CINXE.COM

Vitali–Hahn–Saks theorem - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Vitali–Hahn–Saks theorem - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"63d2b62d-809a-44b0-8503-b98de80cb142","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Vitali–Hahn–Saks_theorem","wgTitle":"Vitali–Hahn–Saks theorem","wgCurRevisionId":1120754459,"wgRevisionId":1120754459,"wgArticleId":1075379,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 German-language sources (de)","CS1 Italian-language sources (it)","Theorems in measure theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Vitali–Hahn–Saks_theorem","wgRelevantArticleId":1075379,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false, "wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":7000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q7936914","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface", "ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Vitali–Hahn–Saks theorem - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Vitali%E2%80%93Hahn%E2%80%93Saks_theorem"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Vitali%E2%80%93Hahn%E2%80%93Saks_theorem"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Vitali–Hahn–Saks_theorem rootpage-Vitali–Hahn–Saks_theorem skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Vitali%E2%80%93Hahn%E2%80%93Saks+theorem" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Vitali%E2%80%93Hahn%E2%80%93Saks+theorem" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Vitali%E2%80%93Hahn%E2%80%93Saks+theorem" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Vitali%E2%80%93Hahn%E2%80%93Saks+theorem" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Statement_of_the_theorem" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Statement_of_the_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Statement of the theorem</span> </div> </a> <ul id="toc-Statement_of_the_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Preliminaries" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Preliminaries"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Preliminaries</span> </div> </a> <ul id="toc-Preliminaries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proof_of_Vitali-Hahn-Saks_theorem" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proof_of_Vitali-Hahn-Saks_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Proof of Vitali-Hahn-Saks theorem</span> </div> </a> <ul id="toc-Proof_of_Vitali-Hahn-Saks_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Vitali–Hahn–Saks theorem</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 2 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-2" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">2 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Satz_von_Vitali-Hahn-Saks" title="Satz von Vitali-Hahn-Saks – German" lang="de" hreflang="de" data-title="Satz von Vitali-Hahn-Saks" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Stelling_van_Vitali-Hahn-Saks" title="Stelling van Vitali-Hahn-Saks – Dutch" lang="nl" hreflang="nl" data-title="Stelling van Vitali-Hahn-Saks" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q7936914#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Vitali%E2%80%93Hahn%E2%80%93Saks_theorem" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Vitali%E2%80%93Hahn%E2%80%93Saks_theorem" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Vitali%E2%80%93Hahn%E2%80%93Saks_theorem"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Vitali%E2%80%93Hahn%E2%80%93Saks_theorem"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Vitali%E2%80%93Hahn%E2%80%93Saks_theorem" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Vitali%E2%80%93Hahn%E2%80%93Saks_theorem" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;oldid=1120754459" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;id=1120754459&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVitali%25E2%2580%2593Hahn%25E2%2580%2593Saks_theorem"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVitali%25E2%2580%2593Hahn%25E2%2580%2593Saks_theorem"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q7936914" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>Vitali–Hahn–Saks theorem</b>, introduced by <a href="/wiki/Giuseppe_Vitali" title="Giuseppe Vitali">Vitali</a>&#160;(<a href="#CITEREFVitali1907">1907</a>), <a href="/wiki/Hans_Hahn_(mathematician)" title="Hans Hahn (mathematician)">Hahn</a>&#160;(<a href="#CITEREFHahn1922">1922</a>), and <a href="/wiki/Stanis%C5%82aw_Saks" title="Stanisław Saks">Saks</a>&#160;(<a href="#CITEREFSaks1933">1933</a>), proves that under some conditions a sequence of <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measures</a> converging point-wise does so uniformly and the limit is also a measure. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Statement_of_the_theorem">Statement of the theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;action=edit&amp;section=1" title="Edit section: Statement of the theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (S,{\mathcal {B}},m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (S,{\mathcal {B}},m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2375b34dff01c54d22f0217c528d2900f548137" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.96ex; height:2.843ex;" alt="{\displaystyle (S,{\mathcal {B}},m)}"></span> is a <a href="/wiki/Measure_space" title="Measure space">measure space</a> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m(S)&lt;\infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m(S)&lt;\infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc3cb5e6ce19fbe45facc50e38ac97cff690ed7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.418ex; height:2.843ex;" alt="{\displaystyle m(S)&lt;\infty ,}"></span> and a sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093ee22c3daf31b92ff5fa04ba0ce7862283e90c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.574ex; height:2.509ex;" alt="{\displaystyle \lambda _{n}}"></span> of <a href="/wiki/Complex_measure" title="Complex measure">complex measures</a>. Assuming that each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093ee22c3daf31b92ff5fa04ba0ce7862283e90c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.574ex; height:2.509ex;" alt="{\displaystyle \lambda _{n}}"></span> is <a href="/wiki/Absolute_continuity#Absolute_continuity_of_measures" title="Absolute continuity">absolutely continuous</a> with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dad66d19bb37bc69223cb004be2ea5dd95f9564c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.687ex; height:2.009ex;" alt="{\displaystyle m,}"></span> and that a for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\in {\mathcal {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\in {\mathcal {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0df7ead8ec7e88c3e04464929ae1213bbc1cd13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.148ex; height:2.176ex;" alt="{\displaystyle B\in {\mathcal {B}}}"></span> the finite limits exist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6c6352692ad40b0c2d44139230bae01f026bbbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.48ex; height:3.843ex;" alt="{\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B).