-2 family of proteins pro-and anti-apoptotic is the regulators of the mitochondrial pathway of apoptosis. Upon UVC irradiation, the proliferation of apoptosis is enhanced through the downregulation of the anti-apoptotic protein Bcl-xl and up-regulation of Bax. Although the participation of the Bcl-2 family of proteins in apoptosis appears responsive to UVC radiation, to the author's best knowledge, it is unknown how the structure and, effectively, the function of these proteins are directly impacted by UVC exposure. In this background, we present here a structural rationale for the effect of UVC irradiation in restoring apoptosis using two of the relevant proteins, namely, Bid-FL and Bcl-xl ΔC, whose solution structures have been reported previously. Using a variety of biophysical tools such as circular dichroism, fluorescence and NMR spectroscopy, we show that following UVC irradiation, the structures of Bcl-xlΔC and Bid-FL are irreversibly altered. Bcl-xLΔC is found to be more sensitive to UV exposure than Bid-FL. From the NMR data, dramatic structural perturbations (α-helix to β-sheet) are seen to occur in the BH3 binding region, a crucial segment of Bcl-xlΔC which impacts the efficacy of its interactions with pro-apoptotic tBid. These results explain the regulation of apoptosis by UVC irradiation. Our results on irradiation dosage dependence of the structural changes have therapeutic potential for the treatment of cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bid" title="Bid">Bid</a>, <a href="https://publications.waset.org/abstracts/search?q=Bcl-xl" title=" Bcl-xl"> Bcl-xl</a>, <a href="https://publications.waset.org/abstracts/search?q=UVC" title=" UVC"> UVC</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a> </p> <a href="https://publications.waset.org/abstracts/150093/mechanistic-structural-insights-into-the-uv-induced-apoptosis-via-bcl-2-proteins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Study of Aerosol Deposition and Shielding Effects on Fluorescent Imaging Quantitative Evaluation in Protective Equipment Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinhao%20Yang">Shinhao Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Chien%20Huang"> Hsiao-Chien Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Hsiang%20Luo"> Chin-Hsiang Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The leakage of protective clothing is an important issue in the occupational health field. There is no quantitative method for measuring the leakage of personal protective equipment. This work aims to measure the quantitative leakage of the personal protective equipment by using the fluorochrome aerosol tracer. The fluorescent aerosols were employed as airborne particulates in a controlled chamber with ultraviolet (UV) light-detectable stickers. After an exposure-and-leakage test, the protective equipment was removed and photographed with UV-scanning to evaluate areas, color depth ratio, and aerosol deposition and shielding effects of the areas where fluorescent aerosols had adhered to the body through the protective equipment. Thus, this work built a calculation software for quantitative leakage ratio of protective clothing based on fluorescent illumination depth/aerosol concentration ratio, illumination/Fa ratio, aerosol deposition and shielding effects, and the leakage area ratio on the segmentation. The results indicated that the two-repetition total leakage rate of the X, Y, and Z type protective clothing for subject T were about 3.05, 4.21, and 3.52 (mg/m2). For five-repetition, the leakage rate of T were about 4.12, 4.52, and 5.11 (mg/m2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorochrome" title="fluorochrome">fluorochrome</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20effects" title=" shielding effects"> shielding effects</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20processing" title=" digital image processing"> digital image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20ratio" title=" leakage ratio"> leakage ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20protective%20equipment" title=" personal protective equipment"> personal protective equipment</a> </p> <a href="https://publications.waset.org/abstracts/43218/study-of-aerosol-deposition-and-shielding-effects-on-fluorescent-imaging-quantitative-evaluation-in-protective-equipment-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Research on the Optical Properties and Polymerization Environment of Broadband Reflective Films in the Visible Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Miao">Z. Miao</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Chu"> Y. Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unique cholesteric phase liquid crystals obtained by mixing nematic liquid crystals with chiral dopants have gained valuable applications in the display field for their selective reflection and circular dichroism properties. The periodic arrangement of the helical structure of cholesteric liquid crystals makes it possible to produce Bragg reflection of circularly polarized light irradiated perpendicularly to the liquid crystals and, therefore, to acquire semi- or fully reflective surfaces or films. If the polymer-liquid crystal composites are combined with polymeric monomers, commercialized reflective broadband films can be fabricated. In this study, the polymer-liquid crystal composites reflecting visible light region (wavelength centered at 550 nm) were studied to analyze the effects of AC electric field at different voltages and frequencies on the optical texture of the composites, as well as the effects of polymerization temperature and ultraviolet (UV) intensity on the polymerization reaction and reflection bandwidth. The optimal sample was finally obtained at 100Hz, 120V, 30℃, 1.00 mW/cm², which