CINXE.COM

Search results for: projection.

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: projection.</title> <meta name="description" content="Search results for: projection."> <meta name="keywords" content="projection."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="projection." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="projection."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 257</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: projection.</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> A Simulation Tool for Projection Mapping Based on Mapbox and Unity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noriko%20Hanakawa">Noriko Hanakawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Masaki%20Obana"> Masaki Obana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simulation tool has been proposed for big-scale projection mapping events. The tool has four main functions based on Mapbox and Unity utilities. The first function is building a 3D model of real cities by MapBox. The second function is a movie projection to some buildings in real cities by Unity. The third function is a movie sending function from a PC to a virtual projector. The fourth function is mapping movies with fitting buildings. The simulation tool was adapted to a real projection mapping event that was held in 2019. The event has been finished. The event had a serious problem in the movie projection to the target building. The extra tents were set in front of the target building. The tents became the obstacles to the movie projection. The simulation tool can be reappeared the problems of the event. Therefore, if the simulation tool was developed before the 2019 projection mapping event, the problem of the tents’ obstacles could be avoided with the simulation tool. In addition, we confirmed that the simulation tool is useful to make a plan of future projection mapping events in order to avoid obstacles of various extra equipment such as utility poles, planting trees, monument towers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=projection%20mapping" title="projection mapping">projection mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=projector%20position" title=" projector position"> projector position</a>, <a href="https://publications.waset.org/abstracts/search?q=real%203D%20map" title=" real 3D map"> real 3D map</a>, <a href="https://publications.waset.org/abstracts/search?q=avoiding%20obstacles" title=" avoiding obstacles"> avoiding obstacles</a> </p> <a href="https://publications.waset.org/abstracts/140107/a-simulation-tool-for-projection-mapping-based-on-mapbox-and-unity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Resistivity Tomography Optimization Based on Parallel Electrode Linear Back Projection Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiwei%20Huang">Yiwei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunyu%20Zhao"> Chunyu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingjing%20Ding"> Jingjing Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical Resistivity Tomography has been widely used in the medicine and the geology, such as the imaging of the lung impedance and the analysis of the soil impedance, etc. Linear Back Projection is the core algorithm of Electrical Resistivity Tomography, but the traditional Linear Back Projection can not make full use of the information of the electric field. In this paper, an imaging method of Parallel Electrode Linear Back Projection for Electrical Resistivity Tomography is proposed, which generates the electric field distribution that is not linearly related to the traditional Linear Back Projection, captures the new information and improves the imaging accuracy without increasing the number of electrodes by changing the connection mode of the electrodes. The simulation results show that the accuracy of the image obtained by the inverse operation obtained by the Parallel Electrode Linear Back Projection can be improved by about 20%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity%20tomography" title="electrical resistivity tomography">electrical resistivity tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulation" title=" finite element simulation"> finite element simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20optimization" title=" image optimization"> image optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20electrode%20linear%20back%20projection" title=" parallel electrode linear back projection"> parallel electrode linear back projection</a> </p> <a href="https://publications.waset.org/abstracts/112189/resistivity-tomography-optimization-based-on-parallel-electrode-linear-back-projection-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Influence of Replacement used Reference Coordinate System for Georeferencing of the Old Map of Europe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Havlicek">Jakub Havlicek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Cajthaml"> Jiri Cajthaml</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article describes the effect of the replacement of the used reference coordinate system in the georeferencing of an old map of Europe. In particular, it was the map entitled “Europe, the Map of Rivers and Mountains on a 1 : 12 000 000 Scale”, elaborated by professor D. Cipera and Dr. J. Metelka for Otto’s Geographic Atlas of 1924. The work was most likely produced using the equal-area conic (Albers) projection. The map was georeferenced into three types of projection – the equal-area conic, cylindrical Plate Carrée and cylindrical Mercator map projection. The map was georeferenced by means of the affine and the second-order polynomial transformation. The resulting georeferenced raster datasets from the Plate Carrée and Mercator projection were projected into the equal-area conic projection by means of projection equations. The output is the comparison of drawn graphics, the magnitude of standard deviations for individual projections and types of transformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=georeferencing" title="georeferencing">georeferencing</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20coordinate%20system" title=" reference coordinate system"> reference coordinate system</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20deviation" title=" standard deviation"> standard deviation</a> </p> <a href="https://publications.waset.org/abstracts/27471/influence-of-replacement-used-reference-coordinate-system-for-georeferencing-of-the-old-map-of-europe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Enhanced Thai Character Recognition with Histogram Projection Feature Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjawan%20Rangsikamol">Benjawan Rangsikamol</a>, <a href="https://publications.waset.org/abstracts/search?q=Chutimet%20Srinilta"> Chutimet Srinilta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper deals with extraction of Thai character features using the proposed histogram projection so as to improve the recognition performance. The process starts with transformation of image files into binary files before thinning. After character thinning, the skeletons are entered into the proposed