CINXE.COM

Search results for: country of manufacturing

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: country of manufacturing</title> <meta name="description" content="Search results for: country of manufacturing"> <meta name="keywords" content="country of manufacturing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="country of manufacturing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="country of manufacturing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5753</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: country of manufacturing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5753</span> The Interaction of Country-of-Manufacturing with Country-of-Design within Different Consumption Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Genc">Ebru Genc</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Ching%20Wang"> Shih-Ching Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today’s globalized world, while companies move their production centers to developing countries in order to gain cost advantage, they receive negative responses from consumers because of the weak image of those countries. In this study, we looked at this tradeoff faced by multinational companies. Some companies that have headquarters in developed countries have devised a strategy of manipulating country-of-origin (COO) information by introducing the concept of country of design (COD). We analyzed the impact of country-of-manufacturing (COM) information on consumers’ product evaluation and purchase intention in the presence of different levels of COD information, namely, in terms of developed and developing countries. We found that it is not advantageous for a firm to publish a design location with a strong image if the firm is producing in a country that has a weak image. On the other hand, revealing COD information has a reinforcing effect on consumers’ product evaluation and purchase intention if the firm is producing in a country with a strong image. Second, we studied the impact of consumption context on this relationship (in terms of public or private use) and found that for products that are typically used in public, COM has significantly shown higher importance on product evaluation and purchase intention, compared to products typically used in private. However, our results show that consumption context shows no effect of an impact resulting from COD information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumption%20context" title="consumption context">consumption context</a>, <a href="https://publications.waset.org/abstracts/search?q=country%20of%20design" title=" country of design"> country of design</a>, <a href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing" title=" country of manufacturing"> country of manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=country%20of%20origin" title=" country of origin"> country of origin</a> </p> <a href="https://publications.waset.org/abstracts/54939/the-interaction-of-country-of-manufacturing-with-country-of-design-within-different-consumption-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5752</span> Investigating the Use of Advanced Manufacturing Technologies in the Assembly Type Manufacturing Companies in Trinidad and Tobago</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Sangster">Nadine Sangster</a>, <a href="https://publications.waset.org/abstracts/search?q=Akil%20James"> Akil James</a>, <a href="https://publications.waset.org/abstracts/search?q=Rondell%20Duke"> Rondell Duke</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Ameerali"> Aaron Ameerali</a>, <a href="https://publications.waset.org/abstracts/search?q=Terrence%20Lalla"> Terrence Lalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The market place of the 21st century is evolving into one of merging national markets, fragmented consumer markets, and rapidly changing product technologies. The use of new technologies has become vital to the manufacturing industry for their survival and sustainability. This work focused on the assembly type industry in a small developing country and aimed at identifying the use of advanced manufacturing technologies and their impact on this sector of the manufacturing industry. It was found that some technologies were being used and that they had improved the effectiveness of those companies but there was still quite a bit of room for improvements. Some of the recommendations included benchmarking against international standards, the adoption of a “made in TT” campaign and the effective utilisation of the technologies to improve manufacturing effectiveness and thus improve competitive advantages and strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology" title="advanced manufacturing technology">advanced manufacturing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Trinidad%20and%20Tobago" title=" Trinidad and Tobago"> Trinidad and Tobago</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20engineering" title=" industrial engineering"> industrial engineering</a> </p> <a href="https://publications.waset.org/abstracts/6597/investigating-the-use-of-advanced-manufacturing-technologies-in-the-assembly-type-manufacturing-companies-in-trinidad-and-tobago" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5751</span> The Effect of Malaysia’s Outward FDI on Manufacturing Exports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teo%20Yen%20Nee">Teo Yen Nee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tham%20Siew%20Yean"> Tham Siew Yean</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Kam%20Jia%20Yi"> Andrew Kam Jia Yi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are growing concerns about the effect of increasing outward foreign direct investment (OFDI) from Malaysia. These concerns emerged when OFDI surpassed inward FDI for the first time in 2007 and in the subsequent years as well. From a theoretical point of view, the effect of OFDI on exports remains inconclusive depending on the types and/or motivations of investment. Therefore, the objective of this paper is to investigate the effect of Malaysia’s OFDI on manufacturing exports, using a reduced form exports model. The manufacturing data used in this study covered 24 manufacturing industries for the period 2003-2010. The manufacturing sector is the fourth largest sector invested by Malaysia’s OFDI abroad. However, this sector is chosen for this study because total manufacturing trade contributed significantly to Malaysia’s economy growth as reflected by its significant share in the country’s gross domestic product (138.7%) in 2013. Furthermore, Malaysia’s exports are dominated by manufacturing goods. Consequently, the drastic increase in OFDI added concerns about its impact on the country’s exports. Since OFDI activities are still relatively new in Malaysia, this study is exploratory in nature due to a lack of firm level data. Using industry level panel data, the value added of this paper is to meet the research gap by examining the effect of Malaysia’s outward FDI on manufacturing exports. Overall, the findings show that lagged inward FDI, technology development, and industry size are found to positive and significantly influence manufacturing exports as compared to other factors. The insignificant impact of OFDI on manufacturing exports suggests market seeking investment is the main form of OFDI from Malaysia and the destination markets are not served by exports before so that there are no new exports created or displacement of exports. While the results show that there is no need to worry about OFDI’s negative impact on exports, policies should be undertaken to encourage OFDI from Malaysia to create new exports for the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OFDI" title="OFDI">OFDI</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20industries" title=" manufacturing