CINXE.COM
ComSIS | Computer Science and Information Systems
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>ComSIS | Computer Science and Information Systems</title> <link rel="stylesheet" type="text/css" href="res/style1.css" /> </head> <body> <script type="text/javascript" src="res/wz_tooltip.js"></script> <script type="text/javascript" src="res/slide.js"></script> <div id="all"> <div id="header"> <h1>Computer Science and Information Systems</h1> </div> <!-- header --> <div id="main"> <div id="sidebar"> <p>About the journal</p> <ul> <li><a href="index.php">Home page</a></li> <li><a href="contact.php">Contact information</a></li> <li><a href="aims.php">Aims and scope</a></li> <li><a href="indexing.php">Indexing information</a></li> <li><a href="policies.php">Editorial policies</a></li> <li><a href="consortium.php">ComSIS consortium</a></li> <li><a href="boards.php">Journal boards</a></li> <li><a href="managing.php">Managing board</a></li> </ul> <p>For authors</p> <ul> <li><a href="information.php">Information for contributors</a></li> <li><a href="http://ojs.pmf.uns.ac.rs/index.php/comsis">Paper submission</a></li> <li><a href="submission.php">Article submission through OJS</a></li> <li><a href="copyright.php">Copyright transfer form</a></li> <li><a href="download.php">Download section</a></li> </ul> <p>For readers</p> <ul> <li><a href="archive.php?show=lstnew">Forthcoming articles</a></li> <li><a href="archive.php?show=vol2104">Current issue</a></li> <li><a href="archive.php">Archive</a></li> </ul> <p>For reviewers</p> <ul> <li><a href="http://ojs.pmf.uns.ac.rs/index.php/comsis">View and review submissions</a></li> </ul> <p>News</p> <ul> <li><a href="https://www.facebook.com/ComSISJournal/"> <img src="res/fb.png" alt="FB"/> Journal's Facebook page</a></li> <li><a href="cfp.php">Calls for special issues</a></li> <li><a href="notification.php">New issue notification</a></li> </ul> </div> <!-- sidebar --> <div id="content"> <!-- BEGIN --> <h1>Volume 21, Issue 4 (September 2024)</h1><h2></h2><p><a class="hidden" href="/archive.php?show=ppreditorial2104a">Editorial<br/><em>Mirjana Ivanović, Miloš Radovanović and Vladimir Kurbalija</em></a><br/>[ <a href="/archive.php?show=ppreditorial2104a">view</a> | <a href="pdf.php?id=editorial2104a">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Ivanović, M., Radovanović, M., Kurbalija, V.: Editorial. Computer Science and Information Systems, Vol. 21, No. 4, i-ii. (2024), https://doi.org/10.2298/CSIS240400iI</span></span></p><p><a class="hidden" href="/archive.php?show=ppreditorial2104b">Guest Editorial: Explainable and trustworthy methods for next-generation artificial intelligence for Reasonable Data Size<br/><em>Dalin Zhang and Ivan Luković</em></a><br/>[ <a href="/archive.php?show=ppreditorial2104b">view</a> | <a href="pdf.php?id=editorial2104b">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Zhang, D., Luković, I.: Guest Editorial: Explainable and trustworthy methods for next-generation artificial intelligence for Reasonable Data Size. Computer Science and Information Systems, Vol. 21, No. 4, iii–iv. (2024), https://doi.org/10.2298/CSIS240400iiiZ</span></span></p><p><a class="hidden" href="/archive.php?show=ppreditorial2104c">Guest Editorial: Recent Advances in AI Methods for Image Processing: Theory, Algorithms, and Applications<br/><em>Shoulin Yin and Mirjana Ivanović</em></a><br/>[ <a href="/archive.php?show=ppreditorial2104c">view</a> | <a href="pdf.php?id=editorial2104c">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Yin, S., Ivanović, M.: Guest Editorial: Recent Advances in AI Methods for Image Processing: Theory, Algorithms, and Applications. Computer Science and Information Systems, Vol. 