}"></span> Then the absolute continuity of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093ee22c3daf31b92ff5fa04ba0ce7862283e90c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.574ex; height:2.509ex;" alt="{\displaystyle \lambda _{n}}"></span> with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> is uniform in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397bfafc701afdf14c2743278a097f6f2957eabb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.042ex; height:2.009ex;" alt="{\displaystyle n,}"></span> that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{B}m(B)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </munder> <mi>m</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{B}m(B)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c92005f83665f982e402062cae83d834a1a7030" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:13.491ex; height:4.009ex;" alt="{\displaystyle \lim _{B}m(B)=0}"></span> implies that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{B}\lambda _{n}(B)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </munder> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{B}\lambda _{n}(B)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4e348ecbe206c73d014f093684e1d5f7015b253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.025ex; height:4.009ex;" alt="{\displaystyle \lim _{B}\lambda _{n}(B)=0}"></span> uniformly in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e59df02a9f67a5da3c220f1244c99a46cc4eb1c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:1.676ex;" alt="{\displaystyle n.}"></span> Also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is countably additive on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33eb5608b7d9cdddb144c0b6e00ded582237ea27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.19ex; height:2.176ex;" alt="{\displaystyle {\mathcal {B}}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Preliminaries">Preliminaries</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;action=edit&amp;section=2" title="Edit section: Preliminaries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a measure space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (S,{\mathcal {B}},m),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (S,{\mathcal {B}},m),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa1ab71a3bd6e203212f1c56d7f03ddc46735625" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.607ex; height:2.843ex;" alt="{\displaystyle (S,{\mathcal {B}},m),}"></span> a distance can be constructed on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {B}}_{0},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {B}}_{0},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7ade4eb731deb3a2b7447ac1efa5d0db7b265ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.228ex; height:2.509ex;" alt="{\displaystyle {\mathcal {B}}_{0},}"></span> the set of measurable sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\in {\mathcal {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\in {\mathcal {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0df7ead8ec7e88c3e04464929ae1213bbc1cd13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.148ex; height:2.176ex;" alt="{\displaystyle B\in {\mathcal {B}}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m(B)&lt;\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m(B)&lt;\infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fbe7e18eae87a34fb505a23cb2055d070f5bcfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.683ex; height:2.843ex;" alt="{\displaystyle m(B)&lt;\infty .}"></span> This is done by defining </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(B_{1},B_{2})=m(B_{1}\Delta B_{2}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>m</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(B_{1},B_{2})=m(B_{1}\Delta B_{2}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e78eabe60ac4edb48dca86d107aeb6f2f59d5f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.863ex; height:2.843ex;" alt="{\displaystyle d(B_{1},B_{2})=m(B_{1}\Delta B_{2}),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{1}\Delta B_{2}=(B_{1}\setminus B_{2})\cup (B_{2}\setminus B_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x222A;<!-- ∪ --></mo> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{1}\Delta B_{2}=(B_{1}\setminus B_{2})\cup (B_{2}\setminus B_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684b12b89f8271a56f193715531c088eabc7eef1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.534ex; height:2.843ex;" alt="{\displaystyle B_{1}\Delta B_{2}=(B_{1}\setminus B_{2})\cup (B_{2}\setminus B_{1})}"></span> is the <a href="/wiki/Symmetric_difference" title="Symmetric difference">symmetric difference</a> of the sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcbdbe8d5ab6f458d04b2d23a77876889f5bdce8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.739ex; height:2.509ex;" alt="{\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}.}"></span></dd></dl> <p>This gives rise to a metric space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45deef4655b4301773569e735391de9e84608432" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.581ex; height:3.009ex;" alt="{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}"></span> by identifying two sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75ceffff330fa2746900903039158a523133a20d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.092ex; height:2.509ex;" alt="{\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m(B_{1}\Delta B_{2})=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m(B_{1}\Delta B_{2})=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23fc77bb641c77ac7ace7e87ab4fb2d5002df611" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.33ex; height:2.843ex;" alt="{\displaystyle m(B_{1}\Delta B_{2})=0.}"></span> Thus a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {B}}\in {\tilde {{\mathcal {B}}_{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {B}}\in {\tilde {{\mathcal {B}}_{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b55275b53ae27861c4664fe777bdadac57f9068" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.301ex; height:3.343ex;" alt="{\displaystyle {\overline {B}}\in {\tilde {{\mathcal {B}}_{0}}}}"></span> with representative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\in {\mathcal {B}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\in {\mathcal {B}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d1164bcac44d54da4377619047816c62aeabfd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.186ex; height:2.509ex;" alt="{\displaystyle B\in {\mathcal {B}}_{0}}"></span> is the set of all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{1}\in {\mathcal {B}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{1}\in {\mathcal {B}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/919f4f0cf68fb1d90e419266ed70d35768b7bc12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.24ex; height:2.509ex;" alt="{\displaystyle B_{1}\in {\mathcal {B}}_{0}}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m(B\Delta B_{1})=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m(B\Delta B_{1})=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f8283c67baf9e7c9e15c5d3c50a6517491c65ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.276ex; height:2.843ex;" alt="{\displaystyle m(B\Delta B_{1})=0.}"></span> </p><p><b>Proposition:</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45deef4655b4301773569e735391de9e84608432" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.581ex; height:3.009ex;" alt="{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}"></span> with the metric defined above is a <a href="/wiki/Complete_metric_space" title="Complete metric space">complete metric space</a>. </p><p><i>Proof:</i> Let <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi _{B}(x)={\begin{cases}1,&amp;x\in B\\0,&amp;x\notin B\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>x</mi> <mo>&#x2209;<!