extraction using histogram projection (horizontal and vertical) to extract unique features which are inputs of the subsequent recognition step. The recognition rate with the proposed extraction technique is as high as 97 percent since the technique works very well with the idiosyncrasies of Thai characters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=character%20recognition" title="character recognition">character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=histogram%20projection" title=" histogram projection"> histogram projection</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20perceptron" title=" multilayer perceptron"> multilayer perceptron</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20character%20features%20extraction" title=" Thai character features extraction "> Thai character features extraction </a> </p> <a href="https://publications.waset.org/abstracts/11674/enhanced-thai-character-recognition-with-histogram-projection-feature-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> The Complete Modal Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Andersen">Sebastian Andersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20N.%20Poulsen"> Peter N. Poulsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of basis projection in the structural dynamic analysis is frequently applied. The purpose of the method is to improve the computational efficiency, while maintaining a high solution accuracy, by projection the governing equations onto a small set of carefully selected basis vectors. The present work considers basis projection in kinematic nonlinear systems with a focus on two widely used basis vectors; the system mode shapes and their modal derivatives. Particularly the latter basis vectors are given special attention since only approximate modal derivatives have been used until now. In the present work the complete modal derivatives, derived from perturbation methods, are presented and compared to the previously applied approximate modal derivatives. The correctness of the complete modal derivatives is illustrated by use of an example of a harmonically loaded kinematic nonlinear structure modeled by beam elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basis%20projection" title="basis projection">basis projection</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20nonlinearities" title=" kinematic nonlinearities"> kinematic nonlinearities</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20derivatives" title=" modal derivatives"> modal derivatives</a> </p> <a href="https://publications.waset.org/abstracts/92260/the-complete-modal-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> Studying Projection Distance and Flow Properties by Shape Variations of Foam Monitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Kyu%20Cho">Hyun-Kyu Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Su%20Kim"> Jun-Su Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon-Geun%20Huh"> Choon-Geun Huh</a>, <a href="https://publications.waset.org/abstracts/search?q=Geon%20Lee%20Young-Chul%20Park"> Geon Lee Young-Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the relationship between flow properties and fluid projection distance look into connection for shape variations of foam monitor. A numerical analysis technique for fluid analysis of a foam monitor was developed for the prediction. Shape of foam monitor the flow path of fluid flow according to the shape, The fluid losses were calculated from flow analysis result.. The modified model used the length increase model of the flow path, and straight line of the model. Inlet pressure was 7 [bar] and external was atmosphere codition. am. The results showed that the length increase model of the flow path and straight line of the model was improved in the nozzle projection distance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20performance" title="injection performance">injection performance</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20monitor" title=" foam monitor"> foam monitor</a>, <a href="https://publications.waset.org/abstracts/search?q=Projection%20distance" title=" Projection distance"> Projection distance</a> </p> <a href="https://publications.waset.org/abstracts/58090/studying-projection-distance-and-flow-properties-by-shape-variations-of-foam-monitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Improvement of Cross Range Resolution in Through Wall Radar Imaging Using Bilateral Backprojection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Yadawad">Rashmi Yadawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Disha%20Narayanan"> Disha Narayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Gautam"> Ravi Gautam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through Wall Radar Imaging is gaining increasing importance now a days in the field of Defense and one of the most important criteria that forms the basis for the image quality obtained is the Cross-Range resolution of the image. In this research paper, the Bilateral Back projection algorithm has been implemented for Through Wall Radar Imaging. The sole purpose is to enhance the resolution in the cross range direction of the obtained Back projection image. Synthetic Data is generated for two targets which are placed at various locations in a room of dimensions 8 m by 6m. Two algorithms namely, simple back projection and Bilateral Back projection have been implemented, images are obtained and the obtained images are compared. Numerical simulations have been coded in MATLAB and experimental results of the two algorithms have been shown. Based on the comparison between the two images, it can be clearly seen that the ringing effect and chess board effect have been heavily reduced in the bilaterally back projected image and hence promising results are obtained giving a relatively sharper image with relatively well defined edges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=through%20wall%20radar%20imaging" title="through wall radar imaging">through wall radar imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=bilateral%20back%20projection" title=" bilateral back projection"> bilateral back projection</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20range%20resolution" title=" cross range resolution"> cross range resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20data" title=" synthetic data "> synthetic data </a> </p> <a href="https://publications.waset.org/abstracts/14369/improvement-of-cross-range-resolution-in-through-wall-radar-imaging-using-bilateral-backprojection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Improved Structure and Performance by Shape Change of Foam Monitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tae%20Gwan%20Kim">Tae Gwan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Kyu%20Cho"> Hyun Kyu Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Hoon%20Lee"> Young Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Chul%20Park"> Young Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foam monitors are devices that are installed on cargo tank decks to suppress cargo area fires in oil tankers or hazardous chemical ship cargo ships. In general, the main design