CINXE.COM
CP violation - Wikipedia
<!DOCTYPE html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>CP violation - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ca47827b-7235-4580-b1a3-b609acb8d044","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"CP_violation","wgTitle":"CP violation","wgCurRevisionId":1258340733,"wgRevisionId":1258340733,"wgArticleId":18969769, "wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"CP_violation","wgRelevantArticleId":18969769,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"CP-symmetry","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true, "wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgInternalRedirectTargetUrl":"/wiki/CP_violation","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang" :"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bg","autonym":"български","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo" ,"autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"da","autonym" :"dansk","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp", "autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym": "客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"it","autonym":"italiano","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir": "ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal", "dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"} ,{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym": "Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nl","autonym":"Nederlands","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pag","autonym": "Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pl","autonym":"polski","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah", "autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir": "ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"sr","autonym":"српски / srpski","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym": "Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vi","autonym":"Tiếng Việt","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym": "võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr", "ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg", "sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q12794416","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true, "mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready", "skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/1/1c/CMS_Higgs-event.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1107"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/CMS_Higgs-event.jpg/800px-CMS_Higgs-event.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="738"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/CMS_Higgs-event.jpg/640px-CMS_Higgs-event.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="590"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="CP violation - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=CP_violation&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/CP_violation"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-CP_violation rootpage-CP_violation stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"><div id="mw-mf-viewport"> <div id="mw-mf-page-center"> <a class="mw-mf-page-center__mask" href="#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"> <input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--home" href="/wiki/Main_Page" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--random" href="/wiki/Special:Random" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a> </li> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--nearby" href="/wiki/Special:Nearby" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a> </li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--login" href="/w/index.php?title=Special:UserLogin&returnto=CP+violation" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a> </li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--settings" href="/w/index.php?title=Special:MobileOptions&returnto=CP+violation" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a> </li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--donate" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en&utm_key=minerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a> </li> </ul> <ul class="hlist"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--about" href="/wiki/Wikipedia:About" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--disclaimers" href="/wiki/Wikipedia:General_disclaimer" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a> </li> </ul> </div> <label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"> <a href="/wiki/Main_Page"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"> <input type="hidden" name="title" value="Special:Search"/> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div> <button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">CP violation</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"> <a class="minerva__tab-text" href="/wiki/CP_violation" rel="" data-event-name="tabs.subject">Article</a> </li> <li class="minerva__tab "> <a class="minerva__tab-text" href="/wiki/Talk:CP_violation" rel="discussion" data-event-name="tabs.talk">Talk</a> </li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"> <a role="button" href="#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a> </li> <li id="page-actions-watch" class="page-actions-menu__list-item"> <a role="button" id="ca-watch" href="/w/index.php?title=Special:UserLogin&returnto=CP+violation" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a> </li> <li id="page-actions-edit" class="page-actions-menu__list-item"> <a role="button" id="ca-edit" href="/w/index.php?title=CP_violation&action=edit" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a> </li> </ul> </nav> <!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=CP-symmetry&redirect=no" class="mw-redirect" title="CP-symmetry">CP-symmetry</a>)</span></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"><script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><section class="mf-section-0" id="mf-section-0"> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style> <p>In <a href="/wiki/Particle_physics" title="Particle physics">particle physics</a>, <b>CP violation</b> is a violation of <b>CP-symmetry</b> (or <b>charge conjugation parity symmetry</b>): the combination of <a href="/wiki/C-symmetry" title="C-symmetry">C-symmetry</a> (<a href="/wiki/Charge_(physics)" title="Charge (physics)">charge conjugation</a> symmetry) and <a href="/wiki/Parity_(physics)" title="Parity (physics)">P-symmetry</a> (<a href="/wiki/Parity_(physics)" title="Parity (physics)">parity</a> symmetry). CP-symmetry states that the laws of physics should be the same if a particle is interchanged with its antiparticle (C-symmetry) while its spatial coordinates are inverted ("mirror" or P-symmetry). The discovery of CP violation in 1964 in the decays of neutral <a href="/wiki/Kaon" title="Kaon">kaons</a> resulted in the <a href="/wiki/Nobel_Prize_in_Physics" title="Nobel Prize in Physics">Nobel Prize in Physics</a> in 1980 for its discoverers <a href="/wiki/James_Cronin" title="James Cronin">James Cronin</a> and <a href="/wiki/Val_Fitch" class="mw-redirect" title="Val Fitch">Val Fitch</a>. </p><p>It plays an important role both in the attempts of <a href="/wiki/Physical_cosmology" title="Physical cosmology">cosmology</a> to explain the dominance of <a href="/wiki/Matter" title="Matter">matter</a> over <a href="/wiki/Antimatter" title="Antimatter">antimatter</a> in the present <a href="/wiki/Universe" title="Universe">universe</a>, and in the study of <a href="/wiki/Weak_interaction" title="Weak interaction">weak interactions</a> in particle physics. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Overview"><span class="tocnumber">1</span> <span class="toctext">Overview</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#History"><span class="tocnumber">2</span> <span class="toctext">History</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="#P-symmetry"><span class="tocnumber">2.1</span> <span class="toctext">P-symmetry</span></a></li> <li class="toclevel-2 tocsection-4"><a href="#CP-symmetry"><span class="tocnumber">2.2</span> <span class="toctext">CP-symmetry</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-5"><a href="#Experimental_status"><span class="tocnumber">3</span> <span class="toctext">Experimental status</span></a> <ul> <li class="toclevel-2 tocsection-6"><a href="#Indirect_CP_violation"><span class="tocnumber">3.1</span> <span class="toctext">Indirect CP violation</span></a></li> <li class="toclevel-2 tocsection-7"><a href="#Direct_CP_violation"><span class="tocnumber">3.2</span> <span class="toctext">Direct CP violation</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-8"><a href="#CP_violation_in_the_Standard_Model"><span class="tocnumber">4</span> <span class="toctext">CP violation in the Standard Model</span></a></li> <li class="toclevel-1 tocsection-9"><a href="#Strong_CP_problem"><span class="tocnumber">5</span> <span class="toctext">Strong CP problem</span></a></li> <li class="toclevel-1 tocsection-10"><a href="#Matter%E2%80%93antimatter_imbalance"><span class="tocnumber">6</span> <span class="toctext">Matter–antimatter imbalance</span></a></li> <li class="toclevel-1 tocsection-11"><a href="#See_also"><span class="tocnumber">7</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-12"><a href="#In_popular_culture"><span class="tocnumber">8</span> <span class="toctext">In popular culture</span></a></li> <li class="toclevel-1 tocsection-13"><a href="#References"><span class="tocnumber">9</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-14"><a href="#Further_reading"><span class="tocnumber">10</span> <span class="toctext">Further reading</span></a></li> <li class="toclevel-1 tocsection-15"><a href="#External_links"><span class="tocnumber">11</span> <span class="toctext">External links</span></a></li> </ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Overview">Overview</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=1" title="Edit section: Overview" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>Until the 1950s, parity conservation was believed to be one of the fundamental geometric <a href="/wiki/Conservation_laws" class="mw-redirect" title="Conservation laws">conservation laws</a> (along with <a href="/wiki/Conservation_of_energy" title="Conservation of energy">conservation of energy</a> and <a href="/wiki/Conservation_of_momentum" class="mw-redirect" title="Conservation of momentum">conservation of momentum</a>). After the discovery of <a href="/wiki/Parity_(physics)#Parity_violation" title="Parity (physics)">parity violation</a> in 1956, CP-symmetry was proposed to restore order. However, while the <a href="/wiki/Strong_interaction" title="Strong interaction">strong interaction</a> and <a href="/wiki/Electromagnetic_interaction" class="mw-redirect" title="Electromagnetic interaction">electromagnetic interaction</a> are experimentally found to be invariant under the combined CP transformation operation, further experiments showed that this symmetry is slightly violated during certain types of <a href="/wiki/Weak_decay" class="mw-redirect" title="Weak decay">weak decay</a>. </p><p>Only a weaker version of the symmetry could be preserved by physical phenomena, which was <a href="/wiki/CPT_symmetry" title="CPT symmetry">CPT symmetry</a>. Besides C and P, there is a third operation, time reversal <b>T</b>, which corresponds to reversal of motion. Invariance under time reversal implies that whenever a motion is allowed by the laws of physics, the reversed motion is also an allowed one and occurs at the same rate forwards and backwards. </p><p>The combination of CPT is thought to constitute an exact symmetry of all types of fundamental interactions. Because of the long-held CPT symmetry theorem, provided that it is valid, a violation of the CP-symmetry is equivalent to a violation of the T-symmetry. In this theorem, regarded as one of the basic principles of <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>, charge conjugation, parity, and time reversal are applied together. Direct observation of the <a href="/wiki/T-symmetry" title="T-symmetry">time reversal symmetry</a> violation without any assumption of CPT theorem was done in 1998 by two groups, <a href="/wiki/CPLEAR_experiment" title="CPLEAR experiment">CPLEAR</a> and KTeV collaborations, at <a href="/wiki/CERN" title="CERN">CERN</a> and <a href="/wiki/Fermilab" title="Fermilab">Fermilab</a>, respectively.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Already in 1970 Klaus Schubert observed T violation independent of assuming CPT symmetry by using the Bell–Steinberger unitarity relation.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="History">History</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=2" title="Edit section: History" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-2 collapsible-block" id="mf-section-2"> <div class="mw-heading mw-heading3"><h3 id="P-symmetry">P-symmetry</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=3" title="Edit section: P-symmetry" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The idea behind <a href="/wiki/Parity_(physics)" title="Parity (physics)">parity</a> symmetry was that the equations of particle physics are invariant under mirror inversion. This led to the prediction that the mirror image of a reaction (such as a <a href="/wiki/Chemical_reaction" title="Chemical reaction">chemical reaction</a> or <a href="/wiki/Radioactive_decay" title="Radioactive decay">radioactive decay</a>) occurs at the same rate as the original reaction. However, in 1956 a careful critical review of the existing experimental data by theoretical physicists <a href="/wiki/Tsung-Dao_Lee" title="Tsung-Dao Lee">Tsung-Dao Lee</a> and <a href="/wiki/Chen-Ning_Yang" class="mw-redirect" title="Chen-Ning Yang">Chen-Ning Yang</a> revealed that while parity conservation had been verified in decays by the strong or electromagnetic interactions, it was untested in the weak interaction.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> They proposed several possible direct experimental tests. </p><p>The first test based on <a href="/wiki/Beta_decay" title="Beta decay">beta decay</a> of <a href="/wiki/Cobalt-60" title="Cobalt-60">cobalt-60</a> nuclei was carried out in 1956 by a group led by <a href="/wiki/Chien-Shiung_Wu" title="Chien-Shiung Wu">Chien-Shiung Wu</a>, and demonstrated conclusively that weak interactions violate the P-symmetry or, as the analogy goes, some reactions did not occur as often as their mirror image.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> However, <a href="/wiki/Parity_(physics)" title="Parity (physics)">parity</a> symmetry still appears to be valid for all reactions involving <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a> and <a href="/wiki/Strong_interaction" title="Strong interaction">strong interactions</a>. </p> <div class="mw-heading mw-heading3"><h3 id="CP-symmetry">CP-symmetry</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=4" title="Edit section: CP-symmetry" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Overall, the symmetry of a <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanical</a> system can be restored if another approximate symmetry <i>S</i> can be found such that the combined symmetry <i>PS</i> remains unbroken. This rather subtle point about the structure of <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> was realized shortly after the discovery of <i>P</i> violation, and it was proposed that charge conjugation, <i>C</i>, which transforms a particle into its <a href="/wiki/Antiparticle" title="Antiparticle">antiparticle</a>, was the suitable symmetry to restore order. </p><p>In 1956 <a href="/wiki/Reinhard_Oehme" title="Reinhard Oehme">Reinhard Oehme</a> in a letter to Chen-Ning Yang and shortly after, <a href="/w/index.php?title=%D0%98%D0%BE%D1%84%D1%84%D0%B5,_%D0%91%D0%BE%D1%80%D0%B8%D1%81_%D0%9B%D0%B0%D0%B7%D0%B0%D1%80%D0%B5%D0%B2%D0%B8%D1%87&action=edit&redlink=1" class="new" title="Иоффе, Борис Лазаревич (page does not exist)">Boris L. Ioffe</a>, <a href="/wiki/Lev_Okun" title="Lev Okun">Lev Okun</a> and A. P. Rudik showed that the parity violation meant that charge conjugation invariance must also be violated in weak decays.<sup id="cite_ref-Ioffe_5-0" class="reference"><a href="#cite_note-Ioffe-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Charge violation was confirmed in the <a href="/wiki/Wu_experiment" title="Wu experiment">Wu experiment</a> and in experiments performed by <a href="/wiki/Valentine_Telegdi" title="Valentine Telegdi">Valentine Telegdi</a> and <a href="/wiki/Jerome_Isaac_Friedman" title="Jerome Isaac Friedman">Jerome Friedman</a> and <a href="/wiki/Richard_Garwin" title="Richard Garwin">Garwin</a> and <a href="/wiki/Leon_M._Lederman" title="Leon M. Lederman">Lederman</a> who observed parity non-conservation in pion and muon decay and found that C is also violated. Charge violation was more explicitly shown in experiments done by <a href="/wiki/John_Riley_Holt" title="John Riley Holt">John Riley Holt</a> at the <a href="/wiki/University_of_Liverpool" title="University of Liverpool">University of Liverpool</a>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>Oehme then wrote a paper with Lee and Yang in which they discussed the interplay of non-invariance under P, C and T. The same result was also independently obtained by Ioffe, Okun and Rudik. Both groups also discussed possible CP violations in neutral kaon decays.<sup id="cite_ref-Ioffe_5-1" class="reference"><a href="#cite_note-Ioffe-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Lev_Landau" title="Lev Landau">Lev Landau</a> proposed in 1957 <i>CP-symmetry</i>,<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> often called just <i>CP</i> as the true symmetry between matter and antimatter. <i>CP-symmetry</i> is the product of two <a href="/wiki/Symmetry_in_physics" class="mw-redirect" title="Symmetry in physics">transformations</a>: C for charge conjugation and P for parity. In other words, a process in which all particles are exchanged with their <a href="/wiki/Antiparticle" title="Antiparticle">antiparticles</a> was assumed to be equivalent to the mirror image of the original process and so the combined CP-symmetry would be conserved in the weak interaction. </p><p>In 1962, a group of experimentalists at <a href="/wiki/Joint_Institute_for_Nuclear_Research" title="Joint Institute for Nuclear Research">Dubna</a>, on Okun's insistence, unsuccessfully searched for CP-violating kaon decay.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Experimental_status">Experimental status</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=5" title="Edit section: Experimental status" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-3 collapsible-block" id="mf-section-3"> <div class="mw-heading mw-heading3"><h3 id="Indirect_CP_violation">Indirect CP violation</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=6" title="Edit section: Indirect CP violation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>In 1964, <a href="/wiki/James_Cronin" title="James Cronin">James Cronin</a>, <a href="/wiki/Val_Fitch" class="mw-redirect" title="Val Fitch">Val Fitch</a> and coworkers provided clear evidence from <a href="/wiki/Kaon" title="Kaon">kaon</a> decay that CP-symmetry could be broken.<sup id="cite_ref-FC1964_12-0" class="reference"><a href="#cite_note-FC1964-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> (cf. also Ref. <sup id="cite_ref-FCE_13-0" class="reference"><a href="#cite_note-FCE-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup>). This work won them the 1980 Nobel Prize. This discovery showed that weak interactions violate not only the charge-conjugation symmetry <b>C</b> between particles and antiparticles and the <b>P</b> or parity symmetry, but also their combination. The discovery shocked particle physics and opened the door to questions still at the core of particle physics and of cosmology today. The lack of an exact CP-symmetry, but also the fact that it is so close to a symmetry, introduced a great puzzle. </p><p>The kind of CP violation (CPV) discovered in 1964 was linked to the fact that neutral <a href="/wiki/Kaon" title="Kaon">kaons</a> can transform into their <a href="/wiki/Antiparticle" title="Antiparticle">antiparticles</a> (in which each <a href="/wiki/Quark" title="Quark">quark</a> is replaced with the other's antiquark) and vice versa, but such transformation does not occur with exactly the same probability in both directions; this is called <i>indirect</i> CP violation. </p> <div class="mw-heading mw-heading3"><h3 id="Direct_CP_violation">Direct CP violation</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=7" title="Edit section: Direct CP violation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Kaon-box-diagram.