industries"> manufacturing industries</a>, <a href="https://publications.waset.org/abstracts/search?q=exports" title=" exports"> exports</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/16769/the-effect-of-malaysias-outward-fdi-on-manufacturing-exports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5750</span> Use of Six-sigma Concept in Discrete Manufacturing Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ignatio%20Madanhire">Ignatio Madanhire</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Mbohwa"> Charles Mbohwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficiency in manufacturing is critical in raising the value of exports so as to gainfully trade on the regional and international markets. There seems to be increasing popularity of continuous improvement strategies availed to manufacturing entities, but this research study established that there has not been a similar popularity accorded to the Six Sigma methodology. Thus this work was conducted to investigate the applicability, effectiveness, usefulness, application and suitability of the Six Sigma methodology as a competitiveness option for discrete manufacturing entity. Development of Six-sigma center in the country with continuous improvement information would go a long way in benefiting the entire industry <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20manufacturing" title="discrete manufacturing">discrete manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=six-sigma" title=" six-sigma"> six-sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20improvement" title=" continuous improvement"> continuous improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=competitiveness" title=" competitiveness"> competitiveness</a> </p> <a href="https://publications.waset.org/abstracts/13351/use-of-six-sigma-concept-in-discrete-manufacturing-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5749</span> Industrial Applications of Additive Manufacturing and 3D Printing Technology: A Review from South Africa Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micheal%20O.%20Alabi">Micheal O. Alabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) is the official industry standard term (ASTM F2792) for all applications of the technology which is also known as 3D printing technology. It is defined as the process of joining materials to make objects from 3D model data, and it is usually layer upon layer, as opposed to subtractive manufacturing methodologies. This technology has gained significant interest within the academic, research institute and industry because of its ability to create complex geometries with customizable material properties. Despite the late adoption of the technology, additive manufacturing has been active in South Africa for past 21 years and it is predicted that additive manufacturing technology will play a significant and game-changing role in the fourth industrial revolution and in particular it promises to play an ever-growing role in efforts to re-industrialize the economy of South Africa. At the end of 2006, there are approximately ninety 3D printers in South Africa and in 2015 it was estimated that there are 3500 additive manufacturing systems and 3D printers in circulation in South Africa. A reasonable number of these additive manufacturing machines are in the high end of the market, in science councils and higher education institutions and this shows that the future of additive manufacturing in South Africa is very brighter compared to other African countries. This paper reviews the past and current industrial applications of additive manufacturing in South Africa from the academic research and industry perspective and what are the benefits of this technology to manufacturing companies and industrial sectors in the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing%20technology" title=" 3D printing technology"> 3D printing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20applications" title=" industrial applications"> industrial applications</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/62748/industrial-applications-of-additive-manufacturing-and-3d-printing-technology-a-review-from-south-africa-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5748</span> Development Trends of the Manufacturing Industry in Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nino%20Grigolaia">Nino Grigolaia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction. The paper discusses the role of the manufacturing industry in the Georgian economy, analyzes the current trends in the development of the manufacturing industry, reveals its impact on the Georgian economy, and justifies the essential importance of industrial transformation for the future development of the Georgian economy. Objectives. The main objective of research is to study development trends of the manufacturing industry of Georgia and estimate the industrial policy in Georgia. Methodology. The paper uses methods of induction, deduction, analysis, synthesis, analogy, correlation, and statistical observation. A qualitative study was conducted based on a survey of industry experts and entrepreneurs in order to identify the factors hindering and contributing to the manufacturing industry. Conclusions. The research reveals that the development of the manufacturing industry and the formation of industrial policy are of special importance for the further growth and development of the Georgian economy. Based on the research, the factors promoting and hindering the development of the manufacturing industry are identified. The need to increase foreign direct investment in the industrial sector are highlighted. Recommendations for the development of the country's manufacturing industry are developed, taking into account the competitive advantages and international experience of Georgia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title="manufacturing">manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20policy" title=" industrial policy"> industrial policy</a>, <a href="https://publications.waset.org/abstracts/search?q=contributing%20factor" title=" contributing factor"> contributing factor</a>, <a href="https://publications.waset.org/abstracts/search?q=hindering%20factor" title=" hindering factor"> hindering factor</a> </p> <a href="https://publications.waset.org/abstracts/145248/development-trends-of-the-manufacturing-industry-in-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5747</span> Comparative Analysis of Effect of Capital Structure to Profitability in Manufacturing Sector in Indonesia and Malaysia in 2009 - 2014</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatane%20Semuel">Hatane Semuel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hartmann%20H.%20Ngono"> Hartmann H. Ngono</a>, <a href="https://publications.waset.org/abstracts/search?q=Sautma%20R.