provides a research suggestion to solve the influencing factors of visible light reflection bandwidths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cholesteric%20liquid%20crystal" title="cholesteric liquid crystal">cholesteric liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=reflection%20bandwidths" title=" reflection bandwidths"> reflection bandwidths</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20dielectric%20anisotropy" title=" negative dielectric anisotropy"> negative dielectric anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20texture" title=" planar texture"> planar texture</a> </p> <a href="https://publications.waset.org/abstracts/157429/research-on-the-optical-properties-and-polymerization-environment-of-broadband-reflective-films-in-the-visible-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Micropillar-Assisted Electric Field Enhancement for High-Efficiency Inactivation of Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanam%20Pudasaini">Sanam Pudasaini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20K.%20Perera"> A. T. K. Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Syed%20Shaheer%20Uddin"> Ahmed Syed Shaheer Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sum%20Huan%20Ng"> Sum Huan Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun%20Yang"> Chun Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of high-efficiency and environment friendly bacterial inactivation methods is of great importance for preventing waterborne diseases which are one of the leading causes of death in the world. Traditional bacterial inactivation methods (e.g., ultraviolet radiation and chlorination) have several limitations such as longer treatment time, formation of toxic byproducts, bacterial regrowth, etc. Recently, an electroporation-based inactivation method was introduced as a substitute. Here, an electroporation-based continuous flow microfluidic device equipped with an array of micropillars is developed, and the device achieved high bacterial inactivation performance ( > 99.9%) within a short exposure time ( < 1 s). More than 99.9% reduction of Escherichia coli bacteria was obtained for the flow rate of 1 mL/hr, and no regrowth of bacteria was observed. Images from scanning electron microscope confirmed the formation of electroporation-induced nano-pore within the cell membrane. Through numerical simulation, it has been shown that sufficiently large electric field strength (3 kV/cm), required for bacterial electroporation, were generated using PDMS micropillars for an applied voltage of 300 V. Further, in this method of inactivation, there is no involvement of chemicals and the formation of harmful by-products is also minimum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroporation" title="electroporation">electroporation</a>, <a href="https://publications.waset.org/abstracts/search?q=high-efficiency" title=" high-efficiency"> high-efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=inactivation" title=" inactivation"> inactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=micropillar" title=" micropillar"> micropillar</a> </p> <a href="https://publications.waset.org/abstracts/104675/micropillar-assisted-electric-field-enhancement-for-high-efficiency-inactivation-of-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Analytical Derivative: Importance on Environment and Water Analysis/Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adesoji%20Sodeinde">Adesoji Sodeinde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analytical derivatives has recently undergone an explosive growth in areas of separation techniques, likewise in detectability of certain compound/concentrated ions. The gloomy and depressing scenario which charaterized the application of analytical derivatives in areas of water analysis, water cycle and the environment should not be allowed to continue unabated. Due to technological advancement in various chemical/biochemical analysis separation techniques is widely used in areas of medical, forensic and to measure and assesses environment and social-economic impact of alternative control strategies. This technological improvement was dully established in the area of comparison between certain separation/detection techniques to bring about vital result in forensic[as Gas liquid chromatography reveals the evidence given in court of law during prosecution of drunk drivers]. The water quality analysis,pH and water temperature analysis can be performed in the field, the concentration of dissolved free amino-acid [DFAA] can also be detected through separation techniques. Some important derivatives/ions used in separation technique. Water analysis : Total water hardness [EDTA to determine ca and mg ions]. Gas liquid chromatography : innovative gas such as helium [He] or nitrogen [N] Water cycle : Animal bone charcoal,activated carbon and ultraviolet light [U.V light]. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20derivative" title="analytical derivative">analytical derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20analysis" title=" water analysis"> water analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%2Fbiochemical%20analysis" title=" chemical/biochemical analysis "> chemical/biochemical analysis </a> </p> <a href="https://publications.waset.org/abstracts/30863/analytical-derivative-importance-on-environment-and-water-analysiscycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Noncritical Phase-Matched Fourth Harmonic Generation of Converging Beam by Deuterated Potassium Dihydrogen