21, No. 4, v–viii. (2024), https://doi.org/10.2298/CSIS240400vY</span></span></p><p><a class="hidden" href="/archive.php?show=ppreditorial2104d">Guest Editorial: Selected papers from the European Conference on Advances in Databases and Information Systems<br/><em>Francesca Bugiotti, Johann Gamper, Genoveva Vargas-Solar and Ester Zumpano</em></a><br/>[ <a href="/archive.php?show=ppreditorial2104d">view</a> | <a href="pdf.php?id=editorial2104d">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Bugiotti, F., Gamper, J., Vargas-Solar, G., Zumpano, E.: Guest Editorial: Selected papers from the European Conference on Advances in Databases and Information Systems. Computer Science and Information Systems, Vol. 21, No. 4, ix–ix. (2024), https://doi.org/10.2298/CSIS240400ixB</span></span></p><h2>Papers</h2><p><a class="hidden" href="/archive.php?show=ppr930-2312">Threshold Segmentation Based on Information Fusion for Object Shadow Detection in Remote Sensing Images<br/><em>Shoulin Yin, Liguo Wang and Lin Teng</em></a><br/>[ <a href="/archive.php?show=ppr930-2312">view</a> | <a href="pdf.php?id=930-2312">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Yin, S., Wang, L., Teng, L.: Threshold Segmentation Based on Information Fusion for Object Shadow Detection in Remote Sensing Images. Computer Science and Information Systems, Vol. 21, No. 4, 1221–1241. (2024), https://doi.org/10.2298/CSIS231230023Y</span></span></p><p><a class="hidden" href="/archive.php?show=ppr926-2311">Tourist services management through clients scoring using a bio-inspired agent architecture<br/><em>Raúl Moreno, Alberto Fernández-Isabel, Vı́ctor Aceña, Isaac Martı́n de Diego and Javier M. Moguerza</em></a><br/>[ <a href="/archive.php?show=ppr926-2311">view</a> | <a href="pdf.php?id=926-2311">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Moreno, R., Fernández-Isabel, A., Aceña, V., Diego, I. M. d., Moguerza, J. M.: Tourist services management through clients scoring using a bio-inspired agent architecture. Computer Science and Information Systems, Vol. 21, No. 4, 1243–1268. (2024), https://doi.org/10.2298/CSIS231120034M</span></span></p><p><a class="hidden" href="/archive.php?show=ppr929-2312">PTB-FLA Development Paradigm Adaptation for ChatGPT<br/><em>Miroslav Popovic, Marko Popovic, Ivan Kastelan, Miodrag Djukic and Ilija Basicevic</em></a><br/>[ <a href="/archive.php?show=ppr929-2312">view</a> | <a href="pdf.php?id=929-2312">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Popovic, M., Popovic, M., Kastelan, I., Djukic, M., Basicevic, I.: PTB-FLA Development Paradigm Adaptation for ChatGPT. Computer Science and Information Systems, Vol. 21, No. 4, 1269–1292. (2024), https://doi.org/10.2298/CSIS231224036P</span></span></p><p><a class="hidden" href="/archive.php?show=ppr943-2403">TRL-PROTAC: A pre-trained generator of PROTACs targeting specific proteins optimized by reinforcement learning<br/><em>Yuhao Dai and Fei Zhu</em></a><br/>[ <a href="/archive.php?show=ppr943-2403">view</a> | <a href="pdf.php?id=943-2403">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Dai, Y., Zhu, F.: TRL-PROTAC: A pre-trained generator of PROTACs targeting specific proteins optimized by reinforcement learning. Computer Science and Information Systems, Vol. 21, No. 4, 1293–1320. (2024), https://doi.org/10.2298/CSIS240327039D</span></span></p><p><a class="hidden" href="/archive.php?show=ppr932-2401">Psychological Effect Computation of Courtroom Arguments: A Deep Learning Approach of EEG Signal Data<br/><em>Xuan Zhou, Yaming Liu, Baoqian Jiao, Hanzhen Ouyang and Weihui Dai</em></a><br/>[ <a href="/archive.php?show=ppr932-2401">view</a> | <a