-- ∉ --></mo> <mi>B</mi> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi _{B}(x)={\begin{cases}1,&amp;x\in B\\0,&amp;x\notin B\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f233ef0db2638a82921d505535b25219b8e05cbd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.733ex; height:6.176ex;" alt="{\displaystyle \chi _{B}(x)={\begin{cases}1,&amp;x\in B\\0,&amp;x\notin B\end{cases}}}"></span> Then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(B_{1},B_{2})=\int _{S}|\chi _{B_{1}}(s)-\chi _{B_{2}}(x)|dm}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(B_{1},B_{2})=\int _{S}|\chi _{B_{1}}(s)-\chi _{B_{2}}(x)|dm}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4e91bbb124256b751843c3446b030070a3d6ae8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:36.728ex; height:5.676ex;" alt="{\displaystyle d(B_{1},B_{2})=\int _{S}|\chi _{B_{1}}(s)-\chi _{B_{2}}(x)|dm}"></span> This means that the metric space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45deef4655b4301773569e735391de9e84608432" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.581ex; height:3.009ex;" alt="{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}"></span> can be identified with a subset of the <a href="/wiki/Banach_space" title="Banach space">Banach space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}(S,{\mathcal {B}},m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}(S,{\mathcal {B}},m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dee42fb945dd41e0ed9b7a77a959e5eaee268873" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.597ex; height:3.176ex;" alt="{\displaystyle L^{1}(S,{\mathcal {B}},m)}"></span>. </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}\in {\mathcal {B}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}\in {\mathcal {B}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f3dfae4d1e390915532efb1cba5eaa513f480e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.404ex; height:2.509ex;" alt="{\displaystyle B_{n}\in {\mathcal {B}}_{0}}"></span>, with <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n,k\to \infty }d(B_{n},B_{k})=\lim _{n,k\to \infty }\int _{S}|\chi _{B_{n}}(x)-\chi _{B_{k}}(x)|dm=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n,k\to \infty }d(B_{n},B_{k})=\lim _{n,k\to \infty }\int _{S}|\chi _{B_{n}}(x)-\chi _{B_{k}}(x)|dm=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/603200bd38cd5defd41627ec10aa6fa65c044cd8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:53.535ex; height:5.676ex;" alt="{\displaystyle \lim _{n,k\to \infty }d(B_{n},B_{k})=\lim _{n,k\to \infty }\int _{S}|\chi _{B_{n}}(x)-\chi _{B_{k}}(x)|dm=0}"></span> Then we can choose a sub-sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi _{B_{n'}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi _{B_{n'}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cacef0fe6612072b929ffb36bf35b480fc4a9144" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.4ex; height:2.509ex;" alt="{\displaystyle \chi _{B_{n&#039;}}}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n'\to \infty }\chi _{B_{n'}}(x)=\chi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n'\to \infty }\chi _{B_{n'}}(x)=\chi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47e7cf73bc3e6b1c9efa1e985cf943cbbbacf125" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:20.423ex; height:4.176ex;" alt="{\displaystyle \lim _{n&#039;\to \infty }\chi _{B_{n&#039;}}(x)=\chi (x)}"></span> exists <a href="/wiki/Almost_everywhere" title="Almost everywhere">almost everywhere</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n'\to \infty }\int _{S}|\chi (x)-\chi _{B_{n'}(x)}|dm=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n'\to \infty }\int _{S}|\chi (x)-\chi _{B_{n'}(x)}|dm=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85135fabfc06672f7ed5457eafbcb9217a8f5853" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.028ex; height:5.676ex;" alt="{\displaystyle \lim _{n&#039;\to \infty }\int _{S}|\chi (x)-\chi _{B_{n&#039;}(x)}|dm=0}"></span>. It follows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi =\chi _{B_{\infty }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C7;<!-- χ --></mi> <mo>=</mo> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi =\chi _{B_{\infty }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa6b62c406838e03d970b2089c97572e25cf27b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.986ex; height:2.176ex;" alt="{\displaystyle \chi =\chi _{B_{\infty }}}"></span> for some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{\infty }\in {\mathcal {B}}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{\infty }\in {\mathcal {B}}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/456601eccb8120e1e96680877893a0bf59e4e3ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.061ex; height:2.509ex;" alt="{\displaystyle B_{\infty }\in {\mathcal {B}}_{0}}"></span> (furthermore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi (x)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi (x)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b51ed3465760f84cbab2ab33375e9febccbb62c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.855ex; height:2.843ex;" alt="{\displaystyle \chi (x)=1}"></span> <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi _{B_{n'}}(x)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi _{B_{n'}}(x)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7de0f771606c3fa6acd0eebb90cb60431795059" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.8ex; height:3.176ex;" alt="{\displaystyle \chi _{B_{n&#039;}}(x)=1}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d215ec5b3d3b48ac8ec46e7131e7b3c091c9114e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.079ex; height:2.509ex;" alt="{\displaystyle n&#039;}"></span> large enough, then we have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{\infty }=\liminf _{n'\to \infty }B_{n'}={\bigcup _{n'=1}^{\infty }}\left({\bigcap _{m=n'}^{\infty }}B_{m}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim&#x2006;inf</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <munderover> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <munderover> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <msup> <mi>n</mi> <mo>&#x2032;</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{\infty }=\liminf _{n'\to \infty }B_{n'}={\bigcup _{n'=1}^{\infty }}\left({\bigcap _{m=n'}^{\infty }}B_{m}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0fb1d4540d235f91d4748915742013ecae2f86a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:35.371ex; height:7.676ex;" alt="{\displaystyle B_{\infty }=\liminf _{n&#039;\to \infty }B_{n&#039;}={\bigcup _{n&#039;=1}^{\infty }}\left({\bigcap _{m=n&#039;}^{\infty }}B_{m}\right)}"></span> the <a href="/wiki/Limit_inferior" class="mw-redirect" title="Limit inferior">limit inferior</a> of the sequence) and hence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }d(B_{\infty },B_{n})=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }d(B_{\infty },B_{n})=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/242381650d8093220612805497fe0917d9a52666" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.248ex; height:3.843ex;" alt="{\displaystyle \lim _{n\to \infty }d(B_{\infty },B_{n})=0.