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Kaon-box-diagram.svg/220px-Kaon-box-diagram.svg.png" decoding="async" width="220" height="124" class="mw-file-element" data-file-width="640" data-file-height="360"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 124px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Kaon-box-diagram.svg/220px-Kaon-box-diagram.svg.png" data-width="220" data-height="124" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Kaon-box-diagram.svg/330px-Kaon-box-diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Kaon-box-diagram.svg/440px-Kaon-box-diagram.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>Kaon oscillation box diagram</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Kaon-box-diagram-alt.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Kaon-box-diagram-alt.svg/220px-Kaon-box-diagram-alt.svg.png" decoding="async" width="220" height="123" class="mw-file-element" data-file-width="660" data-file-height="370"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 123px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Kaon-box-diagram-alt.svg/220px-Kaon-box-diagram-alt.svg.png" data-width="220" data-height="123" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Kaon-box-diagram-alt.svg/330px-Kaon-box-diagram-alt.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Kaon-box-diagram-alt.svg/440px-Kaon-box-diagram-alt.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>The two box diagrams above are the <a href="/wiki/Feynman_diagram" title="Feynman diagram">Feynman diagrams</a> providing the leading contributions to the amplitude of <span style="white-space:nowrap;"><a href="/wiki/Kaon" title="Kaon"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>K<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></a></span>-<span style="white-space:nowrap;"><a href="/wiki/Kaon" title="Kaon"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span><span style="text-decoration:overline;">K</span><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></a></span> oscillation</figcaption></figure> <p>Despite many searches, no other manifestation of CP violation was discovered until the 1990s, when the <a href="/wiki/NA31_experiment" title="NA31 experiment">NA31 experiment</a> at <a href="/wiki/CERN" title="CERN">CERN</a> suggested evidence for CP violation in the decay process of the very same neutral kaons (<i>direct</i> CP violation). The observation was somewhat controversial, and final proof for it came in 1999 from the KTeV experiment at <a href="/wiki/Fermilab" title="Fermilab">Fermilab</a><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> and the <a href="/wiki/NA48_experiment" title="NA48 experiment">NA48 experiment</a> at <a href="/wiki/CERN" title="CERN">CERN</a>.<sup id="cite_ref-NA48_15-0" class="reference"><a href="#cite_note-NA48-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p>Starting in 2001, a new generation of experiments, including the <a href="/wiki/BaBar_experiment" title="BaBar experiment">BaBar experiment</a> at the Stanford Linear Accelerator Center (<a href="/wiki/SLAC" class="mw-redirect" title="SLAC">SLAC</a>)<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> and the <a href="/wiki/Belle_Experiment" class="mw-redirect" title="Belle Experiment">Belle Experiment</a> at the High Energy Accelerator Research Organisation (<a href="/wiki/KEK" title="KEK">KEK</a>)<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> in Japan, observed direct CP violation in a different system, namely in decays of the <a href="/wiki/B_meson" title="B meson">B mesons</a>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> A large number of CP violation processes in <a href="/wiki/B_meson" title="B meson">B meson</a> decays have now been discovered. Before these "<a href="/wiki/B-factory" title="B-factory">B-factory</a>" experiments, there was a logical possibility that all CP violation was confined to kaon physics. However, this raised the question of why CP violation did <i>not</i> extend to the strong force, and furthermore, why this was not predicted by the unextended <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a>, despite the model's accuracy for "normal" phenomena. </p><p>In 2011, a hint of CP violation in decays of neutral <a href="/wiki/D_meson" title="D meson">D mesons</a> was reported by the <a href="/wiki/LHCb" class="mw-redirect" title="LHCb">LHCb</a> experiment at <a href="/wiki/CERN" title="CERN">CERN</a> using 0.6 fb<sup>−1</sup> of Run 1 data.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> However, the same measurement using the full 3.0 fb<sup>−1</sup> Run 1 sample was consistent with CP-symmetry.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p><p>In 2013 LHCb announced discovery of CP violation in <a href="/wiki/Strange_B_meson" title="Strange B meson">strange B meson</a> decays.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p><p>In March 2019, LHCb announced discovery of CP violation in charmed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D^{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D^{0}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d61f2a204347d41a6b1c1b6d6948354e1e3acb74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.979ex; height:2.676ex;" alt="{\displaystyle D^{0}}"></noscript><span class="lazy-image-placeholder" style="width: 2.979ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d61f2a204347d41a6b1c1b6d6948354e1e3acb74" data-alt="{\displaystyle D^{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> decays with a deviation from zero of 5.3 standard deviations.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>In 2020, the <a href="/wiki/T2K_experiment" title="T2K experiment">T2K Collaboration</a> reported some indications of CP violation in leptons for the first time.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> In this experiment, beams of muon neutrinos (<span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>ν<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">μ</sub></span></span></span>) and muon antineutrinos (<span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span><span style="text-decoration:overline;">ν</span><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">μ</sub></span></span></span>) were alternately produced by an <a href="/wiki/Accelerator_neutrino" title="Accelerator neutrino">accelerator</a>. By the time they got to the detector, a significantly higher proportion of electron neutrinos (<span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>ν<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">e</sub></span></span></span>) was observed from the <span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span>ν<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">μ</sub></span></span></span> beams, than electron antineutrinos (<span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span><span style="text-decoration:overline;">ν</span><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">e</sub></span></span></span>) were from the <span style="white-space:nowrap;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.0em;font-size:80%;text-align:right"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span><span style="text-decoration:overline;">ν</span><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.0em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">μ</sub></span></span></span> beams. Analysis of these observations was not yet precise enough to determine the size of the CP violation, relative to that seen in quarks. In addition, another similar experiment, <a href="/wiki/NOvA" title="NOvA">NOvA</a> sees no evidence of CP violation in neutrino oscillations<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> and is in slight tension with T2K.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="CP_violation_in_the_Standard_Model">CP violation in the Standard Model</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=8" title="Edit section: CP violation in the Standard Model" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-4 collapsible-block" id="mf-section-4"> <p>"Direct" CP violation is allowed in the <a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a> if a <a href="/wiki/Complex_number" title="Complex number">complex</a> phase appears in the <a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix" title="Cabibbo–Kobayashi–Maskawa matrix">Cabibbo–Kobayashi–Maskawa matrix</a> (CKM matrix) describing <a href="/wiki/Quark" title="Quark">quark</a> mixing, or the <a href="/wiki/Pontecorvo%E2%80%93Maki%E2%80%93Nakagawa%E2%80%93Sakata_matrix" title="Pontecorvo–Maki–Nakagawa–Sakata matrix">Pontecorvo–Maki–Nakagawa–Sakata matrix</a> (PMNS matrix) describing <a href="/wiki/Neutrino" title="Neutrino">neutrino</a> mixing. A necessary condition for the appearance of the complex phase is the presence of at least three generations of fermions. If fewer generations are present, the complex phase parameter <a href="/wiki/CKM_matrix#Counting" class="mw-redirect" title="CKM matrix">can be absorbed</a> into redefinitions of the fermion fields. </p><p>A popular rephasing invariant whose vanishing signals absence of CP violation and occurs in most CP violating amplitudes is the <i><a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix#The_unitarity_triangles" title="Cabibbo–Kobayashi–Maskawa matrix"> Jarlskog invariant</a></i>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ J=c_{12}\ c_{13}^{2}\ c_{23}\ s_{12}\ s_{13}\ s_{23}\ \sin \delta \ \approx \ 0.00003\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>J</mi> <mo>=</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mtext> </mtext> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mtext> </mtext> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> <mtext> </mtext> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mtext> </mtext> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> <mtext> </mtext> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> <mtext> </mtext> <mi>sin</mi> <mo><!-- --></mo> <mi>δ<!-- δ --></mi> <mtext> </mtext> <mo>≈<!-- ≈ --></mo> <mtext> </mtext> <mn>0.00003</mn> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ J=c_{12}\ c_{13}^{2}\ c_{23}\ s_{12}\ s_{13}\ s_{23}\ \sin \delta \ \approx \ 0.00003\ ,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dce331d1fa8ef5aa00bf4bedbdae58b46887d83" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:43.971ex; height:3.176ex;" alt="{\displaystyle \ J=c_{12}\ c_{13}^{2}\ c_{23}\ s_{12}\ s_{13}\ s_{23}\ \sin \delta \ \approx \ 0.00003\ ,}"></noscript><span class="lazy-image-placeholder" style="width: 43.971ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dce331d1fa8ef5aa00bf4bedbdae58b46887d83" data-alt="{\displaystyle \ J=c_{12}\ c_{13}^{2}\ c_{23}\ s_{12}\ s_{13}\ s_{23}\ \sin \delta \ \approx \ 0.00003\ ,}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p>for quarks, which is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ 0.0003\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mn>0.0003</mn> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ 0.0003\ }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0a3173bde03ac8c2f969d86371790ff5d37a7f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.62ex; height:2.176ex;" alt="{\displaystyle \ 0.0003\ }"></noscript><span class="lazy-image-placeholder" style="width: 7.62ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0a3173bde03ac8c2f969d86371790ff5d37a7f7" data-alt="{\displaystyle \ 0.0003\ }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> times the maximum value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ J_{\max }={\tfrac {1}{6{\sqrt {3}}}}\ \approx \ 0.1\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> </mfrac> </mstyle> </mrow> <mtext> </mtext> <mo>≈<!-- ≈ --></mo> <mtext> </mtext> <mn>0.1</mn> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ J_{\max }={\tfrac {1}{6{\sqrt {3}}}}\ \approx \ 0.1\ .}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ded197361031ca6127fc3a79a195328454f99903" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.568ex; height:4.176ex;" alt="{\displaystyle \ J_{\max }={\tfrac {1}{6{\sqrt {3}}}}\ \approx \ 0.1\ .}"></noscript><span class="lazy-image-placeholder" style="width: 20.568ex;height: 4.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ded197361031ca6127fc3a79a195328454f99903" data-alt="{\displaystyle \ J_{\max }={\tfrac {1}{6{\sqrt {3}}}}\ \approx \ 0.1\ .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> For leptons, only an upper limit exists: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ |J|<0.03\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mn>0.03</mn> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ |J|<0.03\ .}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31c6dd27e7df7904d862f2aaf23341ad3acb1db0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.806ex; height:2.843ex;" alt="{\displaystyle \ |J|<0.03\ .}"></noscript><span class="lazy-image-placeholder" style="width: 11.806ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31c6dd27e7df7904d862f2aaf23341ad3acb1db0" data-alt="{\displaystyle \ |J|<0.03\ .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>The reason why such a complex phase causes CP violation (CPV) is not immediately obvious, but can be seen as follows. Consider any given particles (or sets of particles) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ a\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>a</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ a\ }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8124de742ae987fe73be9ca9d3d4ba8586e28b11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.391ex; height:1.676ex;" alt="{\displaystyle \ a\ }"></noscript><span class="lazy-image-placeholder" style="width: 2.391ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8124de742ae987fe73be9ca9d3d4ba8586e28b11" data-alt="{\displaystyle \ a\ }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ b\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>b</mi> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ b\ ,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/379cb0c291a41721eace03e50997abebfb25db4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.806ex; height:2.509ex;" alt="{\displaystyle \ b\ ,}"></noscript><span class="lazy-image-placeholder" style="width: 2.806ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/379cb0c291a41721eace03e50997abebfb25db4f" data-alt="{\displaystyle \ b\ ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and their antiparticles <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ {\bar {a}}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ {\bar {a}}\ }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39dbc866826677d4893bc2905ca740db0f0f2564" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.391ex; height:2.009ex;" alt="{\displaystyle \ {\bar {a}}\ }"></noscript><span class="lazy-image-placeholder" style="width: 2.391ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39dbc866826677d4893bc2905ca740db0f0f2564" data-alt="{\displaystyle \ {\bar {a}}\ }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ {\bar {b}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ {\bar {b}}\ .}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4e677a819717d0ede33e2763b407ab45df6ab55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.971ex; height:2.509ex;" alt="{\displaystyle \ {\bar {b}}\ .}"></noscript><span class="lazy-image-placeholder" style="width: 2.971ex;height: 2.509ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4e677a819717d0ede33e2763b407ab45df6ab55" data-alt="{\displaystyle \ {\bar {b}}\ .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> Now consider the processes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ a\rightarrow b\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> <mi>b</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ a\rightarrow b\ }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f71cd6c1be827346794a8d43bd15b5fbb687fec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.003ex; height:2.176ex;" alt="{\displaystyle \ a\rightarrow b\ }"></noscript><span class="lazy-image-placeholder" style="width: 7.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f71cd6c1be827346794a8d43bd15b5fbb687fec" data-alt="{\displaystyle \ a\rightarrow b\ }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and the corresponding antiparticle process <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ {\bar {a}}\rightarrow {\bar {b}}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ {\bar {a}}\rightarrow {\bar {b}}\ ,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8353ef8a72b583b1da92353b97f5b676325882bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.814ex; height:2.843ex;" alt="{\displaystyle \ {\bar {a}}\rightarrow {\bar {b}}\ ,}"></noscript><span class="lazy-image-placeholder" style="width: 7.814ex;height: 2.843ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8353ef8a72b583b1da92353b97f5b676325882bb" data-alt="{\displaystyle \ {\bar {a}}\rightarrow {\bar {b}}\ ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and denote their amplitudes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cal {M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cal {M}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88cb0b27f4cd40f230c8c50dcbd444f52a2720bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.791ex; height:2.176ex;" alt="{\displaystyle {\cal {M}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.791ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88cb0b27f4cd40f230c8c50dcbd444f52a2720bd" data-alt="{\displaystyle {\cal {M}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\cal {M}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\cal {M}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3986848ea4ea50383edc67ef7464d0c4d8a9f9a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.791ex; height:2.676ex;" alt="{\displaystyle {\bar {\cal {M}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.791ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3986848ea4ea50383edc67ef7464d0c4d8a9f9a2" data-alt="{\displaystyle {\bar {\cal {M}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> respectively. Before CP violation, these terms must be the <i>same</i> complex number. We can separate the magnitude and phase by writing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cal {M}}=|{\cal {M}}|\ e^{i\theta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>θ<!-- θ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cal {M}}=|{\cal {M}}|\ e^{i\theta }}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5c17d4c49eb90775c0ae0bdcf28592adb5ee088" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.208ex; height:3.176ex;" alt="{\displaystyle {\cal {M}}=|{\cal {M}}|\ e^{i\theta }}"></noscript><span class="lazy-image-placeholder" style="width: 13.208ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5c17d4c49eb90775c0ae0bdcf28592adb5ee088" data-alt="{\displaystyle {\cal {M}}=|{\cal {M}}|\ e^{i\theta }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. If a phase term is introduced from (e.g.) the CKM matrix, denote it <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i\phi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>ϕ<!-- ϕ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i\phi }}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05c817052d719f5b21dd162c425e514232d14af6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.863ex; height:2.676ex;" alt="{\displaystyle e^{i\phi }}"></noscript><span class="lazy-image-placeholder" style="width: 2.863ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05c817052d719f5b21dd162c425e514232d14af6" data-alt="{\displaystyle e^{i\phi }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {\cal {M}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {\cal {M}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3986848ea4ea50383edc67ef7464d0c4d8a9f9a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.791ex; height:2.676ex;" alt="{\displaystyle {\bar {\cal {M}}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.791ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3986848ea4ea50383edc67ef7464d0c4d8a9f9a2" data-alt="{\displaystyle {\bar {\cal {M}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> contains the conjugate matrix to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cal {M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cal {M}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88cb0b27f4cd40f230c8c50dcbd444f52a2720bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.791ex; height:2.176ex;" alt="{\displaystyle {\cal {M}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.791ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88cb0b27f4cd40f230c8c50dcbd444f52a2720bd" data-alt="{\displaystyle {\cal {M}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, so it picks up a phase term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-i\phi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>ϕ<!