Phosphate Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangxu%20Chai">Xiangxu Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Feng"> Bin Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Li"> Ping Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Deyan%20Zhu"> Deyan Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liquan%20Wang"> Liquan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanzhong%20Wang"> Guanzhong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukun%20Jing"> Yukun Jing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In high power large-aperture laser systems, such as the inertial confinement fusion project, the Nd: glass laser (1053nm) is usually needed to be converted to ultraviolet (UV) light and the fourth harmonic generation (FHG) is one of the most favorite candidates to achieve UV light. Deuterated potassium dihydrogen phosphate (DKDP) crystal is an optimal choice for converting the Nd: glass radiation to the fourth harmonic laser by noncritical phase matching (NCPM). To reduce the damage probability of focusing lens, the DKDP crystal is suggested to be set before the focusing lens. And a converging beam enters the FHG crystal consequently. In this paper, we simulate the process of FHG in the scheme and the dependence of FHG efficiency on the lens’ F is derived. Besides, DKDP crystal with gradient deuterium is proposed to realize the NCPM FHG of the converging beam. At every position, the phase matching is achieved by adjusting the deuterium level, and the FHG efficiency increases as a result. The relation of the lens’ F with the deuterium gradient is investigated as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fourth%20harmonic%20generation" title="fourth harmonic generation">fourth harmonic generation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20induced%20damage" title=" laser induced damage"> laser induced damage</a>, <a href="https://publications.waset.org/abstracts/search?q=converging%20beam" title=" converging beam"> converging beam</a>, <a href="https://publications.waset.org/abstracts/search?q=DKDP%20crystal" title=" DKDP crystal"> DKDP crystal</a> </p> <a href="https://publications.waset.org/abstracts/103692/noncritical-phase-matched-fourth-harmonic-generation-of-converging-beam-by-deuterated-potassium-dihydrogen-phosphate-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Influence of Hydrogen Ion Concentration on the Production of Bio-Synthesized Nano-Silver </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.F.%20Elkady">M.F. Elkady</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Zaki"> Sahar Zaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Desouky%20Abd-El-Haleem"> Desouky Abd-El-Haleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanoparticles (AgNPs) are already widely prepared using different technologies. However, there are limited data on the effects of hydrogen ion concentration on nano-silver production. In this investigation, the impact of the pH reaction medium toward the particle size, agglomeration and the yield of the produced bio-synthesized silver were established. Quasi-spherical silver nanoparticles were synthesized through the biosynthesis green production process using the Egyptian E. coli bacterial strain 23N at different pH values. The formation of AgNPs has been confirmed with ultraviolet–visible spectra through identification of their characteristic peak at 410 nm. The quantitative production yield and the orientation planes of the produced nano-silver were examined using X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Quantitative analyses indicated that the silver production yield was promoted at elevated pH regarded to increase the reduction rate of silver precursor through both chemical and biological processes. As a result, number of the nucleus and thus the size of the silver nanoparticles were tunable through changing pH of the reaction system. Accordingly, the morphological structure and size of the produced silver and its aggregates were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. It was considered that the increment in pH value of the reaction media progress the aggregation of silver clusters. However, the presence of stain 23N biomass decreases the possibility of silver aggregation at the pH 7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title="silver nanoparticles">silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=biosynthesis" title=" biosynthesis"> biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20media%20pH" title=" reaction media pH"> reaction media pH</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-silver%20characterization" title=" nano-silver characterization"> nano-silver characterization</a> </p> <a href="https://publications.waset.org/abstracts/8263/influence-of-hydrogen-ion-concentration-on-the-production-of-bio-synthesized-nano-silver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Superficial Metrology of Organometallic Chemical Vapour Deposited Undoped ZnO Thin Films on Stainless Steel and Soda-Lime Glass Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uchenna%20Sydney%20Mbamara">Uchenna Sydney Mbamara</a>, <a href="https://publications.waset.org/abstracts/search?q=Bolu%20Olofinjana"> Bolu Olofinjana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezekiel%20Oladele%20B.%20Ajayi"> Ezekiel Oladele B. Ajayi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elaborate surface metrology of undoped ZnO thin films, deposited by organometallic chemical vapour deposition (OMCVD) technique at different precursor flow rates, was carried out. Dicarbomethyl-zinc precursor was used. The films were deposited on AISI304L steel and soda-lime glass substrates. Ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy showed that all the thin films were over 80% transparent, with an average bandgap of 3.39 eV, X-ray diffraction (XRD) results showed that the thin films were crystalline with a hexagonal structure, while Rutherford backscattering spectroscopy (RBS) results identified the elements present in each thin film as zinc and oxygen in the ratio of 1:1. Microscope and contactless profilometer results gave images with characteristic colours. The profilometer also gave the surface roughness data in both 2D and 3D. The asperity distribution of the thin film surfaces was Gaussian, while the average fractal dimension Da was in the range of 2.5 ≤ Da. The metrology proved the surfaces good for ‘touch electronics’ and coating mechanical parts for low friction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=undoped%20ZnO" title="undoped ZnO">undoped ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=precursor%20flow%20rate" title=" precursor flow rate"> precursor flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=OMCVD" title=" OMCVD"> OMCVD</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20texture" title=" surface texture"> surface texture</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/168457/superficial-metrology-of-organometallic-chemical-vapour-deposited-undoped-zno-thin-films-on-stainless-steel-and-soda-lime-glass-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Aleali">Hoda Aleali</a>, <a href="https://publications.waset.org/abstracts/search?q=Nastran%20Mansour"> Nastran Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Mirzaie"> Maryam Mirzaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Z-scan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample.The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoscale%20materials" title="nanoscale materials">nanoscale materials</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20sulfide%20nanoparticles" title=" silver sulfide nanoparticles"> silver sulfide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20absorption" title=" nonlinear absorption"> nonlinear absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20scattering" title=" nonlinear scattering"> nonlinear scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20limiting" title=" optical limiting "> optical limiting </a> </p> <a href="https://publications.waset.org/abstracts/13234/nonlinear-absorption-and-scattering-in-wide-band-gap-silver-sulfide-nanoparticles-colloid-and-their-effects-on-the-optical-limiting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Polyacrylates in Poly (Lactic Acid) Matrix, New Biobased Polymer Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irena%20Vukovi%C4%87-Kwiatkowska">Irena Vuković-Kwiatkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Halina%20Kaczmarek"> Halina Kaczmarek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly (lactic acid) is well known polymer, often called green material because of its origin (renewable resources) and biodegradability. This biopolymer can be used in the packaging industry very often. Poor resistance to permeation of gases is the disadvantage of poly (lactic acid). The permeability of gases and vapor through the films applied for packages and bottles generally should be very low to prolong products shelf-life. We propose innovation method of PLA gas barrier modification using electromagnetic radiation in ultraviolet range. Poly (lactic acid) (PLA) and multifunctional acrylate monomers were mixed in different composition. Final films were obtained by photochemical reaction (photocrosslinking). We tested permeability to water vapor and carbon dioxide through these films. Also their resistance to UV radiation was also studied. The samples were conditioned in the activated sludge and in the natural soil to test their biodegradability. An innovative method of PLA modification allows to expand its usage, and can reduce the future costs of waste management what is the result of consuming such materials like PET and HDPE. Implementation of our material for packaging will contribute to the protection of the environment from the harmful effects of extremely difficult to biodegrade materials made from PET or other plastic <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interpenetrating%20polymer%20network" title="interpenetrating polymer network">interpenetrating polymer network</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging%20films" title=" packaging films"> packaging films</a>, <a href="https://publications.waset.org/abstracts/search?q=photocrosslinking" title=" photocrosslinking"> photocrosslinking</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylates%20dipentaerythritol%20pentaacrylate%20DPEPA" title=" polyacrylates dipentaerythritol pentaacrylate DPEPA"> polyacrylates dipentaerythritol pentaacrylate DPEPA</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28lactic%20acid%29" title=" poly (lactic acid)"> poly (lactic acid)</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20biodegradation" title=" polymer biodegradation "> polymer biodegradation </a> </p> <a href="https://publications.waset.org/abstracts/24623/polyacrylates-in-poly-lactic-acid-matrix-new-biobased-polymer-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Radiation Emission from Ultra-Relativistic Plasma Electrons in Short-Pulse Laser Light Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ondarza-Rovira">R. Ondarza-Rovira</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20M.