%20Basana"> Sautma R. Basana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of capital structure on profitability is often debated by many financial investigators. The application of the trade-off theory and pecking order theory to analyze this relationship may generate different views. Each company has its own strategies to achieve its objectives and the external environment, such as state policy has a broad impact on the relationship with the capital structure of the company's profitability. Malaysia is the country closest to Indonesia that had a similar growth rate of GDP and industrial production with Indonesia, but Malaysia has lower inflation rate than Indonesia. This study was conducted to compare the performance of manufacturing sector between two countries when entering the era of the ASEAN Economic Community (AEC). The samples for this study were 69 companies in Indonesia and 242 companies in Malaysia that engaged in manufacturing sector. The study uses panel data analysis. The study found that the capital structure have positive effect on profitability of manufacturing company in Indonesia, and it turns to negative effect on manufacturing companies in Malaysia. The results also showed that there are significant differences in short-term debt towards profitability of manufacturing companies in the two countries Indonesia and Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capital%20structure" title="capital structure">capital structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesia" title=" Indonesia"> Indonesia</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=profitability" title=" profitability"> profitability</a> </p> <a href="https://publications.waset.org/abstracts/61256/comparative-analysis-of-effect-of-capital-structure-to-profitability-in-manufacturing-sector-in-indonesia-and-malaysia-in-2009-2014" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5746</span> Framework for Improving Manufacturing &quot;Implicit Competitiveness&quot; by Enhancing Monozukuri Capability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Togawa">Takahiro Togawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Huu%20Phuc"> Nguyen Huu Phuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Oke%20Oktavianty"> Oke Oktavianty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our research focuses on a framework which analyses the relationship between product/process architecture, manufacturing organizational capability and manufacturing &quot;implicit competitiveness&quot; in order to improve manufacturing implicit competitiveness. We found that 1) there is a relationship between architecture-based manufacturing organizational capability and manufacturing implicit competitiveness, and 2) analysis and measures conducted in manufacturing organizational capability proved effective to improve manufacturing implicit competitiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=implicit%20competitiveness" title="implicit competitiveness">implicit competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=QCD" title=" QCD"> QCD</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20capacity" title=" organizational capacity"> organizational capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20strategy" title=" architectural strategy"> architectural strategy</a> </p> <a href="https://publications.waset.org/abstracts/64771/framework-for-improving-manufacturing-implicit-competitiveness-by-enhancing-monozukuri-capability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5745</span> A Review of the Run to Run (R to R) Control in the Manufacturing Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Aghapouramin">Khalil Aghapouramin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Ranjbar"> Mostafa Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Run- to- Run (R2 R) control was developed in order to monitor and control different semiconductor manufacturing processes based upon the fundamental engineering frameworks. This technology allows rectification in the optimum direction. This control always had a significant potency in which was appeared in a variety of processes. The term run to run refers to the case where the act of control would take with the aim of getting batches of silicon wafers which produced in a manufacturing process. In the present work, a brief review about run-to-run control investigated which mainly is effective in the manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Run-to-Run%20%28R2R%29%20control" title="Run-to-Run (R2R) control">Run-to-Run (R2R) control</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20in%20engineering" title=" process in engineering"> process in engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20controls" title=" manufacturing controls"> manufacturing controls</a> </p> <a href="https://publications.waset.org/abstracts/48352/a-review-of-the-run-to-run-r-to-r-control-in-the-manufacturing-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5744</span> Domestic Trade, Misallocation and Relative Prices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Amaia%20Iza%20Padilla">Maria Amaia Iza Padilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibai%20Ostolozaga"> Ibai Ostolozaga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to analyze how transportation costs between regions within a country can affect not only domestic trade but also the allocation of resources in a given region, aggregate productivity, and relative domestic prices (tradable versus non-tradable). On the one hand, there is a vast literature that analyzes the transportation costs faced by countries when trading with the rest of the world. However, this paper focuses on the effect of transportation costs on domestic trade. Countries differ in their domestic road infrastructure and transport quality. There is also some literature that focuses on the effect of road infrastructure on the price difference between regions but not on relative prices at the aggregate level. On the other hand, this work is also related to the literature on resource misallocation. Finally, the paper is also related to the literature analyzing the effect of trade on the development of the manufacturing sector. Using the World Bank Enterprise Survey database, it is observed cross-country differences in the proportion of firms that consider transportation as an obstacle. From the International Comparison Program, we obtain a significant negative correlation between GDP per worker and relative prices (manufacturing sector prices relative to the service sector). Furthermore, there is a significant negative correlation between a country’s transportation quality and the relative price of manufactured goods with respect to the price of services in that country. This is consistent with the empirical evidence of a negative correlation between transportation quality and GDP per worker, on the one hand, and the negative correlation between GDP per worker and domestic relative prices, on the other. It is also shown that in a country, the share of manufacturing firms whose main market is at the local (regional) level is negatively related to the quality of the transportation infrastructure within the country. Similarly, this index is positively related to the share of manufacturing firms whose main market is national or international. The data also shows that those countries with a higher proportion of manufacturing firms operating locally have higher relative prices. With this information in hand, the paper attempts to quantify the effects of the allocation of resources between and within sectors. The higher the trade barriers caused by transportation costs, the less efficient allocation, which causes lower aggregate productivity. Second, it is built a two-sector model where regions within a country trade with each other. On the one hand, it is found that with respect to the manufacturing sector, those countries with less trade between their regions will be characterized by a smaller variety of goods, less productive manufacturing firms on average, and higher relative prices for manufactured goods relative to service sector prices. Thus, the decline in the relative price of manufactured goods in more advanced countries could also be explained by the degree of trade between regions. This trade allows for efficient intra-industry allocation (traders are more productive, and resources are allocated more efficiently)). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=misallocation" title="misallocation">misallocation</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20prices" title=" relative prices"> relative prices</a>, <a href="https://publications.waset.org/abstracts/search?q=TFP" title=" TFP"> TFP</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20cost" title=" transportation cost"> transportation cost</a> </p> <a href="https://publications.waset.org/abstracts/162435/domestic-trade-misallocation-and-relative-prices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5743</span> The Effect of Energy Consumption and Losses on the Nigerian Manufacturing Sector: Evidence from the ARDL Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okezie%20A.