parameter of the foam monitor is the distance of the projection through the foam monitor. In this study, the relationship between flow characteristics and projection distance, depending on the shape was examined. Numerical techniques for fluid analysis of foam monitors have been developed for prediction. The flow pattern of the fluid varies depending on the shape of the flow path of the foam monitor, as the flow losses affecting projection distance were calculated through numerical analysis. The basic shape of the foam monitor was an L shape designed by N Company. The modified model increased the length of the flow path and used the S shape model. The calculation result shows that the L shape, which is the basic shape, has a problem that the force is directed to one side and the vibration and noise are generated there. In order to solve the problem, S-shaped model, which is a change model, was used. As a result, the problem is solved, and the projection distance from the nozzle is improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20monitor" title=" foam monitor"> foam monitor</a>, <a href="https://publications.waset.org/abstracts/search?q=projection%20distance" title=" projection distance"> projection distance</a>, <a href="https://publications.waset.org/abstracts/search?q=moment" title=" moment"> moment</a> </p> <a href="https://publications.waset.org/abstracts/66229/improved-structure-and-performance-by-shape-change-of-foam-monitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> A Straightforward Approach for Determining the Weights of Decision Makers Based on Angle Cosine and Projection Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Yang">Qiang Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping-An%20Du"> Ping-An Du</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Group decision making with multiple attribute has attracted intensive concern in the decision analysis area. This paper assumes that the contributions of all the decision makers (DMs) are not equal to the decision process based on different knowledge and experience in group setting. The aim of this paper is to develop a novel approach to determine weights of DMs in the group decision making problems. In this paper, the weights of DMs are determined in the group decision environment via angle cosine and projection method. First of all, the average decision of all individual decisions is defined as the ideal decision. After that, we define the weight of each decision maker (DM) by aggregating the angle cosine and projection between individual decision and ideal decision with associated direction indicator μ. By using the weights of DMs, all individual decisions are aggregated into a collective decision. Further, the preference order of alternatives is ranked in accordance with the overall row value of collective decision. Finally, an example in a chemical company is provided to illustrate the developed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angel%20cosine" title="angel cosine">angel cosine</a>, <a href="https://publications.waset.org/abstracts/search?q=ideal%20decision" title=" ideal decision"> ideal decision</a>, <a href="https://publications.waset.org/abstracts/search?q=projection%20method" title=" projection method"> projection method</a>, <a href="https://publications.waset.org/abstracts/search?q=weights%20of%20decision%20makers" title=" weights of decision makers"> weights of decision makers</a> </p> <a href="https://publications.waset.org/abstracts/35292/a-straightforward-approach-for-determining-the-weights-of-decision-makers-based-on-angle-cosine-and-projection-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Defect Localization and Interaction on Surfaces with Projection Mapping and Gesture Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Wang">Qiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyang%20Yu"> Hongyang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=MingRong%20Lai"> MingRong Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%20Luo"> Miao Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method for accurately localizing and interacting with known surface defects by overlaying patterns onto real-world surfaces using a projection system. Given the world coordinates of the defects, we project corresponding patterns onto the surfaces, providing an intuitive visualization of the specific defect locations. To enable users to interact with and retrieve more information about individual defects, we implement a gesture recognition system based on a pruned and optimized version of YOLOv6. This lightweight model achieves an accuracy of 82.8% and is suitable for deployment on low-performance devices. Our approach demonstrates the potential for enhancing defect identification, inspection processes, and user interaction in various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20localization" title="defect localization">defect localization</a>, <a href="https://publications.waset.org/abstracts/search?q=projection%20mapping" title=" projection mapping"> projection mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=gesture%20recognition" title=" gesture recognition"> gesture recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLOv6" title=" YOLOv6"> YOLOv6</a> </p> <a href="https://publications.waset.org/abstracts/165856/defect-localization-and-interaction-on-surfaces-with-projection-mapping-and-gesture-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moung%20Young%20Lee">Moung Young Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Gyu%20Song"> Chul Gyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back-projection" title="back-projection">back-projection</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20comparison" title=" image comparison"> image comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20FFT" title=" non-uniform FFT"> non-uniform FFT</a>, <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20tomography" title=" photoacoustic tomography"> photoacoustic tomography</a> </p> <a href="https://publications.waset.org/abstracts/40584/comparison-of-back-projection-with-non-uniform-fast-fourier-transform-for-real-time-photoacoustic-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Video Object Segmentation for Automatic Image Annotation of Ethernet Connectors with Environment Mapping and 3D Projection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marrone%20Silverio%20Melo%20Dantas%20Pedro%20Henrique%20Dreyer">Marrone Silverio Melo Dantas Pedro Henrique Dreyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Fonseca%20Reis%20de%20Souza"> Gabriel Fonseca Reis de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Bezerra"> Daniel Bezerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Souza"> Ricardo Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Lins"> Silvia Lins</a>, <a href="https://publications.waset.org/abstracts/search?q=Judith%20Kelner"> Judith Kelner</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Fawzi%20Hadj%20Sadok"> Djamel Fawzi Hadj Sadok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The creation of a dataset is time-consuming and often discourages researchers from pursuing their goals. To overcome this problem, we