CINXE.COM
Search results for: ceramic waste
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ceramic waste</title> <meta name="description" content="Search results for: ceramic waste"> <meta name="keywords" content="ceramic waste"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ceramic waste" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ceramic waste"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3101</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ceramic waste</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3101</span> Experimental Investigation on High Performance Concrete with Silica Fume and Ceramic Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Vinayagam">P. Vinayagam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Madhanagopal"> A. Madhanagopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental investigation focuses on the study of the strength of concrete with ceramic waste as coarse aggregate. It is not a new concept of using alternate materials for aggregates. Pottery and ceramics have been an important part of human culture for thousands of years. The ceramic waste from ceramic and construction industries is a major contribution to construction demolition waste (CDW), representing a serious environmental, technical, and economical problem of today’s society. The major sources of ceramic waste are ceramic industry, building construction and building demolition. In ceramic industries, a significant part of the losses in the manufacturing of ceramic elements is not returned to the production process. In building construction, ceramic waste is produced during transportation to the building site, on the execution of several construction elements and on subsequent works. This waste is regionally deposited in dumping grounds, without any separation or reuse. In this study an attempt has been made to find the suitability of the ceramic industrial wastes as a possible replacement for conventional crushed stone coarse aggregate in high performance concrete. In this study, glazed stoneware pipe waste was used as coarse aggregates. In this investigation, physical properties of ceramic waste coarse aggregates were studied. Experiments were carried out to determine the strength of high performance concrete with silica fume and ceramic stoneware pipe waste coarse aggregate of 10%, 20%, 30%, 40% and 50% different replacement ratios in comparison with those of corresponding conventional concrete mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20waste" title="ceramic waste">ceramic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20aggregate%20replacement" title=" coarse aggregate replacement"> coarse aggregate replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=glazed%20stoneware%20pipe%20waste" title=" glazed stoneware pipe waste"> glazed stoneware pipe waste</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a> </p> <a href="https://publications.waset.org/abstracts/6951/experimental-investigation-on-high-performance-concrete-with-silica-fume-and-ceramic-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3100</span> Utilization of Solid Waste Materials to Produce Glass-Ceramic Tiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonjida%20Mustafia">Sonjida Mustafia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass-ceramic is a material that contains both the properties of glass and ceramic within. They always contain a residual glassy phase and one or more embedded crystalline phases. Ceramic tiles are very popular in the world because of their high structural strength, low absorption, increased hygiene, and hot and cold insulation. Glass-ceramic materials are used to produce marble-like floor and wall tiles. There are a huge amount of waste materials like rice husk ash (RHA), waste iron, waste glass, and other industrial solid waste in Bangladesh, which can be used to produce glass-ceramic floor and wall tiles. The raw materials (rice husk ash, waste glass, and k-feldspar) are a mixture, and the mixture is melted to form glass frit at 1175°C. The frits are grained to require fine particle size. The powder is moistened in 7-8% water with sodium silicate. The green glass-ceramic tiles were fired at different temperatures (800–1100°C) for a soaking time of 1 hour to form glass-ceramic tiles and to study the sintering-crystallization process. The results reveal that the modulus of rupture increases with increasing sintering temperature and reaches the highest value (95.25Mpa) at 925°C. Glossiness and linear shrinkage increase with increasing temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title="rice husk ash">rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20glass" title=" waste glass"> waste glass</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-ceramic" title=" glass-ceramic"> glass-ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rupture" title=" modulus of rupture"> modulus of rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=glossiness" title=" glossiness"> glossiness</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20shrinkage" title=" linear shrinkage"> linear shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-structure" title=" micro-structure"> micro-structure</a> </p> <a href="https://publications.waset.org/abstracts/161261/utilization-of-solid-waste-materials-to-produce-glass-ceramic-tiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3099</span> Investigation the Effect of Partial Replacement of Fine Aggregates with Ceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yared%20Assefa%20Demessie">Yared Assefa Demessie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study may help to establish the appropriateness of ceramic waste aggregate for concrete production since it is obviously understood that the rising from continuous urbanization and industrialization development leads depletion of natural construction resource and the disposal of waste material. It can be used as base to conduct a study on the alternative readily available materials like ceramic industrial waste aggregates can lead to environmental concrete. The study assessed the fresh and hardened properties of the concrete produced by replacing part of the natural fine aggregate with an aggregate produced from ceramic industrial waste. In the study, experimental investigation was employed which involved two major tasks: material specifications and experimental evaluation of concrete were done in the laboratory. Experimental investigations such that workability, unit weight, compressive strength test, tensile strength test and flexural strength test for C-25 concrete mixes with different percentages of ceramic industrial waste aggregate after a curing period of 7 and 28 days has done and interpreted the result statically using mean, standard deviation and coefficient of variance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20industrial%20waste" title="ceramic industrial waste">ceramic industrial waste</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20concrete" title=" fresh concrete"> fresh concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=hardened%20concrete" title=" hardened concrete"> hardened concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20aggregate" title=" fine aggregate"> fine aggregate</a> </p> <a href="https://publications.waset.org/abstracts/183198/investigation-the-effect-of-partial-replacement-of-fine-aggregates-with-ceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3098</span> Influence of Milled Waste Glass to Clay Ceramic Foam Properties Made by Direct Foaming Route </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shishkin">A. Shishkin</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Mironovs"> V. Mironovs</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Goljandin"> D. Goljandin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Korjakins"> A. Korjakins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this work is to develop sustainable and durable ceramic cellular structures using widely available natural resources- clay and milled waste glass. Present paper describes method of obtaining clay ceramic foam (CCF) with addition of milled waste glass in 5, 7 and 10 wt% by direct foaming with high speed mixer-disperser (HSMD). For more efficient clay and waste glass milling and mixing, the high velocity disintegrator was used. The CCF with 5, 7, and 10 wt% were obtained at 900, 950, 1000 and 1050 °C firing temperature and they have demonstrated mechanical compressive strength for all 12 samples ranging from 3.8 to 14.3 MPa and porosity 76-65%. Obtained CCF has compressive strength 14.3 MPa and porosity 65.3%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20foam" title="ceramic foam">ceramic foam</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20glass" title=" waste glass"> waste glass</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20foam" title=" clay foam"> clay foam</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20foam" title=" glass foam"> glass foam</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20cell" title=" open cell"> open cell</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20foaming" title=" direct foaming"> direct foaming</a> </p> <a href="https://publications.waset.org/abstracts/41910/influence-of-milled-waste-glass-to-clay-ceramic-foam-properties-made-by-direct-foaming-route" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3097</span> Ceramic Ware Waste Potential as Co-Ballast in Dense Masonry Unit Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Ajayi-Banji">A. A. Ajayi-Banji</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Adegbile"> M. A. Adegbile</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Akpenpuun"> T. D. Akpenpuun</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bello"> J. Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Omobowale"> O. Omobowale</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20A.%20Jenyo"> D. A. Jenyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramic ware waste applicability as coarse aggregate was considered in this study for dense masonry unit production. The waste was crushed into 1.4 mm particle size and mixed with natural fine aggregate in the ratio 2:3. Portland ordinary cement, aggregate, and water mix ratio was 1:7:0.5. Masonry units produced were cured for 7, 21 and 28 days prior to compressive test. The result shows that curing age have a significant effect on all the compressive strength indices inspected except for Young’s modulus. Crushing force and the compressive strength of the ceramic-natural fine aggregate blocks increased by 11.7 – 54.7% and 11.6 – 59.2% respectively. The highest ceramic-natural fine block compressive strength at yield and peak, 4.97 MPa, was obtained after 21 days curing age. Ceramic aggregate introduced into the dense blocks improved the suitability of the blocks for construction purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20ware%20waste" title="ceramic ware waste">ceramic ware waste</a>, <a href="https://publications.waset.org/abstracts/search?q=co-ballast" title=" co-ballast"> co-ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=dense%20masonry%20unit" title=" dense masonry unit"> dense masonry unit</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20time" title=" curing time"> curing time</a> </p> <a href="https://publications.waset.org/abstracts/82381/ceramic-ware-waste-potential-as-co-ballast-in-dense-masonry-unit-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3096</span> Effect on Surface Temperature Reduction of Asphalt Pavements with Cement–Based Materials Containing Ceramic Waste Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Higashiyama">H. Higashiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sano"> M. Sano</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Nakanishi"> F. Nakanishi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sugiyama"> M. Sugiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Takahashi"> O. Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Tsukuma"> S. Tsukuma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat island phenomenon becomes one of the environmental problems. As countermeasures in the field of road engineering, cool pavements such as water retaining pavements and solar radiation reflective pavements have been developed to reduce the surface temperature of asphalt pavements in the hot summer climate in Japan. The authors have studied on the water retaining pavements with cement–based grouting materials. The cement–based grouting materials consist of cement, ceramic waste powder, and natural zeolite. The ceramic waste powder is collected through the recycling process of electric porcelain insulators. In this study, mixing ratio between the ceramic waste powder and the natural zeolite and a type of cement for the cement–based grouting materials is investigated to measure the surface temperature of asphalt pavements in the outdoor. All of the developed cement–based grouting materials were confirmed to effectively reduce the surface temperature of the asphalt pavements. Especially, the cement–based grouting material using the ultra–rapid hardening cement with the mixing ratio of 0.7:0.3 between the ceramic waste powder and the natural zeolite reduced mostly the surface temperature by 20 °C and more. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20waste%20powder" title="ceramic waste powder">ceramic waste powder</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20zeolite" title=" natural zeolite"> natural zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20surface%20temperature" title=" road surface temperature"> road surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20retaining%20pavements" title=" water retaining pavements"> water retaining pavements</a> </p> <a href="https://publications.waset.org/abstracts/45874/effect-on-surface-temperature-reduction-of-asphalt-pavements-with-cement-based-materials-containing-ceramic-waste-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3095</span> Gypsum Composites with CDW as Raw Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Santos%20Jim%C3%A9nez">R. Santos Jiménez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20San-Antonio-Gonz%C3%A1lez"> A. San-Antonio-González</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20del%20R%C3%ADo%20Merino"> M. del Río Merino</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gonz%C3%A1lez%20Cortina"> M. González Cortina</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Vi%C3%B1as%20Arrebola"> C. Viñas Arrebola </a> </p> <p class="card-text"><strong>Abstract:</strong></p> On average, Europe generates around 890 million tons of construction and demolition waste (CDW) per year and only 50% of these CDW are recycled. This is far from the objectives determined in the European Directive for 2020 and aware of this situation, the European Countries are implementing national policies to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In Spain, one of these measures has been the development of a CDW recycling guide for the manufacture of mortar, concrete, bricks and lightweight aggregates. However, there is still not enough information on the possibility of incorporating CDW materials in the manufacture of gypsum products. In view of the foregoing, the Universidad Politécnica de Madrid is creating a database with information on the possibility of incorporating CDW materials in the manufacture of gypsum products. The objective of this study is to improve this database by analysing the feasibility of incorporating two different CDW in a gypsum matrix: ceramic waste bricks (perforated brick and double hollow brick), and extruded polystyrene (XPS) waste. Results show that it is possible to incorporate up to 25% of ceramic waste and 4% of XPS waste over the weight of gypsum in a gypsum matrix. Furhtermore, with the addition of ceramic waste an 8% of surface hardness increase and a 25% of capillary water absorption reduction can be obtained. On the other hand, with the addition of XPS, a 26% reduction of density and a 37% improvement of thermal conductivity can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CDW" title="CDW">CDW</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20materials" title=" waste materials"> waste materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20waste" title=" ceramic waste"> ceramic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=XPS" title=" XPS"> XPS</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20materials" title=" construction materials"> construction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=gypsum" title=" gypsum"> gypsum</a> </p> <a href="https://publications.waset.org/abstracts/24751/gypsum-composites-with-cdw-as-raw-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3094</span> The Effect of CaO Addition on Mechanical Properties of Ceramic Tiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucie%20Vodova">Lucie Vodova</a>, <a href="https://publications.waset.org/abstracts/search?q=Radomir%20Sokolar"> Radomir Sokolar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Hroudova"> Jitka Hroudova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stoneware clay, fired clay (as a grog), calcite waste and class C fly ash in various mixing rations were the basic raw materials for the mixture for production of dry pressed ceramic tiles. Mechanical properties (water absorption, bulk density, apparent porosity, flexural