%20Boyd"> T. J. M. Boyd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intense femtosecond laser light incident on over-critical density plasmas has shown to emit a prolific number of high-order harmonics of the driver frequency, with spectra characterized by power-law decays Pm ~ m-p, where m denotes the harmonic order and p the spectral decay index. When the laser pulse is p-polarized, plasma effects do modify the harmonic spectrum, weakening the so-called universal decay with p=8/3 to p=5/3, or below. In this work, appeal is made to a single particle radiation model in support of the predictions from particle-in-cell (PIC) simulations. Using this numerical technique we further show that the emission radiated by electrons -that are relativistically accelerated by the laser field inside the plasma, after being expelled into vacuum, the so-called Brunel electrons is characterized not only by the plasma line but also by ultraviolet harmonic orders described by the 5/3 decay index. Results obtained from these simulations suggest that for ultra-relativistic light intensities, the spectral decay index is further reduced, with p now in the range 2/3 ≤ p ≤ 4/3. This reduction is indicative of a transition from the regime where Brunel-induced plasma radiation influences the spectrum to one dominated by bremsstrahlung emission from the Brunel electrons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra-relativistic" title="ultra-relativistic">ultra-relativistic</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-plasma%20interactions" title=" laser-plasma interactions"> laser-plasma interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=high-order%20harmonic%20emission" title=" high-order harmonic emission"> high-order harmonic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum" title=" spectrum "> spectrum </a> </p> <a href="https://publications.waset.org/abstracts/27628/radiation-emission-from-ultra-relativistic-plasma-electrons-in-short-pulse-laser-light-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Microstructure Analysis and Multiple Photoluminescence in High Temperature Electronic Conducting InZrZnO Thin Films </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Jayaram">P. Jayaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasoon%20Prasannan"> Prasoon Prasannan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Deepak"> N. K. Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20P.%20Pradyumnan"> P. P. Pradyumnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indium and Zirconium co doped zinc oxide (InZrZnO) thin films are prepared by chemical spray pyrolysis method on pre-heated quartz substrates. The films are subjected to vacuum annealing at 400ᵒC for three hours in an appropriate air (10-5mbar) ambience after deposition. X-ray diffraction, Scanning electron microscopy, energy dispersive spectra and photoluminescence are used to characterize the films. Temperature dependent electrical measurements are conducted on the films and the films exhibit exceptional conductivity at higher temperatures. XRD analysis shows that all the films prepared in this work have hexagonal wurtzite structure. The average crystallite sizes of the films were calculated using Scherrer’s formula, and uniform deformation model (UDM) of Williamson-Hall method is used to establish the micro-strain values. The dislocation density is determined from the Williamson and Smallman’s formula. Intense, broad and strongly coupled multiple photoluminescence were observed from photoluminescence spectra. PL indicated relatively high concentration defective oxygen and Zn vacancies in the film composition. Strongly coupled ultraviolet near blue emissions authenticate that the dopants are capable of inducing modulated free excitonic (FX), donor accepter pair (DAP) and longitudinal optical phonon emissions in thin films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PL" title="PL">PL</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TCOs" title=" TCOs"> TCOs</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/44720/microstructure-analysis-and-multiple-photoluminescence-in-high-temperature-electronic-conducting-inzrzno-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Microwave Synthesis, Optical Properties and Surface Area Studies of NiO Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayed%20S.%20Al-Shihri">Ayed S. Al-Shihri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abul%20Kalam"> Abul Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20G.%20Al-Sehemi"> Abdullah G. Al-Sehemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaohui%20Du"> Gaohui Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Tokeer%20Ahmad"> Tokeer Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Irfan"> Ahmad Irfan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination in air at 400°C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. X-ray diffraction studies showed the formation of monophasic and highly crystalline cubic NiO. TEM analysis led to decrease the average grain size of NiO nanoparticles from 16.5 nm to 14 nm on increasing the amount of NaOH. FTIR studies also confirm the formation of NiO nanoparticles. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85 eV to 2.95 eV) and specific surface area (33.1 to 39.8 m2/g) increases, however the average particles size decreases (16.5 nm to 14 nm). This method may be extended to large scale synthesis of other metal oxides nanoparticles and the present study could be used for the potential applications in water treatment and many other fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BET%20surface%20area%20analysis" title="BET surface area analysis">BET surface area analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20techniques" title=" X-ray techniques "> X-ray techniques </a> </p> <a href="https://publications.waset.org/abstracts/10258/microwave-synthesis-optical-properties-and-surface-area-studies-of-nio-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> The Effect of Vitamin D Deficiency on Endothelial Function in Atherosclerosis Patients Living in Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wedad%20Azhar">Wedad Azhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vitamin D is an essential fat-soluble vitamin that is required for the maintenance of good health. It is obtained either through exposure to sunlight (ultraviolet B radiation) or through dietary