present and discuss two solutions adopted for the automation of this process. Both optimize valuable user time and resources and support video object segmentation with object tracking and 3D projection. In our scenario, we acquire images from a moving robotic arm and, for each approach, generate distinct annotated datasets. We evaluated the precision of the annotations by comparing these with a manually annotated dataset, as well as the efficiency in the context of detection and classification problems. For detection support, we used YOLO and obtained for the projection dataset an F1-Score, accuracy, and mAP values of 0.846, 0.924, and 0.875, respectively. Concerning the tracking dataset, we achieved an F1-Score of 0.861, an accuracy of 0.932, whereas mAP reached 0.894. In order to evaluate the quality of the annotated images used for classification problems, we employed deep learning architectures. We adopted metrics accuracy and F1-Score, for VGG, DenseNet, MobileNet, Inception, and ResNet. The VGG architecture outperformed the others for both projection and tracking datasets. It reached an accuracy and F1-score of 0.997 and 0.993, respectively. Similarly, for the tracking dataset, it achieved an accuracy of 0.991 and an F1-Score of 0.981. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RJ45" title="RJ45">RJ45</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20annotation" title=" automatic annotation"> automatic annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20tracking" title=" object tracking"> object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20projection" title=" 3D projection"> 3D projection</a> </p> <a href="https://publications.waset.org/abstracts/130540/video-object-segmentation-for-automatic-image-annotation-of-ethernet-connectors-with-environment-mapping-and-3d-projection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> A New Dual Forward Affine Projection Adaptive Algorithm for Speech Enhancement in Airplane Cockpits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djendi%20Mohmaed">Djendi Mohmaed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a dual adaptive algorithm, which is based on the combination between the forward blind source separation (FBSS) structure and the affine projection algorithm (APA). This proposed algorithm combines the advantages of the source separation properties of the FBSS structure and the fast convergence characteristics of the APA algorithm. The proposed algorithm needs two noisy observations to provide an enhanced speech signal. This process is done in a blind manner without the need for ant priori information about the source signals. The proposed dual forward blind source separation affine projection algorithm is denoted (DFAPA) and used for the first time in an airplane cockpit context to enhance the communication from- and to- the airplane. Intensive experiments were carried out in this sense to evaluate the performance of the proposed DFAPA algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20algorithm" title="adaptive algorithm">adaptive algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20enhancement" title=" speech enhancement"> speech enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20mismatch" title=" system mismatch"> system mismatch</a>, <a href="https://publications.waset.org/abstracts/search?q=SNR" title=" SNR"> SNR</a> </p> <a href="https://publications.waset.org/abstracts/165920/a-new-dual-forward-affine-projection-adaptive-algorithm-for-speech-enhancement-in-airplane-cockpits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> The Effect of Compensating Filter on Image Quality in Lateral Projection of Thoracolumbar Radiography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Arda%20Adrina%20Daud">Noor Arda Adrina Daud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hanafi%20Ali"> Mohd Hanafi Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The compensating filter is placed between the patient and X-ray tube to compensate various density and thickness of human body. The main purpose of this project is to study the effect of compensating filter on image quality in lateral projection of thoracolumbar radiography. The study was performed by an X-ray unit where different thicknesses of aluminum were used as compensating filter. Specifically the relationship between thickness of aluminum, density and noise were evaluated. Results show different thickness of aluminum compensating filter improved the image quality of lateral projection thoracolumbar radiography. The compensating filter of 8.2 mm was considered as the optimal filter to compensate the thoracolumbar junction (T12-L1), 1 mm to compensate lumbar region and 5.9 mm to compensate thorax region. The aluminum wedge compensating filter was designed resulting in an acceptable image quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compensating%20filter" title="compensating filter">compensating filter</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20quality" title=" image quality"> image quality</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral" title=" lateral"> lateral</a>, <a href="https://publications.waset.org/abstracts/search?q=thoracolumbar" title=" thoracolumbar "> thoracolumbar </a> </p> <a href="https://publications.waset.org/abstracts/6135/the-effect-of-compensating-filter-on-image-quality-in-lateral-projection-of-thoracolumbar-radiography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Diffusion Adaptation Strategies for Distributed Estimation Based on the Family of Affine Projection Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shams%20Esfand%20Abadi">Mohammad Shams Esfand Abadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ranjbar"> Mohammad Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ebrahimpour"> Reza Ebrahimpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the distributed processing solution problem in a diffusion network based on the adapt then combine (ATC) and combine then adapt (CTA)selective partial update normalized least mean squares (SPU-NLMS) algorithms. Also, we extend this approach to dynamic selection affine projection algorithm (DS-APA) and ATC-DS-APA and CTA-DS-APA are established. The purpose of ATC-SPU-NLMS and CTA-SPU-NLMS algorithm is to reduce the computational complexity by updating the selected blocks of weight coefficients at every iteration. In CTA-DS-APA and ATC-DS-APA, the number of the input vectors is selected dynamically. Diffusion cooperation strategies have been shown to provide good performance based on these algorithms. The good performance of introduced algorithm is illustrated with various experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=selective%20partial%20update" title="selective partial update">selective partial update</a>, <a href="https://publications.waset.org/abstracts/search?q=affine%20projection" title=" affine projection"> affine projection</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20selection" title=" dynamic selection"> dynamic selection</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20distributed%20networks" title=" adaptive distributed networks"> adaptive distributed networks</a> </p> <a