CINXE.COM

Search results for: dual-functional peptide

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dual-functional peptide</title> <meta name="description" content="Search results for: dual-functional peptide"> <meta name="keywords" content="dual-functional peptide"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dual-functional peptide" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dual-functional peptide"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 216</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dual-functional peptide</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Synthesis and Characterization of Cyclic PNC-28 Peptide, Residues 17–26 (ETFSDLWKLL), A Binding Domain of p53</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepshikha%20Verma">Deepshikha Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20N.%20Rajasekharan%20Pillai"> V. N. Rajasekharan Pillai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study reports the synthesis of cyclic PNC-28 peptides with solid-phase peptide synthesis method. In the first step, we synthesize the linear PNC-28 Peptide and in the second step, we cyclize (N-to-C or head-to-tail cyclization) the linear PNC-28 peptide. The molecular formula of cyclic PNC-28 peptide is C64H88N12O16 and its m/z mass is ≈1233.64. Elemental analysis of cyclic PNC-28 is C, 59.99; H, 6.92; N, 13.12; O, 19.98. The characterization of LC-MS, CD, FT-IR, and 1HNMR has been done to confirm the successful synthesis and cyclization of linear PNC-28 peptides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CD" title="CD">CD</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=1HNMR" title=" 1HNMR"> 1HNMR</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20peptide" title=" cyclic peptide"> cyclic peptide</a> </p> <a href="https://publications.waset.org/abstracts/149263/synthesis-and-characterization-of-cyclic-pnc-28-peptide-residues-17-26-etfsdlwkll-a-binding-domain-of-p53" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Construction of a Fusion Gene Carrying E10A and K5 with 2A Peptide-Linked by Using Overlap Extension PCR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiancheng%20Lan">Tiancheng Lan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> E10A is a kind of replication-defective adenovirus which carries the human endostatin gene to inhibit the growth of tumors. Kringle 5(K5) has almost the same function as angiostatin to also inhibit the growth of tumors since they are all the byproduct of the proteolytic cleavage of plasminogen. Tumor size increasing can be suppressed because both of the endostatin and K5 can restrain the angiogenesis process. Therefore, in order to improve the treatment effect on tumor, 2A peptide is used to construct a fusion gene carrying both E10A and K5. Using 2A peptide is an ideal strategy when a fusion gene is expressed because it can avoid many problems during the expression of more than one kind of protein. The overlap extension PCR is also used to connect 2A peptide with E10A and K5. The final construction of fusion gene E10A-2A-K5 can provide a possible new method of the anti-angiogenesis treatment with a better expression performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E10A" title="E10A">E10A</a>, <a href="https://publications.waset.org/abstracts/search?q=Kringle%205" title=" Kringle 5"> Kringle 5</a>, <a href="https://publications.waset.org/abstracts/search?q=2A%20peptide" title=" 2A peptide"> 2A peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=overlap%20extension%20PCR" title=" overlap extension PCR"> overlap extension PCR</a> </p> <a href="https://publications.waset.org/abstracts/132643/construction-of-a-fusion-gene-carrying-e10a-and-k5-with-2a-peptide-linked-by-using-overlap-extension-pcr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Comparison of Two Different Methods for Peptide Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Klaudia%20Chmielewska">Klaudia Chmielewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Krystyna%20Dzierzbicka"> Krystyna Dzierzbicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Iwona%20Inkielewicz-Stepniak"> Iwona Inkielewicz-Stepniak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carnosine, an endogenous peptide consisting of β-alanine and L-histidine has a variety of functions to mention: antioxidant, antiglycation, and reducing the toxicity of metal ions. It has therefore been proposed to act as a therapeutic agent for many pathological states, although its therapeutic index is limited by quick enzymatic cleavage. To overcome this limitation, there’s an urge to create new derivatives which might become less potent to hydrolysis, while preserving the therapeutic effect. The poster summarizes the efficiency of two peptide synthesis methods, which were: (1) the mixed anhydride with isobutyl chloroformate and N-methylmorpholine (NMM) and (2) carbodiimide - mediated coupling method via appropriate reagent condensing, here – CDI. The methods were used to obtain dipeptides which were the derivatives of carnosine. Obtained dipeptides were made in the form of methyl esters and their structures will be confirmed 1H NMR, 13C NMR, MS and elemental analysis techniques. Later on, they will be analyzed for their antioxidant properties, in comparison to carnosine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carnosine" title="carnosine">carnosine</a>, <a href="https://publications.waset.org/abstracts/search?q=method" title=" method"> method</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide" title=" peptide"> peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/129585/comparison-of-two-different-methods-for-peptide-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> A Novel Peptide Showing Universal Effect against Multiple Viruses in Vitro and in Vivo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanjun%20Zhao">Hanjun Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke%20Zhang"> Ke Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojian%20Zheng"> Bojian Zheng </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: So far, there is no universal antiviral agent which can inhibit multiple viral infections. More and more drug-resistant viral strains emerge after the antiviral drug application for treatment. Defensins are the front line of host innate immunity and have broad spectrum antibacterial and antiviral effects. However, there is limited data to show if these defensins have good antiviral