href="pdf.php?id=932-2401">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Zhou, X., Liu, Y., Jiao, B., Ouyang, H., Dai, W.: Psychological Effect Computation of Courtroom Arguments: A Deep Learning Approach of EEG Signal Data. Computer Science and Information Systems, Vol. 21, No. 4, 1321–1334. (2024), https://doi.org/10.2298/CSIS240122037Z</span></span></p><p><a class="hidden" href="/archive.php?show=ppr927-2311">A Method for Solving Reconfiguration Blueprints Based on Multi-Agent Reinforcement Learning<br/><em>Jing Cheng, Wen Tan, Guangzhe Lv, Guodong Li, Wentao Zhang and Zihao Liu</em></a><br/>[ <a href="/archive.php?show=ppr927-2311">view</a> | <a href="pdf.php?id=927-2311">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Cheng, J., Tan, W., Lv, G., Li, G., Zhang, W., Liu, Z.: A Method for Solving Reconfiguration Blueprints Based on Multi-Agent Reinforcement Learning. Computer Science and Information Systems, Vol. 21, No. 4, 1335–1357. (2024), https://doi.org/10.2298/CSIS231129035C</span></span></p><p><a class="hidden" href="/archive.php?show=ppr938-2402">Biometric lock with facial recognition implemented with deep learning techniques<br/><em>José Misael Burruel-Zazueta, Héctor Rodríguez-Rangel, Gloria Ekaterine Peralta-Peñuñuri, Vicenç Puig Cayuela, Ignacio Algredo-Badillo and Luis Alberto Morales-Rosales</em></a><br/>[ <a href="/archive.php?show=ppr938-2402">view</a> | <a href="pdf.php?id=938-2402">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Burruel-Zazueta, J. M., Rodríguez-Rangel, H., Peralta-Peñuñuri, G. E., Cayuela, V. P., Algredo-Badillo, I., Morales-Rosales, L. A.: Biometric lock with facial recognition implemented with deep learning techniques. Computer Science and Information Systems, Vol. 21, No. 4, 1359–1387. (2024), https://doi.org/10.2298/CSIS240229038B</span></span></p><p><a class="hidden" href="/archive.php?show=ppr946-2404">BLSAE-SNIDS: A Bi-LSTM Sparse Autoencoder Framework for Satellite Network Intrusion Detection<br/><em>Shi Shuxin, Han Bing, Wu Zhongdai, Han Dezhi, Wu Huafeng and Mei Xiaojun</em></a><br/>[ <a href="/archive.php?show=ppr946-2404">view</a> | <a href="pdf.php?id=946-2404">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Shuxin, S., Bing, H., Zhongdai, W., Dezhi, H., Huafeng, W., Xiaojun, M.: BLSAE-SNIDS: A Bi-LSTM Sparse Autoencoder Framework for Satellite Network Intrusion Detection. Computer Science and Information Systems, Vol. 21, No. 4, 1389–1410. (2024), https://doi.org/10.2298/CSIS240401041S</span></span></p><p><a class="hidden" href="/archive.php?show=ppr945-2403">Sentiment Polarity Analysis of Love Letters: Evaluation of TextBlob, Vader, Flair, and Hugging Face Transformer<br/><em>Gaganpreet Kaur, Amandeep Kaur, Meenu Khurana and Robertas Damaševičius</em></a><br/>[ <a href="/archive.php?show=ppr945-2403">view</a> | <a href="pdf.php?id=945-2403">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Kaur, G., Kaur, A., Khurana, M., Damaševičius, R.: Sentiment Polarity Analysis of Love Letters: Evaluation of TextBlob, Vader, Flair, and Hugging Face Transformer. Computer Science and Information Systems, Vol. 21, No. 4, 1411–1433. (2024), https://doi.org/10.2298/CSIS240328040K</span></span></p><h2>Explainable and trustworthy methods for next-generation artificial intelligence for Reasonable Data Size</h2><p><a class="hidden" href="/archive.php?show=ppr16316">Advancing Crack Segmentation Detection:Introducing AAMC-Net Algorithm for Image Crack Analysis<br/><em>WANG Xiaofang, LIU Chenfang, Hou Junliang and Zhou Liang</em></a><br/>[ <a href="/archive.php?show=ppr16316">view</a> | <a href="pdf.php?id=16316">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Xiaofang, W., Chenfang, L., Junliang, H., Liang, Z.: Advancing Crack Segmentation Detection:Introducing