strength) as well as mineralogical composition were studied on samples with different source of calcium oxide after firing at 900, 1000, 1100 and 1200°C. It was found that samples with addition of calcite waste contain dmisteinbergit and anorthite. This minerals help to improve the strength of the body and reduce porosity fired at lower temperatures. Class C fly ash has not significantly influence on properties of the fired body as calcite waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20tiles" title="ceramic tiles">ceramic tiles</a>, <a href="https://publications.waset.org/abstracts/search?q=class%20C%20fly%20ash" title=" class C fly ash"> class C fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=calcite%20waste" title=" calcite waste"> calcite waste</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20oxide" title=" calcium oxide"> calcium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=anorthite" title=" anorthite"> anorthite</a> </p> <a href="https://publications.waset.org/abstracts/10757/the-effect-of-cao-addition-on-mechanical-properties-of-ceramic-tiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3093</span> A Review on the Usage of Ceramic Wastes in Concrete Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Zimbili">O. Zimbili</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Salim"> W. Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ndambuki"> M. Ndambuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction and Demolition (C&D) wastes contribute the highest percentage of wastes worldwide (75%). Furthermore, ceramic materials contribute the highest percentage of wastes within the C&D wastes (54%). The current option for disposal of ceramic wastes is landfill. This is due to unavailability of standards, avoidance of risk, lack of knowledge and experience in using ceramic wastes in construction. The ability of ceramic wastes to act as a pozzolanic material in the production of cement has been effectively explored. The results proved that temperatures used in the manufacturing of these tiles (about 900 ⁰C) are sufficient to activate pozzolanic properties of clay. They also showed that, after optimization (11-14% substitution), the cement blend performs better, with no morphological differences between the cement blended with ceramic waste, and that blended with other pozzolanic materials. Sanitary ware and electrical insulator porcelain wastes are some wastes investigated for usage as aggregates in concrete production. When optimized, both produced good results, better than when natural aggregates are used. However, the research on ceramic wastes as partial substitute for fine aggregates or cement has not been overly exploited as the other areas. This review has been concluded with focus on investigating whether ceramic wall tile wastes used as partial substitute for cement and fine aggregates could prove to be beneficial since the two materials are the most high-priced during concrete production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended" title="blended">blended</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological" title=" morphological"> morphological</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic" title=" pozzolanic"> pozzolanic</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste "> waste </a> </p> <a href="https://publications.waset.org/abstracts/2534/a-review-on-the-usage-of-ceramic-wastes-in-concrete-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3092</span> Utilization of Waste Crushed Tile as Coarse Aggregate in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harkaranjit%20Singh">Harkaranjit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar"> Arun Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Depletion of natural resources is a common phenomenon in developing countries like India due to rapid urbanization and industrialization involving construction of infrastructure and other amenities. In view of this, people have started searching for suitable other viable alternative materials for concrete so that the existing natural resources could be preserved to the possible extent for the future generation. In this process, different industrial waste materials such as fly ash, blast furnace slag, quarry dust, tile waste, bricks, broken glass waste, waste aggregate from demolition of structures, ceramic insulator waste, etc. have been tried as a viable substitute material to the conventional materials in concrete and has also been succeeded. This paper describes the studies conducted on strength characteristics of concrete made with utilizing of crushed tiles as a coarse aggregate. The waste crushed tiles can be used as coarse aggregates with the replacement ratio of 0, 50, 75 and 100% were used. Mechanical and physical tests were conducted on specimens. It was found that, the concrete made of waste ceramic tile aggregate produced more strength in compression, and flexure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20crushed%20tile" title=" waste crushed tile"> waste crushed tile</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/14976/utilization-of-waste-crushed-tile-as-coarse-aggregate-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3091</span> Horn Snail (Telescopium Telescopium) Shells Waste as an Alternative for Ceramic Tile Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patricia%20N.%20Baguio">Patricia N. Baguio</a>, <a href="https://publications.waset.org/abstracts/search?q=Angel%20Amy%20M.%20Bunag"> Angel Amy M. Bunag</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Bryan%20E.%20Ornopia"> Paul Bryan E. Ornopia</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Paul%20C.%20Suel"> John Paul C. Suel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the viability and efficiency of employing ceramic tile additives derived from horn snail shell material, specifically calcium carbonate (CaCO₃). The study aims to evaluate the mechanical properties of ceramic tiles with Calcium Carbonate with varying amounts of CaCO₃, focusing on breaking and flexural strength. The research employs a comprehensive methodology, including material collection, slurry forming, shaping, drying, firing, and statistical analysis using paired sample T-tests. The result indicates a positive correlation between calcium carbonate (CaCO₃) application and ceramic tile strength, revealing increased breaking strength from 29.41 N (non-calcium Carbonate) to 46.02 N (70g CaCO3) and a substantial enhancement to 82.61 N with 150g CaCO₃. Comparative analyses show higher breaking and flexural strength in tiles with Calcium Carbonate with 150g CaCO₃ analysis (p = 0.011), indicating its feasibility for ceramic tile manufacturing, while 70g CaCO₃ shows no significant difference from non-calcium Carbonate tiles (p = 0.135). The addition of horn snail shells shows potential for improving ceramic tile quality and contributes positively to waste management in standard tile production processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Horn%20snail%20shell" title="Horn snail shell">Horn snail shell</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title=" calcium carbonate"> calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20strength" title=" breaking strength"> breaking strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a> </p> <a href="https://publications.waset.org/abstracts/182882/horn-snail-telescopium-telescopium-shells-waste-as-an-alternative-for-ceramic-tile-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3090</span> Horn Snail (Telescopium telescopium) Shells Waste as an Alternative for Ceramic Tile Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patricia%20N.%20Baguio">Patricia N. Baguio</a>, <a href="https://publications.waset.org/abstracts/search?q=Angel%20Amy%20M.%20Bu%C3%B1ag"> Angel Amy M. Buñag</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Bryan%20E.%20Ornopia"> Paul Bryan E. Ornopia</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Paul%20C.