href="https://publications.waset.org/abstracts/20231/diffusion-adaptation-strategies-for-distributed-estimation-based-on-the-family-of-affine-projection-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">707</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Aesthetic Modification with Combined Orthognathic Surgery and Closed Rhinoplasty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Marano">Alessandro Marano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The author describes the aesthetic modification using orthognathic surgery and closed rhinoplasty. Methods: Series of case study. After orthognathic surgery we can observe a dramatical change of aesthetic especially in the mid-face and nose projection. The advancement of maxillary bone through Le Fort I osteotomy will change the nasal tip projection and lips roundness; combining orthognathic surgery with closed approach rhinoplasty will manage both function and aesthetic of all mid face district. Results: Combining Le Fort I osteotomy with closed approach rhinoplasty resulted in good objective results with high patient satisfaction. Le Fort I osteotomy will increase projection of mid face and the closed approach rhinoplasty will modify the nasal shape to be more harmonic with the new maxillary district. The scars are not visible because hidden inside the mouth and nose. Conclusions: The orthognathic surgery combined with closed approach rhinoplasty are very effective for changing the aesthetic of the mid face. The results illustrate the difference between the use of orthognathic surgery only and to use it in association of closed approach rhinoplasty. Using both will allow to obtain a long lasting and pleasing results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orthognathic" title="orthognathic">orthognathic</a>, <a href="https://publications.waset.org/abstracts/search?q=rhinoplasty" title=" rhinoplasty"> rhinoplasty</a>, <a href="https://publications.waset.org/abstracts/search?q=aesthetic" title=" aesthetic"> aesthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=face" title=" face"> face</a> </p> <a href="https://publications.waset.org/abstracts/149677/aesthetic-modification-with-combined-orthognathic-surgery-and-closed-rhinoplasty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayode%20A.%20Olaniyi">Kayode A. Olaniyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tola.%20M.%20Osifeko"> Tola. M. Osifeko</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeola%20A.%20Ogunleye"> Adeola A. Ogunleye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connected-component" title="connected-component">connected-component</a>, <a href="https://publications.waset.org/abstracts/search?q=projection-profile" title=" projection-profile"> projection-profile</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=text-line" title=" text-line"> text-line</a> </p> <a href="https://publications.waset.org/abstracts/102464/adaptation-of-projection-profile-algorithm-for-skewed-handwritten-text-line-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Characterization of Optical Systems for Intraocular Projection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Q.%20Yu">Charles Q. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20H.%20Fan"> Victoria H. Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20F.%20Al-Qahtani"> Ahmed F. Al-Qahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibraim%20Viera"> Ibraim Viera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Over 12 million people are blind due to opacity of the cornea, the clear tissue forming the front of the eye. Current methods use plastic implants to produce a clear optical pathway into the eye but are limited by a high rate of complications. New implants utilizing completely inside-the-eye projection technology can overcome blindness due to scarring of the eye by producing images on the retina without need for a clear optical pathway into the eye and may be free of the complications of traditional treatments. However, the interior of the eye is a challenging location for the design of optical focusing systems which can produce a sufficiently high quality image. No optical focusing systems have previously been characterized for this purpose. Methods: 3 optical focusing systems for intraocular (inside the eye) projection were designed and then modeled with ray tracing software, including a pinhole system, a planoconvex, and an achromatic system. These were then constructed using off-the-shelf components and tested in the laboratory. Weight, size, magnification, depth of focus, image quality and brightness were characterized. Results: Image quality increased with complexity of system design, as did weight and size. A dual achromatic doublet optical system produced the highest image quality. The visual acuity equivalent achieved with this system was better than 20/200. Its weight was less than that of the natural human crystalline lens. Conclusions: We demonstrate for the first time that high quality images can be produced by optical systems sufficiently small and light to be implanted within the eye. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=focusing" title="focusing">focusing</a>, <a href="https://publications.waset.org/abstracts/search?q=projection" title=" projection"> projection</a>, <a href="https://publications.waset.org/abstracts/search?q=blindness" title=" blindness"> blindness</a>, <a href="https://publications.waset.org/abstracts/search?q=cornea" title=" cornea "> cornea </a>, <a href="https://publications.waset.org/abstracts/search?q=achromatic" title=" achromatic"> achromatic</a>, <a href="https://publications.waset.org/abstracts/search?q=pinhole" title=" pinhole"> pinhole</a> </p> <a href="https://publications.waset.org/abstracts/108808/characterization-of-optical-systems-for-intraocular-projection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Asadi">Farhad Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Mollakazemi"> Mohammad Javad Mollakazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aref%20Ghafouri"> Aref Ghafouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20nonlinear%20estimation" title="local nonlinear estimation">local nonlinear estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=LWPR%20algorithm" title=" LWPR algorithm"> LWPR algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20training%20method" title=" online training method"> online training method</a>, <a href="https://publications.waset.org/abstracts/search?q=locally%20weighted%20projection%20regression%20method" title=" locally weighted projection regression method"> locally weighted projection regression method</a> </p> <a href="https://publications.waset.org/abstracts/14554/influence-of-parameters-of-modeling-and-data-distribution-for-optimal-condition-on-locally-weighted-projection-regression-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Error Estimation for the Reconstruction Algorithm with Fan Beam Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Yadav">Nirmal Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanuja%20Srivastava"> Tanuja Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shannon theory is an exact method to recover a band limited signals from its