-- ϕ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-i\phi }}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/281aedb891b74c1f149bd593a3e1b69d6c12fcf7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.141ex; height:2.676ex;" alt="{\displaystyle e^{-i\phi }}"></noscript><span class="lazy-image-placeholder" style="width: 4.141ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/281aedb891b74c1f149bd593a3e1b69d6c12fcf7" data-alt="{\displaystyle e^{-i\phi }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. </p><p>Now the formula becomes: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\cal {M}}&=|{\cal {M}}|\ e^{i\theta }\ e^{+i\phi }\\{\bar {\cal {M}}}&=|{\cal {M}}|\ e^{i\theta }\ e^{-i\phi }\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>θ<!-- θ --></mi> </mrow> </msup> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> <mi>i</mi> <mi>ϕ<!-- ϕ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>θ<!-- θ --></mi> </mrow> </msup> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>ϕ<!-- ϕ --></mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\cal {M}}&=|{\cal {M}}|\ e^{i\theta }\ e^{+i\phi }\\{\bar {\cal {M}}}&=|{\cal {M}}|\ e^{i\theta }\ e^{-i\phi }\end{aligned}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0090446f48e3f1e1530fe502df55f2529e3b62ba" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.682ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}{\cal {M}}&=|{\cal {M}}|\ e^{i\theta }\ e^{+i\phi }\\{\bar {\cal {M}}}&=|{\cal {M}}|\ e^{i\theta }\ e^{-i\phi }\end{aligned}}}"></noscript><span class="lazy-image-placeholder" style="width: 18.682ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0090446f48e3f1e1530fe502df55f2529e3b62ba" data-alt="{\displaystyle {\begin{aligned}{\cal {M}}&=|{\cal {M}}|\ e^{i\theta }\ e^{+i\phi }\\{\bar {\cal {M}}}&=|{\cal {M}}|\ e^{i\theta }\ e^{-i\phi }\end{aligned}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p>Physically measurable reaction rates are proportional to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ |{\cal {M}}|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ |{\cal {M}}|^{2}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07bc58b90ca59b0e0a2f4b2eb0b3ab005ef66dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.719ex; height:3.343ex;" alt="{\displaystyle \ |{\cal {M}}|^{2}}"></noscript><span class="lazy-image-placeholder" style="width: 5.719ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07bc58b90ca59b0e0a2f4b2eb0b3ab005ef66dc" data-alt="{\displaystyle \ |{\cal {M}}|^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, thus so far nothing is different. However, consider that there are <i>two different routes</i>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a{\overset {1}{\longrightarrow }}b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo stretchy="false">⟶<!-- ⟶ --></mo> <mn>1</mn> </mover> </mrow> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a{\overset {1}{\longrightarrow }}b}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb93fa4217b1e050913d7298acab069f1576aa8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.033ex; height:3.509ex;" alt="{\displaystyle a{\overset {1}{\longrightarrow }}b}"></noscript><span class="lazy-image-placeholder" style="width: 6.033ex;height: 3.509ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb93fa4217b1e050913d7298acab069f1576aa8b" data-alt="{\displaystyle a{\overset {1}{\longrightarrow }}b}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a{\overset {2}{\longrightarrow }}b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo stretchy="false">⟶<!-- ⟶ --></mo> <mn>2</mn> </mover> </mrow> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a{\overset {2}{\longrightarrow }}b}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc2c777735709e8a9c4c7689d986c00b1a3ffe8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.033ex; height:3.509ex;" alt="{\displaystyle a{\overset {2}{\longrightarrow }}b}"></noscript><span class="lazy-image-placeholder" style="width: 6.033ex;height: 3.509ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc2c777735709e8a9c4c7689d986c00b1a3ffe8f" data-alt="{\displaystyle a{\overset {2}{\longrightarrow }}b}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or equivalently, two unrelated intermediate states: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\rightarrow 1\rightarrow b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> <mn>1</mn> <mo stretchy="false">→<!-- → --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\rightarrow 1\rightarrow b}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f90704b562c252ef276bceb73bf3b7f3562082f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.618ex; height:2.176ex;" alt="{\displaystyle a\rightarrow 1\rightarrow b}"></noscript><span class="lazy-image-placeholder" style="width: 10.618ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f90704b562c252ef276bceb73bf3b7f3562082f" data-alt="{\displaystyle a\rightarrow 1\rightarrow b}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\rightarrow 2\rightarrow b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> <mn>2</mn> <mo stretchy="false">→<!-- → --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\rightarrow 2\rightarrow b}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5f841aef4eaea3f00e67eefb63f91736b476867" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.618ex; height:2.176ex;" alt="{\displaystyle a\rightarrow 2\rightarrow b}"></noscript><span class="lazy-image-placeholder" style="width: 10.618ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5f841aef4eaea3f00e67eefb63f91736b476867" data-alt="{\displaystyle a\rightarrow 2\rightarrow b}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. This is exactly the case for the kaon where the decay is performed via different quark channels (see the Figure above). In this case we have: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{3}{\cal {M}}&=|{\cal {M}}_{1}|\ e^{i\theta _{1}}\ e^{i\phi _{1}}&&+|{\cal {M}}_{2}|\ e^{i\theta _{2}}\ e^{i\phi _{2}}\\{\bar {\cal {M}}}&=|{\cal {M}}_{1}|\ e^{i\theta _{1}}\ e^{-i\phi _{1}}&&+|{\cal {M}}_{2}|\ e^{i\theta _{2}}\ e^{-i\phi _{2}}\ .\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> </mtd> <mtd></mtd> <mtd> <mi></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> </mtd> <mtd></mtd> <mtd> <mi></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mtext> </mtext> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{3}{\cal {M}}&=|{\cal {M}}_{1}|\ e^{i\theta _{1}}\ e^{i\phi _{1}}&&+|{\cal {M}}_{2}|\ e^{i\theta _{2}}\ e^{i\phi _{2}}\\{\bar {\cal {M}}}&=|{\cal {M}}_{1}|\ e^{i\theta _{1}}\ e^{-i\phi _{1}}&&+|{\cal {M}}_{2}|\ e^{i\theta _{2}}\ e^{-i\phi _{2}}\ .\end{alignedat}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6c1391d1ed2c71d6ed7c7ac7917019a720429f9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:40.225ex; height:6.509ex;" alt="{\displaystyle {\begin{alignedat}{3}{\cal {M}}&=|{\cal {M}}_{1}|\ e^{i\theta _{1}}\ e^{i\phi _{1}}&&+|{\cal {M}}_{2}|\ e^{i\theta _{2}}\ e^{i\phi _{2}}\\{\bar {\cal {M}}}&=|{\cal {M}}_{1}|\ e^{i\theta _{1}}\ e^{-i\phi _{1}}&&+|{\cal {M}}_{2}|\ e^{i\theta _{2}}\ e^{-i\phi _{2}}\ .\end{alignedat}}}"></noscript><span class="lazy-image-placeholder" style="width: 40.225ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6c1391d1ed2c71d6ed7c7ac7917019a720429f9" data-alt="{\displaystyle {\begin{alignedat}{3}{\cal {M}}&=|{\cal {M}}_{1}|\ e^{i\theta _{1}}\ e^{i\phi _{1}}&&+|{\cal {M}}_{2}|\ e^{i\theta _{2}}\ e^{i\phi _{2}}\\{\bar {\cal {M}}}&=|{\cal {M}}_{1}|\ e^{i\theta _{1}}\ e^{-i\phi _{1}}&&+|{\cal {M}}_{2}|\ e^{i\theta _{2}}\ e^{-i\phi _{2}}\ .\end{alignedat}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p>Some further calculation gives: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |{\cal {M}}|^{2}-|{\bar {\cal {M}}}|^{2}=-4\ |{\cal {M}}_{1}|\ |{\cal {M}}_{2}|\ \sin(\theta _{1}-\theta _{2})\ \sin(\phi _{1}-\phi _{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>4</mn> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext> </mtext> <mi>sin</mi> <mo><!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mtext> </mtext> <mi>sin</mi> <mo><!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |{\cal {M}}|^{2}-|{\bar {\cal {M}}}|^{2}=-4\ |{\cal {M}}_{1}|\ |{\cal {M}}_{2}|\ \sin(\theta _{1}-\theta _{2})\ \sin(\phi _{1}-\phi _{2}).}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09b3b1d6fa458065c7855d9dcef6a5f4fe962da4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:57.386ex; height:3.343ex;" alt="{\displaystyle |{\cal {M}}|^{2}-|{\bar {\cal {M}}}|^{2}=-4\ |{\cal {M}}_{1}|\ |{\cal {M}}_{2}|\ \sin(\theta _{1}-\theta _{2})\ \sin(\phi _{1}-\phi _{2}).}"></noscript><span class="lazy-image-placeholder" style="width: 57.386ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09b3b1d6fa458065c7855d9dcef6a5f4fe962da4" data-alt="{\displaystyle |{\cal {M}}|^{2}-|{\bar {\cal {M}}}|^{2}=-4\ |{\cal {M}}_{1}|\ |{\cal {M}}_{2}|\ \sin(\theta _{1}-\theta _{2})\ \sin(\phi _{1}-\phi _{2}).}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p>Thus, we see that a complex phase gives rise to processes that proceed at different rates for particles and antiparticles, and CP is violated. </p><p>From the theoretical end, the CKM matrix is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ V_{\mathrm {CKM} }=U_{u}^{\dagger }U_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">K</mi> <mi mathvariant="normal">M</mi> </mrow> </mrow> </msub> <mo>=</mo> <msubsup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msubsup> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ V_{\mathrm {CKM} }=U_{u}^{\dagger }U_{d}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/391f664a43b206a9d2007d3196de181bf68b3453" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.722ex; height:3.176ex;" alt="{\displaystyle \ V_{\mathrm {CKM} }=U_{u}^{\dagger }U_{d}}"></noscript><span class="lazy-image-placeholder" style="width: 14.722ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/391f664a43b206a9d2007d3196de181bf68b3453" data-alt="{\displaystyle \ V_{\mathrm {CKM} }=U_{u}^{\dagger }U_{d}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{u}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{u}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423ac752d3d2acb56be36948e40f271119e4edea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.76ex; height:2.509ex;" alt="{\displaystyle U_{u}}"></noscript><span class="lazy-image-placeholder" style="width: 2.76ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423ac752d3d2acb56be36948e40f271119e4edea" data-alt="{\displaystyle U_{u}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{d}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a321d741a59ba8149c5d0077f222ef81ce44916c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.68ex; height:2.509ex;" alt="{\displaystyle U_{d}}"></noscript><span class="lazy-image-placeholder" style="width: 2.68ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a321d741a59ba8149c5d0077f222ef81ce44916c" data-alt="{\displaystyle U_{d}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> are unitary transformation matrices which diagonalize the fermion mass matrices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{u}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{u}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a72cd86dcb2d52a1e3d92d3c5789978abc7f1f4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.427ex; height:2.509ex;" alt="{\displaystyle M_{u}}"></noscript><span class="lazy-image-placeholder" style="width: 3.427ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a72cd86dcb2d52a1e3d92d3c5789978abc7f1f4c" data-alt="{\displaystyle M_{u}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{d}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc690f2dccbe052928df1f8fb48c15914f5017f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.346ex; height:2.509ex;" alt="{\displaystyle M_{d}}"></noscript><span class="lazy-image-placeholder" style="width: 3.346ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc690f2dccbe052928df1f8fb48c15914f5017f1" data-alt="{\displaystyle M_{d}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, respectively. </p><p>Thus, there are two necessary conditions for getting a complex CKM matrix: </p> <ol><li>At least one of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{u}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{u}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423ac752d3d2acb56be36948e40f271119e4edea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.76ex; height:2.509ex;" alt="{\displaystyle U_{u}}"></noscript><span class="lazy-image-placeholder" style="width: 2.76ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423ac752d3d2acb56be36948e40f271119e4edea" data-alt="{\displaystyle U_{u}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{d}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a321d741a59ba8149c5d0077f222ef81ce44916c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.68ex; height:2.509ex;" alt="{\displaystyle U_{d}}"></noscript><span class="lazy-image-placeholder" style="width: 2.68ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a321d741a59ba8149c5d0077f222ef81ce44916c" data-alt="{\displaystyle U_{d}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is complex, or the CKM matrix will be purely real.</li> <li>If both of them are complex, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{u}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{u}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423ac752d3d2acb56be36948e40f271119e4edea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.76ex; height:2.509ex;" alt="{\displaystyle U_{u}}"></noscript><span class="lazy-image-placeholder" style="width: 2.76ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423ac752d3d2acb56be36948e40f271119e4edea" data-alt="{\displaystyle U_{u}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{d}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a321d741a59ba8149c5d0077f222ef81ce44916c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.68ex; height:2.509ex;" alt="{\displaystyle U_{d}}"></noscript><span class="lazy-image-placeholder" style="width: 2.68ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a321d741a59ba8149c5d0077f222ef81ce44916c" data-alt="{\displaystyle U_{d}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> must be different, i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{u}\neq U_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo>≠<!-- ≠ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{u}\neq U_{d}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e121e68e3a6fffb3c44afab6add03027567b2e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.538ex; height:2.676ex;" alt="{\displaystyle U_{u}\neq U_{d}}"></noscript><span class="lazy-image-placeholder" style="width: 8.538ex;height: 2.676ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e121e68e3a6fffb3c44afab6add03027567b2e9" data-alt="{\displaystyle U_{u}\neq U_{d}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, or the CKM matrix will be an identity matrix, which is also purely real.</li></ol> <p>For a standard model with three fermion generations, the most general non-Hermitian pattern of its mass matrices can be given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M={\begin{bmatrix}A_{1}+iD_{1}&B_{1}+iC_{1}&B_{2}+iC_{2}\\B_{4}+iC_{4}&A_{2}+iD_{2}&B_{3}+iC_{3}\\B_{5}+iC_{5}&B_{6}+iC_{6}&A_{3}+iD_{3}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M={\begin{bmatrix}A_{1}+iD_{1}&B_{1}+iC_{1}&B_{2}+iC_{2}\\B_{4}+iC_{4}&A_{2}+iD_{2}&B_{3}+iC_{3}\\B_{5}+iC_{5}&B_{6}+iC_{6}&A_{3}+iD_{3}\end{bmatrix}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39b7854c33624a55032587482a9e326bcb3635d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:42.941ex; height:9.176ex;" alt="{\displaystyle M={\begin{bmatrix}A_{1}+iD_{1}&B_{1}+iC_{1}&B_{2}+iC_{2}\\B_{4}+iC_{4}&A_{2}+iD_{2}&B_{3}+iC_{3}\\B_{5}+iC_{5}&B_{6}+iC_{6}&A_{3}+iD_{3}\end{bmatrix}}.}"></noscript><span class="lazy-image-placeholder" style="width: 42.941ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39b7854c33624a55032587482a9e326bcb3635d8" data-alt="{\displaystyle M={\begin{bmatrix}A_{1}+iD_{1}&B_{1}+iC_{1}&B_{2}+iC_{2}\\B_{4}+iC_{4}&A_{2}+iD_{2}&B_{3}+iC_{3}\\B_{5}+iC_{5}&B_{6}+iC_{6}&A_{3}+iD_{3}\end{bmatrix}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>This M matrix contains 9 elements and 18 parameters, 9 from the real coefficients and 9 from the imaginary coefficients. Obviously, a 3x3 matrix with 18 parameters is too difficult to diagonalize analytically. However, a naturally Hermitian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} =M\cdot M^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> <mo>=</mo> <mi>M</mi> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} =M\cdot M^{\dagger }}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bf33249e37cb16a48feefef5669a24f99e29122" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.396ex; height:2.676ex;" alt="{\displaystyle \mathbf {M^{2}} =M\cdot M^{\dagger }}"></noscript><span class="lazy-image-placeholder" style="width: 14.396ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bf33249e37cb16a48feefef5669a24f99e29122" data-alt="{\displaystyle \mathbf {M^{2}} =M\cdot M^{\dagger }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> can be given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} ={\begin{bmatrix}\mathbf {A_{1}} &\mathbf {B_{1}} +i\mathbf {C_{1}} &\mathbf {B_{2}} +i\mathbf {C_{2}} \\\mathbf {B_{1}} -i\mathbf {C_{1}} &\mathbf {A_{2}} &\mathbf {B_{3}} +i\mathbf {C_{3}} \\\mathbf {B_{2}} -i\mathbf {C_{2}} &\mathbf {B_{3}} -i\mathbf {C_{3}} &\mathbf {A_{3}} \end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} ={\begin{bmatrix}\mathbf {A_{1}} &\mathbf {B_{1}} +i\mathbf {C_{1}} &\mathbf {B_{2}} +i\mathbf {C_{2}} \\\mathbf {B_{1}} -i\mathbf {C_{1}} &\mathbf {A_{2}} &\mathbf {B_{3}} +i\mathbf {C_{3}} \\\mathbf {B_{2}} -i\mathbf {C_{2}} &\mathbf {B_{3}} -i\mathbf {C_{3}} &\mathbf {A_{3}} \end{bmatrix}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe7089e63f5c403b491707d95dcc1425edc3683d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:45.447ex; height:9.176ex;" alt="{\displaystyle \mathbf {M^{2}} ={\begin{bmatrix}\mathbf {A_{1}} &\mathbf {B_{1}} +i\mathbf {C_{1}} &\mathbf {B_{2}} +i\mathbf {C_{2}} \\\mathbf {B_{1}} -i\mathbf {C_{1}} &\mathbf {A_{2}} &\mathbf {B_{3}} +i\mathbf {C_{3}} \\\mathbf {B_{2}} -i\mathbf {C_{2}} &\mathbf {B_{3}} -i\mathbf {C_{3}} &\mathbf {A_{3}} \end{bmatrix}},}"></noscript><span class="lazy-image-placeholder" style="width: 45.447ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe7089e63f5c403b491707d95dcc1425edc3683d" data-alt="{\displaystyle \mathbf {M^{2}} ={\begin{bmatrix}\mathbf {A_{1}} &\mathbf {B_{1}} +i\mathbf {C_{1}} &\mathbf {B_{2}} +i\mathbf {C_{2}} \\\mathbf {B_{1}} -i\mathbf {C_{1}} &\mathbf {A_{2}} &\mathbf {B_{3}} +i\mathbf {C_{3}} \\\mathbf {B_{2}} -i\mathbf {C_{2}} &\mathbf {B_{3}} -i\mathbf {C_{3}} &\mathbf {A_{3}} \end{bmatrix}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>and it has the same unitary transformation matrix U with M. Besides, parameters in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.715ex; height:2.676ex;" alt="{\displaystyle \mathbf {M^{2}} }"></noscript><span class="lazy-image-placeholder" style="width: 3.715ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" data-alt="{\displaystyle \mathbf {M^{2}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> are correlated to those in M directly in the ways shown below </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {A_{1}} &=A_{1}^{2}+D_{1}^{2}+B_{1}^{2}+C_{1}^{2}+B_{2}^{2}+C_{2}^{2},\\\mathbf {A_{2}} &=A_{2}^{2}+D_{2}^{2}+B_{3}^{2}+C_{3}^{2}+B_{4}^{2}+C_{4}^{2},\\\mathbf {A_{3}} &=A_{3}^{2}+D_{3}^{2}+B_{5}^{2}+C_{5}^{2}+B_{6}^{2}+C_{6}^{2},\\\mathbf {B_{1}} &=A_{1}B_{4}+D_{1}C_{4}+B_{1}A_{2}+C_{1}D_{2}+B_{2}B_{3}+C_{2}C_{3},\\\mathbf {B_{2}} &=A_{1}B_{5}+D_{1}C_{5}+B_{1}B_{6}+C_{1}C_{6}+B_{2}A_{3}+C_{2}D_{3},\\\mathbf {B_{3}} &=B_{4}B_{5}+C_{4}C_{5}+B_{6}A_{2}+C_{6}D_{2}+A_{3}B_{3}+D_{3}C_{3},\\\mathbf {C_{1}} &=D_{1}B_{4}-A_{1}C_{4}+A_{2}C_{1}-B_{1}D_{2}+B_{3}C_{2}-B_{2}C_{3},\\\mathbf {C_{2}} &=D_{1}B_{5}-A_{1}C_{5}+B_{6}C_{1}-B_{1}C_{6}+A_{3}C_{2}-B_{2}D_{3},\\\mathbf {C_{3}} &=C_{4}B_{5}-B_{4}C_{5}+D_{2}B_{6}-A_{2}C_{6}+A_{3}C_{3}-B_{3}D_{3}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {A_{1}} &=A_{1}^{2}+D_{1}^{2}+B_{1}^{2}+C_{1}^{2}+B_{2}^{2}+C_{2}^{2},\\\mathbf {A_{2}} &=A_{2}^{2}+D_{2}^{2}+B_{3}^{2}+C_{3}^{2}+B_{4}^{2}+C_{4}^{2},\\\mathbf {A_{3}} &=A_{3}^{2}+D_{3}^{2}+B_{5}^{2}+C_{5}^{2}+B_{6}^{2}+C_{6}^{2},\\\mathbf {B_{1}} &=A_{1}B_{4}+D_{1}C_{4}+B_{1}A_{2}+C_{1}D_{2}+B_{2}B_{3}+C_{2}C_{3},\\\mathbf {B_{2}} &=A_{1}B_{5}+D_{1}C_{5}+B_{1}B_{6}+C_{1}C_{6}+B_{2}A_{3}+C_{2}D_{3},\\\mathbf {B_{3}} &=B_{4}B_{5}+C_{4}C_{5}+B_{6}A_{2}+C_{6}D_{2}+A_{3}B_{3}+D_{3}C_{3},\\\mathbf {C_{1}} &=D_{1}B_{4}-A_{1}C_{4}+A_{2}C_{1}-B_{1}D_{2}+B_{3}C_{2}-B_{2}C_{3},\\\mathbf {C_{2}} &=D_{1}B_{5}-A_{1}C_{5}+B_{6}C_{1}-B_{1}C_{6}+A_{3}C_{2}-B_{2}D_{3},\\\mathbf {C_{3}} &=C_{4}B_{5}-B_{4}C_{5}+D_{2}B_{6}-A_{2}C_{6}+A_{3}C_{3}-B_{3}D_{3}.