sources. The role of vitamin D is beyond bone health. Indeed, it plays a critical role in the immune system and a broad range of organ functions such as the cardiovascular system. Moreover, vitamin D plays a critical role in the endothelial function, which is one of the main indicators of atherosclerosis. This study is investigating the correlation between vitamin D status and endothelial function in preventing and treating atherosclerosis especially in country that has ample of sunshine but yet, Saudis from suffering from this issue vitamin D deficiency and insufficiency. Ninety participants from both genders and aged 40 to 60will be involved. The participants will be categorised into three groups: the control group will be healthy persons, patients at risk of developing atherosclerosis, patients formally diagnosed atherosclerosis. Half of the participants in each group should already have been taking vitamin D supplementations. Fasting blood samples will be taken from the participants for biochemical assays. Endothelial function will be assist by flow-mediated dilation of the brachial artery. Participants will be asked to complete a questionnaire on their social and economic status, education level, daily exposure to sunlight, smoking status, consumption of supplements and medication, and a food frequency of vitamin D intake. The data will be analysed using SPSS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title="atherosclerosis">atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=endothelial%20function" title=" endothelial function"> endothelial function</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20D" title=" vitamin D"> vitamin D</a> </p> <a href="https://publications.waset.org/abstracts/62509/the-effect-of-vitamin-d-deficiency-on-endothelial-function-in-atherosclerosis-patients-living-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Elaboration and Characterization of Silver Nanoparticles for Therapeutic and Environmental Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manel%20Bouloudenine">Manel Bouloudenine</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Djeddou"> Karima Djeddou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjer%20Ben%20Manser"> Hadjer Ben Manser</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Soualah%20Alila"> Hana Soualah Alila</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohmed%20Bououdina"> Mohmed Bououdina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This survey research involves the elaboration and characterization of silver nanoparticles for therapeutic and environmental applications. The silver nanoparticles "Ag NPs" were synthesized by reducing AgNO3 with microwaves. The characterization of nanoparticles was done by using Transmission Electron Microscopy " TEM ", Energy Dispersive Spectroscopy "EDS", Selected Area Electron Diffraction "SEAD", UV-Visible Spectroscopy and Dynamic Light Scattering "DLS". Transmission Electron Microscopy and Electron Diffraction have confirmed the nanoscale, the shape, and the crystalline quality of as synthesized silver nanoparticles. Elementary analysis has proved the purity of Ag NPs and the presence of the Surface Plasmon Resonance phenomenon "SPR". A strong absorption shift was observed in the visible range of the UV-visible spectrum of as synthesized Ag NPs, which indicates the presence of metallic silver. When the strong absorption in the ultraviolet range of the spectrum has revealed the presence of ionic Ag NPs ionic Ag aggregates species. The autocorrelation function measured by the Dynamic Light Scattering has shown a strong monodispersed character of Ag NPs, which is indicated by the presence of a single size population, with a minima and a maxima laying between 40 and 111 nm. Related to other research, our results confirm the performance properties of as synthesized Ag NPs, which allows them to be performing in many technological applications, including therapeutic and environmental ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silvers%20nanoparticles" title="silvers nanoparticles">silvers nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=microwaves" title=" microwaves"> microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=EDS" title=" EDS"> EDS</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a> </p> <a href="https://publications.waset.org/abstracts/146054/elaboration-and-characterization-of-silver-nanoparticles-for-therapeutic-and-environmental-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Luminescence and Local Environment: Identification of Thermal History</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veronique%20Jubera">Veronique Jubera</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Salek"> Guillaume Salek</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Gaudon"> Manuel Gaudon</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Garcia"> Alain Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Demourgues"> Alain Demourgues</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emission" title="emission">emission</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20sensing" title=" thermal sensing"> thermal sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20eath%20element" title=" rare eath element"> rare eath element</a> </p> <a href="https://publications.waset.org/abstracts/60286/luminescence-and-local-environment-identification-of-thermal-history" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> The Exploration of the Physical Properties of the Combinations of Selenium-Based Ternary Chalcogenides AScSe₂ (A=K, Cs) for Photovoltaic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Asma">Ayesha Asma</a>, <a href="https://publications.waset.org/abstracts/search?q=Aqsa%20Arooj"> Aqsa Arooj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is