%20Ihugba">Okezie A. Ihugba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bounds testing ARDL (2, 2, 2, 2, 0) technique to cointegration was used in this study to investigate the effect of energy consumption and energy loss on Nigeria's manufacturing sector from 1981 to 2020. The model was created to determine the relationship between these three variables while also accounting for interactions with control variables such as inflation and commercial bank loans to the manufacturing sector. When the dependent variables are energy consumption and energy loss, the bounds tests show that the variables of interest are bound together in the long run. Because electricity consumption is a critical factor in determining manufacturing value-added in Nigeria, some intriguing observations were made. According to the findings, the relationship between LELC and LMVA is statistically significant. According to the findings, electricity consumption reduces manufacturing value-added. The target variable (energy loss) is statistically significant and has a positive sign. In Nigeria, a 1% reduction in energy loss increases manufacturing value-added by 36% in the first lag and 35% in the second. According to the study, the government should speed up the ongoing renovation of existing power plants across the country, as well as the construction of new gas-fired power plants. This will address a number of issues, including overpricing of electricity as a result of grid failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=L60" title="L60">L60</a>, <a href="https://publications.waset.org/abstracts/search?q=Q43" title=" Q43"> Q43</a>, <a href="https://publications.waset.org/abstracts/search?q=H81" title=" H81"> H81</a>, <a href="https://publications.waset.org/abstracts/search?q=C52" title=" C52"> C52</a>, <a href="https://publications.waset.org/abstracts/search?q=E31" title=" E31"> E31</a>, <a href="https://publications.waset.org/abstracts/search?q=ARDL" title=" ARDL"> ARDL</a>, <a href="https://publications.waset.org/abstracts/search?q=cointegration" title=" cointegration"> cointegration</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria%27s%20manufacturing" title=" Nigeria&#039;s manufacturing"> Nigeria&#039;s manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/149668/the-effect-of-energy-consumption-and-losses-on-the-nigerian-manufacturing-sector-evidence-from-the-ardl-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5742</span> Sustainable Manufacturing Framework for Small and Medium Enterprises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajan%20Deglurkar">Rajan Deglurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research carried out in this piece of work is on 'Framework of Sustainable Manufacturing for Small and Medium Enterprises'. It consists of elucidation of concepts about sustainable manufacturing and sustainable product development with critical review performed on seven techniques of sustainable manufacturing. The work also covers the survey about critical review of awareness in the market with respect to the manufacturers and the consumers. The factors and challenges for sustainable manufacturing implementation are reviewed and simple framework is constructed for the small and medium enterprise for successful implementation of sustainable manufacturing and sustainable product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title="sustainable development">sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20manufacturing" title=" sustainable manufacturing"> sustainable manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20efficiency" title=" resource efficiency"> resource efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=framework%20for%20sustainable%20manufacturing" title=" framework for sustainable manufacturing"> framework for sustainable manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/11856/sustainable-manufacturing-framework-for-small-and-medium-enterprises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5741</span> Manufacturing Facility Location Selection: A Numercal Taxonomy Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seifoddini%20Hamid">Seifoddini Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardikoraeem%20Mahsa"> Mardikoraeem Mahsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghorayshi%20Roya"> Ghorayshi Roya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing facility location selection is an important strategic decision for many industrial corporations. In this paper, a new approach to the manufacturing location selection problem is proposed. In this approach, cluster analysis is employed to identify suitable manufacturing locations based on economic, social, environmental, and political factors. These factors are quantified using the existing real world data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20facility" title="manufacturing facility">manufacturing facility</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20sites" title=" manufacturing sites"> manufacturing sites</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20world%20data" title=" real world data"> real world data</a> </p> <a href="https://publications.waset.org/abstracts/25361/manufacturing-facility-location-selection-a-numercal-taxonomy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5740</span> Distributed Manufacturing (DM)- Smart Units and Collaborative Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hermann%20Kuehnle">Hermann Kuehnle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developments in ICT totally reshape manufacturing as machines, objects and equipment on the shop floors will be smart and online. Interactions with virtualizations and models of a manufacturing unit will appear exactly as interactions with the unit itself. These virtualizations may be driven by providers with novel ICT services on demand that might jeopardize even well established business models. Context aware equipment, autonomous orders, scalable machine capacity or networkable manufacturing unit will be the terminology to get familiar with in manufacturing and manufacturing management. Such newly appearing smart abilities with impact on network behavior, collaboration procedures and human resource development will make distributed manufacturing a preferred model to produce. Computing miniaturization and smart devices revolutionize manufacturing set ups, as virtualizations and atomization of resources unwrap novel manufacturing principles. Processes and resources obey novel specific laws and have strategic impact on manufacturing and major operational implications. Mechanisms from distributed manufacturing engaging interacting smart manufacturing units and decentralized planning and decision procedures already demonstrate important effects from this shift of focus towards collaboration and interoperability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20unit" title="autonomous unit">autonomous unit</a>, <a href="https://publications.waset.org/abstracts/search?q=networkability" title=" networkability"> networkability</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20manufacturing%20unit" title=" smart manufacturing unit"> smart manufacturing unit</a>, <a href="https://publications.waset.org/abstracts/search?q=virtualization" title=" virtualization"> virtualization</a> </p> <a href="https://publications.waset.org/abstracts/19770/distributed-manufacturing-dm-smart-units-and-collaborative-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5739</span> An