\end{aligned}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f40925d8b6b64d4e4ffb265926d6fd0e28f3cb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.338ex; width:55.585ex; height:27.843ex;" alt="{\displaystyle {\begin{aligned}\mathbf {A_{1}} &=A_{1}^{2}+D_{1}^{2}+B_{1}^{2}+C_{1}^{2}+B_{2}^{2}+C_{2}^{2},\\\mathbf {A_{2}} &=A_{2}^{2}+D_{2}^{2}+B_{3}^{2}+C_{3}^{2}+B_{4}^{2}+C_{4}^{2},\\\mathbf {A_{3}} &=A_{3}^{2}+D_{3}^{2}+B_{5}^{2}+C_{5}^{2}+B_{6}^{2}+C_{6}^{2},\\\mathbf {B_{1}} &=A_{1}B_{4}+D_{1}C_{4}+B_{1}A_{2}+C_{1}D_{2}+B_{2}B_{3}+C_{2}C_{3},\\\mathbf {B_{2}} &=A_{1}B_{5}+D_{1}C_{5}+B_{1}B_{6}+C_{1}C_{6}+B_{2}A_{3}+C_{2}D_{3},\\\mathbf {B_{3}} &=B_{4}B_{5}+C_{4}C_{5}+B_{6}A_{2}+C_{6}D_{2}+A_{3}B_{3}+D_{3}C_{3},\\\mathbf {C_{1}} &=D_{1}B_{4}-A_{1}C_{4}+A_{2}C_{1}-B_{1}D_{2}+B_{3}C_{2}-B_{2}C_{3},\\\mathbf {C_{2}} &=D_{1}B_{5}-A_{1}C_{5}+B_{6}C_{1}-B_{1}C_{6}+A_{3}C_{2}-B_{2}D_{3},\\\mathbf {C_{3}} &=C_{4}B_{5}-B_{4}C_{5}+D_{2}B_{6}-A_{2}C_{6}+A_{3}C_{3}-B_{3}D_{3}.\end{aligned}}}"></noscript><span class="lazy-image-placeholder" style="width: 55.585ex;height: 27.843ex;vertical-align: -13.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f40925d8b6b64d4e4ffb265926d6fd0e28f3cb5" data-alt="{\displaystyle {\begin{aligned}\mathbf {A_{1}} &=A_{1}^{2}+D_{1}^{2}+B_{1}^{2}+C_{1}^{2}+B_{2}^{2}+C_{2}^{2},\\\mathbf {A_{2}} &=A_{2}^{2}+D_{2}^{2}+B_{3}^{2}+C_{3}^{2}+B_{4}^{2}+C_{4}^{2},\\\mathbf {A_{3}} &=A_{3}^{2}+D_{3}^{2}+B_{5}^{2}+C_{5}^{2}+B_{6}^{2}+C_{6}^{2},\\\mathbf {B_{1}} &=A_{1}B_{4}+D_{1}C_{4}+B_{1}A_{2}+C_{1}D_{2}+B_{2}B_{3}+C_{2}C_{3},\\\mathbf {B_{2}} &=A_{1}B_{5}+D_{1}C_{5}+B_{1}B_{6}+C_{1}C_{6}+B_{2}A_{3}+C_{2}D_{3},\\\mathbf {B_{3}} &=B_{4}B_{5}+C_{4}C_{5}+B_{6}A_{2}+C_{6}D_{2}+A_{3}B_{3}+D_{3}C_{3},\\\mathbf {C_{1}} &=D_{1}B_{4}-A_{1}C_{4}+A_{2}C_{1}-B_{1}D_{2}+B_{3}C_{2}-B_{2}C_{3},\\\mathbf {C_{2}} &=D_{1}B_{5}-A_{1}C_{5}+B_{6}C_{1}-B_{1}C_{6}+A_{3}C_{2}-B_{2}D_{3},\\\mathbf {C_{3}} &=C_{4}B_{5}-B_{4}C_{5}+D_{2}B_{6}-A_{2}C_{6}+A_{3}C_{3}-B_{3}D_{3}.\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>That means if we diagonalize an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.715ex; height:2.676ex;" alt="{\displaystyle \mathbf {M^{2}} }"></noscript><span class="lazy-image-placeholder" style="width: 3.715ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" data-alt="{\displaystyle \mathbf {M^{2}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix with 9 parameters, it has the same effect as diagonalizing an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix with 18 parameters. Therefore, diagonalizing the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.715ex; height:2.676ex;" alt="{\displaystyle \mathbf {M^{2}} }"></noscript><span class="lazy-image-placeholder" style="width: 3.715ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" data-alt="{\displaystyle \mathbf {M^{2}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix is certainly the most reasonable choice. </p><p>The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.715ex; height:2.676ex;" alt="{\displaystyle \mathbf {M^{2}} }"></noscript><span class="lazy-image-placeholder" style="width: 3.715ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" data-alt="{\displaystyle \mathbf {M^{2}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix patterns given above are the most general ones. The perfect way to solve the CPV problem in the standard model is to diagonalize such matrices analytically and to achieve a U matrix which applies to both. Unfortunately, even though the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.715ex; height:2.676ex;" alt="{\displaystyle \mathbf {M^{2}} }"></noscript><span class="lazy-image-placeholder" style="width: 3.715ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" data-alt="{\displaystyle \mathbf {M^{2}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix has only 9 parameters, it is still too complicated to be diagonalized directly. Thus, an assumption </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} _{R}\cdot \mathbf {M^{2\dagger }} _{I}+\mathbf {M^{2}} _{I}\cdot \mathbf {M^{2\dagger }} _{R}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> <mo>†<!-- † --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> <mo>†<!-- † --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} _{R}\cdot \mathbf {M^{2\dagger }} _{I}+\mathbf {M^{2}} _{I}\cdot \mathbf {M^{2\dagger }} _{R}=0}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/facd3b3e059b2afd937466164e5b0402b256e8e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:31.86ex; height:3.009ex;" alt="{\displaystyle \mathbf {M^{2}} _{R}\cdot \mathbf {M^{2\dagger }} _{I}+\mathbf {M^{2}} _{I}\cdot \mathbf {M^{2\dagger }} _{R}=0}"></noscript><span class="lazy-image-placeholder" style="width: 31.86ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/facd3b3e059b2afd937466164e5b0402b256e8e4" data-alt="{\displaystyle \mathbf {M^{2}} _{R}\cdot \mathbf {M^{2\dagger }} _{I}+\mathbf {M^{2}} _{I}\cdot \mathbf {M^{2\dagger }} _{R}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>was employed to simplify the pattern, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} _{R}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} _{R}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85af96bed6b72f694b719c013d9c142b1e00346c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.194ex; height:3.009ex;" alt="{\displaystyle \mathbf {M^{2}} _{R}}"></noscript><span class="lazy-image-placeholder" style="width: 5.194ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85af96bed6b72f694b719c013d9c142b1e00346c" data-alt="{\displaystyle \mathbf {M^{2}} _{R}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is the real part of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.715ex; height:2.676ex;" alt="{\displaystyle \mathbf {M^{2}} }"></noscript><span class="lazy-image-placeholder" style="width: 3.715ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" data-alt="{\displaystyle \mathbf {M^{2}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} _{I}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} _{I}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70fb7426304a5824c606fa8bf4b46dab5e94bc74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.776ex; height:3.009ex;" alt="{\displaystyle \mathbf {M^{2}} _{I}}"></noscript><span class="lazy-image-placeholder" style="width: 4.776ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70fb7426304a5824c606fa8bf4b46dab5e94bc74" data-alt="{\displaystyle \mathbf {M^{2}} _{I}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is the imaginary part. </p><p>Such an assumption could further reduce the parameter number from 9 to 5 and the reduced <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.715ex; height:2.676ex;" alt="{\displaystyle \mathbf {M^{2}} }"></noscript><span class="lazy-image-placeholder" style="width: 3.715ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" data-alt="{\displaystyle \mathbf {M^{2}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix can be given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} ={\begin{bmatrix}\mathbf {A} +\mathbf {B} (xy-{x \over y})&y\mathbf {B} &x\mathbf {B} \\y\mathbf {B} &\mathbf {A} +\mathbf {B} ({y \over x}-{x \over y})&\mathbf {B} \\x\mathbf {B} &\mathbf {B} &\mathbf {A} \end{bmatrix}}+i{\begin{bmatrix}0&{\mathbf {C} \over y}&-{\mathbf {C} \over x}\\-{\mathbf {C} \over y}&0&\mathbf {C} \\{\mathbf {C} \over x}&-\mathbf {C} &0\end{bmatrix}}\equiv \mathbf {M^{2}} _{R}+i\mathbf {M^{2}} _{I},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mtd> <mtd> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>x</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mi>y</mi> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mi>x</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mi>y</mi> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mi>x</mi> </mfrac> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>≡<!-- ≡ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} ={\begin{bmatrix}\mathbf {A} +\mathbf {B} (xy-{x \over y})&y\mathbf {B} &x\mathbf {B} \\y\mathbf {B} &\mathbf {A} +\mathbf {B} ({y \over x}-{x \over y})&\mathbf {B} \\x\mathbf {B} &\mathbf {B} &\mathbf {A} \end{bmatrix}}+i{\begin{bmatrix}0&{\mathbf {C} \over y}&-{\mathbf {C} \over x}\\-{\mathbf {C} \over y}&0&\mathbf {C} \\{\mathbf {C} \over x}&-\mathbf {C} &0\end{bmatrix}}\equiv \mathbf {M^{2}} _{R}+i\mathbf {M^{2}} _{I},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c698e0a0e06d4af928ff5f85b65a1fa542e2e1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:90.434ex; height:12.176ex;" alt="{\displaystyle \mathbf {M^{2}} ={\begin{bmatrix}\mathbf {A} +\mathbf {B} (xy-{x \over y})&y\mathbf {B} &x\mathbf {B} \\y\mathbf {B} &\mathbf {A} +\mathbf {B} ({y \over x}-{x \over y})&\mathbf {B} \\x\mathbf {B} &\mathbf {B} &\mathbf {A} \end{bmatrix}}+i{\begin{bmatrix}0&{\mathbf {C} \over y}&-{\mathbf {C} \over x}\\-{\mathbf {C} \over y}&0&\mathbf {C} \\{\mathbf {C} \over x}&-\mathbf {C} &0\end{bmatrix}}\equiv \mathbf {M^{2}} _{R}+i\mathbf {M^{2}} _{I},}"></noscript><span class="lazy-image-placeholder" style="width: 90.434ex;height: 12.176ex;vertical-align: -5.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c698e0a0e06d4af928ff5f85b65a1fa542e2e1f" data-alt="{\displaystyle \mathbf {M^{2}} ={\begin{bmatrix}\mathbf {A} +\mathbf {B} (xy-{x \over y})&y\mathbf {B} &x\mathbf {B} \\y\mathbf {B} &\mathbf {A} +\mathbf {B} ({y \over x}-{x \over y})&\mathbf {B} \\x\mathbf {B} &\mathbf {B} &\mathbf {A} \end{bmatrix}}+i{\begin{bmatrix}0&{\mathbf {C} \over y}&-{\mathbf {C} \over x}\\-{\mathbf {C} \over y}&0&\mathbf {C} \\{\mathbf {C} \over x}&-\mathbf {C} &0\end{bmatrix}}\equiv \mathbf {M^{2}} _{R}+i\mathbf {M^{2}} _{I},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} \equiv \mathbf {A_{3}} ,\mathbf {B} \equiv \mathbf {B_{3}} ,\mathbf {C} \equiv \mathbf {C_{3}} ,x\equiv \mathbf {B_{2}/B_{3}} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> <mo>,</mo> <mi>x</mi> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo mathvariant="bold">/</mo> </mrow> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} \equiv \mathbf {A_{3}} ,\mathbf {B} \equiv \mathbf {B_{3}} ,\mathbf {C} \equiv \mathbf {C_{3}} ,x\equiv \mathbf {B_{2}/B_{3}} ,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ae0e50ac680e93670a2cdf07f52c1cb1f573ce6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.202ex; height:2.843ex;" alt="{\displaystyle \mathbf {A} \equiv \mathbf {A_{3}} ,\mathbf {B} \equiv \mathbf {B_{3}} ,\mathbf {C} \equiv \mathbf {C_{3}} ,x\equiv \mathbf {B_{2}/B_{3}} ,}"></noscript><span class="lazy-image-placeholder" style="width: 40.202ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ae0e50ac680e93670a2cdf07f52c1cb1f573ce6" data-alt="{\displaystyle \mathbf {A} \equiv \mathbf {A_{3}} ,\mathbf {B} \equiv \mathbf {B_{3}} ,\mathbf {C} \equiv \mathbf {C_{3}} ,x\equiv \mathbf {B_{2}/B_{3}} ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\equiv \mathbf {B_{1}/B_{3}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo mathvariant="bold">/</mo> </mrow> <msub> <mi mathvariant="bold">B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\equiv \mathbf {B_{1}/B_{3}} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce6b87d25b6828f3f4a054cc66fb2dc9cd397aff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.748ex; height:2.843ex;" alt="{\displaystyle y\equiv \mathbf {B_{1}/B_{3}} }"></noscript><span class="lazy-image-placeholder" style="width: 11.748ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce6b87d25b6828f3f4a054cc66fb2dc9cd397aff" data-alt="{\displaystyle y\equiv \mathbf {B_{1}/B_{3}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. </p><p><br> Diagonalizing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M^{2}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold">M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M^{2}} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.715ex; height:2.676ex;" alt="{\displaystyle \mathbf {M^{2}} }"></noscript><span class="lazy-image-placeholder" style="width: 3.715ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b96857f6b0499821f21ce6d8f9e7ccf0707e5f9" data-alt="{\displaystyle \mathbf {M^{2}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> analytically, the eigenvalues are given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {m_{1}} ^{2}=\mathbf {A} -\mathbf {B} {x \over y}-\mathbf {C} {{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}} \over xy},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {m_{1}} ^{2}=\mathbf {A} -\mathbf {B} {x \over y}-\mathbf {C} {{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}} \over xy},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62a242639cf72a0dc67d716c0b2544c4b5ccc072" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:39.939ex; height:6.676ex;" alt="{\displaystyle \mathbf {m_{1}} ^{2}=\mathbf {A} -\mathbf {B} {x \over y}-\mathbf {C} {{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}} \over xy},}"></noscript><span class="lazy-image-placeholder" style="width: 39.939ex;height: 6.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62a242639cf72a0dc67d716c0b2544c4b5ccc072" data-alt="{\displaystyle \mathbf {m_{1}} ^{2}=\mathbf {A} -\mathbf {B} {x \over y}-\mathbf {C} {{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}} \over xy},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {m_{2}} ^{2}=\mathbf {A} -\mathbf {B} {x \over y}+\mathbf {C} {{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}} \over xy},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {m_{2}} ^{2}=\mathbf {A} -\mathbf {B} {x \over y}+\mathbf {C} {{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}} \over xy},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b735c97066d3b97ec5be0eed368dadb0dd495ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:39.939ex; height:6.676ex;" alt="{\displaystyle \mathbf {m_{2}} ^{2}=\mathbf {A} -\mathbf {B} {x \over y}+\mathbf {C} {{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}} \over xy},}"></noscript><span class="lazy-image-placeholder" style="width: 39.939ex;height: 6.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b735c97066d3b97ec5be0eed368dadb0dd495ac" data-alt="{\displaystyle \mathbf {m_{2}} ^{2}=\mathbf {A} -\mathbf {B} {x \over y}+\mathbf {C} {{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}} \over xy},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {m_{3}} ^{2}=\mathbf {A} +\mathbf {B} {(x^{2}+1)y \over x},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>y</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {m_{3}} ^{2}=\mathbf {A} +\mathbf {B} {(x^{2}+1)y \over x},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1204abef33cfeb4373f5afb8a30da300e1a683f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.152ex; height:5.843ex;" alt="{\displaystyle \mathbf {m_{3}} ^{2}=\mathbf {A} +\mathbf {B} {(x^{2}+1)y \over x},}"></noscript><span class="lazy-image-placeholder" style="width: 25.152ex;height: 5.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1204abef33cfeb4373f5afb8a30da300e1a683f5" data-alt="{\displaystyle \mathbf {m_{3}} ^{2}=\mathbf {A} +\mathbf {B} {(x^{2}+1)y \over x},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>and the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></noscript><span class="lazy-image-placeholder" style="width: 1.783ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" data-alt="{\displaystyle U}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix for up-type quarks can then be given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{u}={\begin{bmatrix}{-{\sqrt {x^{2}+y^{2}}} \over {\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{-{\sqrt {x^{2}+y^{2}}} \over {\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{xy \over {\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}}\\{x(y^{2}-i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{x(y^{2}+i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{y \over {\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}}\\{y(x^{2}+i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{y(x^{2}-i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{x \over {\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </msqrt> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </msqrt> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{u}={\begin{bmatrix}{-{\sqrt {x^{2}+y^{2}}} \over {\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{-{\sqrt {x^{2}+y^{2}}} \over {\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{xy \over {\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}}\\{x(y^{2}-i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{x(y^{2}+i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{y \over {\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}}\\{y(x^{2}+i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{y(x^{2}-i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{x \over {\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}}\end{bmatrix}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17e9d6d5092bfbed9b5c64238e52661619c07e4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.171ex; width:67.55ex; height:23.509ex;" alt="{\displaystyle U_{u}={\begin{bmatrix}{-{\sqrt {x^{2}+y^{2}}} \over {\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{-{\sqrt {x^{2}+y^{2}}} \over {\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{xy \over {\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}}\\{x(y^{2}-i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{x(y^{2}+i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{y \over {\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}}\\{y(x^{2}+i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{y(x^{2}-i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{x \over {\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}}\end{bmatrix}}.}"></noscript><span class="lazy-image-placeholder" style="width: 67.55ex;height: 23.509ex;vertical-align: -11.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17e9d6d5092bfbed9b5c64238e52661619c07e4e" data-alt="{\displaystyle U_{u}={\begin{bmatrix}{-{\sqrt {x^{2}+y^{2}}} \over {\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{-{\sqrt {x^{2}+y^{2}}} \over {\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{xy \over {\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}}\\{x(y^{2}-i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{x(y^{2}+i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{y \over {\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}}\\{y(x^{2}+i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{y(x^{2}-i{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}) \over {\sqrt {x^{2}+y^{2}}}{\sqrt {2(x^{2}+y^{2}+x^{2}y^{2})}}}&{x \over {\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}}\end{bmatrix}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>However, the order of the eigenvalues and correspondingly the order of the columns of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{u}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{u}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423ac752d3d2acb56be36948e40f271119e4edea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.76ex; height:2.509ex;" alt="{\displaystyle U_{u}}"></noscript><span class="lazy-image-placeholder" style="width: 2.76ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423ac752d3d2acb56be36948e40f271119e4edea" data-alt="{\displaystyle U_{u}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> does not necessarily have to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {m_{1}} ^{2},\mathbf {m_{2}} ^{2},\mathbf {m_{3}} ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">3</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {m_{1}} ^{2},\mathbf {m_{2}} ^{2},\mathbf {m_{3}} ^{2})}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/308738140c5861549c10d0aa1bd8116439f3ab80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.251ex; height:3.176ex;" alt="{\displaystyle (\mathbf {m_{1}} ^{2},\mathbf {m_{2}} ^{2},\mathbf {m_{3}} ^{2})}"></noscript><span class="lazy-image-placeholder" style="width: 17.251ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/308738140c5861549c10d0aa1bd8116439f3ab80" data-alt="{\displaystyle (\mathbf {m_{1}} ^{2},\mathbf {m_{2}} ^{2},\mathbf {m_{3}} ^{2})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> but can be any permutation of those. </p><p>After obtaining a general <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></noscript><span class="lazy-image-placeholder" style="width: 1.783ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" data-alt="{\displaystyle U}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix pattern, the same procedure can be applied to down-type quarks by introducing primed parameters. To construct the CKM matrix, the conjugate transpose of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></noscript><span class="lazy-image-placeholder" style="width: 1.783ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" data-alt="{\displaystyle U}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix for up-type quarks, denoted as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{u}^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{u}^{\dagger }}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32ca1500f0aa88ac0f9dd671c1d42268b0477625" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.804ex; height:3.176ex;" alt="{\displaystyle U_{u}^{\dagger }}"></noscript><span class="lazy-image-placeholder" style="width: 2.804ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32ca1500f0aa88ac0f9dd671c1d42268b0477625" data-alt="{\displaystyle U_{u}^{\dagger }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, has to be multiplied with the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></noscript><span class="lazy-image-placeholder" style="width: 1.783ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" data-alt="{\displaystyle U}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix for down-type quarks, denoted as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{d}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a321d741a59ba8149c5d0077f222ef81ce44916c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.68ex; height:2.509ex;" alt="{\displaystyle U_{d}}"></noscript><span class="lazy-image-placeholder" style="width: 2.68ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a321d741a59ba8149c5d0077f222ef81ce44916c" data-alt="{\displaystyle U_{d}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. As mentioned earlier, there are no inherent constraints that dictate the assignment of eigenvalues to specific quark flavors. All <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3!