an essential need in this era of Science and Technology to investigate some unique and appropriate materials for optoelectronic applications. Here, we deliberated, for the first time, the structural, optoelectronic, mechanical, vibrational, and thermo dynamical properties of hexagonal structure selenium-based ternary chalcogenides AScSe₂ (A= K, Cs) by using Perdew-Burke-Ernzerhof Generalized-Gradient-Approximation (PBE-GGA). The lattice angles for these materials are found as α=β=90o and γ=120o. KScSe₂ optimized with lattice parameters a=b=4.3 (Å), c=7.81 (Å) whereas CsScSe₂ got relaxed at a=b=4.43 (Å) and c=8.51 (Å). However, HSE06 functional has overestimated the lattice parameters to the extent that for KScSe₂ a=b=4.92 (Å), c=7.10 (Å), and CsScSe₂ a=b=5.15 (Å), c=7.09 (Å). The energy band gap of these materials calculated via PBE-GGA and HSE06 functionals confirms their semiconducting nature. Concerning Born’s criteria, these materials are mechanically stable ones. Moreover, the temperature dependence of thermodynamic potentials and specific heat at constant volume are also determined while using the harmonic approximation. The negative values of free energy ensure their thermodynamic stability. The vibrational modes are calculated by plotting the phonon dispersion and the vibrational density of states (VDOS), where infrared (IR) and Raman spectroscopy are used to characterize the vibrational modes. The various optical parameters are examined at a smearing value of 0.5eV. These parameters unveil that these materials are good absorbers of incident light in ultra-violet (UV) regions and may be utilized in photovoltaic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural" title="structural">structural</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized" title=" optimized"> optimized</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational" title=" vibrational"> vibrational</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/186437/the-exploration-of-the-physical-properties-of-the-combinations-of-selenium-based-ternary-chalcogenides-ascse2-ak-cs-for-photovoltaic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Investigation the Photocatalytic Properties of Fe3O4-ZnO Nanocomposites Prepared by Sonochemical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atena%20Naeimi">Atena Naeimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehri-Sadat%20Ekrami-Kakhki"> Mehri-Sadat Ekrami-Kakhki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 have received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials. Fe3O4–ZnO nanostructures were synthesized via a surfactant-free ultrasonic reaction at room temperatures. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite 1 g of Fe3O4 nanostructures were dispersed in 100 mL of distilled water. 0.25 g of Zn (NO3)2 and 20 mL of NH3 solution 1 M were then slowly added to the solution under ultrasonic irradiation. The product was centrifuged, washed with distilled water and dried in the air. The photocatalytic behaviour of Fe3O4–ZnO nanoparticles was evaluated using the degradation of a methyl orange aqueous solution under ultraviolet light irradiation. As time increased, more and more methyl orange was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The methyl orange concentration decreased rapidly with increasing UV-irradiation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a>, <a href="https://publications.waset.org/abstracts/search?q=paramagnetic" title=" paramagnetic"> paramagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic" title=" photocatalytic"> photocatalytic</a> </p> <a href="https://publications.waset.org/abstracts/32325/investigation-the-photocatalytic-properties-of-fe3o4-zno-nanocomposites-prepared-by-sonochemical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Photocatalytic Degradation of Aqueous Organic Pollutant under UV Light Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Tassalit">D. Tassalit</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Chekir"> N. Chekir</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Benhabiles"> O. Benhabiles</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Laoufi"> N. A. Laoufi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Bentahar"> F. Bentahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the setting of the waters purification, some molecules appear recalcitrant to the traditional treatments. The exploitation of the properties of some catalysts permits to amplify the oxidization performances with ultraviolet radiance and to remove this pollution by a non biological way. This study was conducted to investigate the effect of a photocatalysis oxidation system for organic pollutants treatment using a new reactor design and ZnO/TiO2 as a catalyst under UV light. Oxidative degradation of tylosin by hydroxyl radicals (OH°) was studied in aqueous medium using suspended forms of ZnO and TiO2. The results improve that the treatment was affected by many factors such as flow-rate of solution, initial pollutant concentration and catalyst concentration. The rate equation for the tylosin degradation followed first order kinetics and the rate-constants were determined. The reaction rate fitted well with Langmuir–Hinshelwood model and the removed ratio of tylosin was 97 % in less than 60 minutes. To determine the optimum catalyst loading, a series of experiments were carried out by varying the amount of catalyst from 0.05 to 0.5 g/L. The results demonstrate that the rate of photodegradation is optimum with catalyst loading of 0.1 g/L, reaction flow rate of 3.79 mL/s and solution natural pH. The rate was found to increase with the decrease in tylosin concentration from 30 to 5 mg/L. Therefore, this simple photoreactor design for the removal of organic pollutants has the