%20Suel"> John Paul C. Suel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the viability and efficiency of employing ceramic tile additives derived from horn snail shell material, specifically calcium carbonate (CaCO₃). The study aims to evaluate the mechanical properties of ceramic tiles with calcium carbonate with varying amounts of CaCO₃, focusing on breaking and flexural strength. The research employs a comprehensive methodology, including material collection, slurry forming, shaping, drying, firing, and statistical analysis using paired sample T-tests. The result indicates a positive correlation between calcium carbonate (CaCO₃) application and ceramic tile strength, revealing increased breaking strength from 29.41 N (non-calcium carbonate) to 46.02 N (70g CaCO₃) and a substantial enhancement to 82.61 N with 150g CaCO₃. Comparative analyses show higher breaking and flexural strength in tiles calcium carbonate with 150g CaCO₃ analysis (p = 0.011), indicating its feasibility for ceramic tile manufacturing, while 70g CaCO₃ shows no significant difference from non-calcium carbonate tiles (p = 0.135). The addition of horn snail shells shows potential for improving ceramic tile quality and contributes positively to waste management in standard tile production processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=horn%20snail%20shell" title="horn snail shell">horn snail shell</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title=" calcium carbonate"> calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20strength" title=" breaking strength"> breaking strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a> </p> <a href="https://publications.waset.org/abstracts/182794/horn-snail-telescopium-telescopium-shells-waste-as-an-alternative-for-ceramic-tile-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3089</span> Ceramic Membrane Filtration Technologies for Oilfield Produced Water Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Ebrahimi">Mehrdad Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Schmitz"> Oliver Schmitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Schmidt"> Axel Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Czermak"> Peter Czermak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> “Produced water” (PW) is any fossil water that is brought to the surface along with crude oil or natural gas. By far, PW is the largest waste stream by volume associated with oil and gas production operations. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging PW on the environment has lately become a significant issue of environmental concerns. Therefore, there is a need for new technologies for PW treatment due to increase focus on water conservation and environmental regulation. The use of membrane processes for treatment of PW has several advantages over many of the traditional separation techniques. In oilfield produced water treatment with ceramic membranes, process efficiency is characterized by the specific permeate flux and by the oil separation performance. Apart from the membrane properties, the permeate flux during filtration of oily wastewaters is known to be strongly dependent on the constituents of the feed solution, as well as on process conditions, e.g. trans-membrane pressure (TMP) and cross-flow velocity (CFV). The research project presented in these report describes the application of different ceramic membrane filtration technologies for the efficient treatment of oil-field produced water and different model oily solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling" title=" membrane fouling"> membrane fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20rejection" title=" oil rejection"> oil rejection</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water%20treatment" title=" produced water treatment"> produced water treatment</a> </p> <a href="https://publications.waset.org/abstracts/121611/ceramic-membrane-filtration-technologies-for-oilfield-produced-water-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3088</span> Sintered Phosphate Cement for HLW Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20M.%20Nelwamondo">S. M. M. Nelwamondo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20C.%20M.%20H.%20Meyer"> W. C. M. H. Meyer</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Krieg"> H. Krieg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of volatile radionuclides in high level waste (HLW) in the nuclear industry limits the use of high temperature encapsulation technologies (glass and ceramic). Chemically bonded phosphate cement (CBPC) matrixes can be used for encapsulation of low level waste. This waste form is however not suitable for high level waste due to the radiolysis of water in these matrixes. In this research, the sintering behavior of the magnesium potassium phosphate cement waste forms was investigated. The addition of sintering aids resulted in the sintering of these phosphate cement matrixes into dense monoliths containing no water. Experimental evidence will be presented that this waste form can now be considered as a waste form for volatile radionuclides and high level waste as radiation studies indicated no chemical phase transition or physical degradation of this waste form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemically%20bonded%20phosphate%20cements" title="chemically bonded phosphate cements">chemically bonded phosphate cements</a>, <a href="https://publications.waset.org/abstracts/search?q=HLW%20encapsulation" title=" HLW encapsulation"> HLW encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20stability" title=" radiation stability"> radiation stability</a> </p> <a href="https://publications.waset.org/abstracts/30155/sintered-phosphate-cement-for-hlw-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">638</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3087</span> Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eng%20Toon%20Saw">Eng Toon Saw</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Liang%20Ang"> Kun Liang Ang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20He"> Wei He</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuecheng%20Dong"> Xuecheng Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=NaA%20zeolite" title=" NaA zeolite"> NaA zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20industry" title=" pharmaceutical industry"> pharmaceutical industry</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20recovery" title=" solvent recovery"> solvent recovery</a> </p> <a href="https://publications.waset.org/abstracts/96273/ultrathin-naa-zeolite-membrane-in-solvent-recovery-preparation-and-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3086</span> Mechanical Properties and Chloride Diffusion of Ceramic Waste Aggregate Mortar Containing Ground Granulated Blast-Furnace Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Higashiyama">H. Higashiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sappakittipakorn"> M. Sappakittipakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mizukoshi"> M. Mizukoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Takahashi"> O. Takahashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramic waste aggregates (CWAs) were made from electric porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to develop the CWA mortar as an eco–efficient, ground granulated blast–furnace slag (GGBS) as a supplementary cementitious material (SCM) was incorporated. The water–to–binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The cement of the CWA mortar was replaced by GGBS at 20 and 40% by volume (at about 18 and 37% by weight). Mechanical properties of compressive and splitting tensile strengths, and elastic modulus were evaluated at the age of 7, 28, and 91 days. Moreover, the chloride ingress test was carried out on the CWA mortars in a 5.0% NaCl solution for 48 weeks. The chloride diffusion was assessed by using an electron probe microanalysis (EPMA). To consider the relation of the apparent chloride diffusion coefficient and the pore size, the pore size distribution test was also performed using a mercury intrusion porosimetry at the same time with the EPMA. The compressive strength of the CWA mortars with the GGBS was higher than that without the GGBS at the age of 28 and 91 days. The resistance to the chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20waste%20aggregate" title="ceramic waste aggregate">ceramic waste aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride%20diffusion" title=" chloride diffusion"> chloride diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=pore%20size%20distribution" title=" pore size distribution"> pore size distribution</a> </p> <a href="https://publications.waset.org/abstracts/27099/mechanical-properties-and-chloride-diffusion-of-ceramic-waste-aggregate-mortar-containing-ground-granulated-blast-furnace-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3085</span> A Sustainable Approach for Waste Management: Automotive Waste Transformation into High Value Titanium Nitride Ceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohannad%20Mayyas">Mohannad Mayyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshid%20Pahlevani"> Farshid Pahlevani</a>, <a href="https://publications.waset.org/abstracts/search?q=Veena%20Sahajwalla"> Veena Sahajwalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automotive shredder residue (ASR) is an industrial waste, generated during the recycling process of End-of-life vehicles. The large increasing production