\times 3!=36}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>!</mo> <mo>×<!-- × --></mo> <mn>3</mn> <mo>!</mo> <mo>=</mo> <mn>36</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3!\times 3!=36}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9c520c5bf63d26c22db1f785c5141730d96b51a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.882ex; height:2.176ex;" alt="{\displaystyle 3!\times 3!=36}"></noscript><span class="lazy-image-placeholder" style="width: 11.882ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9c520c5bf63d26c22db1f785c5141730d96b51a" data-alt="{\displaystyle 3!\times 3!=36}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> potential permutations of eigenvalues are listed elsewhere.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p><p>Among these 36 potential CKM matrices, 4 of them </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V[52]=V{\begin{bmatrix}1\\3\\2\end{bmatrix}}{\begin{bmatrix}2&3&1\end{bmatrix}}=V[25]^{*}=V^{*}{\begin{bmatrix}2\\3\\1\end{bmatrix}}{\begin{bmatrix}1&3&2\end{bmatrix}}={\begin{bmatrix}s&p&r\\p^{\prime }&q&p^{\prime *}\\r^{*}&p^{*}&s^{*}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">[</mo> <mn>52</mn> <mo stretchy="false">]</mo> <mo>=</mo> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mi>V</mi> <mo stretchy="false">[</mo> <mn>25</mn> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>s</mi> </mtd> <mtd> <mi>p</mi> </mtd> <mtd> <mi>r</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi>q</mi> </mtd> <mtd> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mtd> <mtd> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mtd> <mtd> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V[52]=V{\begin{bmatrix}1\\3\\2\end{bmatrix}}{\begin{bmatrix}2&3&1\end{bmatrix}}=V[25]^{*}=V^{*}{\begin{bmatrix}2\\3\\1\end{bmatrix}}{\begin{bmatrix}1&3&2\end{bmatrix}}={\begin{bmatrix}s&p&r\\p^{\prime }&q&p^{\prime *}\\r^{*}&p^{*}&s^{*}\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6eb915f5ae9b7a18384e2911dc43197e68c096fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:74.903ex; height:9.176ex;" alt="{\displaystyle V[52]=V{\begin{bmatrix}1\\3\\2\end{bmatrix}}{\begin{bmatrix}2&3&1\end{bmatrix}}=V[25]^{*}=V^{*}{\begin{bmatrix}2\\3\\1\end{bmatrix}}{\begin{bmatrix}1&3&2\end{bmatrix}}={\begin{bmatrix}s&p&r\\p^{\prime }&q&p^{\prime *}\\r^{*}&p^{*}&s^{*}\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 74.903ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6eb915f5ae9b7a18384e2911dc43197e68c096fa" data-alt="{\displaystyle V[52]=V{\begin{bmatrix}1\\3\\2\end{bmatrix}}{\begin{bmatrix}2&3&1\end{bmatrix}}=V[25]^{*}=V^{*}{\begin{bmatrix}2\\3\\1\end{bmatrix}}{\begin{bmatrix}1&3&2\end{bmatrix}}={\begin{bmatrix}s&p&r\\p^{\prime }&q&p^{\prime *}\\r^{*}&p^{*}&s^{*}\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V[22]=V{\begin{bmatrix}2\\3\\1\end{bmatrix}}{\begin{bmatrix}2&3&1\end{bmatrix}}=V[55]^{*}=V^{*}{\begin{bmatrix}1\\3\\2\end{bmatrix}}{\begin{bmatrix}1&3&2\end{bmatrix}}={\begin{bmatrix}r^{*}&p^{*}&s^{*}\\p^{\prime *}&q&p^{\prime }\\s&p&r\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">[</mo> <mn>22</mn> <mo stretchy="false">]</mo> <mo>=</mo> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mi>V</mi> <mo stretchy="false">[</mo> <mn>55</mn> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mtd> <mtd> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mtd> <mtd> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mtd> <mtd> <mi>q</mi> </mtd> <mtd> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>s</mi> </mtd> <mtd> <mi>p</mi> </mtd> <mtd> <mi>r</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V[22]=V{\begin{bmatrix}2\\3\\1\end{bmatrix}}{\begin{bmatrix}2&3&1\end{bmatrix}}=V[55]^{*}=V^{*}{\begin{bmatrix}1\\3\\2\end{bmatrix}}{\begin{bmatrix}1&3&2\end{bmatrix}}={\begin{bmatrix}r^{*}&p^{*}&s^{*}\\p^{\prime *}&q&p^{\prime }\\s&p&r\end{bmatrix}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad64fa9ae4b0be292a3fa902789b717d3956ae3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:75.591ex; height:9.176ex;" alt="{\displaystyle V[22]=V{\begin{bmatrix}2\\3\\1\end{bmatrix}}{\begin{bmatrix}2&3&1\end{bmatrix}}=V[55]^{*}=V^{*}{\begin{bmatrix}1\\3\\2\end{bmatrix}}{\begin{bmatrix}1&3&2\end{bmatrix}}={\begin{bmatrix}r^{*}&p^{*}&s^{*}\\p^{\prime *}&q&p^{\prime }\\s&p&r\end{bmatrix}},}"></noscript><span class="lazy-image-placeholder" style="width: 75.591ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad64fa9ae4b0be292a3fa902789b717d3956ae3b" data-alt="{\displaystyle V[22]=V{\begin{bmatrix}2\\3\\1\end{bmatrix}}{\begin{bmatrix}2&3&1\end{bmatrix}}=V[55]^{*}=V^{*}{\begin{bmatrix}1\\3\\2\end{bmatrix}}{\begin{bmatrix}1&3&2\end{bmatrix}}={\begin{bmatrix}r^{*}&p^{*}&s^{*}\\p^{\prime *}&q&p^{\prime }\\s&p&r\end{bmatrix}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>fit experimental data to the order of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ^{1/2}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5501988d4b9bb58c4e3e04c88f6d93301b696ee0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.053ex; height:2.843ex;" alt="{\displaystyle \lambda ^{1/2}}"></noscript><span class="lazy-image-placeholder" style="width: 4.053ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5501988d4b9bb58c4e3e04c88f6d93301b696ee0" data-alt="{\displaystyle \lambda ^{1/2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or better, at tree level, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></noscript><span class="lazy-image-placeholder" style="width: 1.355ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" data-alt="{\displaystyle \lambda }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is one of the <a href="/wiki/Cabibbo-Kobayashi-Maskawa_matrix#Wolfenstein_parameters" class="mw-redirect" title="Cabibbo-Kobayashi-Maskawa matrix">Wolfenstein parameters</a>. </p><p>The full expressions of parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p,q,r,s,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p,q,r,s,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b69f200f9ef0fb4d94c9e18b7722323a40e0e92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:8.216ex; height:2.009ex;" alt="{\displaystyle p,q,r,s,}"></noscript><span class="lazy-image-placeholder" style="width: 8.216ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b69f200f9ef0fb4d94c9e18b7722323a40e0e92" data-alt="{\displaystyle p,q,r,s,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{\prime }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{\prime }}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d46d13620db1b84c69bf1ff5d1290d8d5e7de6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.944ex; height:2.843ex;" alt="{\displaystyle p^{\prime }}"></noscript><span class="lazy-image-placeholder" style="width: 1.944ex;height: 2.843ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d46d13620db1b84c69bf1ff5d1290d8d5e7de6c" data-alt="{\displaystyle p^{\prime }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> are given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r={{(x^{2}+y^{2})(x'^{2}+y'^{2})+(xx'+yy')(xyx'y'+{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>y</mi> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r={{(x^{2}+y^{2})(x'^{2}+y'^{2})+(xx'+yy')(xyx'y'+{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d9e3be7c8fd1f5281024752b3bf52d8366dd32a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:85.428ex; height:7.509ex;" alt="{\displaystyle r={{(x^{2}+y^{2})(x'^{2}+y'^{2})+(xx'+yy')(xyx'y'+{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}}}"></noscript><span class="lazy-image-placeholder" style="width: 85.428ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d9e3be7c8fd1f5281024752b3bf52d8366dd32a" data-alt="{\displaystyle r={{(x^{2}+y^{2})(x'^{2}+y'^{2})+(xx'+yy')(xyx'y'+{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p> <pre> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +i{{(xy'-x'y)(x'y'{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}+xy{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <msup> <mi>y</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>+</mo> <mi>x</mi> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +i{{(xy'-x'y)(x'y'{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}+xy{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a5315d51688155ed3556731a94053e2066c3ec4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:62.296ex; height:7.509ex;" alt="{\displaystyle +i{{(xy'-x'y)(x'y'{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}+xy{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}"></noscript><span class="lazy-image-placeholder" style="width: 62.296ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a5315d51688155ed3556731a94053e2066c3ec4" data-alt="{\displaystyle +i{{(xy'-x'y)(x'y'{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}+xy{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </pre> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s={{(x^{2}+y^{2})(x'^{2}+y'^{2})+(xx'+yy')(xyx'y'-{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>y</mi> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s={{(x^{2}+y^{2})(x'^{2}+y'^{2})+(xx'+yy')(xyx'y'-{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da3b8ebc0594e4371c7a21e8271463a9bbbe1dec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:85.469ex; height:7.509ex;" alt="{\displaystyle s={{(x^{2}+y^{2})(x'^{2}+y'^{2})+(xx'+yy')(xyx'y'-{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}}}"></noscript><span class="lazy-image-placeholder" style="width: 85.469ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da3b8ebc0594e4371c7a21e8271463a9bbbe1dec" data-alt="{\displaystyle s={{(x^{2}+y^{2})(x'^{2}+y'^{2})+(xx'+yy')(xyx'y'-{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p> <pre><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +i{{(xy'-x'y)(x'y'{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}-xy{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <msup> <mi>y</mi> <mo>′</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>−<!-- − --></mo> <mi>x</mi> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +i{{(xy'-x'y)(x'y'{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}-xy{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a3515841d849917147374f96e2a16631fee114c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:62.296ex; height:7.509ex;" alt="{\displaystyle +i{{(xy'-x'y)(x'y'{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}-xy{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}"></noscript><span class="lazy-image-placeholder" style="width: 62.296ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a3515841d849917147374f96e2a16631fee114c" data-alt="{\displaystyle +i{{(xy'-x'y)(x'y'{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}-xy{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}})} \over {2{\sqrt {x^{2}+y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </pre> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={{[y'y^{2}(x-x')+x'x^{2}(y-y')]+i(xy'-x'y){\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}} \over {{\sqrt {2}}{\sqrt {x^{2}+y^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <msup> <mi>y</mi> <mo>′</mo> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>y</mi> <mo>−<!-- − --></mo> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>+</mo> <mi>i</mi> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mi>y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p={{[y'y^{2}(x-x')+x'x^{2}(y-y')]+i(xy'-x'y){\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}} \over {{\sqrt {2}}{\sqrt {x^{2}+y^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aafde3af9a5cde00419c7e7740961fcdb98bf13c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; margin-left: -0.089ex; width:65.916ex; height:7.509ex;" alt="{\displaystyle p={{[y'y^{2}(x-x')+x'x^{2}(y-y')]+i(xy'-x'y){\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}} \over {{\sqrt {2}}{\sqrt {x^{2}+y^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}"></noscript><span class="lazy-image-placeholder" style="width: 65.916ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aafde3af9a5cde00419c7e7740961fcdb98bf13c" data-alt="{\displaystyle p={{[y'y^{2}(x-x')+x'x^{2}(y-y')]+i(xy'-x'y){\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}} \over {{\sqrt {2}}{\sqrt {x^{2}+y^{2}}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{\prime }={{[yy'^{2}(x'-x)+xx'^{2}(y'-y)]+i(xy'-x'y){\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}} \over {{\sqrt {2}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>y</mi> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>x</mi> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>+</mo> <mi>i</mi> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mi>y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{\prime }={{[yy'^{2}(x'-x)+xx'^{2}(y'-y)]+i(xy'-x'y){\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}} \over {{\sqrt {2}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c456889e2175d3c0751da4e22dfa6b3d767da023" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; margin-left: -0.089ex; width:67.941ex; height:7.509ex;" alt="{\displaystyle p^{\prime }={{[yy'^{2}(x'-x)+xx'^{2}(y'-y)]+i(xy'-x'y){\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}} \over {{\sqrt {2}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}"></noscript><span class="lazy-image-placeholder" style="width: 67.941ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c456889e2175d3c0751da4e22dfa6b3d767da023" data-alt="{\displaystyle p^{\prime }={{[yy'^{2}(x'-x)+xx'^{2}(y'-y)]+i(xy'-x'y){\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}} \over {{\sqrt {2}}{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q={{xx'+yy'+xyx'y'} \over {{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>y</mi> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo>+</mo> <mi>x</mi> <mi>y</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <msup> <mi>y</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> <msup> <mi>y</mi> <mrow> <mo class="MJX-variant">′</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q={{xx'+yy'+xyx'y'} \over {{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83fd9eaf256e111b84e2204969907f146f1722f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:41.864ex; height:6.843ex;" alt="{\displaystyle q={{xx'+yy'+xyx'y'} \over {{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}"></noscript><span class="lazy-image-placeholder" style="width: 41.864ex;height: 6.843ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83fd9eaf256e111b84e2204969907f146f1722f8" data-alt="{\displaystyle q={{xx'+yy'+xyx'y'} \over {{\sqrt {x^{2}+y^{2}+x^{2}y^{2}}}{\sqrt {x'^{2}+y'^{2}+x'^{2}y'^{2}}}}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>The best fit of the CKM elements are </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |V_{ud}|=|V_{tb}|\sim 0.9925,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mi>d</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>b</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>∼<!-- ∼ --></mo> <mn>0.9925</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |V_{ud}|=|V_{tb}|\sim 0.9925,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d04bc5385bb94b346419561efde7baf6a738c90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.164ex; height:2.843ex;" alt="{\displaystyle |V_{ud}|=|V_{tb}|\sim 0.9925,}"></noscript><span class="lazy-image-placeholder" style="width: 22.164ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d04bc5385bb94b346419561efde7baf6a738c90" data-alt="{\displaystyle |V_{ud}|=|V_{tb}|\sim 0.9925,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |V_{ub}|=|V_{td}|\sim 0.0075,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mi>b</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>d</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>∼<!-- ∼ --></mo> <mn>0.0075</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |V_{ub}|=|V_{td}|\sim 0.0075,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26cd430d5f3f2edbc3ef216ea319d0b2b6cda522" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.164ex; height:2.843ex;" alt="{\displaystyle |V_{ub}|=|V_{td}|\sim 0.0075,}"></noscript><span class="lazy-image-placeholder" style="width: 22.164ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26cd430d5f3f2edbc3ef216ea319d0b2b6cda522" data-alt="{\displaystyle |V_{ub}|=|V_{td}|\sim 0.0075,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |V_{us}|=|V_{ts}|=|V_{cd}|=|V_{cb}|\sim 0.122023,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mi>s</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>s</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>d</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>b</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>∼<!-- ∼ --></mo> <mn>0.122023</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |V_{us}|=|V_{ts}|=|V_{cd}|=|V_{cb}|\sim 0.122023,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bb4a27eb47f0bf3fc306216d50d03de65336da6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.414ex; height:2.843ex;" alt="{\displaystyle |V_{us}|=|V_{ts}|=|V_{cd}|=|V_{cb}|\sim 0.122023,}"></noscript><span class="lazy-image-placeholder" style="width: 39.414ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bb4a27eb47f0bf3fc306216d50d03de65336da6" data-alt="{\displaystyle |V_{us}|=|V_{ts}|=|V_{cd}|=|V_{cb}|\sim 0.122023,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |V_{cs}|\sim 0.9845.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>s</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>∼<!-- ∼ --></mo> <mn>0.9845.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |V_{cs}|\sim 0.9845.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/509aa6f098ddf9c5d12d7e3b222afbc01a6d879f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.569ex; height:2.843ex;" alt="{\displaystyle |V_{cs}|\sim 0.9845.}"></noscript><span class="lazy-image-placeholder" style="width: 14.569ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/509aa6f098ddf9c5d12d7e3b222afbc01a6d879f" data-alt="{\displaystyle |V_{cs}|\sim 0.9845.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p><p>Since the discovery of CP violation in 1964, physicists have believed that in theory, within the framework of the Standard Model, it is sufficient to search for appropriate Yukawa couplings (equivalent to a mass matrix) in order to generate a complex phase in the CKM matrix, thus automatically breaking CP symmetry. However, the specific matrix pattern has remained elusive. The above derivation provides the first evidence for this idea and offers some explicit examples to support it. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Strong_CP_problem">Strong CP problem</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=9" title="Edit section: Strong CP problem" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-5 collapsible-block" id="mf-section-5"> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Strong_CP_problem" title="Strong CP problem">Strong CP problem</a></div> <style data-mw-deduplicate="TemplateStyles:r1233989161">.mw-parser-output .unsolved{margin:0.5em 0 1em 1em;border:#ccc solid;padding:0.35em 0.35em 0.35em 2.2em;background-color:var(--background-color-interactive-subtle);background-image:url("https://upload.wikimedia.org/wikipedia/commons/2/26/Question%2C_Web_Fundamentals.svg");background-position:top 50%left 0.35em;background-size:1.5em;background-repeat:no-repeat}@media(min-width:720px){.mw-parser-output .unsolved{clear:right;float:right;max-width:25%}}.mw-parser-output .unsolved-label{font-weight:bold}.mw-parser-output .unsolved-body{margin:0.35em;font-style:italic}.mw-parser-output .unsolved-more{font-size:smaller}</style> <div role="note" aria-labelledby="unsolved-label-physics" class="unsolved"> <div><span class="unsolved-label" id="unsolved-label-physics">Unsolved problem in physics</span>:</div> <div class="unsolved-body">Why is the strong nuclear interaction force CP-invariant?