sampled values in discrete implementation, using sinc interpolators. But sinc based results are not much satisfactory for band-limited calculations so that convolution with window function, having compact support, has been introduced. Convolution Backprojection algorithm with window function is an approximation algorithm. In this paper, the error has been calculated, arises due to this approximation nature of reconstruction algorithm. This result will be defined for fan beam projection data which is more faster than parallel beam projection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=convolution%20backprojection" title=" convolution backprojection"> convolution backprojection</a>, <a href="https://publications.waset.org/abstracts/search?q=radon%20transform" title=" radon transform"> radon transform</a>, <a href="https://publications.waset.org/abstracts/search?q=fan%20beam" title=" fan beam"> fan beam</a> </p> <a href="https://publications.waset.org/abstracts/25009/error-estimation-for-the-reconstruction-algorithm-with-fan-beam-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> The Implementation of the Javanese Lettered-Manuscript Image Preprocessing Stage Model on the Batak Lettered-Manuscript Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20Rita%20Widiarti">Anastasia Rita Widiarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Agus%20Harjoko"> Agus Harjoko</a>, <a href="https://publications.waset.org/abstracts/search?q=Marsono"> Marsono</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Hartati"> Sri Hartati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of a study to test whether the Javanese character manuscript image preprocessing model that have been more widely applied, can also be applied to segment of the Batak characters manuscripts. The treatment process begins by converting the input image into a binary image. After the binary image is cleaned of noise, then the segmentation lines using projection profile is conducted. If unclear histogram projection is found, then the smoothing process before production indexes line segments is conducted. For each line image which has been produced, then the segmentation scripts in the line is applied, with regard of the connectivity between pixels which making up the letters that there is no characters are truncated. From the results of manuscript preprocessing system prototype testing, it is obtained the information about the system truth percentage value on pieces of Pustaka Batak Podani Ma AjiMamisinon manuscript ranged from 65% to 87.68% with a confidence level of 95%. The value indicates the truth percentage shown the initial processing model in Javanese characters manuscript image can be applied also to the image of the Batak characters manuscript. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connected%20component" title="connected component">connected component</a>, <a href="https://publications.waset.org/abstracts/search?q=preprocessing" title=" preprocessing"> preprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=manuscript%20image" title=" manuscript image"> manuscript image</a>, <a href="https://publications.waset.org/abstracts/search?q=projection%20profiles" title=" projection profiles"> projection profiles</a> </p> <a href="https://publications.waset.org/abstracts/33231/the-implementation-of-the-javanese-lettered-manuscript-image-preprocessing-stage-model-on-the-batak-lettered-manuscript-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> The Discovery and Application of Perspective Representation in Modern Italy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Stange">Matthias Stange</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the early modern period, a different image of man began to prevail in Europe. The focus was on the self-determined human being and his abilities. At first, these developments could be seen in Italian painting and architecture, which again oriented itself to the concepts and forms of antiquity. For example, through the discovery of perspective representation by Brunelleschi or later the orthogonal projection by Alberti, after the ancient knowledge of optics had been forgotten in the Middle Ages. The understanding of reality in the Middle Ages was not focused on the sensually perceptible world but was determined by ecclesiastical dogmas. The empirical part of this study examines the rediscovery and development of perspective. With the paradigm of antiquity, the figure of the architect was also recognised again - the cultural man trained theoretically and practically in numerous subjects, as Vitruvius describes him. In this context, the role of the architect, the influence on the painting of the Quattrocento as well as the influence on architectural representation in the Baroque period are examined. Baroque is commonly associated with the idea of illusionistic appearance as opposed to the tangible reality presented in the Renaissance. The study has shown that the central perspective projection developed by Filippo Brunelleschi enabled another understanding of seeing and the dissemination of painted images. Brunelleschi's development made it possible to understand the sight of nature as a reflection of what is presented to the viewer's eye. Alberti later shortened Brunelleschi's central perspective representation for practical use in painting. In early modern Italian architecture and painting, these developments apparently supported each other. The pictorial representation of architecture initially served the development of an art form before it became established in building practice itself. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alberti" title="Alberti">Alberti</a>, <a href="https://publications.waset.org/abstracts/search?q=Brunelleschi" title=" Brunelleschi"> Brunelleschi</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20perspective%20projection" title=" central perspective projection"> central perspective projection</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20projection" title=" orthogonal projection"> orthogonal projection</a>, <a href="https://publications.waset.org/abstracts/search?q=quattrocento" title=" quattrocento"> quattrocento</a>, <a href="https://publications.waset.org/abstracts/search?q=baroque" title=" baroque"> baroque</a> </p> <a href="https://publications.waset.org/abstracts/161857/the-discovery-and-application-of-perspective-representation-in-modern-italy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Estimating the Government Consumption and Investment Multipliers Using Local Projection Method on the US Data from 1966 to 2020</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustofa%20Mahmud%20Al%20Mamun">Mustofa Mahmud Al Mamun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Government spending, one of the major components of gross domestic product (GDP), is composed of government consumption, investment, and transfer payments. A change in government spending during recessionary periods can generate an increase in GDP greater than the increase in spending. This is called the "multiplier effect". Accurate estimation of government spending multiplier is important because fiscal policy has been used to stimulate a flagging