volumes of ASR and its hazardous content have raised concerns worldwide, leading some countries to impose more restrictions on ASR waste disposal and encouraging researchers to find efficient solutions for ASR processing. Although a great deal of research work has been carried out, all proposed solutions, to our knowledge, remain commercially and technically unproven. While the volume of waste materials continues to increase, the production of materials from new sustainable sources has become of great importance. Advanced ceramic materials such as nitrides, carbides and borides are widely used in a variety of applications. Among these ceramics, a great deal of attention has been recently paid to Titanium nitride (TiN) owing to its unique characteristics. In our study, we propose a new sustainable approach for ASR management where TiN nanoparticles with ideal particle size ranging from 200 to 315 nm can be synthesized as a by-product. In this approach, TiN is thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) incorporated with titanium oxide (TiO2). Results indicated that TiO2 influences and catalyses degradation reactions of ASR and helps to achieve fast and full decomposition. In addition, the process resulted in titanium nitride (TiN) ceramic with several unique structures (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) that were simply obtained by tuning the ratio of TiO2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20shredder%20residue" title="automotive shredder residue">automotive shredder residue</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-ceramics" title=" nano-ceramics"> nano-ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20treatment" title=" waste treatment"> waste treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20nitride" title=" titanium nitride"> titanium nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conversion" title=" thermal conversion"> thermal conversion</a> </p> <a href="https://publications.waset.org/abstracts/61761/a-sustainable-approach-for-waste-management-automotive-waste-transformation-into-high-value-titanium-nitride-ceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3084</span> Technological Properties and Characterization of Ceramic Slurries Based on Yttrium Iii Oxide for Shell Moulds Preparation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Jakubowska">D. Jakubowska</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Malek"> M. Malek</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Wisniewski"> P. Wisniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Mizera"> J. Mizera</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20J.%20Kurzydlowski"> K. J. Kurzydlowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study was to analyze the technological properties of ceramic slurries based on Ytttria (Y2O3) for fabrication “prime coat” in ceramic shell moulds for investment casting process. The Yttria with two different granulation of (200# and 325#) in ratio-65%-35% by weight were used for preparation the ceramic slurries. Solid phase was 77 wt.%. The experiment was carried out for 96h. Main technological properties like: viscosity, pH, plate weight test, and density were measured every 24h. Additionally, dynamic viscosity was performed after 96h of test. For further material characterization SEM observations, Zeta potential, XRD measurements were done. Those research showed that Yttria ceramic slurries had very promising properties and there are perspective for future fabrication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20slurries" title="ceramic slurries">ceramic slurries</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanizal%20properties" title=" mechanizal properties"> mechanizal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=fabrication" title=" fabrication"> fabrication</a> </p> <a href="https://publications.waset.org/abstracts/25532/technological-properties-and-characterization-of-ceramic-slurries-based-on-yttrium-iii-oxide-for-shell-moulds-preparation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3083</span> Utilization of Pozzolonic Material for the Enhancement of the Concrete Strength: A Comprehensive Review Paper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Parvez%20Alam">M. Parvez Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bilal%20Khan"> M. Bilal Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is the material of choice where strength, performance, durability, impermeability, fire resistance, and abrasion resistance are required. The hunger for the higher strength leads to other materials to achieve the desired results and thus, emerged the contribution of cementitious material for the strength of concrete In present day constructions, concrete is chosen as one of the best choices by civil engineers in construction materials. The concept of sustainability is touching new heights and many pozzolonic materials are tried and tested as partial replacement for the cement. In this paper, comprehensive review of available literatures are studied to evaluate the performance of pozzolonic materials such as ceramic waste powder, copper slag, silica fume on the strength of concrete by the partial replacement of ordinary materials such as cement, fine aggregate and coarse aggregate at different percentage of composition. From the study, we conclude that ceramic wastes are suitable to be used in the construction industry, and more significantly on the making of concrete. Ceramic wastes are found to be suitable for usage as substitution for fine and coarse aggregates and partial substitution in cement production. They were found to be performing better than normal concrete, in properties such as density, durability, permeability, and compressive strength. Copper slag is the waste material of matte smelting and refining of copper such that each ton of copper generates approximately 2.5 tons of copper slag. Copper slag is one of the materials that is considered as a waste which could have a promising future in construction Industry as partial or full substitute of aggregates. Silica fume, also known as micro silica or condensed silica fume, is a relatively new material compared to fly ash, It is another material that is used as an artificial pozzolonic admixture. High strength concrete made with silica fume provides high abrasion/corrosion resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolonic%20materials" title=" pozzolonic materials"> pozzolonic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20waste%20powder" title=" ceramic waste powder"> ceramic waste powder</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20slag" title=" copper slag"> copper slag</a> </p> <a href="https://publications.waset.org/abstracts/30320/utilization-of-pozzolonic-material-for-the-enhancement-of-the-concrete-strength-a-comprehensive-review-paper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3082</span> Performance of Autoclaved Aerated Concrete Containing Recycled Ceramic and Gypsum Waste as Partial Replacement for Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Efil%20Yusrianto">Efil Yusrianto</a>, <a href="https://publications.waset.org/abstracts/search?q=Noraini%20Marsi"> Noraini Marsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Noraniah%20Kassim"> Noraniah Kassim</a>, <a href="https://publications.waset.org/abstracts/search?q=Izzati%20Abdul%20Manaf"> Izzati Abdul Manaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafizuddin%20Hakim%20Shariff"> Hafizuddin Hakim Shariff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, municipal solid waste (MSW), noise pollution, and attack fire are three ongoing issues for inhabitants of urban including in Malaysia. To solve these issues, eco-friendly autoclaved aerated concrete (AAC) containing recycled ceramic and gypsum waste (CGW) as a partial replacement for sand with different ratios (0%, 5%, 10%, 15%, 20%, and 25% wt) has been prepared. The performance of samples, such as the physical, mechanical, sound absorption coefficient, and direct fire resistance, has been investigated. All samples showed normal color behavior, i.e., grey and free crack. The compressive strength was increased in the range of 6.10% to 29.88%. The maximum value of compressive strength was 2.13MPa for 15% wt of CGW. The positive effect of CGW on the compressive strength of AAC has also been confirmed by crystalline phase and microstructure analysis. The acoustic performances, such as sound absorption coefficients of samples at low frequencies (500Hz), are higher than the reference sample (RS). AAC-CGW samples are categorized as AAC material classes B and C. The fire resistance results showed the physical surface of the samples had a free crack and was not burned during the direct