</div> <div class="unsolved-more"><a href="/wiki/List_of_unsolved_problems_in_physics" title="List of unsolved problems in physics">(more unsolved problems in physics)</a></div> </div> <p>There is no experimentally known violation of the CP-symmetry in <a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">quantum chromodynamics</a>. As there is no known reason for it to be conserved in QCD specifically, this is a "fine tuning" problem known as the <a href="/wiki/Strong_CP_problem" title="Strong CP problem">strong CP problem</a>. </p><p>QCD does not violate the CP-symmetry as easily as the <a href="/wiki/Electroweak_theory" class="mw-redirect" title="Electroweak theory">electroweak theory</a>; unlike the electroweak theory in which the gauge fields couple to <a href="/wiki/Chirality_(physics)" title="Chirality (physics)">chiral</a> currents constructed from the <a href="/wiki/Fermion" title="Fermion">fermionic</a> fields, the gluons couple to vector currents. Experiments do not indicate any CP violation in the QCD sector. For example, a generic CP violation in the strongly interacting sector would create the <a href="/wiki/Electric_dipole_moment" title="Electric dipole moment">electric dipole moment</a> of the <a href="/wiki/Neutron" title="Neutron">neutron</a> which would be comparable to 10<sup>−18</sup> <a href="/wiki/Elementary_charge" title="Elementary charge">e</a>·m while the experimental upper bound is roughly one trillionth that size. </p><p>This is a problem because at the end, there are natural terms in the QCD <a href="/wiki/Lagrangian_(field_theory)" title="Lagrangian (field theory)">Lagrangian</a> that are able to break the CP-symmetry. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}=-{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }-{\frac {n_{f}g^{2}\theta }{32\pi ^{2}}}F_{\mu \nu }{\tilde {F}}^{\mu \nu }+{\bar {\psi }}\left(i\gamma ^{\mu }D_{\mu }-me^{i\theta '\gamma _{5}}\right)\psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msub> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>θ<!-- θ --></mi> </mrow> <mrow> <mn>32</mn> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msup> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>m</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msup> <mi>θ<!-- θ --></mi> <mo>′</mo> </msup> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}=-{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }-{\frac {n_{f}g^{2}\theta }{32\pi ^{2}}}F_{\mu \nu }{\tilde {F}}^{\mu \nu }+{\bar {\psi }}\left(i\gamma ^{\mu }D_{\mu }-me^{i\theta '\gamma _{5}}\right)\psi }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac623cffa3e6234988495f3931b60a98b2a19cc9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:58.669ex; height:6.343ex;" alt="{\displaystyle {\mathcal {L}}=-{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }-{\frac {n_{f}g^{2}\theta }{32\pi ^{2}}}F_{\mu \nu }{\tilde {F}}^{\mu \nu }+{\bar {\psi }}\left(i\gamma ^{\mu }D_{\mu }-me^{i\theta '\gamma _{5}}\right)\psi }"></noscript><span class="lazy-image-placeholder" style="width: 58.669ex;height: 6.343ex;vertical-align: -2.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac623cffa3e6234988495f3931b60a98b2a19cc9" data-alt="{\displaystyle {\mathcal {L}}=-{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }-{\frac {n_{f}g^{2}\theta }{32\pi ^{2}}}F_{\mu \nu }{\tilde {F}}^{\mu \nu }+{\bar {\psi }}\left(i\gamma ^{\mu }D_{\mu }-me^{i\theta '\gamma _{5}}\right)\psi }" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p>For a nonzero choice of the θ angle and the chiral phase of the quark mass θ′ one expects the CP-symmetry to be violated. One usually assumes that the chiral quark mass phase can be converted to a contribution to the total effective <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\tilde {\theta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>θ<!-- θ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\tilde {\theta }}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcf22bb05d2a5310d819fb1407e56c7204f434dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.015ex; height:2.176ex;" alt="{\displaystyle \scriptstyle {\tilde {\theta }}}"></noscript><span class="lazy-image-placeholder" style="width: 1.015ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcf22bb05d2a5310d819fb1407e56c7204f434dc" data-alt="{\displaystyle \scriptstyle {\tilde {\theta }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> angle, but it remains to be explained why this angle is extremely small instead of being of order one; the particular value of the θ angle that must be very close to zero (in this case) is an example of a <a href="/wiki/Fine-tuning_(physics)" title="Fine-tuning (physics)">fine-tuning problem</a> in physics, and is typically solved by <a href="/wiki/Physics_beyond_the_Standard_Model" title="Physics beyond the Standard Model">physics beyond the Standard Model</a>. </p><p>There are several proposed solutions to solve the strong CP problem. The most well-known is <a href="/wiki/Peccei%E2%80%93Quinn_theory" title="Peccei–Quinn theory">Peccei–Quinn theory</a>, involving new <a href="/wiki/Scalar_particle" class="mw-redirect" title="Scalar particle">scalar particles</a> called <a href="/wiki/Axion" title="Axion">axions</a>. A newer, more radical approach not requiring the axion is a theory involving <a href="/wiki/Multiple_time_dimensions" title="Multiple time dimensions">two time dimensions</a> first proposed in 1998 by Bars, Deliduman, and Andreev.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Matter–antimatter_imbalance"><span id="Matter.E2.80.93antimatter_imbalance"></span>Matter–antimatter imbalance</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=10" title="Edit section: Matter–antimatter imbalance" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-6 collapsible-block" id="mf-section-6"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Baryon_asymmetry" title="Baryon asymmetry">Baryon asymmetry</a> and <a href="/wiki/Baryogenesis" title="Baryogenesis">Baryogenesis</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/T-symmetry" title="T-symmetry">T-symmetry</a>, <a href="/wiki/Arrow_of_time" title="Arrow of time">Arrow of time</a>, and <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformation</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1233989161"> <div role="note" aria-labelledby="unsolved-label-physics" class="unsolved"> <div><span class="unsolved-label" id="unsolved-label-physics">Unsolved problem in physics</span>:</div> <div class="unsolved-body">Why does the universe have so much more matter than antimatter?</div> <div class="unsolved-more"><a href="/wiki/List_of_unsolved_problems_in_physics" title="List of unsolved problems in physics">(more unsolved problems in physics)</a></div> </div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/CP_violation" title="Special:EditPage/CP violation">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">November 2020</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>The non-<a href="/wiki/Dark_matter" title="Dark matter">dark matter</a> universe is made chiefly of <a href="/wiki/Matter" title="Matter">matter</a>, rather than consisting of equal parts of matter and <a href="/wiki/Antimatter" title="Antimatter">antimatter</a> as might be expected. It can be demonstrated that, to create an imbalance in matter and antimatter from an initial condition of balance, the <a href="/wiki/Sakharov_conditions" class="mw-redirect" title="Sakharov conditions">Sakharov conditions</a> must be satisfied, one of which is the existence of CP violation during the extreme conditions of the first seconds after the <a href="/wiki/Big_Bang" title="Big Bang">Big Bang</a>. Explanations which do not involve CP violation are less plausible, since they rely on the assumption that the matter–antimatter imbalance was present at the beginning, or on other admittedly exotic assumptions. </p><p>The Big Bang should have produced equal amounts of matter and antimatter if CP-symmetry was preserved; as such, there should have been total cancellation of both—<a href="/wiki/Protons" class="mw-redirect" title="Protons">protons</a> should have cancelled with <a href="/wiki/Antiproton" title="Antiproton">antiprotons</a>, <a href="/wiki/Electrons" class="mw-redirect" title="Electrons">electrons</a> with <a href="/wiki/Positron" title="Positron">positrons</a>, <a href="/wiki/Neutrons" class="mw-redirect" title="Neutrons">neutrons</a> with <a href="/wiki/Antineutron" title="Antineutron">antineutrons</a>, and so on. This would have resulted in a sea of radiation in the universe with no matter. Since this is not the case, after the Big Bang, physical laws must have acted differently for matter and antimatter, i.e. violating CP-symmetry. </p><p>The Standard Model contains at least three sources of CP violation. The first of these, involving the <a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix" title="Cabibbo–Kobayashi–Maskawa matrix">Cabibbo–Kobayashi–Maskawa matrix</a> in the <a href="/wiki/Quark" title="Quark">quark</a> sector, has been observed experimentally and can only account for a small portion of the CP violation required to explain the matter-antimatter asymmetry. The strong interaction should also violate CP, in principle, but the failure to observe the <a href="/wiki/Neutron_electric_dipole_moment" title="Neutron electric dipole moment">electric dipole moment of the neutron</a> in experiments suggests that any CP violation in the strong sector is also too small to account for the necessary CP violation in the early universe. The third source of CP violation is the <a href="/wiki/Pontecorvo%E2%80%93Maki%E2%80%93Nakagawa%E2%80%93Sakata_matrix" title="Pontecorvo–Maki–Nakagawa–Sakata matrix">Pontecorvo–Maki–Nakagawa–Sakata matrix</a> in the <a href="/wiki/Lepton" title="Lepton">lepton</a> sector. The current long-baseline neutrino oscillation experiments, <a href="/wiki/T2K_experiment" title="T2K experiment">T2K</a> and <a href="/wiki/NO%CE%BDA" class="mw-redirect" title="NOνA">NOνA</a>, may be able to find evidence of CP violation over a small fraction of possible values of the CP violating Dirac phase while the proposed next-generation experiments, <a href="/wiki/Hyper-Kamiokande" title="Hyper-Kamiokande">Hyper-Kamiokande</a> and <a href="/wiki/LBNE" class="mw-redirect" title="LBNE">DUNE</a>, will be sensitive enough to definitively observe CP violation over a relatively large fraction of possible values of the Dirac phase. Further into the future, a <a href="/wiki/Neutrino_factory" class="mw-redirect" title="Neutrino factory">neutrino factory</a> could be sensitive to nearly all possible values of the CP violating Dirac phase. If neutrinos are <a href="/wiki/Majorana_fermion" title="Majorana fermion">Majorana fermions</a>, the <a href="/wiki/Pontecorvo%E2%80%93Maki%E2%80%93Nakagawa%E2%80%93Sakata_matrix" title="Pontecorvo–Maki–Nakagawa–Sakata matrix">PMNS matrix</a> could have two additional CP violating Majorana phases, leading to a fourth source of CP violation within the Standard Model. The experimental evidence for Majorana neutrinos would be the observation of <a href="/wiki/Neutrinoless_double_beta_decay#Neutrinoless_double_beta_decay" title="Neutrinoless double beta decay">neutrinoless double-beta decay</a>. The best limits come from the <a href="/wiki/GERmanium_Detector_Array" class="mw-redirect" title="GERmanium Detector Array">GERDA</a> experiment. CP violation in the lepton sector generates a matter-antimatter asymmetry through a process called <a href="/wiki/Leptogenesis_(physics)" class="mw-redirect" title="Leptogenesis (physics)">leptogenesis</a>. This could become the preferred explanation in the Standard Model for the matter-antimatter asymmetry of the universe if CP violation is experimentally confirmed in the lepton sector. </p><p>If CP violation in the lepton sector is experimentally determined to be too small to account for matter-antimatter asymmetry, some new <a href="/wiki/Physics_beyond_the_Standard_Model" title="Physics beyond the Standard Model">physics beyond the Standard Model</a> would be required to explain additional sources of CP violation. Adding new particles and/or interactions to the Standard Model generally introduces new sources of CP violation since CP is not a symmetry of nature. </p><p>Sakharov proposed a way to restore CP-symmetry using T-symmetry, extending spacetime <i>before</i> the Big Bang. He described complete <i>CPT reflections</i> of events on each side of what he called the "initial singularity". Because of this, phenomena with an opposite <a href="/wiki/Arrow_of_time" title="Arrow of time">arrow of time</a> at <i>t</i> < 0 would undergo an opposite CP violation, so the CP-symmetry would be preserved as a whole. The anomalous excess of matter over antimatter after the Big Bang in the orthochronous (or positive) sector, becomes an excess of antimatter before the Big Bang (antichronous or negative sector) as both charge conjugation, parity and arrow of time are reversed due to CPT reflections of all phenomena occurring over the initial singularity: </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>We can visualize that neutral spinless maximons (or photons) are produced at <i>t</i> < 0 from contracting matter having an excess of antiquarks, that they pass "one through the other" at the instant <i>t</i> = 0 when the density is infinite, and decay with an excess of quarks when <i>t</i> > 0, realizing total CPT symmetry of the universe. All the phenomena at <i>t</i> < 0 are assumed in this hypothesis to be CPT reflections of the phenomena at <i>t</i> > 0.</p><div class="templatequotecite">— <cite>Andrei Sakharov, in <i>Collected Scientific Works</i> (1982).<sup id="cite_ref-Sakharov_book_30-0" class="reference"><a href="#cite_note-Sakharov_book-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup></cite></div></blockquote> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=11" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-7 collapsible-block" id="mf-section-7"> <ul><li><a href="/wiki/B-factory" title="B-factory">B-factory</a></li> <li><a href="/wiki/Parity_(physics)#Parity_violation" title="Parity (physics)">Parity (physics) § Parity violation</a></li> <li><a href="/wiki/C-symmetry" title="C-symmetry">C-symmetry</a></li> <li><a href="/wiki/T-symmetry" title="T-symmetry">T-symmetry</a></li> <li><a href="/wiki/CPT_symmetry" title="CPT symmetry">CPT symmetry</a></li> <li><a href="/wiki/BTeV_experiment" title="BTeV experiment">BTeV experiment</a></li> <li><a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix" title="Cabibbo–Kobayashi–Maskawa matrix">Cabibbo–Kobayashi–Maskawa matrix</a></li> <li><a href="/wiki/LHCb_experiment" title="LHCb experiment">LHCb experiment</a></li> <li><a href="/wiki/Penguin_diagram" title="Penguin diagram">Penguin diagram</a></li> <li><a href="/wiki/Neutral_particle_oscillation" title="Neutral particle oscillation">Neutral particle oscillation</a></li> <li><a href="/wiki/Electron_electric_dipole_moment" title="Electron electric dipole moment">Electron electric dipole moment</a></li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="In_popular_culture">In popular culture</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=12" title="Edit section: In popular culture" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-8 collapsible-block" id="mf-section-8"> <ul><li>The video game <a href="/wiki/Half-Life_2" title="Half-Life 2">Half-Life 2</a> has a song in its soundtrack titled <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=dqlG3E769Tc">CP Violation</a>.</li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=13" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-9 collapsible-block" id="mf-section-9"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-2"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"> <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSchwarzschild1999" class="citation journal cs1">Schwarzschild, Bertram (1999). "Two Experiments Observe Explicit Violation of Time-Reversal Symmetry". <i><a href="/wiki/Physics_Today" title="Physics Today">Physics Today</a></i>. <b>52</b> (2): 19–20. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999PhT....52b..19S">1999PhT....52b..19S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.882519">10.1063/1.882519</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Today&rft.atitle=Two+Experiments+Observe+Explicit+Violation+of+Time-Reversal+Symmetry&rft.volume=52&rft.issue=2&rft.pages=19-20&rft.date=1999&rft_id=info%3Adoi%2F10.1063%2F1.882519&rft_id=info%3Abibcode%2F1999PhT....52b..19S&rft.aulast=Schwarzschild&rft.aufirst=Bertram&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchubert2015" class="citation journal cs1">Schubert, K.R. (2015). "T violation and CPT tests in neutral-meson systems". <i><a href="/w/index.php?title=Progress_in_Particle_and_Nuclear_Physics&action=edit&redlink=1" class="new" title="Progress in Particle and Nuclear Physics (page does not exist)">Progress in Particle and Nuclear Physics</a></i>. <b>81</b>: 1–38. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1409.5998">1409.5998</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015PrPNP..81....1S">2015PrPNP..81....1S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ppnp.2014.12.001">10.1016/j.ppnp.2014.12.001</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117740717">117740717</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Progress+in+Particle+and+Nuclear+Physics&rft.atitle=T+violation+and+CPT+tests+in+neutral-meson+systems&rft.volume=81&rft.pages=1-38&rft.date=2015&rft_id=info%3Aarxiv%2F1409.5998&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117740717%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.ppnp.2014.12.001&rft_id=info%3Abibcode%2F2015PrPNP..81....1S&rft.aulast=Schubert&rft.aufirst=K.R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeYang1956" class="citation journal cs1">Lee, T. D.; Yang, C. N. (1956). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.104.254">"Question of Parity Conservation in Weak Interactions"</a>. <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>104</b> (1): 254–258. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1956PhRv..104..254L">1956PhRv..104..254L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.104.254">10.1103/PhysRev.104.254</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Question+of+Parity+Conservation+in+Weak+Interactions&rft.volume=104&rft.issue=1&rft.pages=254-258&rft.date=1956&rft_id=info%3Adoi%2F10.1103%2FPhysRev.104.254&rft_id=info%3Abibcode%2F1956PhRv..104..254L&rft.aulast=Lee&rft.aufirst=T.+D.&rft.au=Yang%2C+C.+N.&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRev.104.254&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWuAmblerHaywardHoppes1957" class="citation journal cs1">Wu, C. S.; Ambler, E.; Hayward, R. W.; Hoppes, D. D.; Hudson, R. P. (1957). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.105.1413">"Experimental Test of Parity Conservation in Beta Decay"</a>. <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>105</b> (4): 1413–1415. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1957PhRv..105.1413W">1957PhRv..105.1413W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.105.1413">10.1103/PhysRev.105.1413</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Experimental+Test+of+Parity+Conservation+in+Beta+Decay&rft.volume=105&rft.issue=4&rft.pages=1413-1415&rft.date=1957&rft_id=info%3Adoi%2F10.1103%2FPhysRev.105.1413&rft_id=info%3Abibcode%2F1957PhRv..105.1413W&rft.aulast=Wu&rft.aufirst=C.+S.&rft.au=Ambler%2C+E.&rft.au=Hayward%2C+R.+W.&rft.au=Hoppes%2C+D.+D.&rft.au=Hudson%2C+R.+P.&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRev.105.1413&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-Ioffe-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ioffe_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ioffe_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIoffeOkunRudik1957" class="citation journal cs1">Ioffe, B. L.; Okun, L. B.; Rudik, A. P. (1957). <a rel="nofollow" class="external text" href="http://www.jetp.ac.ru/cgi-bin/dn/e_005_02_0328.pdf">"The Problem of Parity Non-conservation in Weak Interactions"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Journal_of_Experimental_and_Theoretical_Physics" title="Journal of Experimental and Theoretical Physics">Journal of Experimental and Theoretical Physics</a></i>. <b>32</b>: 328–330.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Experimental+and+Theoretical+Physics&rft.atitle=The+Problem+of+Parity+Non-conservation+in+Weak+Interactions&rft.volume=32&rft.pages=328-330&rft.date=1957&rft.aulast=Ioffe&rft.aufirst=B.+L.&rft.au=Okun%2C+L.+B.&rft.au=Rudik%2C+A.+P.&rft_id=http%3A%2F%2Fwww.jetp.ac.ru%2Fcgi-bin%2Fdn%2Fe_005_02_0328.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title=" Dead link tagged July 2022">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px"></span>]</span></sup></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFriedmanTelegdi1957" class="citation journal cs1">Friedman, J. I.; Telegdi, V. L. (1957). "Nuclear Emulsion Evidence for Parity Nonconservation in the Decay Chain π<sup>+</sup>→μ<sup>+</sup>→e<sup>+</sup>". <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>106</b> (6): 1290–1293. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1957PhRv..106.1290F">1957PhRv..106.1290F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.106.1290">10.1103/PhysRev.106.1290</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Nuclear+Emulsion+Evidence+for+Parity+Nonconservation+in+the+Decay+Chain+%CF%80%3Csup%3E%2B%3C%2Fsup%3E%E2%86%92%CE%BC%3Csup%3E%2B%3C%2Fsup%3E%E2%86%92e%3Csup%3E%2B%3C%2Fsup%3E&rft.volume=106&rft.issue=6&rft.pages=1290-1293&rft.date=1957&rft_id=info%3Adoi%2F10.1103%2FPhysRev.106.1290&rft_id=info%3Abibcode%2F1957PhRv..106.1290F&rft.aulast=Friedman&rft.aufirst=J.+I.&rft.au=Telegdi%2C+V.+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarwinLedermanWeinrich1957" class="citation journal cs1">Garwin, R. L.; Lederman, L. M.; Weinrich, M. (1957). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.105.1415">"Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon"</a>. <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>105</b> (4): 1415–1417. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1957PhRv..105.1415G">1957PhRv..105.1415G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.105.1415">10.1103/PhysRev.105.1415</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Observations+of+the+Failure+of+Conservation+of+Parity+and+Charge+Conjugation+in+Meson+Decays%3A+The+Magnetic+Moment+of+the+Free+Muon&rft.volume=105&rft.issue=4&rft.pages=1415-1417&rft.date=1957&rft_id=info%3Adoi%2F10.1103%2FPhysRev.105.1415&rft_id=info%3Abibcode%2F1957PhRv..105.1415G&rft.aulast=Garwin&rft.aufirst=R.+L.&rft.au=Lederman%2C+L.+M.&rft.au=Weinrich%2C+M.&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRev.105.1415&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCulliganFrankHolt1959" class="citation journal cs1">Culligan, G.; Frank, S. G. F.; Holt, J. R. (1959). "Longitudinal polarization of the electrons from the decay of unpolarized Positive and Negative Muons". <i><a href="/wiki/Proceedings_of_the_Physical_Society" title="Proceedings of the Physical Society">Proceedings of the Physical Society</a></i>. <b>73</b> (2): 169. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1959PPS....73..169C">1959PPS....73..169C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0370-1328%2F73%2F2%2F303">10.1088/0370-1328/73/2/303</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Physical+Society&rft.atitle=Longitudinal+polarization+of+the+electrons+from+the+decay+of+unpolarized+Positive+and+Negative+Muons&rft.volume=73&rft.issue=2&rft.pages=169&rft.date=1959&rft_id=info%3Adoi%2F10.1088%2F0370-1328%2F73%2F2%2F303&rft_id=info%3Abibcode%2F1959PPS....73..169C&rft.aulast=Culligan&rft.aufirst=G.&rft.au=Frank%2C+S.+G.+F.&rft.au=Holt%2C+J.+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeOehmeYang1957" class="citation journal cs1">Lee, T. D.; Oehme, R.; Yang, C. N. (1957). <a rel="nofollow" class="external text" href="https://archive.today/20120805225625/http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA,106,340">"Remarks on Possible Noninvariance under Time Reversal and Charge Conjugation"</a>. <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>106</b> (2): 340–345. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1957PhRv..106..340L">1957PhRv..106..340L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.106.340">10.1103/PhysRev.106.340</a>. Archived from <a rel="nofollow" class="external text" href="http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA,106,340">the original</a> on 5 August 2012.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=Remarks+on+Possible+Noninvariance+under+Time+Reversal+and+Charge+Conjugation&rft.volume=106&rft.issue=2&rft.pages=340-345&rft.date=1957&rft_id=info%3Adoi%2F10.1103%2FPhysRev.106.340&rft_id=info%3Abibcode%2F1957PhRv..106..340L&rft.aulast=Lee&rft.aufirst=T.+D.&rft.au=Oehme%2C+R.&rft.au=Yang%2C+C.+N.&rft_id=http%3A%2F%2Fwww.slac.stanford.edu%2Fspires%2Ffind%2Fhep%2Fwww%3Fj%3DPHRVA%2C106%2C340&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLandau1957" class="citation journal cs1">Landau, L. (1957). "On the conservation laws for weak interactions". <i><a href="/wiki/Nuclear_Physics_(journal)" title="Nuclear Physics (journal)">Nuclear Physics</a></i>. <b>3</b> (1): 127–131. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1957NucPh...3..127L">1957NucPh...3..127L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0029-5582%2857%2990061-5">10.1016/0029-5582(57)90061-5</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nuclear+Physics&rft.atitle=On+the+conservation+laws+for+weak+interactions&rft.volume=3&rft.issue=1&rft.pages=127-131&rft.date=1957&rft_id=info%3Adoi%2F10.1016%2F0029-5582%2857%2990061-5&rft_id=info%3Abibcode%2F1957NucPh...3..127L&rft.aulast=Landau&rft.aufirst=L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnikinaNeaguOkonovPetrov" class="citation journal cs1">Anikina, M. Kh.; Neagu, D. V.; Okonov, E. O.; Petrov, N. I.; Rozanova, A. M.; Rusakov, V. A. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210127211617/http://www.jetp.ac.ru/cgi-bin/dn/e_015_01_0093.pdf">"An experimental investigation of some consequences of CP-invariance in K<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span> meson decays"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Soviet_Physics_JETP" class="mw-redirect" title="Soviet Physics JETP">Soviet Physics JETP</a></i>. <b>15</b> (1): 93–96. Archived from <a rel="nofollow" class="external text" href="http://jetp.ac.ru/cgi-bin/dn/e_015_01_0093.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 27 January 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">3 April</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Soviet+Physics+JETP&rft.atitle=An+experimental+investigation+of+some+consequences+of+CP-invariance+in+K%3Cspan+class%3D%22nowrap%22%3E%3Cspan+style%3D%22display%3Ainline-block%3Bmargin-bottom%3A-0.3em%3Bvertical-align%3A-0.4em%3Bline-height%3A1.2em%3Bfont-size%3A80%25%3Btext-align%3Aleft%22%3E%3Csup+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E0%3C%2Fsup%3E%3Cbr+%2F%3E%3Csub+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E2%3C%2Fsub%3E%3C%2Fspan%3E%3C%2Fspan%3E+meson+decays&rft.volume=15&rft.issue=1&rft.pages=93-96&rft.aulast=Anikina&rft.aufirst=M.+Kh.&rft.au=Neagu%2C+D.+V.&rft.au=Okonov%2C+E.+O.&rft.au=Petrov%2C+N.+I.&rft.au=Rozanova%2C+A.+M.&rft.au=Rusakov%2C+V.+A.&rft_id=http%3A%2F%2Fjetp.ac.ru%2Fcgi-bin%2Fdn%2Fe_015_01_0093.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-FC1964-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-FC1964_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChristensonCroninFitchTurlay1964" class="citation journal cs1">Christenson, J. H.; Cronin, J. W.; Fitch, V. L.; Turlay, R. (1964). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.13.138">"Evidence for the 2π Decay of the K<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span> Meson System"</a>. <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>13</b> (4): 138. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1964PhRvL..13..138C">1964PhRvL..13..138C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.13.138">10.1103/PhysRevLett.13.138</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Evidence+for+the+2%26pi%3B+Decay+of+the+K%3Cspan+class%3D%22nowrap%22%3E%3Cspan+style%3D%22display%3Ainline-block%3Bmargin-bottom%3A-0.3em%3Bvertical-align%3A-0.4em%3Bline-height%3A1.2em%3Bfont-size%3A80%25%3Btext-align%3Aleft%22%3E%3Csup+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E0%3C%2Fsup%3E%3Cbr+%2F%3E%3Csub+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E2%3C%2Fsub%3E%3C%2Fspan%3E%3C%2Fspan%3E+Meson+System&rft.volume=13&rft.issue=4&rft.pages=138&rft.date=1964&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.13.138&rft_id=info%3Abibcode%2F1964PhRvL..13..138C&rft.aulast=Christenson&rft.aufirst=J.+H.&rft.au=Cronin%2C+J.+W.&rft.au=Fitch%2C+V.+L.&rft.au=Turlay%2C+R.&rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252FPhysRevLett.13.138&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-FCE-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-FCE_13-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://large.stanford.edu/courses/2008/ph204/coleman1/">The Fitch-Cronin Experiment</a></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlavi-Harati1999" class="citation journal cs1">Alavi-Harati, A.; et al. (KTeV Collaboration) (1999). "Observation of Direct CP Violation in K<sub>S,L</sub>→ππ Decays". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>83</b> (1): 22–27. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-ex/9905060">hep-ex/9905060</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999PhRvL..83...22A">1999PhRvL..83...22A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.83.22">10.1103/PhysRevLett.83.22</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119333352">119333352</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Observation+of+Direct+CP+Violation+in+K%3Csub%3ES%2CL%3C%2Fsub%3E%E2%86%92%26pi%3B%26pi%3B+Decays&rft.volume=83&rft.issue=1&rft.pages=22-27&rft.date=1999&rft_id=info%3Aarxiv%2Fhep-ex%2F9905060&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119333352%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.83.22&rft_id=info%3Abibcode%2F1999PhRvL..83...22A&rft.aulast=Alavi-Harati&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-NA48-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-NA48_15-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFanti1999" class="citation journal cs1">Fanti, V.; et al. (NA48 Collaboration) (1999). "A new measurement of direct CP violation in two pion decays of the neutral kaon". <i><a href="/wiki/Physics_Letters_B" class="mw-redirect" title="Physics Letters B">Physics Letters B</a></i>. <b>465</b> (1–4): 335–348. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-ex/9909022">hep-ex/9909022</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999PhLB..465..335F">1999PhLB..465..335F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0370-2693%2899%2901030-8">10.1016/S0370-2693(99)01030-8</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15277360">15277360</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Letters+B&rft.atitle=A+new+measurement+of+direct+CP+violation+in+two+pion+decays+of+the+neutral+kaon&rft.volume=465&rft.issue=1%E2%80%934&rft.pages=335-348&rft.date=1999&rft_id=info%3Aarxiv%2Fhep-ex%2F9909022&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15277360%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2FS0370-2693%2899%2901030-8&rft_id=info%3Abibcode%2F1999PhLB..465..335F&rft.aulast=Fanti&rft.aufirst=V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAubert2001" class="citation journal cs1">Aubert, B; et al. (2001). "Measurement of CP-Violating Asymmetries in B<sup>0</sup> Decays to CP Eigenstates". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>86</b> (12): 2515–22. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-ex/0102030">hep-ex/0102030</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001PhRvL..86.2515A">2001PhRvL..86.2515A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.86.2515">10.1103/PhysRevLett.86.2515</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11289970">11289970</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:24606837">24606837</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Measurement+of+CP-Violating+Asymmetries+in+B%3Csup%3E0%3C%2Fsup%3E+Decays+to+CP+Eigenstates&rft.volume=86&rft.issue=12&rft.pages=2515-22&rft.date=2001&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A24606837%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2001PhRvL..86.2515A&rft_id=info%3Aarxiv%2Fhep-ex%2F0102030&rft_id=info%3Apmid%2F11289970&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.86.2515&rft.aulast=Aubert&rft.aufirst=B&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbe_K2001" class="citation journal cs1">Abe K; et al. (2001). "Observation of Large CP Violation in the Neutral B Meson System". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>87</b> (9): 091802. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-ex/0107061">hep-ex/0107061</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001PhRvL..87i1802A">2001PhRvL..87i1802A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.87.091802">10.1103/PhysRevLett.87.091802</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11531561">11531561</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3197654">3197654</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Observation+of+Large+CP+Violation+in+the+Neutral+B+Meson+System&rft.volume=87&rft.issue=9&rft.pages=091802&rft.date=2001&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3197654%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2001PhRvL..87i1802A&rft_id=info%3Aarxiv%2Fhep-ex%2F0107061&rft_id=info%3Apmid%2F11531561&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.87.091802&rft.au=Abe+K&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRodgers2001" class="citation web cs1">Rodgers, Peter (August 2001). <a rel="nofollow" class="external text" href="http://physicsworld.com/cws/article/print/2001/aug/01/where-did-all-the-antimatter-go">"Where did all the antimatter go?"</a>. <i><a href="/wiki/Physics_World" title="Physics World">Physics World</a></i>. p. 11.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Physics+World&rft.atitle=Where+did+all+the+antimatter+go%3F&rft.pages=11&rft.date=2001-08&rft.aulast=Rodgers&rft.aufirst=Peter&rft_id=http%3A%2F%2Fphysicsworld.com%2Fcws%2Farticle%2Fprint%2F2001%2Faug%2F01%2Fwhere-did-all-the-antimatter-go&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarbone2012" class="citation arxiv cs1">Carbone, A. (2012). "A search for time-integrated CP violation in D<sup>0</sup>→h<sup>−</sup>h<sup>+</sup> decays". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1210.8257">1210.8257</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/hep-ex">hep-ex</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=A+search+for+time-integrated+CP+violation+in+D%3Csup%3E0%3C%2Fsup%3E%E2%86%92h%3Csup%3E%E2%88%92%3C%2Fsup%3Eh%3Csup%3E%2B%3C%2Fsup%3E+decays&rft.date=2012&rft_id=info%3Aarxiv%2F1210.8257&rft.aulast=Carbone&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLHCb_Collaboration2014" class="citation journal cs1">LHCb Collaboration (2014). "Measurement of CP asymmetry in D<sup>0</sup>→K<sup>+</sup>K<sup>−</sup> and D<sup>0</sup>→π<sup>+</sup>π<sup>−</sup> decays". <i><a href="/wiki/Journal_of_High_Energy_Physics" title="Journal of High Energy Physics">Journal of High Energy Physics</a></i>. <b>2014</b> (7): 41. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1405.2797">1405.2797</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014JHEP...07..041A">2014JHEP...07..041A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FJHEP07%282014%29041">10.1007/JHEP07(2014)041</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118510475">118510475</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=Measurement+of+CP+asymmetry+in+D%3Csup%3E0%3C%2Fsup%3E%E2%86%92K%3Csup%3E%2B%3C%2Fsup%3EK%3Csup%3E%E2%88%92%3C%2Fsup%3E+and+D%3Csup%3E0%3C%2Fsup%3E%E2%86%92%CF%80%3Csup%3E%2B%3C%2Fsup%3E%CF%80%3Csup%3E%E2%88%92%3C%2Fsup%3E+decays&rft.volume=2014&rft.issue=7&rft.pages=41&rft.date=2014&rft_id=info%3Aarxiv%2F1405.2797&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118510475%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FJHEP07%282014%29041&rft_id=info%3Abibcode%2F2014JHEP...07..041A&rft.au=LHCb+Collaboration&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAaij2013" class="citation journal cs1">Aaij, R.; et al. (LHCb Collaboration) (30 May 2013). "First Observation of CP Violation in the Decays of B<sup>0</sup><sub>s</sub> Mesons". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>110</b> (22): 221601. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1304.6173">1304.6173</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PhRvL.110v1601A">2013PhRvL.110v1601A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.110.221601">10.1103/PhysRevLett.110.221601</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23767711">23767711</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20486226">20486226</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=First+Observation+of+CP+Violation+in+the+Decays+of+B%3Csup%3E0%3C%2Fsup%3E%3Csub%3Es%3C%2Fsub%3E+Mesons&rft.volume=110&rft.issue=22&rft.pages=221601&rft.date=2013-05-30&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20486226%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2013PhRvL.110v1601A&rft_id=info%3Aarxiv%2F1304.6173&rft_id=info%3Apmid%2F23767711&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.110.221601&rft.aulast=Aaij&rft.aufirst=R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFR._Aaij2019" class="citation journal cs1">R. Aaij; et al. (LHCb Collaboration) (2019). <a rel="nofollow" class="external text" href="https://iris.unica.it/bitstream/11584/270374/2/PhysRevLett.122.211803.pdf">"Observation of CP Violation in Charm Decays"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>122</b> (21): 211803. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1903.08726">1903.08726</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019PhRvL.122u1803A">2019PhRvL.122u1803A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.122.211803">10.1103/PhysRevLett.122.211803</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31283320">31283320</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:84842008">84842008</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Observation+of+CP+Violation+in+Charm+Decays&rft.volume=122&rft.issue=21&rft.pages=211803&rft.date=2019&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A84842008%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2019PhRvL.122u1803A&rft_id=info%3Aarxiv%2F1903.08726&rft_id=info%3Apmid%2F31283320&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.122.211803&rft.au=R.+Aaij&rft_id=https%3A%2F%2Firis.unica.it%2Fbitstream%2F11584%2F270374%2F2%2FPhysRevLett.122.211803.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbeAkutsu2020" class="citation journal cs1">Abe, K.; Akutsu, R.; et al. (T2K Collaboration) (16 April 2020). "Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations". <i><a href="/wiki/Nature_(journal)" title="Nature (journal)">Nature</a></i>. <b>580</b> (7803): 339–344. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1910.03887">1910.03887</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020Natur.580..339T">2020Natur.580..339T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-020-2177-0">10.1038/s41586-020-2177-0</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32296192">32296192</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:203951445">203951445</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Constraint+on+the+matter-antimatter+symmetry-violating+phase+in+neutrino+oscillations&rft.volume=580&rft.issue=7803&rft.pages=339-344&rft.date=2020-04-16&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A203951445%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2020Natur.580..339T&rft_id=info%3Aarxiv%2F1910.03887&rft_id=info%3Apmid%2F32296192&rft_id=info%3Adoi%2F10.1038%2Fs41586-020-2177-0&rft.aulast=Abe&rft.aufirst=K.&rft.au=Akutsu%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHimmel2020" class="citation conference cs1">Himmel, Alex; et al. (NOvA Collaboration) (2 July 2020). <a rel="nofollow" class="external text" href="https://indico.fnal.gov/event/43209/timetable/#194-new-oscillation-results-fr">"New Oscillation Results from the NOvA Experiment"</a>. <i>Neutrino2020</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5281%2Fzenodo.3959581">10.5281/zenodo.3959581</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=New+Oscillation+Results+from+the+NOvA+Experiment&rft.btitle=Neutrino2020&rft.date=2020-07-02&rft_id=info%3Adoi%2F10.5281%2Fzenodo.3959581&rft.aulast=Himmel&rft.aufirst=Alex&rft_id=https%3A%2F%2Findico.fnal.gov%2Fevent%2F43209%2Ftimetable%2F%23194-new-oscillation-results-fr&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKellyMachadoParkePerez-Gonzalez2021" class="citation journal cs1">Kelly, Kevin J.; Machado, Pedro A.N.; Parke, Stephen J.; Perez-Gonzalez, Yuber F.; Funchal, Renata Zukanovich (2021). "Neutrino mass ordering in light of recent data". <i><a href="/wiki/Physical_Review_D" class="mw-redirect" title="Physical Review D">Physical Review D</a></i>. <b>103</b> (1): 013004. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2007.08526">2007.08526</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021PhRvD.103a3004K">2021PhRvD.103a3004K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.103.013004">10.1103/PhysRevD.103.013004</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220633488">220633488</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=Neutrino+mass+ordering+in+light+of+recent+data&rft.volume=103&rft.issue=1&rft.pages=013004&rft.date=2021&rft_id=info%3Aarxiv%2F2007.08526&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220633488%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.103.013004&rft_id=info%3Abibcode%2F2021PhRvD.103a3004K&rft.aulast=Kelly&rft.aufirst=Kevin+J.&rft.au=Machado%2C+Pedro+A.N.