potential to be used in wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20oxidation" title="advanced oxidation">advanced oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20light" title=" UV light"> UV light</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals%20pollutants" title=" pharmaceuticals pollutants"> pharmaceuticals pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=Spiramycin" title=" Spiramycin"> Spiramycin</a>, <a href="https://publications.waset.org/abstracts/search?q=tylosin" title=" tylosin"> tylosin</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/14298/photocatalytic-degradation-of-aqueous-organic-pollutant-under-uv-light-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Secondary Metabolites Identified from a Pseudoalteromonas rubra Bacterial Strain Isolated from a Fijian Marine Alga</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Sinclair">James Sinclair</a>, <a href="https://publications.waset.org/abstracts/search?q=Katy%20Soapi"> Katy Soapi</a>, <a href="https://publications.waset.org/abstracts/search?q=Brad%20Carte"> Brad Carte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The marine environment has continuously demonstrated to be a rich source of secondary metabolites and bioactive compounds that can address the many pharmaceutical problems facing mankind. The emergence of multidrug resistant pathogens has caused scientists to explore contemporary ways of combating these super bugs. A red-pigmented bacterial strain isolated from a marine alga collected in Fiji was identified to be Pseudoalteromonas rubra from 16s rRNA sequencing. This bacterial strain was cultured using a yeast-peptone media and incubated for five days. The ethyl acetate extract of this bacterium was subjected to chromatographic separation techniques such as vacuum liquid chromatography, flash chromatography, size exclusion chromatography and high-pressure liquid chromatography to yield the pure compound and a number of semi-pure fractions. The crude extract and subsequent purified fractions were analyzed by ultraviolet/visible spectroscopy and mass spectroscopy and was found to contain the compounds ivermectin, stenothricin, cyclo-L-pro-L-val, prodigiosin, mycophenolic acid, phenazine-1-carboxylic acid, eplerenone, staurosporine and pseudoalteromone A. The structure of the pure compound, pseudoalteromone A, was elucidated using NMR 1H, 13C, 1H-1H COSY, HSQC and HMBC spectroscopic data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pseudoalteromonas%20rubra" title="Pseudoalteromonas rubra">Pseudoalteromonas rubra</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudoalteromone%20A" title=" Pseudoalteromone A"> Pseudoalteromone A</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20elucidation" title=" structure elucidation"> structure elucidation</a> </p> <a href="https://publications.waset.org/abstracts/79491/secondary-metabolites-identified-from-a-pseudoalteromonas-rubra-bacterial-strain-isolated-from-a-fijian-marine-alga" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Designing Modified Nanocarriers Containing Selenium Nanoparticles Extracted from the Lactobacillus acidophilus and Their Anticancer Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahnoosh%20Aliahmadi">Mahnoosh Aliahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Esmaeili"> Akbar Esmaeili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study synthesized new modified imaging nanocapsules (NCs) of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA) containing Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Se nanoparticles were then deposited on (Ga@DFA/FA/CS/PANI/PVA) using the impregnation method. The modified contrast agents were mixed with M. nigra extract, and their antibacterial activities were investigated by applying them to L929 cell lines. The influence of variable factors including surfactant, solvent, aqueous phase, pH, buffer, minimum Inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity on cancer cells, antibiotic, antibiogram, release and loading, stirring effect, the concentration of nanoparticle, olive oil, and thermotical methods was investigated. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), and energy-dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM) and MTT conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful, and the MIC=2 factor was obtained with a less harmful effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imaging%20contrast%20agent" title="imaging contrast agent">imaging contrast agent</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20method" title=" response surface method"> response surface method</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus%20acidophilus" title=" Lactobacillus acidophilus"> Lactobacillus acidophilus</a>, <a href="https://publications.waset.org/abstracts/search?q=selenium" title=" selenium"> selenium</a> </p> <a href="https://publications.waset.org/abstracts/152358/designing-modified-nanocarriers-containing-selenium-nanoparticles-extracted-from-the-lactobacillus-acidophilus-and-their-anticancer-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultraviolet&page=3" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultraviolet&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultraviolet&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultraviolet&page=3">3</a></li> <li class="page-item active"><span class="page-link">4</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultraviolet&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultraviolet&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultraviolet&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultraviolet&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ultraviolet&page=5" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>