AAMC-Net Algorithm for Image Crack Analysis. Computer Science and Information Systems, Vol. 21, No. 4, 1435–1455. (2024), https://doi.org/10.2298/CSIS230725042W</span></span></p><p><a class="hidden" href="/archive.php?show=ppr16320">Enhancing Architectural Image Processing: A Novel 2D to 3D Algorithm Using Improved Convolutional Neural Networks<br/><em>Qianying Zou, Fengyu Liu and Yuan Liao</em></a><br/>[ <a href="/archive.php?show=ppr16320">view</a> | <a href="pdf.php?id=16320">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Zou, Q., Liu, F., Liao, Y.: Enhancing Architectural Image Processing: A Novel 2D to 3D Algorithm Using Improved Convolutional Neural Networks. Computer Science and Information Systems, Vol. 21, No. 4, 1457–1481. (2024), https://doi.org/10.2298/CSIS230725043Z</span></span></p><p><a class="hidden" href="/archive.php?show=ppr16451">Learning Discriminative Representations through an Attention Mechanism for Image-based Person Re-identification<br/><em>Jing Liu and Guoqing Zhou</em></a><br/>[ <a href="/archive.php?show=ppr16451">view</a> | <a href="pdf.php?id=16451">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Liu, J., Zhou, G.: Learning Discriminative Representations through an Attention Mechanism for Image-based Person Re-identification. Computer Science and Information Systems, Vol. 21, No. 4, 1483–1498. (2024), https://doi.org/10.2298/CSIS230829044L</span></span></p><p><a class="hidden" href="/archive.php?show=ppr16483">Semantic Feature-Based Test Selection for Deep Neural Networks: A Frequency Domain Perspective<br/><em>Zhouxian Jiang, Honghui Li, Xuetao Tian and Rui Wang</em></a><br/>[ <a href="/archive.php?show=ppr16483">view</a> | <a href="pdf.php?id=16483">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Jiang, Z., Li, H., Tian, X., Wang, R.: Semantic Feature-Based Test Selection for Deep Neural Networks: A Frequency Domain Perspective. Computer Science and Information Systems, Vol. 21, No. 4, 1499–1522. (2024), https://doi.org/10.2298/CSIS230907045J</span></span></p><p><a class="hidden" href="/archive.php?show=ppr16485">AI Large Models Bring Great Opportunities to Reusable Design of CAD Software<br/><em>Yunlei Sun, Bingyi Yan and Zhaotong Shao</em></a><br/>[ <a href="/archive.php?show=ppr16485">view</a> | <a href="pdf.php?id=16485">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Sun, Y., Yan, B., Shao, Z.: AI Large Models Bring Great Opportunities to Reusable Design of CAD Software. Computer Science and Information Systems, Vol. 21, No. 4, 1523–1546. (2024), https://doi.org/10.2298/CSIS230907046S</span></span></p><p><a class="hidden" href="/archive.php?show=ppr16486">A Hybrid GA-Powell Algorithm for Geometric Constraint Solving<br/><em>Sun Yunlei and Li Yucong</em></a><br/>[ <a href="/archive.php?show=ppr16486">view</a> | <a href="pdf.php?id=16486">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Yunlei, S., Yucong, L.: A Hybrid GA-Powell Algorithm for Geometric Constraint Solving. Computer Science and Information Systems, Vol. 21, No. 4, 1547–1565. (2024), https://doi.org/10.2298/CSIS230907047Y</span></span></p><p><a class="hidden" href="/archive.php?show=ppr16597">ALFormer: Attribute Localization Transformer in Pedestrian Attribute Recognition<br/><em>Yuxin Liu, Mingzhe Wang, Chao Li and Shuoyan Liu</em></a><br/>[ <a href="/archive.php?show=ppr16597">view</a> | <a href="pdf.php?id=16597">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Liu, Y., Wang, M., Li, C., Liu, S.: ALFormer: Attribute Localization Transformer in Pedestrian Attribute Recognition. Computer Science and Information Systems, Vol. 21, No. 4, 1567–1582. (2024), https://doi.org/10.2298/CSIS231015048L</span></span></p><h2>Recent