}"></span> Therefore, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45deef4655b4301773569e735391de9e84608432" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.581ex; height:3.009ex;" alt="{\displaystyle {\tilde {{\mathcal {B}}_{0}}}}"></span> is complete. </p> <div class="mw-heading mw-heading2"><h2 id="Proof_of_Vitali-Hahn-Saks_theorem">Proof of Vitali-Hahn-Saks theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;action=edit&amp;section=3" title="Edit section: Proof of Vitali-Hahn-Saks theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093ee22c3daf31b92ff5fa04ba0ce7862283e90c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.574ex; height:2.509ex;" alt="{\displaystyle \lambda _{n}}"></span> defines a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\lambda }}_{n}({\overline {B}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\lambda }}_{n}({\overline {B}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac9edc82080314b19fa3081dbe75a59bc6fa1758" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.377ex; height:3.509ex;" alt="{\displaystyle {\overline {\lambda }}_{n}({\overline {B}})}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\mathcal {B}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\mathcal {B}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48080fb5f6584d2f066b473dcc1509221a49d150" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.686ex; height:2.676ex;" alt="{\displaystyle {\tilde {\mathcal {B}}}}"></span> by taking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\lambda }}_{n}({\overline {B}})=\lambda _{n}(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\lambda }}_{n}({\overline {B}})=\lambda _{n}(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f45be4d47b15204350784fc5e8ab2c619b286d03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.622ex; height:3.509ex;" alt="{\displaystyle {\overline {\lambda }}_{n}({\overline {B}})=\lambda _{n}(B)}"></span>. This function is well defined, this is it is independent on the representative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> of the class <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/164e5a0ce2bdc0686a2206a4c31f61135bd6ea60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.879ex; height:3.009ex;" alt="{\displaystyle {\overline {B}}}"></span> due to the absolute continuity of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093ee22c3daf31b92ff5fa04ba0ce7862283e90c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.574ex; height:2.509ex;" alt="{\displaystyle \lambda _{n}}"></span> with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>. Moreover <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\lambda }}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\lambda }}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba4cbdd2c4399d5b3c9f6416910786da77d38e41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.689ex; height:3.343ex;" alt="{\displaystyle {\overline {\lambda }}_{n}}"></span> is continuous. </p><p>For every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon &gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon &gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/568095ad3924314374a5ab68fae17343661f2a71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.205ex; height:2.176ex;" alt="{\displaystyle \epsilon &gt;0}"></span> the set <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{k,\epsilon }=\{{\overline {B}}\in {\tilde {\mathcal {B}}}:\ \sup _{n\geq 1}|{\overline {\lambda }}_{k}({\overline {B}})-{\overline {\lambda }}_{k+n}({\overline {B}})|\leq \epsilon \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>&#x03F5;<!-- ϵ --></mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>:</mo> <mtext>&#xA0;</mtext> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{k,\epsilon }=\{{\overline {B}}\in {\tilde {\mathcal {B}}}:\ \sup _{n\geq 1}|{\overline {\lambda }}_{k}({\overline {B}})-{\overline {\lambda }}_{k+n}({\overline {B}})|\leq \epsilon \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a4a1439267023be523058c1d24ebbae9bba17df" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:45.267ex; height:5.343ex;" alt="{\displaystyle F_{k,\epsilon }=\{{\overline {B}}\in {\tilde {\mathcal {B}}}:\ \sup _{n\geq 1}|{\overline {\lambda }}_{k}({\overline {B}})-{\overline {\lambda }}_{k+n}({\overline {B}})|\leq \epsilon \}}"></span> is closed in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\mathcal {B}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\mathcal {B}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48080fb5f6584d2f066b473dcc1509221a49d150" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.686ex; height:2.676ex;" alt="{\displaystyle {\tilde {\mathcal {B}}}}"></span>, and by the hypothesis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3db1b83d208bce9214aa67ebdbed5eaad29efca3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.834ex; height:3.843ex;" alt="{\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B)}"></span> we have that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\mathcal {B}}}=\bigcup _{k=1}^{\infty }F_{k,\epsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <munderover> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>&#x03F5;<!-- ϵ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\mathcal {B}}}=\bigcup _{k=1}^{\infty }F_{k,\epsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eede4b666bc4e13ae803ebc48b6508f62dce4289" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.837ex; height:6.843ex;" alt="{\displaystyle {\tilde {\mathcal {B}}}=\bigcup _{k=1}^{\infty }F_{k,\epsilon }}"></span> By <a href="/wiki/Baire_category_theorem" title="Baire category theorem">Baire category theorem</a> at least one <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{k_{0},\epsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>&#x03F5;<!-- ϵ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{k_{0},\epsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be29d185b3a50328cdfbdc2743ef586e239cd39e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.54ex; height:2.843ex;" alt="{\displaystyle F_{k_{0},\epsilon }}"></span> must contain a non-empty open set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\mathcal {B}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\mathcal {B}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48080fb5f6584d2f066b473dcc1509221a49d150" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.686ex; height:2.676ex;" alt="{\displaystyle {\tilde {\mathcal {B}}}}"></span>. This means that there is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {B_{0}}}\in {\tilde {\mathcal {B}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {B_{0}}}\in {\tilde {\mathcal {B}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15d81bd91f61400c9a25a12ab542bc3d68500be1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.46ex; height:3.343ex;" alt="{\displaystyle {\overline {B_{0}}}\in {\tilde {\mathcal {B}}}}"></span> and a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta &gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta &gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/595d5cea06fdcaf2642caf549eda2cfc537958a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.31ex; height:2.343ex;" alt="{\displaystyle \delta &gt;0}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(B,B_{0})&lt;\delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(B,B_{0})&lt;\delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20bf83e8fc6dfa4163cf8f6e82ba880db94fdcb1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.788ex; height:2.843ex;" alt="{\displaystyle d(B,B_{0})&lt;\delta }"></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sup _{n\geq 1}|{\overline {\lambda }}_{k_{0}}({\overline {B}})-{\overline {\lambda }}_{k_{0}+n}({\overline {B}})|\leq \epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03F5;<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sup _{n\geq 1}|{\overline {\lambda }}_{k_{0}}({\overline {B}})-{\overline {\lambda }}_{k_{0}+n}({\overline {B}})|\leq \epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fdf43be1662367652f2ab5d217ef2ead283b8a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:28.487ex; height:5.343ex;" alt="{\displaystyle \sup _{n\geq 1}|{\overline {\lambda }}_{k_{0}}({\overline {B}})-{\overline {\lambda }}_{k_{0}+n}({\overline {B}})|\leq \epsilon }"></span> On the other hand, any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\in {\mathcal {B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">B</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\in {\mathcal {B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0df7ead8ec7e88c3e04464929ae1213bbc1cd13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.148ex; height:2.176ex;" alt="{\displaystyle B\in {\mathcal {B}}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m(B)\leq \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m(B)\leq \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db69598a54989d86759bd7c4d3af97944c29e7c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.761ex; height:2.843ex;" alt="{\displaystyle m(B)\leq \delta }"></span> can be represented as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=B_{1}\setminus B_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=B_{1}\setminus B_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/036421b29b1d2acd16055ca69f45219053f4968c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.694ex; height:2.843ex;" alt="{\displaystyle B=B_{1}\setminus B_{2}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(B_{1},B_{0})\leq \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(B_{1},B_{0})\leq \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ebbcff562bdf582c1fbc468f95d7b6dc7219cbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.843ex; height:2.843ex;" alt="{\displaystyle d(B_{1},B_{0})\leq \delta }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(B_{2},B_{0})\leq \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(B_{2},B_{0})\leq \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/039d58807d6437b985a93aa5222e704d8ee923a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.843ex; height:2.843ex;" alt="{\displaystyle d(B_{2},B_{0})\leq \delta }"></span>. This can be done, for example by taking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{1}=B\cup B_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>B</mi> <mo>&#x222A;<!-- ∪ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{1}=B\cup B_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df4ffb00639d7213e7d75cb2e01ea4dbb0a1634f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.082ex; height:2.509ex;" alt="{\displaystyle B_{1}=B\cup B_{0}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{2}=B_{0}\setminus (B\cap B_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{2}=B_{0}\setminus (B\cap B_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5db5ad0eef59327513160c9595023a33bf1e3e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.904ex; height:2.843ex;" alt="{\displaystyle B_{2}=B_{0}\setminus (B\cap B_{0})}"></span>. Thus, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m(B)\leq \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m(B)\leq \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db69598a54989d86759bd7c4d3af97944c29e7c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.761ex; height:2.843ex;" alt="{\displaystyle m(B)\leq \delta }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\geq k_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\geq k_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a60745159f780220691a7e0306745179e41491c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.575ex; height:2.509ex;" alt="{\displaystyle k\geq k_{0}}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}|\lambda _{k}(B)|&amp;\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B)-\lambda _{k}(B)|\\&amp;\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B_{1})-\lambda _{k}(B_{1})|+|\lambda _{k_{0}}(B_{2})-\lambda _{k}(B_{2})|\\&amp;\leq |\lambda _{k_{0}}(B)|+2\epsilon \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>&#x03F5;<!-- ϵ --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}|\lambda _{k}(B)|&amp;\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B)-\lambda _{k}(B)|\\&amp;\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B_{1})-\lambda _{k}(B_{1})|+|\lambda _{k_{0}}(B_{2})-\lambda _{k}(B_{2})|\\&amp;\leq |\lambda _{k_{0}}(B)|+2\epsilon \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51515c04509bd249aef954ea8b1c08d6a927e427" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.957ex; margin-bottom: -0.214ex; width:63.201ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}|\lambda _{k}(B)|&amp;\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B)-\lambda _{k}(B)|\\&amp;\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B_{1})-\lambda _{k}(B_{1})|+|\lambda _{k_{0}}(B_{2})-\lambda _{k}(B_{2})|\\&amp;\leq |\lambda _{k_{0}}(B)|+2\epsilon \end{aligned}}}"></span> Therefore, by the absolute continuity of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{k_{0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{k_{0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08266af9602e59a50f205b2d506f1c9e93c6c4d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.276ex; height:2.843ex;" alt="{\displaystyle \lambda _{k_{0}}}"></span> with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>, and since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03F5;<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3837cad72483d97bcdde49c85d3b7b859fb3fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.944ex; height:1.676ex;" alt="{\displaystyle \epsilon }"></span> is arbitrary, we get that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m(B)\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m(B)\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/363ebfa995a6b242dab912a122470869c2ce5213" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.39ex; height:2.843ex;" alt="{\displaystyle m(B)\to 0}"></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{n}(B)\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{n}(B)\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c40d543c08a95be1ad659cd90a2019b8979de677" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.924ex; height:2.843ex;" alt="{\displaystyle \lambda _{n}(B)\to 0}"></span> uniformly in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e59df02a9f67a5da3c220f1244c99a46cc4eb1c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:1.676ex;" alt="{\displaystyle n.