fire at 950ºC for 300s. The results showed that CGW succeeded in enhancing the performance of fresh AAC, such as compressive strength, crystalline phase, sound absorption coefficient, and fire resistance of samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical" title="physical">physical</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic" title=" acoustic"> acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20fire%20resistance%20performance" title=" direct fire resistance performance"> direct fire resistance performance</a>, <a href="https://publications.waset.org/abstracts/search?q=autoclaved%20aerated%20concrete" title=" autoclaved aerated concrete"> autoclaved aerated concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20ceramic-gypsum%20waste" title=" recycled ceramic-gypsum waste"> recycled ceramic-gypsum waste</a> </p> <a href="https://publications.waset.org/abstracts/167102/performance-of-autoclaved-aerated-concrete-containing-recycled-ceramic-and-gypsum-waste-as-partial-replacement-for-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3081</span> Red Clay Properties and Application for Ceramic Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruedee%20Niyomrath">Ruedee Niyomrath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed at surveying the local red clay raw material sources in Samut Songkram province, Thailand to test the physical and chemical properties of the local red clay, including to find the approach to develop the local red clay properties for ceramic production. The findings of this research would be brought to apply in the ceramic production industry of the country all at the upstream level which was the community in the raw material source, at the mid water level which was the ceramic producer and at the downstream level which was the distributor and the consumer as well as the community producer who would apply them to their identity and need of the community business. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20properties%20of%20red%20clay" title="chemical properties of red clay">chemical properties of red clay</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties%20of%20red%20clay" title=" physical properties of red clay"> physical properties of red clay</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20production" title=" ceramic production"> ceramic production</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20clay%20product" title=" red clay product"> red clay product</a> </p> <a href="https://publications.waset.org/abstracts/10206/red-clay-properties-and-application-for-ceramic-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3080</span> Surface Temperature of Asphalt Pavements with Colored Cement-Based Grouting Materials Containing Ceramic Waste Powder and Zeolite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Higashiyama">H. Higashiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sano"> M. Sano</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Nakanishi"> F. Nakanishi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sugiyama"> M. Sugiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kawanishi"> M. Kawanishi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Tsukuma"> S. Tsukuma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat island phenomenon and extremely hot summer climate are becoming environmental problems in Japan. Cool pavements reduce the surface temperature compared to conventional asphalt pavements in the hot summer climate and improve the thermal environment in the urban area. The authors have studied cement–based grouting materials poured into voids in porous asphalt pavements to reduce the road surface temperature. For the cement–based grouting material, cement, ceramic waste powder, and natural zeolite were used. This cement–based grouting material developed reduced the road surface temperature by 20 °C or more in the hot summer season. Considering the urban landscape, this study investigates the effect of surface temperature reduction of colored cement–based grouting materials containing pigments poured into voids in porous asphalt pavements by measuring the surface temperature of asphalt pavements outdoors. The yellow color performed the same as the original cement–based grouting material containing no pigment and was thermally better performance than the other color. However, all the tested cement–based grouting materials performed well for reducing the surface temperature and for creating the urban landscape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20waste%20powder" title="ceramic waste powder">ceramic waste powder</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20zeolite" title=" natural zeolite"> natural zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20surface%20temperature" title=" road surface temperature"> road surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title=" asphalt pavement"> asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20landscape" title=" urban landscape"> urban landscape</a> </p> <a href="https://publications.waset.org/abstracts/62114/surface-temperature-of-asphalt-pavements-with-colored-cement-based-grouting-materials-containing-ceramic-waste-powder-and-zeolite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3079</span> Vitrification and Devitrification of Chromium Containing Tannery Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savvas%20Varitis">Savvas Varitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Kavouras"> Panagiotis Kavouras</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Kaimakamis"> George Kaimakamis</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Pavlidou"> Eleni Pavlidou</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Vourlias"> George Vourlias</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Chrysafis"> Konstantinos Chrysafis</a>, <a href="https://publications.waset.org/abstracts/search?q=Philomela%20Komninou"> Philomela Komninou</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Karakostas"> Theodoros Karakostas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tannery industry produces high quantities of chromium containing waste which also have high organic content. Processing of this waste is important since the organic content is above the disposal limits and the containing trivalent chromium could be potentially oxidized to hexavalent in the environment. This work aims to fabricate new vitreous and glass ceramic materials which could incorporate the tannery waste in stabilized form either for safe disposal or for the production of useful materials. Tannery waste was incinerated at 500oC in anoxic conditions so most of the organic content would be removed and the chromium remained trivalent. Glass forming agents SiO2, Na2O and CaO were mixed with the resulting ash in different proportions with decreasing ash content. Considering the low solubility of Cr in silicate melts, the mixtures were melted at 1400oC and/or 1500oC for 2h and then casted on a refractory steel plate. The resulting vitreous products were characterized by X-Ray Diffraction (XRD), Differential Thermal Analysis (DTA), Scanning and Transmission Electron Microscopy (SEM and TEM). XRD reveals the existence of Cr2O3 (eskolaite) crystallites embedded in a glassy amorphous matrix. Such crystallites are not formed under a certain proportion of the waste in the ash-vitrified material. Reduction of the ash proportion increases chromium content in the silicate matrix. From these glassy products, glass-ceramics were produced via different regimes of thermal treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium%20containing%20tannery%20ash" title="chromium containing tannery ash">chromium containing tannery ash</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20ceramic%20materials" title=" glass ceramic materials"> glass ceramic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20processing" title=" thermal processing"> thermal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=vitrification" title=" vitrification"> vitrification</a> </p> <a href="https://publications.waset.org/abstracts/25645/vitrification-and-devitrification-of-chromium-containing-tannery-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3078</span> Coal Fly Ash Based Ceramic Membrane for Water Purification via Ultrafiltration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Obsi%20Terfasa">Obsi Terfasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhanupriya%20Das"> Bhanupriya Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiao-Shing%20Chen"> Shiao-Shing Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Converting coal fly ash (CFA) waste into ceramic membranes presents a promising alternative to traditional disposal methods, offering