economy. Many recent studies have focused on identifying parts of the economy that responds more to a stimulus under a variety of circumstances. This paper used the US dataset from 1966 to 2020 and local projection method assuming standard identification strategy to estimate the multipliers. The model includes important macroaggregates and controls for forecasted government spending, interest rate, consumer price index (CPI), export, import, and level of public debt. Investment multipliers are found to be positive and larger than the consumption multipliers. Consumption multipliers are either negative or not significantly different than zero. Results do not vary across the business cycle. However, the consumption multiplier estimated from pre-1980 data is positive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20cycle" title="business cycle">business cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption%20multipliers" title=" consumption multipliers"> consumption multipliers</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasted%20government%20spending" title=" forecasted government spending"> forecasted government spending</a>, <a href="https://publications.waset.org/abstracts/search?q=investment%20multipliers" title=" investment multipliers"> investment multipliers</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20projection%20method" title=" local projection method"> local projection method</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20lower%20bound" title=" zero lower bound"> zero lower bound</a> </p> <a href="https://publications.waset.org/abstracts/141968/estimating-the-government-consumption-and-investment-multipliers-using-local-projection-method-on-the-us-data-from-1966-to-2020" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Comparative Analysis of Classical and Parallel Inpainting Algorithms Based on Affine Combinations of Projections on Convex Sets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20Maria%20Artinescu">Irina Maria Artinescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Costin%20Radu%20Boldea"> Costin Radu Boldea</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduard-Ionut%20Matei"> Eduard-Ionut Matei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is a comparative study of two classical variants of parallel projection methods for solving the convex feasibility problem with their equivalents that involve variable weights in the construction of the solutions. We used a graphical representation of these methods for inpainting a convex area of an image in order to investigate their effectiveness in image reconstruction applications. We also presented a numerical analysis of the convergence of these four algorithms in terms of the average number of steps and execution time in classical CPU and, alternatively, in parallel GPU implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convex%20feasibility%20problem" title="convex feasibility problem">convex feasibility problem</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence%20analysis" title=" convergence analysis"> convergence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inpainting" title=" inpainting"> inpainting</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20projection%20methods" title=" parallel projection methods"> parallel projection methods</a> </p> <a href="https://publications.waset.org/abstracts/133736/comparative-analysis-of-classical-and-parallel-inpainting-algorithms-based-on-affine-combinations-of-projections-on-convex-sets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> New Coordinate System for Countries with Big Territories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sabri%20Ali%20Akresh">Mohammed Sabri Ali Akresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modern technologies and developments in computer and Global Positioning System (GPS) as well as Geographic Information System (GIS) and total station TS. This paper presents a new proposal for coordinates system by a harmonic equations “United projections”, which have five projections (Mercator, Lambert, Russell, Lagrange, and compound of projection) in one zone coordinate system width 14 degrees, also it has one degree for overlap between zones, as well as two standards parallels for zone from 10 S to 45 S. Also this paper presents two cases; first case is to compare distances between a new coordinate system and UTM, second case creating local coordinate system for the city of Sydney to measure the distances directly from rectangular coordinates using projection of Mercator, Lambert and UTM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=harmonic%20equations" title="harmonic equations">harmonic equations</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinate%20system" title=" coordinate system"> coordinate system</a>, <a href="https://publications.waset.org/abstracts/search?q=projections" title=" projections"> projections</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms"> algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=parallels" title=" parallels"> parallels</a> </p> <a href="https://publications.waset.org/abstracts/6986/new-coordinate-system-for-countries-with-big-territories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> A Proof of the Fact that a Finite Morphism is Proper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Yi%20Wu">Ying Yi Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a proof of the fact that a finite morphism is proper. We show that a finite morphism is universally closed and of finite type, which are the conditions for properness. Our proof is based on the theory of schemes and involves the use of the projection formula and the base change theorem. We first show that a finite morphism is of finite type and then proceed to show that it is universally closed. We use the fact that a finite morphism is also an affine morphism, which allows us to use the theory of coherent sheaves and their modules. We then show that the map induced by a finite morphism is flat and that the module it induces is of finite type. We use these facts to show that a finite morphism is universally closed. Our proof is constructive, and we provide details for each step of the argument. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite" title="finite">finite</a>, <a href="https://publications.waset.org/abstracts/search?q=morphism" title=" morphism"> morphism</a>, <a href="https://publications.waset.org/abstracts/search?q=schemes" title=" schemes"> schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=projection." title=" projection."> projection.