Advanced Method of Minimizing Unforeseen Disruptions within a Manufacturing System: A Case Study of Amico, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Max%20Moleke">Max Moleke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing industries are faced with different types of problems. One of the most important role of controlling and monitoring a production process is to actually determine how to deal with unforeseen disruption when they arise. A majority of manufacturing tern to spend huge amount of money in order to meet up with their customers requirements and demand but due to instabilities within the manufacturing process, this objectives and goals are difficult to be achieved. In this research, we have developed a feedback control system that can minimize instability within the manufacturing system in order to boost the system output and productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disruption" title="disruption">disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a> </p> <a href="https://publications.waset.org/abstracts/51225/an-advanced-method-of-minimizing-unforeseen-disruptions-within-a-manufacturing-system-a-case-study-of-amico-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5738</span> Effect of the Workpiece Position on the Manufacturing Tolerances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahou%20Mohamed">Rahou Mohamed </a>, <a href="https://publications.waset.org/abstracts/search?q=Sebaa%20Fethi"> Sebaa Fethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheikh%20Abdelmadjid"> Cheikh Abdelmadjid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing tolerancing is intended to determine the intermediate geometrical and dimensional states of the part during its manufacturing process. These manufacturing dimensions also serve to satisfy not only the functional requirements given in the definition drawing but also the manufacturing constraints, for example geometrical defects of the machine, vibration, and the wear of the cutting tool. The choice of positioning has an important influence on the cost and quality of manufacture. To avoid this problem, a two-step approach have been developed. The first step is dedicated to the determination of the optimum position. As for the second step, a study was carried out for the tightening effect on the tolerance interval. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion" title="dispersion">dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=position" title=" position"> position</a> </p> <a href="https://publications.waset.org/abstracts/24541/effect-of-the-workpiece-position-on-the-manufacturing-tolerances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5737</span> A Risk Management Approach for Nigeria Manufacturing Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olaniyi%20O.%20Omoyajowo">Olaniyi O. Omoyajowo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To be successful in today&rsquo;s competitive global environment, manufacturing industry must be able to respond quickly to changes in technology. These changes in technology introduce new risks and hazards. The management of risk/hazard in a manufacturing process recommends method through which the success rate of an organization can be increased. Thus, there is a continual need for manufacturing industries to invest significant amount of resources in risk management, which in turn optimizes the production output and profitability of any manufacturing industry (if implemented properly). To help improve the existing risk prevention and mitigation practices in Small and Medium Enterprise (SME) in Nigeria Manufacturing Industries (NMI), the researcher embarks on this research to develop a systematic Risk Management process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20management" title="manufacturing management">manufacturing management</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=SMEs" title=" SMEs"> SMEs</a> </p> <a href="https://publications.waset.org/abstracts/49491/a-risk-management-approach-for-nigeria-manufacturing-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5736</span> On the Development of Medical Additive Manufacturing in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Abdelghany">Khalid Abdelghany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive Manufacturing (AM) is the manufacturing technology that is used to fabricate fast products direct from CAD models in very short time and with minimum operation steps. Jointly with the advancement in medical computer modeling, AM proved to be a very efficient tool to help physicians, orthopedic surgeons and dentists design and fabricate patient-tailored surgical guides, templates and customized implants from the patient’s CT / MRI images. AM jointly with computer-assisted designing/computer-assisted manufacturing (CAD/CAM) technology have enabled medical practitioners to tailor physical models in a patient-and purpose-specific fashion and helped to design and manufacture of templates, appliances and devices with a high range of accuracy using biocompatible materials. In developing countries, there are some technical and financial limitations of implementing such advanced tools as an essential portion of medical applications. CMRDI institute in Egypt has been working in the field of Medical Additive Manufacturing since 2003 and has assisted in the recovery of hundreds of poor patients using these advanced tools. This paper focuses on the surgical and dental use of 3D printing technology in Egypt as a developing country. The presented case studies have been designed and processed using the software tools and additive manufacturing machines in CMRDI through cooperative engineering and medical works. Results showed that the implementation of the additive manufacturing tools in developed countries is successful and could be economical comparing to long treatment plans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20and%20orthopeadic%20stents" title=" dental and orthopeadic stents"> dental and orthopeadic stents</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20specific%20surgical%20tools" title=" patient specific surgical tools"> patient specific surgical tools</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20implants" title=" titanium implants"> titanium implants</a> </p> <a href="https://publications.waset.org/abstracts/53503/on-the-development-of-medical-additive-manufacturing-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5735</span> Approach for an Integrative Technology Assessment Method Combining Product Design and Manufacturing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Schuh">G. Schuh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Woelk"> S. Woelk</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Schraknepper"> D. Schraknepper</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Such"> A. Such</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The systematic evaluation of manufacturing technologies with regard to the potential for product designing constitutes a major challenge. Until now, conventional evaluation methods primarily consider the costs of manufacturing technologies. Thus, the potential of manufacturing technologies for achieving additional product design features is not completely captured. To compensate this deficit, final evaluations of new technologies are mainly intuitive in practice. Therefore, an additional evaluation dimension is needed which takes the potential of manufacturing technologies for specific realizable product designs into account. In this paper, we present the approach of an evaluation method for selecting manufacturing technologies with regard to their potential for product designing. This research is done within the Fraunhofer innovation cluster »AdaM« (Adaptive Manufacturing) which targets the development of resource efficient and adaptive manufacturing technology processes for complex turbo machinery components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title="manufacturing">manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20design" title=" product design"> product design</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20assessment" title=" technology assessment"> technology assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20management" title=" technology management"> technology management</a> </p> <a href="https://publications.waset.org/abstracts/16517/approach-for-an-integrative-technology-assessment-method-combining-product-design-and-manufacturing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5734</span> On Mathematical Modelling and Optimization of Emerging Trends Processes in Advanced Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agarana%20Michael%20C.">Agarana Michael C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinlabi%20Esther%20T."