}"></span> In particular, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m(B)\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m(B)\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/363ebfa995a6b242dab912a122470869c2ce5213" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.39ex; height:2.843ex;" alt="{\displaystyle m(B)\to 0}"></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda (B)\to 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda (B)\to 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/182b6e276b5fc33fd562a5ccea378578ce7f00b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.352ex; height:2.843ex;" alt="{\displaystyle \lambda (B)\to 0.}"></span> </p><p>By the additivity of the limit it follows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is <a href="/wiki/Sigma_additivity#Additive_(or_finitely_additive)_set_functions" class="mw-redirect" title="Sigma additivity">finitely-additive</a>. Then, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{m(B)\to 0}\lambda (B)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{m(B)\to 0}\lambda (B)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5284a38b93920dcb0e52aae44209675340251e6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.011ex; height:4.509ex;" alt="{\displaystyle \lim _{m(B)\to 0}\lambda (B)=0}"></span> it follows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is actually countably additive. </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;action=edit&amp;section=4" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> </div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHahn1922" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Hans_Hahn_(mathematician)" title="Hans Hahn (mathematician)">Hahn, H.</a> (1922), <a rel="nofollow" class="external text" href="https://zenodo.org/record/1428338">"Über Folgen linearer Operationen"</a>, <i>Monatsh. Math.</i> (in German), <b>32</b>: 3–88, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01696876">10.1007/bf01696876</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Monatsh.+Math.&amp;rft.atitle=%C3%9Cber+Folgen+linearer+Operationen&amp;rft.volume=32&amp;rft.pages=3-88&amp;rft.date=1922&amp;rft_id=info%3Adoi%2F10.1007%2Fbf01696876&amp;rft.aulast=Hahn&amp;rft.aufirst=H.&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1428338&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVitali%E2%80%93Hahn%E2%80%93Saks+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSaks1933" class="citation cs2"><a href="/wiki/Stanislaw_Saks" class="mw-redirect" title="Stanislaw Saks">Saks, Stanislaw</a> (1933), "Addition to the Note on Some Functionals", <i><a href="/wiki/Transactions_of_the_American_Mathematical_Society" title="Transactions of the American Mathematical Society">Transactions of the American Mathematical Society</a></i>, <b>35</b> (4): 965–970, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1989603">10.2307/1989603</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1989603">1989603</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+of+the+American+Mathematical+Society&amp;rft.atitle=Addition+to+the+Note+on+Some+Functionals&amp;rft.volume=35&amp;rft.issue=4&amp;rft.pages=965-970&amp;rft.date=1933&amp;rft_id=info%3Adoi%2F10.2307%2F1989603&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1989603%23id-name%3DJSTOR&amp;rft.aulast=Saks&amp;rft.aufirst=Stanislaw&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVitali%E2%80%93Hahn%E2%80%93Saks+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVitali1907" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Giuseppe_Vitali" title="Giuseppe Vitali">Vitali, G.</a> (1907), <a rel="nofollow" class="external text" href="https://zenodo.org/record/2082522">"Sull' integrazione per serie"</a>, <i><a href="/wiki/Rendiconti_del_Circolo_Matematico_di_Palermo" class="mw-redirect" title="Rendiconti del Circolo Matematico di Palermo">Rendiconti del Circolo Matematico di Palermo</a></i> (in Italian), <b>23</b>: 137–155, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF03013514">10.1007/BF03013514</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Rendiconti+del+Circolo+Matematico+di+Palermo&amp;rft.atitle=Sull%27+integrazione+per+serie&amp;rft.volume=23&amp;rft.pages=137-155&amp;rft.date=1907&amp;rft_id=info%3Adoi%2F10.1007%2FBF03013514&amp;rft.aulast=Vitali&amp;rft.aufirst=G.&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F2082522&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVitali%E2%80%93Hahn%E2%80%93Saks+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYosida1971" class="citation cs2">Yosida, K. (1971), <i>Functional Analysis</i>, Springer, pp.&#160;70–71, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-05506-1" title="Special:BookSources/0-387-05506-1"><bdi>0-387-05506-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Functional+Analysis&amp;rft.pages=70-71&amp;rft.pub=Springer&amp;rft.date=1971&amp;rft.isbn=0-387-05506-1&amp;rft.aulast=Yosida&amp;rft.aufirst=K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVitali%E2%80%93Hahn%E2%80%93Saks+theorem" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Measure_theory" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Measure_theory" title="Template:Measure theory"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Measure_theory" title="Template talk:Measure theory"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Measure_theory" title="Special:EditPage/Template:Measure theory"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Measure_theory" style="font-size:114%;margin:0 4em"><a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">Measure theory</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolute_continuity" title="Absolute continuity">Absolute continuity</a>&#160;<a href="/wiki/Absolute_continuity_(measure_theory)" class="mw-redirect" title="Absolute continuity (measure theory)">of measures</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup><i>p</i></sup> spaces</a></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure</a></li> <li><a href="/wiki/Measure_space" title="Measure space">Measure space</a> <ul><li><a href="/wiki/Probability_space" title="Probability space">Probability space</a></li></ul></li> <li><a href="/wiki/Measurable_space" title="Measurable space">Measurable space</a>/<a href="/wiki/Measurable_function" title="Measurable function">function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sets</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_everywhere" title="Almost everywhere">Almost everywhere</a></li> <li><a href="/wiki/Atom_(measure_theory)" title="Atom (measure theory)">Atom</a></li> <li><a href="/wiki/Baire_set" title="Baire set">Baire set</a></li> <li><a href="/wiki/Borel_set" title="Borel set">Borel set</a> <ul><li><a href="/wiki/Borel_equivalence_relation" title="Borel equivalence relation">equivalence relation</a></li></ul></li> <li><a href="/wiki/Standard_Borel_space" title="Standard Borel space">Borel space</a></li> <li><a href="/wiki/Carath%C3%A9odory%27s_criterion" title="Carathéodory&#39;s criterion">Carathéodory's criterion</a></li> <li><a href="/wiki/Cylindrical_%CF%83-algebra" title="Cylindrical σ-algebra">Cylindrical σ-algebra</a> <ul><li><a href="/wiki/Cylinder_set" title="Cylinder set">Cylinder set</a></li></ul></li> <li><a href="/wiki/Dynkin_system" title="Dynkin system">𝜆-system</a></li> <li><a href="/wiki/Essential_range" title="Essential range">Essential range</a> <ul><li><a href="/wiki/Essential_infimum_and_essential_supremum" title="Essential infimum and essential supremum">infimum/supremum</a></li></ul></li> <li><a href="/wiki/Locally_measurable_set" class="mw-redirect" title="Locally measurable set">Locally measurable</a></li> <li><a