potential economic and environmental advantages that warrant further investigation. This research focuses on the creation of ceramic membranes exclusively from CFA using a uniaxial compaction technique. The membranes' properties were examined through various analytical methods: Scanning Electron Microscopy (SEM) revealed a porous and flawless membrane surface, X-Ray Diffraction (XRD) identified mullite and quartz crystalline structures, and Fourier-Transform Infrared Spectroscopy (FTIR) characterized the membrane's functional groups. Thermogravimetric analysis (TGA) determined the ideal sintering temperature to be 800°C. To evaluate its separation capabilities, the synthesized membrane was tested on wastewater from denim jeans production at 0.2 bar pressure. The results were impressive, with 97.42% removal of Chemical Oxygen Demand (COD), 95% color elimination, and a pure water flux of 4.5 Lm⁻²h⁻¹bar⁻¹. These findings suggest that CFA, a byproduct of thermal power plants, can be effectively repurposed to produce ultrafiltration membranes suitable for various industrial purification and separations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title="wastewater treatment">wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=separator" title=" separator"> separator</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20fly%20ash" title=" coal fly ash"> coal fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title=" ceramic membrane"> ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a> </p> <a href="https://publications.waset.org/abstracts/190216/coal-fly-ash-based-ceramic-membrane-for-water-purification-via-ultrafiltration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3077</span> Sustainable Manufacturing and Performance of Ceramic Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Obsi%20Terfasa">Obsi Terfasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhanupriya%20Das"> Bhanupriya Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Mithilish%20Passawan"> Mithilish Passawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The large-scale application of microbial fuel cell (MFC) technology is significantly hindered by the high cost of the commonly used proton exchange membrane, Nafion. This has led to the recent development of ceramic membranes using various clay minerals. This study evaluates the characteristics and potential use of a new ceramic membrane made from potter’s clay © mixed with different proportions (0, 5, 10 wt%) of fly ash (FA), labeled as CFA0, CFA5, CFA10, for cost-effective and sustainable MFC use. Among these, the CFA10 membrane demonstrated superior quality with a fine pore size distribution (average 0.41 μm), which supports higher water uptake and reduced oxygen diffusion. Its oxygen mass transfer coefficient was 4.13 ± 0.13 × 10⁻⁴ cm/s, about 40% lower than the control. X-ray diffraction analysis revealed that the CFA membrane is rich in quartz, which enhances proton conductance and water retention. Electrochemical kinetics studies, including cyclic voltammetry and electrochemical impedance spectroscopy (EIS), also confirmed the effectiveness of the CFA10 membrane in MFC, showing a peak current output of 15.35 mA and low ohmic resistance (78.2 Ω). The novel CFA10 ceramic membrane, incorporating coal fly ash, a waste material, shows promise for high MFC performance at a significantly reduced cost (96%), making it suitable for sustainable scaling up of the technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Coulombic%20efficiency" title=" Coulombic efficiency"> Coulombic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-chemical%20kinetics" title=" electro-chemical kinetics"> electro-chemical kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20conductivity" title=" proton conductivity"> proton conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a> </p> <a href="https://publications.waset.org/abstracts/190549/sustainable-manufacturing-and-performance-of-ceramic-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3076</span> Lightweight Ceramics from Clay and Ground Corncobs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.Quaranta">N.Quaranta</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Caligaris"> M. Caligaris</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Varoli"> R. Varoli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cristobal"> A. Cristobal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Unsen"> M. Unsen</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20L%C3%B3pez"> H. López</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corncobs are agricultural wastes and they can be used as fuel or as raw material in different industrial processes like cement manufacture, contaminant adsorption, chemical compound synthesis, etc. The aim of this work is to characterize this waste and analyze the feasibility of its use as a pore-forming material in the manufacture of lightweight ceramics for the civil construction industry. The characterization of raw materials is carried out by using various techniques: electron diffraction analysis X-ray, differential and gravimetric thermal analyses, FTIR spectroscopy, ecotoxicity evaluation, among others. The ground corncobs, particle size less than 2 mm, are mixed with clay up to 30% in volume and shaped by uniaxial pressure of 25 MPa, with 6% humidity, in moulds of 70mm x 40mm x 18mm. Then the green bodies are heat treated at 950°C for two hours following the treatment curves used in ceramic industry. The ceramic probes are characterized by several techniques: density, porosity and water absorption, permanent volumetric variation, loss on ignition, microscopies analysis, and mechanical properties. DTA-TGA analysis of corncobs shows in the range 20°-250°C a small loss in TGA curve and exothermic peaks at 250°-500°C. FTIR spectrum of the corncobs sample shows the characteristic pattern of this kind of organic matter with stretching vibration bands of adsorbed water, methyl groups, C–O and C–C bonds, and the complex form of the cellulose and hemicellulose glycosidic bonds. The obtained ceramic bodies present external good characteristics without loose edges and adequate properties for the market requirements. The porosity values of the sintered pieces are higher than those of the reference sample without waste addition. The results generally indicate that it is possible to use corncobs as porosity former in ceramic bodies without modifying the usual sintering temperatures employed in the industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20industry" title="ceramic industry">ceramic industry</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=hemicellulose%20glycosidic%20bonds" title=" hemicellulose glycosidic bonds"> hemicellulose glycosidic bonds</a> </p> <a href="https://publications.waset.org/abstracts/21467/lightweight-ceramics-from-clay-and-ground-corncobs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3075</span> Impact of the Xanthan Gum on Rheological Properties of Ceramic Slip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souad%20%20Hassene%20Daouadji">Souad Hassene Daouadji</a>, <a href="https://publications.waset.org/abstracts/search?q=Larbi%20%20Hammadi"> Larbi Hammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkrim%20%20Hazzab"> Abdelkrim Hazzab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The slips intended for the manufacture of ceramics must have rheological properties well-defined in order to bring together the qualities required for the casting step (good fluidity for feeding the molds easily settles while generating a regular settling of the dough and for the dehydration phase of the dough in the mold a setting time relatively short is required to have a sufficient refinement which allows demolding both easy and fast). Many additives haveadded in slip of ceramic in order to improve their rheological properties. In this study, we investigated the impact of xanthan gumon rheological properties of ceramic Slip. The modified Cross model is used to fit the stationary flow curves of ceramic slip at different concentration of xanthan added. The thixotropic behavior studied of mixture ceramic slip-xanthan gumat constant temperature is analyzed by using a structural kinetic model (SKM) in order to account for time dependent effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20slip" title="ceramic slip">ceramic slip</a>, <a href="https://publications.waset.org/abstracts/search?q=xanthan%20gum" title=" xanthan gum"> xanthan gum</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20cross%20model" title=" modified cross model"> modified cross model</a>, <a