> Akinlabi Esther T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pule%20Kholopane"> Pule Kholopane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Innovation in manufacturing process technologies and associated product design affects the prospects for manufacturing today and in near future. In this study some theoretical methods, useful as tools in advanced manufacturing, are considered. In particular, some basic Mathematical, Operational Research, Heuristic, and Statistical techniques are discussed. These techniques/methods are very handy in many areas of advanced manufacturing processes, including process planning optimization, modelling and analysis. Generally the production rate requires the application of Mathematical methods. The Emerging Trends Processes in Advanced Manufacturing can be enhanced by using Mathematical Modelling and Optimization techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title="mathematical modelling">mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20trends" title=" emerging trends"> emerging trends</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing" title=" advanced manufacturing"> advanced manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/158822/on-mathematical-modelling-and-optimization-of-emerging-trends-processes-in-advanced-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5733</span> Quality Based Approach for Efficient Biologics Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Kaminagayoshi">Takashi Kaminagayoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve the manufacturing efficiency of biologics, such as antibody drugs, a quality engineering framework was designed. Within this framework, critical steps and parameters in the manufacturing process were studied. Identification of these critical steps and critical parameters allows a deeper understanding of manufacturing capabilities, and suggests to process development department process control standards based on actual manufacturing capabilities as part of a PDCA (plan-do-check-act) cycle. This cycle can be applied to each manufacturing process so that it can be standardized, reducing the time needed to establish each new process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibody%20drugs" title="antibody drugs">antibody drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=biologics" title=" biologics"> biologics</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20efficiency" title=" manufacturing efficiency"> manufacturing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=PDCA%20cycle" title=" PDCA cycle"> PDCA cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20engineering" title=" quality engineering"> quality engineering</a> </p> <a href="https://publications.waset.org/abstracts/42626/quality-based-approach-for-efficient-biologics-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5732</span> Significant Factors in Agile Manufacturing and the Role of Product Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnoosh%20Askarizadeh">Mehrnoosh Askarizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agile manufacturing concept was first coined by Iacocca institute in 1991 as a new manufacturing paradigm in order to provide and ensure competitiveness in the emerging global manufacturing order. Afterward, a considerable number of studies have been conducted in this area. Reviewing these studies reveals that they mostly focus on agile manufacturing drivers, definition and characteristics but few of them propose practical solutions to achieve it. Agile manufacturing is recommended as a successful paradigm after lean for the 21st manufacturing firms. This competitive concept has been developed in response to the continuously changes and uncertainties in today’s business environment. In order to become an agile competitor, a manufacturing firm should focus on enriching its agility capabilities. These agility capabilities can be categorized into seven groups: proactiveness, customer focus, responsiveness, quickness, flexibility, basic competence and partnership. A manufacturing firm which is aiming at achieving agility should first develop its own appropriate agility strategy. This strategy prioritizes required agility capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agile%20manufacturing" title="agile manufacturing">agile manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20architecture" title=" product architecture"> product architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20focus" title=" customer focus"> customer focus</a>, <a href="https://publications.waset.org/abstracts/search?q=responsiveness" title=" responsiveness"> responsiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=quickness" title=" quickness"> quickness</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=basic%20competence" title=" basic competence"> basic competence</a> </p> <a href="https://publications.waset.org/abstracts/33496/significant-factors-in-agile-manufacturing-and-the-role-of-product-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5731</span> Barriers Facing the Implementation of Lean Manufacturing in Libyan Manufacturing Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abduelmula">Mohamed Abduelmula</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Birkett"> Martin Birkett</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Connor"> Chris Connor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lean Manufacturing has developed from being a set of tools and methods to becoming a management philosophy which can be used to remove or reduce waste in manufacturing processes and so enhance the operational productivity of an enterprise. Several enterprises around the world have applied the lean manufacturing system and gained great improvements. This paper investigates the barriers and obstacles that face Libyan manufacturing companies to implement lean manufacturing. A mixed-method approach is suggested, starting with conducting a questionnaire to get quantitative data then using this to develop semi-structured interviews to collect qualitative data. The findings of the questionnaire results and how these can be used further develop the semi-structured interviews are then discussed. The survey was distributed to 65 manufacturing companies in Libya, and a response rate of 64.6% was obtained. The results showed that these are five main barriers to implementing lean in Libya, namely organizational culture, skills and expertise, and training program, financial capability, top management, and communication. These barriers were also identified from the literature as being significant obstacles to implementing Lean in other countries industries. Having an understanding of the difficulties that face the implementation of lean manufacturing systems, as a new and modern system and using this to develop a suitable framework will help to improve the manufacturing sector in Libya. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=barriers" title=" barriers"> barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=Libyan%20manufacturing%20companies" title=" Libyan manufacturing companies"> Libyan manufacturing companies</a> </p> <a href="https://publications.waset.org/abstracts/75278/barriers-facing-the-implementation-of-lean-manufacturing-in-libyan-manufacturing-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5730</span> Developing an Information Model of Manufacturing Process for Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Hyun%20Lee">Jae Hyun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing companies use life-cycle inventory databases to analyze sustainability of their manufacturing processes. Life cycle inventory data provides reference data which may not be accurate for a specific company. Collecting accurate data of manufacturing processes for a specific company requires enormous time and efforts. An information model of typical manufacturing processes can reduce time and efforts to get appropriate reference data for a specific company. This paper shows an attempt to build an abstract information model which can be used to develop information models for specific manufacturing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20information%20model" title="process information model">process information model</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=OWL" title=" OWL"> OWL</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/5611/developing-an-information-model-of-manufacturing-process-for-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5729</span> A Framework for Embedding Industry 4.0 in the UAE Defence Manufacturing Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalifa%20Al%20Baloushi">Khalifa Al Baloushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongwei%20Zhang"> Hongwei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Terrence%20Perera"> Terrence Perera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last few decades, the government of the UAE has been taking actions to consolidate defense manufacturing entities with the view to build a coherent and modern defense manufacturing base. Whilst these actions have significantly improved the overall capabilities of defense manufacturing; further opportunities exist to radically transform the sector. A comprehensive literature review and data collected from a survey identified three potential areas of improvements, (a) integration of Industry 4.0 technologies and other smart technologies, (b) stronger engagement of small and Medium-sized defense manufacturing companies and (c) Enhancing the national defense policies by embedding best practices from other nations. This research paper presents the design and development of a conceptual framework for the UAE defense industrial ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title="industry 4.0">industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=defense%20manufacturing" title=" defense manufacturing"> defense manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-systems" title=" eco-systems"> eco-systems</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a> </p> <a href="https://publications.waset.org/abstracts/145808/a-framework-for-embedding-industry-40-in-the-uae-defence-manufacturing-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5728</span> Information Technology: Assessing Indian Realities Vis-à-Vis World Trade Organisation Disciplines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saloni%20Khanderia">Saloni Khanderia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The World Trade Organisation’s (WTO) Information Technology Agreement (ITA), was concluded at the Singapore Ministerial Conference in 1996. The ITA is considered to be one of the biggest tariff-cutting deals because it eliminates all customs-related duties on the exportation of specific categories of information technology products to the territory of any other signatory to the Agreement. Over time, innovations in the information and communication technology (ICT) sector mandated the consideration of expanding the list of products covered by the ITA, which took place in the form of ITA-II negotiations during the WTO’s Nairobi Ministerial Conference. India, which was an original Member of the ITA-I, however, decided to opt-out of the negotiations to expand the list of products covered by the agreement. Instead, it preferred to give priority to its national policy initiative, namely the ‘Make-in-India’ programme [the MiI programme], which embarks upon fostering the domestic production of, inter alia, the ICT sector. India claims to have abstained from the ITA-II negotiations by stating that the zero-tariff regime created by the ITA-I debilitated its electronics-manufacturing sectors and on the contrary resulted in an over-reliance on imported electronic inputs. The author undertakes doctrinal research to examine India’s decision to opt-out of ITA-II negotiations, against the backdrop of the MiI Programme, which endeavours to improve productivity across-the-board. This paper accordingly scrutinises the tariff-cutting strategies of India to weigh the better alternative for India. Apropos, it examines whether initiatives like the MiI programme could plausibly resuscitate the ailing domestic electronics-manufacturing sector. The author opines that the country’s present decision to opt-out of ITA-II negotiations should be perceived as a welcome step. Thus, market-oriented reforms such as the MiI Programme, which focuses on indigenous innovation to improve domestic manufacturing in the ICT sector, should instead, in the present circumstances gain priority. Consequently, the MiI Programme would aid in moulding the country’s current tariff policy in a manner that will concurrently assist the promotion and sustenance of domestic manufacturing in the IT sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronics-manufacturing%20sector" title="electronics-manufacturing sector">electronics-manufacturing sector</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology%20agreement" title=" information technology agreement"> information technology agreement</a>, <a href="https://publications.waset.org/abstracts/search?q=make%20in%20india%20programme" title=" make in india programme"> make in india programme</a>, <a href="https://publications.waset.org/abstracts/search?q=world%20trade%20organisation" title=" world trade organisation"> world trade organisation</a> </p> <a href="https://publications.waset.org/abstracts/83436/information-technology-assessing-indian-realities-vis-a-vis-world-trade-organisation-disciplines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5727</span> A Preliminary Conceptual Scale to Discretize the Distributed Manufacturing Continuum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ijaz%20Ul%20Haq">Ijaz Ul Haq</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiorenzo%20Franceschini"> Fiorenzo Franceschini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distributed manufacturing methodology brings a new concept of decentralized manufacturing operations close to the proximity of end users. A preliminary scale, to measure distributed capacity and evaluate positioning of firms, is developed in this research. In the first part of the paper, a literature review has been performed which highlights the explorative nature of the studies conducted to present definitions and classifications due to novelty of this topic. From literature, five dimensions of distributed manufacturing development stages have been identified: localization, manufacturing technologies, customization and personalization, digitalization and democratization of design. Based on these determinants a conceptual scale is proposed to measure the