href="/wiki/Pi-system" title="Pi-system"><span class="texhtml mvar" style="font-style:italic;">π</span>-system</a></li> <li><a href="/wiki/%CE%A3-algebra" title="Σ-algebra">σ-algebra</a></li> <li><a href="/wiki/Non-measurable_set" title="Non-measurable set">Non-measurable set</a> <ul><li><a href="/wiki/Vitali_set" title="Vitali set">Vitali set</a></li></ul></li> <li><a href="/wiki/Null_set" title="Null set">Null set</a></li> <li><a href="/wiki/Support_(measure_theory)" title="Support (measure theory)">Support</a></li> <li><a href="/wiki/Transverse_measure" title="Transverse measure">Transverse measure</a></li> <li><a href="/wiki/Universally_measurable_set" title="Universally measurable set">Universally measurable</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measures</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atomic_measure" class="mw-redirect" title="Atomic measure">Atomic</a></li> <li><a href="/wiki/Baire_measure" title="Baire measure">Baire</a></li> <li><a href="/wiki/Banach_measure" title="Banach measure">Banach</a></li> <li><a href="/wiki/Besov_measure" title="Besov measure">Besov</a></li> <li><a href="/wiki/Borel_measure" title="Borel measure">Borel</a></li> <li><a href="/wiki/Brown_measure" title="Brown measure">Brown</a></li> <li><a href="/wiki/Complex_measure" title="Complex measure">Complex</a></li> <li><a href="/wiki/Complete_measure" title="Complete measure">Complete</a></li> <li><a href="/wiki/Content_(measure_theory)" title="Content (measure theory)">Content</a></li> <li>(<a href="/wiki/Logarithmically_concave_measure" title="Logarithmically concave measure">Logarithmically</a>)&#160;<a href="/wiki/Convex_measure" title="Convex measure">Convex</a></li> <li><a href="/wiki/Decomposable_measure" title="Decomposable measure">Decomposable</a></li> <li><a href="/wiki/Discrete_measure" title="Discrete measure">Discrete</a></li> <li><a href="/wiki/Equivalence_(measure_theory)" title="Equivalence (measure theory)">Equivalent</a></li> <li><a href="/wiki/Finite_measure" title="Finite measure">Finite</a></li> <li><a href="/wiki/Inner_measure" title="Inner measure">Inner</a></li> <li>(<a href="/wiki/Quasi-invariant_measure" title="Quasi-invariant measure">Quasi-</a>)&#160;<a href="/wiki/Invariant_measure" title="Invariant measure">Invariant</a></li> <li><a href="/wiki/Locally_finite_measure" title="Locally finite measure">Locally finite</a></li> <li><a href="/wiki/Maximising_measure" title="Maximising measure">Maximising</a></li> <li><a href="/wiki/Metric_outer_measure" title="Metric outer measure">Metric outer</a></li> <li><a href="/wiki/Outer_measure" title="Outer measure">Outer</a></li> <li><a href="/wiki/Perfect_measure" title="Perfect measure">Perfect</a></li> <li><a href="/wiki/Pre-measure" title="Pre-measure">Pre-measure</a></li> <li>(<a href="/wiki/Sub-probability_measure" title="Sub-probability measure">Sub-</a>)&#160;<a href="/wiki/Probability_measure" title="Probability measure">Probability</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued</a></li> <li><a href="/wiki/Radon_measure" title="Radon measure">Radon</a></li> <li><a href="/wiki/Random_measure" title="Random measure">Random</a></li> <li><a href="/wiki/Regular_measure" title="Regular measure">Regular</a> <ul><li><a href="/wiki/Borel_regular_measure" title="Borel regular measure">Borel regular</a></li> <li><a href="/wiki/Inner_regular_measure" class="mw-redirect" title="Inner regular measure">Inner regular</a></li> <li><a href="/wiki/Outer_regular_measure" class="mw-redirect" title="Outer regular measure">Outer regular</a></li></ul></li> <li><a href="/wiki/Saturated_measure" title="Saturated measure">Saturated</a></li> <li><a href="/wiki/Set_function" title="Set function">Set function</a></li> <li><a href="/wiki/%CE%A3-finite_measure" title="Σ-finite measure">σ-finite</a></li> <li><a href="/wiki/S-finite_measure" title="S-finite measure">s-finite</a></li> <li><a href="/wiki/Signed_measure" title="Signed measure">Signed</a></li> <li><a href="/wiki/Singular_measure" title="Singular measure">Singular</a></li> <li><a href="/wiki/Spectral_measure" class="mw-redirect" title="Spectral measure">Spectral</a></li> <li><a href="/wiki/Strictly_positive_measure" title="Strictly positive measure">Strictly positive</a></li> <li><a href="/wiki/Tightness_of_measures" title="Tightness of measures">Tight</a></li> <li><a href="/wiki/Vector_measure" title="Vector measure">Vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Measures_(measure_theory)" title="Category:Measures (measure theory)">Particular measures</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Counting_measure" title="Counting measure">Counting</a></li> <li><a href="/wiki/Dirac_measure" title="Dirac measure">Dirac</a></li> <li><a href="/wiki/Euler_measure" title="Euler measure">Euler</a></li> <li><a href="/wiki/Gaussian_measure" title="Gaussian measure">Gaussian</a></li> <li><a href="/wiki/Haar_measure" title="Haar measure">Haar</a></li> <li><a href="/wiki/Harmonic_measure" title="Harmonic measure">Harmonic</a></li> <li><a href="/wiki/Hausdorff_measure" title="Hausdorff measure">Hausdorff</a></li> <li><a href="/wiki/Intensity_measure" title="Intensity measure">Intensity</a></li> <li><a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue</a> <ul><li><a href="/wiki/Infinite-dimensional_Lebesgue_measure" title="Infinite-dimensional Lebesgue measure">Infinite-dimensional</a></li></ul></li> <li><a href="/wiki/Positive_real_numbers#Logarithmic_measure" title="Positive real numbers">Logarithmic</a></li> <li><a href="/wiki/Product_measure" title="Product measure">Product</a> <ul><li><a href="/wiki/Projection_(measure_theory)" title="Projection (measure theory)">Projections</a></li></ul></li> <li><a href="/wiki/Pushforward_measure" title="Pushforward measure">Pushforward</a></li> <li><a href="/wiki/Spherical_measure" title="Spherical measure">Spherical measure</a></li> <li><a href="/wiki/Tangent_measure" title="Tangent measure">Tangent</a></li> <li><a href="/wiki/Trivial_measure" title="Trivial measure">Trivial</a></li> <li><a href="/wiki/Young_measure" title="Young measure">Young</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Measurable_function" title="Measurable function">Measurable function</a> <ul><li><a href="/wiki/Bochner_measurable_function" title="Bochner measurable function">Bochner</a></li> <li><a href="/wiki/Strongly_measurable_function" title="Strongly measurable function">Strongly</a></li> <li><a href="/wiki/Weakly_measurable_function" title="Weakly measurable function">Weakly</a></li></ul></li> <li>Convergence: <a href="/wiki/Convergence_almost_everywhere" class="mw-redirect" title="Convergence almost everywhere">almost everywhere</a></li> <li><a href="/wiki/Convergence_of_measures" title="Convergence of measures">of measures</a></li> <li><a href="/wiki/Convergence_in_measure" title="Convergence in measure">in measure</a></li> <li><a href="/wiki/Convergence_of_random_variables" title="Convergence of random variables">of random variables</a> <ul><li><a href="/wiki/Convergence_in_distribution" class="mw-redirect" title="Convergence in distribution">in distribution</a></li> <li><a href="/wiki/Convergence_in_probability" class="mw-redirect" title="Convergence in probability">in probability</a></li></ul></li> <li><a href="/wiki/Cylinder_set_measure" title="Cylinder set measure">Cylinder set measure</a></li> <li>Random: <a href="/wiki/Random_compact_set" title="Random compact set">compact set</a></li> <li><a