Advances in AI Methods for Image Processing: Theory, Algorithms, and Applications</h2><p><a class="hidden" href="/archive.php?show=ppr17110">GCN-LSTM: Multi-label educational emotion prediction based on graph Convolutional network and long and short term memory network fusion label correlation in online social networks<br/><em>Zhiguang Liu 1∗ , Fengshuai Li 2 , Guoyin Hao 3 , Xiaoqing He 1 , and Yuanheng Zhang 1</em></a><br/>[ <a href="/archive.php?show=ppr17110">view</a> | <a href="pdf.php?id=17110">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>1, Z. L. 1. ,. F. L. 2. ,. G. H. 3. ,. X. H. 1. ,. a. Y. Z.: GCN-LSTM: Multi-label educational emotion prediction based on graph Convolutional network and long and short term memory network fusion label correlation in online social networks. Computer Science and Information Systems, Vol. 21, No. 4, 1583–1605. (2024), https://doi.org/10.2298/CSIS240314049L</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17111">A multi-feature Fusion Model Based on Long and Short Term Memory Network and Improved Artificial Bee Colony Algorithm for English Text Classification<br/><em>Tianying Wen</em></a><br/>[ <a href="/archive.php?show=ppr17111">view</a> | <a href="pdf.php?id=17111">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Wen, T.: A multi-feature Fusion Model Based on Long and Short Term Memory Network and Improved Artificial Bee Colony Algorithm for English Text Classification. Computer Science and Information Systems, Vol. 21, No. 4, 1607–1627. (2024), https://doi.org/10.2298/CSIS240314050W</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17112">A Novel Industrial Big Data Fusion Method Based on Q-learning and Cascade Classifier<br/><em>Xi Zhang, Jiyue Wang, Ying Huang and Feiyue Zhu</em></a><br/>[ <a href="/archive.php?show=ppr17112">view</a> | <a href="pdf.php?id=17112">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Zhang, X., Wang, J., Huang, Y., Zhu, F.: A Novel Industrial Big Data Fusion Method Based on Q-learning and Cascade Classifier. Computer Science and Information Systems, Vol. 21, No. 4, 1629–1649. (2024), https://doi.org/10.2298/CSIS240314051Z</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17113">Remora Optimization Algorithm-based Adaptive Fusion via Ant Colony Optimization for Traveling Salesman Problem<br/><em>Lin Piao</em></a><br/>[ <a href="/archive.php?show=ppr17113">view</a> | <a href="pdf.php?id=17113">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Piao, L.: Remora Optimization Algorithm-based Adaptive Fusion via Ant Colony Optimization for Traveling Salesman Problem. Computer Science and Information Systems, Vol. 21, No. 4, 1651–1672. (2024), https://doi.org/10.2298/CSIS240314052P</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17114">GAN-DNADE: Image Encryption Algorithm Based on Generative Adversarial Network and DNA Dynamic Encoding<br/><em>Xi Wang</em></a><br/>[ <a href="/archive.php?show=ppr17114">view</a> | <a href="pdf.php?id=17114">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Wang, X.: GAN-DNADE: Image Encryption Algorithm Based on Generative Adversarial Network and DNA Dynamic Encoding. Computer Science and Information Systems, Vol. 21, No. 4, 1673–1697. (2024), https://doi.org/10.2298/CSIS240314053W</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17115">Multi-frame Network Feature Fusion Model and Self-attention Mechanism for Vehicle Lane Line Detection<br/><em>Guang Zhu, Yajuan Liu and Jiyue Wang</em></a><br/>[ <a href="/archive.php?show=ppr17115">view</a> | <a href="pdf.php?id=17115">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Zhu, G., Liu, Y., Wang, J.: Multi-frame Network Feature Fusion Model and Self-attention Mechanism