status of distributed manufacturing of a generic firm. A multiple case study is then conducted in two steps to test the conceptual scale and to identify the corresponding level of distributed potential in each case study firm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20manufacturing" title="distributed manufacturing">distributed manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20capacity" title=" distributed capacity"> distributed capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20production" title=" localized production"> localized production</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinal%20scale" title=" ordinal scale"> ordinal scale</a> </p> <a href="https://publications.waset.org/abstracts/89405/a-preliminary-conceptual-scale-to-discretize-the-distributed-manufacturing-continuum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5726</span> Advanced Digital Manufacturing: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Abdelazim">Abdelrahman Abdelazim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most industries are looking for technologies that are easy to use, efficient and fast to accomplish. To implement these, factories tend to use advanced systems that could alter complicity to simplicity and rudimentary to advancement. Cloud Manufacturing is a new movement that aims to mirror and integrate cloud computing into manufacturing. Amongst cloud manufacturing various advantages are decreasing the human involvements and increasing the dependency on automated machines, which in turns decreases human errors and increases efficiency. A reliable and extraordinary performance processes with minimum errors are highly desired factors of today’s manufacturers. At the glance it seems to be the best alternative, however, the implementation of a cloud system can be very challenging. This work investigates cloud manufacturing in details, it outlines its advantages and disadvantages by converting a local factory in Kuwait to a cloud-ready system. Initially the flow of the factory’s manufacturing process has been analyzed identifying the bottlenecks and illustrating how cloud manufacturing can eliminate them. Following this an automation process has been analyzed and implemented. A comparison between the process before and after the adaptation has been carried out showing the effects on the cost, the output and the efficiency of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20manufacturing" title="cloud manufacturing">cloud manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwait%20industrial%20sector" title=" Kuwait industrial sector"> Kuwait industrial sector</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20digital%20manufacturing" title=" advanced digital manufacturing"> advanced digital manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/16143/advanced-digital-manufacturing-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">771</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5725</span> Biomimetic Adhesive Pads for Precision Manufacturing Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Yi">Hoon Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Sung"> Minho Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangil%20Ko"> Hangil Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Kyu%20Kwak"> Moon Kyu Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Eui%20Jeong"> Hoon Eui Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the remarkable adhesion properties of gecko lizards, bio-inspired dry adhesives with smart adhesion properties have been developed in the last decade. Compared to earlier dry adhesives, the recently developed ones exhibit excellent adhesion strength, smart directional adhesion, and structural robustness. With these unique adhesion properties, bio-inspired dry adhesive pads have strong potential for use in precision industries such as semiconductor or display manufacturing. In this communication, we present a new manufacturing technology based on advanced dry adhesive systems that enable precise manipulation of large-area substrates over repeating cycles without any requirement for external force application. This new manufacturing technique is also highly accurate and environment-friendly, and thus has strong potential as a next-generation clean manufacturing technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gecko" title="gecko">gecko</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20robot" title=" manufacturing robot"> manufacturing robot</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20manufacturing" title=" precision manufacturing"> precision manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/38058/biomimetic-adhesive-pads-for-precision-manufacturing-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5724</span> Statistical Process Control in Manufacturing, a Case Study on an Iranian Automobile Company </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Khiav">M. E. Khiav</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Borah"> D. J. Borah</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20S.%20Santos"> H. T. S. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20T.%20Faria"> V. T. Faria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For automobile companies, it has become very important to ensure sound quality in manufacturing and assembling in order to prevent occurrence of defects and to reduce the amount of parts replacements to be done in the service centers during the warranty period. Statistical Process Control (SPC) is widely used as the tool to analyze the quality of such processes and plays a significant role in the improvement of the processes by identifying the patterns and the location of the defects. In this paper, a case study has been conducted on an Iranian automobile company. This paper performs a quality analysis of a particular component called “Internal Bearing for the Back Wheel” of a particular car model, manufactured by the company, based on the 10 million data received from its service centers located all over the country. By creating control charts including X bar–S charts and EWMA charts, it has been observed after the year 2009, the specific component underwent frequent failures and there has been a sharp dip in the average distance covered by the cars till the specific component requires replacement/maintenance. Correlation analysis was performed to find out the reasons that might have affected the quality of the specific component in all the cars produced by the company after the year 2009. Apart from manufacturing issues, some political and environmental factors have been identified to have a potential impact on the quality of the component. A maiden attempt has been made to analyze the quality issues within an Iranian automobile manufacturer; such issues often get neglected in developing countries. The paper also discusses the possibility of political scenario of Iran and the country’s environmental conditions affecting the quality of the end products, which not only strengthens the extant literature but also provides a new direction for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capability%20analysis" title="capability analysis">capability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=car%20manufacturing" title=" car manufacturing"> car manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20tools" title=" quality tools"> quality tools</a> </p> <a href="https://publications.waset.org/abstracts/27572/statistical-process-control-in-manufacturing-a-case-study-on-an-iranian-automobile-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing&amp;page=191">191</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing&amp;page=192">192</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=country%20of%20manufacturing&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10