href="/wiki/Random_element" title="Random element">element</a></li> <li><a href="/wiki/Random_measure" title="Random measure">measure</a></li> <li><a href="/wiki/Stochastic_process" title="Stochastic process">process</a></li> <li><a href="/wiki/Random_variable" title="Random variable">variable</a></li> <li><a href="/wiki/Multivariate_random_variable" title="Multivariate random variable">vector</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued measure</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_measure_theory" title="Category:Theorems in measure theory">Main results</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carath%C3%A9odory%27s_extension_theorem" title="Carathéodory&#39;s extension theorem">Carathéodory's extension theorem</a></li> <li>Convergence theorems <ul><li><a href="/wiki/Dominated_convergence_theorem" title="Dominated convergence theorem">Dominated</a></li> <li><a href="/wiki/Monotone_convergence_theorem" title="Monotone convergence theorem">Monotone</a></li> <li><a href="/wiki/Vitali_convergence_theorem" title="Vitali convergence theorem">Vitali</a></li></ul></li> <li>Decomposition theorems <ul><li><a href="/wiki/Hahn_decomposition_theorem" title="Hahn decomposition theorem">Hahn</a></li> <li><a href="/wiki/Jordan_decomposition_theorem" class="mw-redirect" title="Jordan decomposition theorem">Jordan</a></li> <li><a href="/wiki/Maharam%27s_theorem" title="Maharam&#39;s theorem">Maharam's</a></li></ul></li> <li><a href="/wiki/Egorov%27s_theorem" title="Egorov&#39;s theorem">Egorov's</a></li> <li><a href="/wiki/Fatou%27s_lemma" title="Fatou&#39;s lemma">Fatou's lemma</a></li> <li><a href="/wiki/Fubini%27s_theorem" title="Fubini&#39;s theorem">Fubini's</a> <ul><li><a href="/wiki/Fubini%E2%80%93Tonelli_theorem" class="mw-redirect" title="Fubini–Tonelli theorem">Fubini–Tonelli</a></li></ul></li> <li><a href="/wiki/H%C3%B6lder%27s_inequality" title="Hölder&#39;s inequality">Hölder's inequality</a></li> <li><a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski inequality</a></li> <li><a href="/wiki/Radon%E2%80%93Nikodym_theorem" title="Radon–Nikodym theorem">Radon–Nikodym</a></li> <li><a href="/wiki/Riesz%E2%80%93Markov%E2%80%93Kakutani_representation_theorem" title="Riesz–Markov–Kakutani representation theorem">Riesz–Markov–Kakutani representation theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other results</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Disintegration_theorem" title="Disintegration theorem">Disintegration theorem</a> <ul><li><a href="/wiki/Lifting_theory" title="Lifting theory">Lifting theory</a></li></ul></li> <li><a href="/wiki/Lebesgue%27s_density_theorem" title="Lebesgue&#39;s density theorem">Lebesgue's density theorem</a></li> <li><a href="/wiki/Lebesgue_differentiation_theorem" title="Lebesgue differentiation theorem">Lebesgue differentiation theorem</a></li> <li><a href="/wiki/Sard%27s_theorem" title="Sard&#39;s theorem">Sard's theorem</a></li> <li><a class="mw-selflink selflink">Vitali–Hahn–Saks theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><span style="font-size:85%;">For <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isoperimetric_inequality" title="Isoperimetric inequality">Isoperimetric inequality</a></li> <li><a href="/wiki/Brunn%E2%80%93Minkowski_theorem" title="Brunn–Minkowski theorem">Brunn–Minkowski theorem</a> <ul><li><a href="/wiki/Milman%27s_reverse_Brunn%E2%80%93Minkowski_inequality" title="Milman&#39;s reverse Brunn–Minkowski inequality">Milman's reverse</a></li></ul></li> <li><a href="/wiki/Minkowski%E2%80%93Steiner_formula" title="Minkowski–Steiner formula">Minkowski–Steiner formula</a></li> <li><a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a></li> <li><a href="/wiki/Vitale%27s_random_Brunn%E2%80%93Minkowski_inequality" title="Vitale&#39;s random Brunn–Minkowski inequality">Vitale's random Brunn–Minkowski inequality</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications&#160;&amp;&#160;related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Convex_analysis" title="Convex analysis">Convex analysis</a></li> <li><a href="/wiki/Descriptive_set_theory" title="Descriptive set theory">Descriptive set theory</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></li> <li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Spectral_theory" title="Spectral theory">Spectral theory</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐59856bd7d8‐pc5kg Cached time: 20241119184213 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.378 seconds Real time usage: 0.692 seconds Preprocessor visited node count: 1407/1000000 Post‐expand include size: 34548/2097152 bytes Template argument size: 449/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 1/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 21181/5000000 bytes Lua time usage: 0.198/10.000 seconds Lua memory usage: 3806457/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 340.354 1 -total 46.25% 157.399 4 Template:Citation 32.51% 110.647 1 Template:Measure_theory 32.03% 109.021 2 Template:Navbox 10.62% 36.138 1 Template:Reflist 9.69% 32.986 3 Template:Harvs 3.61% 12.293 3 Template:Harvard_citations/core 1.29% 4.393 1 Template:Pi 1.10% 3.739 1 Template:Lambda 0.85% 2.895 1 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:1075379:|#|:idhash:canonical and timestamp 20241119184213 and revision id 1120754459. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Vitali–Hahn–Saks_theorem&amp;oldid=1120754459">https://en.wikipedia.org/w/index.php?title=Vitali–Hahn–Saks_theorem&amp;oldid=1120754459</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Theorems_in_measure_theory" title="Category:Theorems in measure theory">Theorems in measure theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:CS1_Italian-language_sources_(it)" title="Category:CS1 Italian-language sources (it)">CS1 Italian-language sources (it)</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 8 November 2022, at 17:07<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Vitali%E2%80%93Hahn%E2%80%93Saks_theorem&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-57488d5c7d-469t8","wgBackendResponseTime":170,"wgPageParseReport":{"limitreport":{"cputime":"0.378","walltime":"0.692","ppvisitednodes":{"value":1407,"limit":1000000},"postexpandincludesize":{"value":34548,"limit":2097152},"templateargumentsize":{"value":449,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":21181,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 340.354 1 -total"," 46.25% 157.399 4 Template:Citation"," 32.51% 110.647 1 Template:Measure_theory"," 32.03% 109.021 2 Template:Navbox"," 10.62% 36.138 1 Template:Reflist"," 9.69% 32.986 3 Template:Harvs"," 3.61% 12.293 3 Template:Harvard_citations/core"," 1.29% 4.393 1 Template:Pi"," 1.10% 3.739 1 Template:Lambda"," 0.85% 2.895 1 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.198","limit":"10.000"},"limitreport-memusage":{"value":3806457,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-59856bd7d8-pc5kg","timestamp":"20241119184213","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Vitali\u2013Hahn\u2013Saks theorem","url":"https:\/\/en.wikipedia.org\/wiki\/Vitali%E2%80%93Hahn%E2%80%93Saks_theorem","sameAs":"http:\/\/www.wikidata.org\/entity\/Q7936914","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q7936914","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-10-17T04:01:47Z","dateModified":"2022-11-08T17:07:01Z"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10