for Vehicle Lane Line Detection. Computer Science and Information Systems, Vol. 21, No. 4, 1699–1723. (2024), https://doi.org/10.2298/CSIS240314054Z</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17116">Stacked Denoised Auto-encoding Network-based Kernel Principal Component Analysis for Cyber Physical Systems Intrusion Detection in Business Management<br/><em>Zhihao Song</em></a><br/>[ <a href="/archive.php?show=ppr17116">view</a> | <a href="pdf.php?id=17116">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Song, Z.: Stacked Denoised Auto-encoding Network-based Kernel Principal Component Analysis for Cyber Physical Systems Intrusion Detection in Business Management. Computer Science and Information Systems, Vol. 21, No. 4, 1725–1743. (2024), https://doi.org/10.2298/CSIS240314055S</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17117">A Novel Image Enhancement Method Using Retinex-based Illumination Map Weighted Guided Filtering<br/><em>Su Chen and Dahai Li</em></a><br/>[ <a href="/archive.php?show=ppr17117">view</a> | <a href="pdf.php?id=17117">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Chen, S., Li, D.: A Novel Image Enhancement Method Using Retinex-based Illumination Map Weighted Guided Filtering. Computer Science and Information Systems, Vol. 21, No. 4, 1745–1764. (2024), https://doi.org/10.2298/CSIS240314056C</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17118">Underwater Image Denoising Based on Curved Wave Filtering and Two-dimensional Variational Mode Decomposition<br/><em>Lin Teng, Yulong Qiao and Shoulin Yin</em></a><br/>[ <a href="/archive.php?show=ppr17118">view</a> | <a href="pdf.php?id=17118">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Teng, L., Qiao, Y., Yin, S.: Underwater Image Denoising Based on Curved Wave Filtering and Two-dimensional Variational Mode Decomposition. Computer Science and Information Systems, Vol. 21, No. 4, 1765–1781. (2024), https://doi.org/10.2298/CSIS240314057T</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17216">A Novel Deep Fully Convolutional Encoder-Decoder Network and Similarity Analysis for English Education Text Event Clustering Analysis<br/><em>Zhenping Jing</em></a><br/>[ <a href="/archive.php?show=ppr17216">view</a> | <a href="pdf.php?id=17216">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Jing, Z.: A Novel Deep Fully Convolutional Encoder-Decoder Network and Similarity Analysis for English Education Text Event Clustering Analysis. Computer Science and Information Systems, Vol. 21, No. 4, 1783–1800. (2024), https://doi.org/10.2298/CSIS240418062J</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17208">Attitude Estimation of aircraft Based on Quaternion SRCKF-SLAM Algorithm<br/><em>Dandan Wang, Zhaokun Zhu, Liang Yu, Hongjie Li and Kaituo Tan</em></a><br/>[ <a href="/archive.php?show=ppr17208">view</a> | <a href="pdf.php?id=17208">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Wang, D., Zhu, Z., Yu, L., Li, H., Tan, K.: Attitude Estimation of aircraft Based on Quaternion SRCKF-SLAM Algorithm. Computer Science and Information Systems, Vol. 21, No. 4, 1801–1822. (2024), https://doi.org/10.2298/CSIS240418058W</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17214">Spatio-Temporal-based Multi-level Aggregation Network for Physical Action Recognition<br/><em>Yuhang Wang</em></a><br/>[ <a href="/archive.php?show=ppr17214">view</a> | <a href="pdf.php?id=17214">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Wang, Y.: Spatio-Temporal-based Multi-level Aggregation Network for Physical Action Recognition. Computer Science and Information Systems, Vol. 21, No. 4, 1823–1843. (2024), https://doi.org/10.2298/CSIS240418060W</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17213">Multi-object