&rft.au=Parke%2C+Stephen+J.&rft.au=Perez-Gonzalez%2C+Yuber+F.&rft.au=Funchal%2C+Renata+Zukanovich&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDentonGehrleinPestes2021" class="citation journal cs1">Denton, Peter B.; Gehrlein, Julia; Pestes, Rebekah (2021). "CP-Violating Neutrino Non-Standard Interactions in Long-Baseline-Accelerator Data". <i><a href="/wiki/Physical_Review_Letters" title="Physical Review Letters">Physical Review Letters</a></i>. <b>126</b> (5): 051801. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2008.01110">2008.01110</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021PhRvL.126e1801D">2021PhRvL.126e1801D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.126.051801">10.1103/PhysRevLett.126.051801</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33605742">33605742</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220961778">220961778</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=CP-Violating+Neutrino+Non-Standard+Interactions+in+Long-Baseline-Accelerator+Data&rft.volume=126&rft.issue=5&rft.pages=051801&rft.date=2021&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220961778%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021PhRvL.126e1801D&rft_id=info%3Aarxiv%2F2008.01110&rft_id=info%3Apmid%2F33605742&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.126.051801&rft.aulast=Denton&rft.aufirst=Peter+B.&rft.au=Gehrlein%2C+Julia&rft.au=Pestes%2C+Rebekah&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLin2021" class="citation journal cs1">Lin, C.L. (2021). "Exploring the Origin of CP Violation in the Standard Model". <i><a href="/w/index.php?title=Letters_in_High_Energy_Physics&action=edit&redlink=1" class="new" title="Letters in High Energy Physics (page does not exist)">Letters in High Energy Physics</a></i>. <b>221</b>: 1. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2010.08245">2010.08245</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021LHEP....4..221L">2021LHEP....4..221L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.31526%2FLHEP.2021.221">10.31526/LHEP.2021.221</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:245641205">245641205</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Letters+in+High+Energy+Physics&rft.atitle=Exploring+the+Origin+of+CP+Violation+in+the+Standard+Model&rft.volume=221&rft.pages=1&rft.date=2021&rft_id=info%3Aarxiv%2F2010.08245&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A245641205%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.31526%2FLHEP.2021.221&rft_id=info%3Abibcode%2F2021LHEP....4..221L&rft.aulast=Lin&rft.aufirst=C.L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLin2023" class="citation journal cs1">Lin, C.L. (2023). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fsym15051051">"BAU Production in the SN-Breaking Standard Model"</a>. <i><a href="/wiki/Symmetry" title="Symmetry">Symmetry</a></i>. <b>15</b> (5): 1051. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2209.12490">2209.12490</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023Symm...15.1051L">2023Symm...15.1051L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fsym15051051">10.3390/sym15051051</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Symmetry&rft.atitle=BAU+Production+in+the+SN-Breaking+Standard+Model&rft.volume=15&rft.issue=5&rft.pages=1051&rft.date=2023&rft_id=info%3Aarxiv%2F2209.12490&rft_id=info%3Adoi%2F10.3390%2Fsym15051051&rft_id=info%3Abibcode%2F2023Symm...15.1051L&rft.aulast=Lin&rft.aufirst=C.L.&rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fsym15051051&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFI._BarsC._DelidumanO._Andreev1998" class="citation journal cs1">I. Bars; C. Deliduman; O. Andreev (1998). "Gauged Duality, Conformal Symmetry, and Spacetime with Two Times". <i><a href="/wiki/Physical_Review_D" class="mw-redirect" title="Physical Review D">Physical Review D</a></i>. <b>58</b> (6): 066004. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/9803188">hep-th/9803188</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998PhRvD..58f6004B">1998PhRvD..58f6004B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.58.066004">10.1103/PhysRevD.58.066004</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8314164">8314164</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=Gauged+Duality%2C+Conformal+Symmetry%2C+and+Spacetime+with+Two+Times&rft.volume=58&rft.issue=6&rft.pages=066004&rft.date=1998&rft_id=info%3Aarxiv%2Fhep-th%2F9803188&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8314164%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.58.066004&rft_id=info%3Abibcode%2F1998PhRvD..58f6004B&rft.au=I.+Bars&rft.au=C.+Deliduman&rft.au=O.+Andreev&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> <li id="cite_note-Sakharov_book-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sakharov_book_30-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSakharov1982" class="citation book cs1">Sakharov, A. D. (7 December 1982). <i>Collected Scientific Works</i>. <a href="/wiki/Marcel_Dekker" title="Marcel Dekker">Marcel Dekker</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0824717148" title="Special:BookSources/978-0824717148"><bdi>978-0824717148</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Collected+Scientific+Works&rft.pub=Marcel+Dekker&rft.date=1982-12-07&rft.isbn=978-0824717148&rft.aulast=Sakharov&rft.aufirst=A.+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></span> </li> </ol></div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(10)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=14" title="Edit section: Further reading" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-10 collapsible-block" id="mf-section-10"> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSozzi,_M.S.2008" class="citation book cs1">Sozzi, M.S. (2008). <i>Discrete symmetries and CP violation</i>. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-929666-8" title="Special:BookSources/978-0-19-929666-8"><bdi>978-0-19-929666-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Discrete+symmetries+and+CP+violation&rft.pub=Oxford+University+Press&rft.date=2008&rft.isbn=978-0-19-929666-8&rft.au=Sozzi%2C+M.S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFG._C._BrancoL._LavouraJ._P._Silva1999" class="citation book cs1">G. C. Branco; L. Lavoura; J. P. Silva (1999). <i>CP violation</i>. <a href="/wiki/Clarendon_Press" class="mw-redirect" title="Clarendon Press">Clarendon Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-850399-6" title="Special:BookSources/978-0-19-850399-6"><bdi>978-0-19-850399-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=CP+violation&rft.pub=Clarendon+Press&rft.date=1999&rft.isbn=978-0-19-850399-6&rft.au=G.+C.+Branco&rft.au=L.+Lavoura&rft.au=J.+P.+Silva&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFI._BigiA._Sanda1999" class="citation book cs1">I. Bigi; A. Sanda (1999). <i>CP violation</i>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-44349-4" title="Special:BookSources/978-0-521-44349-4"><bdi>978-0-521-44349-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=CP+violation&rft.pub=Cambridge+University+Press&rft.date=1999&rft.isbn=978-0-521-44349-4&rft.au=I.+Bigi&rft.au=A.+Sanda&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMichael_Beyer2002" class="citation book cs1">Michael Beyer, ed. (2002). <i>CP Violation in Particle, Nuclear and Astrophysics</i>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-43705-5" title="Special:BookSources/978-3-540-43705-5"><bdi>978-3-540-43705-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=CP+Violation+in+Particle%2C+Nuclear+and+Astrophysics&rft.pub=Springer&rft.date=2002&rft.isbn=978-3-540-43705-5&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span> <i>(A collection of essays introducing the subject, with an emphasis on experimental results.)</i></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL._Wolfenstein1989" class="citation book cs1">L. Wolfenstein (1989). <i>CP violation</i>. <a href="/wiki/North%E2%80%93Holland_Publishing" class="mw-redirect" title="North–Holland Publishing">North–Holland Publishing</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-88081-9" title="Special:BookSources/978-0-444-88081-9"><bdi>978-0-444-88081-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=CP+violation&rft.pub=North%E2%80%93Holland+Publishing&rft.date=1989&rft.isbn=978-0-444-88081-9&rft.au=L.+Wolfenstein&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span> <i>(A compilation of reprints of numerous important papers on the topic, including papers by T.D. Lee, Cronin, Fitch, Kobayashi and Maskawa, and many others.)</i></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_J._Griffiths1987" class="citation book cs1"><a href="/wiki/David_J._Griffiths" title="David J. Griffiths">David J. Griffiths</a> (1987). <i>Introduction to Elementary Particles</i>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-60386-3" title="Special:BookSources/978-0-471-60386-3"><bdi>978-0-471-60386-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Elementary+Particles&rft.pub=John+Wiley+%26+Sons&rft.date=1987&rft.isbn=978-0-471-60386-3&rft.au=David+J.+Griffiths&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBigi1998" class="citation journal cs1">Bigi, I. (1998). "CP Violation – An Essential Mystery in Nature's Grand Design". <i><a href="/w/index.php?title=Surveys_of_High_Energy_Physics&action=edit&redlink=1" class="new" title="Surveys of High Energy Physics (page does not exist)">Surveys of High Energy Physics</a></i>. <b>12</b> (1–4): 269–336. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-ph/9712475">hep-ph/9712475</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998SHEP...12..269B">1998SHEP...12..269B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F01422419808228861">10.1080/01422419808228861</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Surveys+of+High+Energy+Physics&rft.atitle=CP+Violation+%E2%80%93+An+Essential+Mystery+in+Nature%27s+Grand+Design&rft.volume=12&rft.issue=1%E2%80%934&rft.pages=269-336&rft.date=1998&rft_id=info%3Aarxiv%2Fhep-ph%2F9712475&rft_id=info%3Adoi%2F10.1080%2F01422419808228861&rft_id=info%3Abibcode%2F1998SHEP...12..269B&rft.aulast=Bigi&rft.aufirst=I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMark_Trodden1999" class="citation journal cs1">Mark Trodden (1999). "Electroweak Baryogenesis". <i><a href="/wiki/Reviews_of_Modern_Physics" title="Reviews of Modern Physics">Reviews of Modern Physics</a></i>. <b>71</b> (5): 1463–1500. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-ph/9803479">hep-ph/9803479</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999RvMP...71.1463T">1999RvMP...71.1463T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FRevModPhys.71.1463">10.1103/RevModPhys.71.1463</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17275359">17275359</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Reviews+of+Modern+Physics&rft.atitle=Electroweak+Baryogenesis&rft.volume=71&rft.issue=5&rft.pages=1463-1500&rft.date=1999&rft_id=info%3Aarxiv%2Fhep-ph%2F9803479&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17275359%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1103%2FRevModPhys.71.1463&rft_id=info%3Abibcode%2F1999RvMP...71.1463T&rft.au=Mark+Trodden&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavide_Castelvecchi" class="citation web cs1">Davide Castelvecchi. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140503090147/http://www2.slac.stanford.edu/tip/special/cp.htm">"What is direct CP-violation?"</a>. <a href="/wiki/SLAC" class="mw-redirect" title="SLAC">SLAC</a>. Archived from <a rel="nofollow" class="external text" href="http://www2.slac.stanford.edu/tip/special/cp.htm">the original</a> on 3 May 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">1 July</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=What+is+direct+CP-violation%3F&rft.pub=SLAC&rft.au=Davide+Castelvecchi&rft_id=http%3A%2F%2Fwww2.slac.stanford.edu%2Ftip%2Fspecial%2Fcp.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACP+violation" class="Z3988"></span></li> <li>An elementary discussion of parity violation and CP violation is given in chapter 15 of this student level textbook <a rel="nofollow" class="external autonumber" href="https://www.routledge.com/Fundamentals-of-Molecular-Symmetry/Bunker-Jensen/p/book/9780750309417">[1]</a></li></ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(11)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="External_links">External links</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=CP_violation&action=edit&section=15" title="Edit section: External links" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-11 collapsible-block" id="mf-section-11"> <ul><li><a rel="nofollow" class="external text" href="http://cerncourier.com/cws/article/cern/28025">Cern Courier article</a></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐7556f8b5dd‐x2vbw Cached time: 20241122144354 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.084 seconds Real time usage: 1.359 seconds Preprocessor visited node count: 4082/1000000 Post‐expand include size: 159025/2097152 bytes Template argument size: 3066/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 171221/5000000 bytes Lua time usage: 0.645/10.000 seconds Lua memory usage: 7762210/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1013.590 1 -total 36.75% 372.511 1 Template:Reflist 27.71% 280.860 27 Template:Cite_journal 14.61% 148.053 1 Template:Beyond_the_Standard_Model 14.35% 145.440 1 Template:Sidebar_with_collapsible_lists 10.37% 105.129 1 Template:Short_description 6.51% 66.025 3 Template:Navbox 6.23% 63.096 2 Template:Pagetype 5.47% 55.422 1 Template:Citation_needed_section 5.04% 51.061 1 Template:Unreferenced --> <!-- Saved in parser cache with key enwiki:pcache:idhash:18969769-0!canonical and timestamp 20241122144354 and revision id 1258340733. Rendering was triggered because: unknown --> </section></div> <!-- MobileFormatter took 0.066 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=CP_violation&oldid=1258340733">https://en.wikipedia.org/w/index.php?title=CP_violation&oldid=1258340733</a>"</div></div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"> <a class="last-modified-bar" href="/w/index.php?title=CP_violation&action=history"> <div class="post-content last-modified-bar__content"> <span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="WikiCleanerBot" data-user-gender="unknown" data-timestamp="1731990194"> <span>Last edited on 19 November 2024, at 04:23</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div> </a> <div class="post-content footer-content"> <div id='mw-data-after-content'> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AE%D8%B1%D9%82_%D8%AA%D9%86%D8%A7%D8%B8%D8%B1_%D8%A7%D9%84%D8%B4%D8%AD%D9%86%D8%A9_%D9%88%D8%A7%D9%84%D8%B3%D9%88%D9%8A%D8%A9" title="خرق تناظر الشحنة والسوية – Arabic" lang="ar" hreflang="ar" data-title="خرق تناظر الشحنة والسوية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9F%D0%B0%D1%80%D1%83%D1%88%D1%8D%D0%BD%D0%BD%D0%B5_CP-%D1%96%D0%BD%D0%B2%D0%B0%D1%80%D1%8B%D1%8F%D0%BD%D1%82%D0%BD%D0%B0%D1%81%D1%86%D1%96" title="Парушэнне CP-інварыянтнасці – Belarusian" lang="be" hreflang="be" data-title="Парушэнне CP-інварыянтнасці" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Violaci%C3%B3_CP" title="Violació CP – Catalan" lang="ca" hreflang="ca" data-title="Violació CP" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Naru%C5%A1en%C3%AD_CP-symetrie" title="Narušení CP-symetrie – Czech" lang="cs" hreflang="cs" data-title="Narušení CP-symetrie" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/CP-Verletzung" title="CP-Verletzung – German" lang="de" hreflang="de" data-title="CP-Verletzung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Violaci%C3%B3n_CP" title="Violación CP – Spanish" lang="es" hreflang="es" data-title="Violación CP" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%86%D9%82%D8%B6_%D8%B3%DB%8C%E2%80%8C%D9%BE%DB%8C" title="نقض سیپی – Persian" lang="fa" hreflang="fa" data-title="نقض سیپی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Violation_de_CP" title="Violation de CP – French" lang="fr" hreflang="fr" data-title="Violation de CP" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/S%C3%A1r%C3%BA_comhchuingeacht_luchta_is_paireachta" title="Sárú comhchuingeacht luchta is paireachta – Irish" lang="ga" hreflang="ga" data-title="Sárú comhchuingeacht luchta is paireachta" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/CP_%EC%9C%84%EB%B0%98" title="CP 위반 – Korean" lang="ko" hreflang="ko" data-title="CP 위반" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/CP-simetrija" title="CP-simetrija – Croatian" lang="hr" hreflang="hr" data-title="CP-simetrija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A9%D7%91%D7%99%D7%A8%D7%AA_%D7%A1%D7%99%D7%9E%D7%98%D7%A8%D7%99%D7%99%D7%AA_CP" title="שבירת סימטריית CP – Hebrew" lang="he" hreflang="he" data-title="שבירת סימטריית CP" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/CP%E5%AF%BE%E7%A7%B0%E6%80%A7%E3%81%AE%E7%A0%B4%E3%82%8C" title="CP対称性の破れ – Japanese" lang="ja" hreflang="ja" data-title="CP対称性の破れ" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/CP_violation" title="CP violation – Uzbek" lang="uz" hreflang="uz" data-title="CP violation" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/CP_%E0%A8%89%E0%A8%B2%E0%A9%B0%E0%A8%98%E0%A8%A3%E0%A8%BE" title="CP ਉਲੰਘਣਾ – Punjabi" lang="pa" hreflang="pa" data-title="CP ਉਲੰਘਣਾ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Viola%C3%A7%C3%A3o_de_CP" title="Violação de CP – Portuguese" lang="pt" hreflang="pt" data-title="Violação de CP" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9D%D0%B0%D1%80%D1%83%D1%88%D0%B5%D0%BD%D0%B8%D0%B5_CP-%D0%B8%D0%BD%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Нарушение CP-инвариантности – Russian" lang="ru" hreflang="ru" data-title="Нарушение CP-инвариантности" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/CP_violation" title="CP violation – Simple English" lang="en-simple" hreflang="en-simple" data-title="CP violation" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Kr%C5%A1itev_simetrije_CP" title="Kršitev simetrije CP – Slovenian" lang="sl" hreflang="sl" data-title="Kršitev simetrije CP" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/CP-rikko" title="CP-rikko – Finnish" lang="fi" hreflang="fi" data-title="CP-rikko" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/CP-brott" title="CP-brott – Swedish" lang="sv" hreflang="sv" data-title="CP-brott" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/CP_ihlali" title="CP ihlali – Turkish" lang="tr" hreflang="tr" data-title="CP ihlali" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%BE%D1%80%D1%83%D1%88%D0%B5%D0%BD%D0%BD%D1%8F_CP-%D1%96%D0%BD%D0%B2%D0%B0%D1%80%D1%96%D0%B0%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%96" title="Порушення CP-інваріантності – Ukrainian" lang="uk" hreflang="uk" data-title="Порушення CP-інваріантності" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/CP%E7%A0%B4%E5%A3%9E" title="CP破壞 – Chinese" lang="zh" hreflang="zh" data-title="CP破壞" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li></ul> </section> </div> <div class="minerva-footer-logo"><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod"> This page was last edited on 19 November 2024, at 04:23<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="//en.wikipedia.org/w/index.php?title=CP_violation&mobileaction=toggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div> <!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-w5j95","wgBackendResponseTime":249,"wgPageParseReport":{"limitreport":{"cputime":"1.084","walltime":"1.359","ppvisitednodes":{"value":4082,"limit":1000000},"postexpandincludesize":{"value":159025,"limit":2097152},"templateargumentsize":{"value":3066,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":171221,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1013.590 1 -total"," 36.75% 372.511 1 Template:Reflist"," 27.71% 280.860 27 Template:Cite_journal"," 14.61% 148.053 1 Template:Beyond_the_Standard_Model"," 14.35% 145.440 1 Template:Sidebar_with_collapsible_lists"," 10.37% 105.129 1 Template:Short_description"," 6.51% 66.025 3 Template:Navbox"," 6.23% 63.096 2 Template:Pagetype"," 5.47% 55.422 1 Template:Citation_needed_section"," 5.04% 51.061 1 Template:Unreferenced"]},"scribunto":{"limitreport-timeusage":{"value":"0.645","limit":"10.000"},"limitreport-memusage":{"value":7762210,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.codfw.main-7556f8b5dd-x2vbw","timestamp":"20241122144354","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"CP violation","url":"https:\/\/en.wikipedia.org\/wiki\/CP_violation","sameAs":"http:\/\/www.wikidata.org\/entity\/Q12794416","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q12794416","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-11-24T06:12:28Z","dateModified":"2024-11-19T04:23:14Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/1\/1c\/CMS_Higgs-event.jpg","headline":"violation of CP (charge-parity) symmetry in particle physics and cosmology"}</script><script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> </body> </html>