</a> </p> <a href="https://publications.waset.org/abstracts/163708/a-proof-of-the-fact-that-a-finite-morphism-is-proper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Theoretical BER Analyzing of MPSK Signals Based on the Signal Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Qing-feng">Jing Qing-feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Danmei"> Liu Danmei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the optimum detection, signal projection and Maximum A Posteriori (MAP) rule, Proakis has deduced the theoretical BER equation of Gray coded MPSK signals. Proakis analyzed the BER theoretical equations mainly based on the projection of signals, which is difficult to be understood. This article solve the same problem based on the signal space, which explains the vectors relations among the sending signals, received signals and noises. The more explicit and easy-deduced process is illustrated in this article based on the signal space, which can illustrated the relations among the signals and noises clearly. This kind of deduction has a univocal geometry meaning. It can explain the correlation between the production and calculation of BER in vector level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MPSK" title="MPSK">MPSK</a>, <a href="https://publications.waset.org/abstracts/search?q=MAP" title=" MAP"> MAP</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20space" title=" signal space"> signal space</a>, <a href="https://publications.waset.org/abstracts/search?q=BER" title="BER">BER</a> </p> <a href="https://publications.waset.org/abstracts/45896/theoretical-ber-analyzing-of-mpsk-signals-based-on-the-signal-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasannakumar%20Palaniappan">Prasannakumar Palaniappan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Ho%20Shin"> Dong Ho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Gyu%20Song"> Chul Gyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contour%20filtering" title="contour filtering">contour filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20array" title=" linear array"> linear array</a>, <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20tomography" title=" photoacoustic tomography"> photoacoustic tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20back%20projection" title=" universal back projection"> universal back projection</a> </p> <a href="https://publications.waset.org/abstracts/40626/image-enhancement-algorithm-of-photoacoustic-tomography-using-active-contour-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Sublethal Effects of Thiamethoxam-Lambda Cyhalothrin on the Life Table Parameters and Population Projection of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and Its Parasitoid, Encarsia formosa (Hymenoptera: Aphelinidae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sevda%20Ddras">Sevda Ddras</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariba%20Mehrkhou"> Fariba Mehrkhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Atlihan"> Remzi Atlihan</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Fourouzan"> Maryam Fourouzan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), is one of the most important pest on vegetables and ornamental host plants. In this research, the sub-lethal concentration (LC30) of thiamethoxam-lambda cyhalothrin (TLC) on the biological properties, life table parameters and population projection of T. vaporarium and its parasitoid, Encarsia formosa Gahan, were studied at controlled condition (25 ±5 ℃, R.H. 60 ±10 % and a photoperiod of 16:8 h (L:D). Bioassays were conducted by dipping tomato leaves containing third instar nymphs of the whitefly T. vaporariorum, in the obtained LC30 concentration of eforia. The life table data were analyzed using the computer program TWOSEX–MSChart based on the age-stage, two-sex life table theory. The results showed that, usage of sublethal concentration of TLC effected the biological properties and population growth parameters of greenhouse whitefly by shortening the developmentl time, adult longevity, decreasing the fecundity and population growth paramters. Also, the LC30 concentration of TLC had negative effects on life history and life table parameters of E.formosa. The obtained results illustrated that the sublethal concentration of TLC resulted in prolonging of developmental time, decreasing of adult longevity, survival rate and population growth parameters of E.formosa. Additionally, the population projection results were accordance with the population growth rate of either greenhouse whitefly or E.formosa. We conclude that, TLC should not be used in integrated pest management programs where E. formosa exists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20whitefly" title="greenhouse whitefly">greenhouse whitefly</a>, <a href="https://publications.waset.org/abstracts/search?q=Encarsia%20formosa" title=" Encarsia formosa"> Encarsia formosa</a>, <a href="https://publications.waset.org/abstracts/search?q=thiamethoxam-lambda%20cyhalothrin" title=" thiamethoxam-lambda cyhalothrin"> thiamethoxam-lambda cyhalothrin</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20projection" title=" population projection"> population projection</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20table%20parameters" title=" life table parameters"> life table parameters</a> </p> <a href="https://publications.waset.org/abstracts/176584/sublethal-effects-of-thiamethoxam-lambda-cyhalothrin-on-the-life-table-parameters-and-population-projection-of-trialeurodes-vaporariorum-hemiptera-aleyrodidae-and-its-parasitoid-encarsia-formosa-hymenoptera-aphelinidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Climate Change Effect on the Dynamic Modulus Property of Asphalt Concrete in Southern England Using UKCP09</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Idiata">David Idiata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is directed at using the UKCP09 climate change projection tool to predict the effect of climate change on the dynamic modulus of asphalt concrete is Southern England knowing that there is a pressing challenge directly facing infrastructure in the urban cities in the world today due to climate change. Climate change causes change in the environment which in turn impacts on the long-term structural performance of structures. From the projection values obtained, it was discovered that as the temperature increases, the dynamic modulus reduces and this effect was more on the South West which have temperature range of 36.8 oC to 48.3 oC and dynamic modulus range of 2,212 MPa to 1256 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modulus" title="dynamic modulus">dynamic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete" title=" asphalt concrete"> asphalt concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=UKCP09" title=" UKCP09"> UKCP09</a>, <a href="https://publications.waset.org/abstracts/search?q=Southern%20England" title=" Southern England"> Southern England</a> </p> <a href="https://publications.waset.org/abstracts/72546/climate-change-effect-on-the-dynamic-modulus-property-of-asphalt-concrete-in-southern-england-using-ukcp09" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=projection.&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=projection.&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=projection.&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=projection.&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=projection.&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=projection.&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=projection.&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=projection.&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=projection.&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10