href="https://publications.waset.org/abstracts/search?q=thixotropy" title=" thixotropy"> thixotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/146505/impact-of-the-xanthan-gum-on-rheological-properties-of-ceramic-slip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3074</span> Reducing the Chemical Activity of Ceramic Casting Molds for Producing Decorated Glass Moulds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilgun%20Kuskonmaz">Nilgun Kuskonmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramic molding can produce castings with fine detail, smooth surface and high degree of dimensional accuracy. All these features are the key factors for producing decorated glass moulds. In the ceramic mold casting process, the fundamental parameters affecting the mold-metal reactions are the composition and the properties of the refractory materials used in the production of ceramic mold. As a result of the reactions taking place between the liquid metal and mold surface, it is not possible to achieve a perfect surface quality, a fine surface detail and maintain a high standard dimensional tolerances. The present research examines the effects of the binder composition on the structural and physical properties of the zircon ceramic mold. In the experiment, the ceramic slurry was prepared by mixing the refractory powders (zircon(ZrSiO4), mullit(3Al2O32SiO2) and alumina (Al2O3)) with the low alkaline silica (ethyl silicate (C8H20O4Si)) and acidic type gelling material suitable binder and gelling agent. This was followed by pouring that ceramic slurry on to a silicon pattern. After being gelled, the mold was removed from the silicon pattern and dried. Then, the ceramic mold was subjected to the reaction sintering at 1600°C for 2 hours in the furnace. The stainless steel (SS) was cast into the sintered ceramic mold. At the end of this process it was observed that the surface quality of decorated glass mold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20mold" title="ceramic mold">ceramic mold</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20casting" title=" stainless steel casting"> stainless steel casting</a>, <a href="https://publications.waset.org/abstracts/search?q=decorated%20glass%20mold" title=" decorated glass mold"> decorated glass mold</a> </p> <a href="https://publications.waset.org/abstracts/68215/reducing-the-chemical-activity-of-ceramic-casting-molds-for-producing-decorated-glass-moulds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3073</span> Optical and Surface Characteristics of Direct Composite, Polished and Glazed Ceramic Materials After Exposure to Tooth Brush Abrasion and Staining Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Firouzmandi">Maryam Firouzmandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Moosa%20Miri"> Moosa Miri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim and background: esthetic and structural reconstruction of anterior teeth may require the application of different restoration material. In this regard combination of direct composite veneer and ceramic crown is a common treatment option. Despite the initial matching, their long term harmony in term of optical and surface characteristics is a matter of concern. The purpose of this study is to evaluate and compare optical and surface characteristic of direct composite polished and glazed ceramic materials after exposure to tooth brush abrasion and staining solution. Materials and Methods: ten 2 mm thick disk shape specimens were prepared from IPS empress direct composite and twenty specimens from IPS e.max CAD blocks. Composite specimens and ten ceramic specimens were polished by using D&Z composite and ceramic polishing kit. The other ten specimens of ceramic were glazed with glazing liquid. Baseline measurement of roughness, CIElab coordinate, and luminance were recorded. Then the specimens underwent thermocycling, tooth brushing, and coffee staining. Afterword, the final measurements were recorded. Color coordinate were used to calculate ΔE76, ΔE00, translucency parameter, and contrast ratio. Data were analyzed by One-way ANOVA and post hoc LSD test. Results: baseline and final roughness of the study group were not different. At baseline, the order of roughness for the study group were as follows: composite < glazed ceramic < polished ceramic, but after aging, no difference. Between ceramic groups was not detected. The comparison of baseline and final luminance was similar to roughness but in reverse order. Unlike differential roughness which was comparable between the groups, changes in luminance of the glazed ceramic group was higher than other groups. ΔE76 and ΔE00 in the composite group were 18.35 and 12.84, in the glazed ceramic group were 1.3 and 0.79, and in polished ceramic were 1.26 and 0.85. These values for the composite group were significantly different from ceramic groups. Translucency of composite at baseline was significantly higher than final, but there was no significant difference between these values in ceramic groups. Composite was more translucency than ceramic at baseline and final measurement. Conclusion: Glazed ceramic surface was smoother than polished ceramic. Aging did not change the roughness. Optical properties (color and translucency) of the composite were influenced by aging. Luminance of composite, glazed ceramic, and polished ceramic decreased after aging, but the reduction in glazed ceramic was more pronounced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic" title="ceramic">ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth-brush%20abrasion" title=" tooth-brush abrasion"> tooth-brush abrasion</a>, <a href="https://publications.waset.org/abstracts/search?q=staining%20solution" title=" staining solution"> staining solution</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20resin" title=" composite resin"> composite resin</a> </p> <a href="https://publications.waset.org/abstracts/141981/optical-and-surface-characteristics-of-direct-composite-polished-and-glazed-ceramic-materials-after-exposure-to-tooth-brush-abrasion-and-staining-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3072</span> Behavior of Fibre Reinforced Polymer Composite with Nano-Ceramic Particle under Ballistic Impact and Quasi-Static Punch-Shear Loading </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Rajalakshmi">K. Rajalakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vasudevan"> A. Vasudevan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of Fibre Reinforced Polymer composite with the nano-ceramic particle as function of time and thickness of laminate which is subjected to ballistic impact and quasi-static punch-shear loading is investigated. The material investigated is made up of several layers of Kevlar fibres which are fabricated with nano-ceramic particles and epoxy resin by compression moulding. The ballistic impact and quasi-static punch-shear loading are studied experimentally and numerically. The failure mechanism is observed using scanning electron microscope (SEM). The result obtained in the experiment and numerical studies are compared. Due to nano size of the ceramic particle, the strength to weight ratio and penetrating resistance will improve in Fibre Reinforced Polymer composite which will have better impact property compared to ceramic plates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistic%20impact" title="ballistic impact">ballistic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevlar" title=" Kevlar"> Kevlar</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20ceramic" title=" nano ceramic"> nano ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration" title=" penetration"> penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composite" title=" polymer composite"> polymer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20plug" title=" shear plug"> shear plug</a> </p> <a href="https://publications.waset.org/abstracts/75932/behavior-of-fibre-reinforced-polymer-composite-with-nano-ceramic-particle-under-ballistic-impact-and-quasi-static-punch-shear-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20waste&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20waste&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20waste&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20waste&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20waste&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20waste&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20waste&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20waste&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20waste&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20waste&page=103">103</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20waste&page=104">104</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20waste&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>