Real-time Tracking for Intelligent Breeding of Animal<br/><em>Fei Wang, Bin Xia and Liwu Pan</em></a><br/>[ <a href="/archive.php?show=ppr17213">view</a> | <a href="pdf.php?id=17213">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Wang, F., Xia, B., Pan, L.: Multi-object Real-time Tracking for Intelligent Breeding of Animal. Computer Science and Information Systems, Vol. 21, No. 4, 1845–1864. (2024), https://doi.org/10.2298/CSIS240418059W</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17215">MFE-Transformer: Adaptive English Text Named Entity Recognition Method Based on Multi-feature Extraction and Transformer<br/><em>Liuxin Gao</em></a><br/>[ <a href="/archive.php?show=ppr17215">view</a> | <a href="pdf.php?id=17215">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Gao, L.: MFE-Transformer: Adaptive English Text Named Entity Recognition Method Based on Multi-feature Extraction and Transformer. Computer Science and Information Systems, Vol. 21, No. 4, 1865–1885. (2024), https://doi.org/10.2298/CSIS240418061G</span></span></p><h2>Selected papers from the European Conference on Advances in Databases and Information Systems</h2><p><a class="hidden" href="/archive.php?show=ppr17068">Identifying Occurrences of the Cnidarian Physalia physalis in Social Media Data<br/><em>Heloisa F. Rocha, Lorena S. Nascimento, Leonardo Camargo, Mauricio A. Noernberg, Aurora T. Ramirez Pozo and Carmem S. Hara</em></a><br/>[ <a href="/archive.php?show=ppr17068">view</a> | <a href="pdf.php?id=17068">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Rocha, H. F., Nascimento, L. S., Camargo, L., Noernberg, M. A., Pozo, A. T. R., Hara, C. S.: Identifying Occurrences of the Cnidarian Physalia physalis in Social Media Data. Computer Science and Information Systems, Vol. 21, No. 4, 1887–1911. (2024), https://doi.org/10.2298/CSIS240301064R</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17069">Automatic Conceptual Database Design based on Heterogeneous Source Artifacts<br/><em>Goran Banjac, Drazen Brdjanin and Danijela Banjac</em></a><br/>[ <a href="/archive.php?show=ppr17069">view</a> | <a href="pdf.php?id=17069">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Banjac, G., Brdjanin, D., Banjac, D.: Automatic Conceptual Database Design based on Heterogeneous Source Artifacts. Computer Science and Information Systems, Vol. 21, No. 4, 1913–1961. (2024), https://doi.org/10.2298/CSIS240229065B</span></span></p><p><a class="hidden" href="/archive.php?show=ppr17066">Maritime Trajectory Mining: An Automatic Zones of Interests Discovery and Annotation Framework<br/><em>Omar Ghannou, Etienne Thuillier and Omar Boucelma</em></a><br/>[ <a href="/archive.php?show=ppr17066">view</a> | <a href="pdf.php?id=17066">download</a> | <a class="cite">cite</a> ]<br/><span class="citation"><span>Ghannou, O., Thuillier, E., Boucelma, O.: Maritime Trajectory Mining: An Automatic Zones of Interests Discovery and Annotation Framework. Computer Science and Information Systems, Vol. 21, No. 4, 1963–1978. (2024), https://doi.org/10.2298/CSIS240301063G</span></span></p> <!-- END --> </div> <!-- content --> </div> <!-- main --> <div id="footer_top"> </div> <div id="footer"> <div class="left">Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia, <a href="mailto:comsis@uns.ac.rs">comsis@uns.ac.rs</a></div> <div class="left">Published by ComSIS Consortium under<br/><a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/4.0/">Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License<br><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png"/></a></div> <div class="clearer"> </div> </div> <!-- footer --> </div> <!-- all --> </body> </html>