activity in vivo and what the antiviral mechanism is. Subjects: To investigate a peptide with widespread antivirus activity in vitro and in vivo and illustrate the antiviral mechanism. Methods: Antiviral peptide library designed from mouse beta defensins was synthesized by the company. Recombinant beta defensin was obtained from E. coli. Antiviral activity in vitro was assayed by plaque assay, qPCR. Antiviral activity in vivo was detected by animal challenge with 2009 pandemic H1N1 influenza A virus. The antiviral mechanism was assayed by western blot, ELISA, and qPCR. Conclusions: We identify a new peptide which has widespread effects against multiple viruses (H1N1, H5N1, H7N9, MERS-CoV) in vitro and has efficient antivirus activity in vivo. This peptide inhibits viral entry into target cells and subsequently blocks viral replication. The in vivo study of the antiviral peptide against other viral infections and the investigation of its more detail antiviral mechanism are ongoing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20peptide" title="antiviral peptide">antiviral peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=defensin" title=" defensin"> defensin</a>, <a href="https://publications.waset.org/abstracts/search?q=Influenza%20A%20virus" title=" Influenza A virus"> Influenza A virus</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a> </p> <a href="https://publications.waset.org/abstracts/29172/a-novel-peptide-showing-universal-effect-against-multiple-viruses-in-vitro-and-in-vivo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Stimulation of NCAM1-14.3.3.ζδ-derived Peptide Interaction Fuels Angiogenesis and Osteogenesis in Ageing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Kadir%20Yesin">Taha Kadir Yesin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanyu%20Liu"> Hanyu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhangfan%20Ding"> Zhangfan Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Singh"> Amit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Tian"> Qi Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuheng%20Zhang"> Yuheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajyoti%20Borah"> Biswajyoti Borah</a>, <a href="https://publications.waset.org/abstracts/search?q=Junyu%20Chen"> Junyu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjali%20P.%20Kusumbe"> Anjali P. Kusumbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The skeletal structure and bone marrow endothelium collectively form a critical functional unit essential for bone development, health, and aging. At the core of osteogenesis and bone formation lies the dynamic process of angiogenesis. In this study, we reveal a potent endogenous anabolic NCAM1-14.3.3. ζδ-derived- Peptide interaction, which stimulates bone angiogenesis and osteogenesis during homeostasis, aging, and age-related bone diseases. Employing high-resolution imaging and inducible cell-specific mouse genetics, our results elucidate the pivotal role of the NCAM1-14.3.3.ζδ-derived-Peptide interaction in driving the expansion of Clec14a+ angiogenic endothelial cells. Notably, Clec14a+ endothelial cells express key osteogenic factors. The NCAM1-14.3.3.ζδ-derived-Peptide interaction in osteoblasts drives osteoblast differentiation, ultimately contributing to the genesis of bone. Moreover, the NCAM1-14.3.3.ζδ-derived-Peptide interaction leads to a reduction in bone resorption. In age-associated vascular and bone loss diseases, stimulating the NCAM1-14.3.3.ζδ-derived-Peptide interaction not only promotes angiogenesis but also reverses bone loss. Consequently, harnessing the endogenous anabolic potential of the NCAM1-14.3.3.ζδ-derived-Peptide interaction emerges as a promising therapeutic modality for managing age-related bone diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endothelial%20cell" title="endothelial cell">endothelial cell</a>, <a href="https://publications.waset.org/abstracts/search?q=NCAM1" title=" NCAM1"> NCAM1</a>, <a href="https://publications.waset.org/abstracts/search?q=Clec14a" title=" Clec14a"> Clec14a</a>, <a href="https://publications.waset.org/abstracts/search?q=14.3.3.%CE%B6%CE%B4" title=" 14.3.3.ζδ"> 14.3.3.ζδ</a> </p> <a href="https://publications.waset.org/abstracts/184055/stimulation-of-ncam1-1433zd-derived-peptide-interaction-fuels-angiogenesis-and-osteogenesis-in-ageing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Peptide-Gold Nanocluster as an Optical Biosensor for Glycoconjugate Secreted from Leishmania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Prada">Y. A. Prada</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanny%20Guzman"> Fanny Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Cabanzo"> Rafael Cabanzo</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20J.%20Castillo"> John J. Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Mejia-Ospino"> Enrique Mejia-Ospino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we show the important results about of synthesis of photoluminiscents gold nanoclusters using a small peptide as template for biosensing applications. Interestingly, we design one peptide (NBC2854) homologue to conservative domain from 215 250 residue of a galactolectin protein which can recognize the proteophosphoglycans (PPG) from Leishmania. Peptide was synthetized by multiple solid phase synthesis using FMoc group methodology in acid medium. Finally, the peptide was purified by High-Performance Liquid Chromatography using a Vydac C-18 preparative column and the detection was at 215 nm using a Photo Diode Array detector. Molecular mass of this peptide was confirmed by MALDI-TOF and to verify the α-helix structure we use Circular Dichroism. By means of the methodology used we obtained a novel fluorescents gold nanoclusters (AuNC) using NBC2854 as a template. In this work, we described an easy and fast microsonic method for the synthesis of AuNC with ≈ 3.0 nm of hydrodynamic size and photoemission at 630 nm. The presence of cysteine residue in the C-terminal of the peptide allows the formation of Au-S bond which confers stability to Peptide-based gold nanoclusters. Interactions between the peptide and gold nanoclusters were confirmed by X-ray Photoemission and Raman Spectroscopy. Notably, from the ultrafine spectra shown in the MALDI-TOF analysis which containing only 3-7 KDa species was assigned to Au₈-₁₈[NBC2854]₂ clusters. Finally, we evaluated the Peptide-gold nanocluster as an optical biosensor based on fluorescence spectroscopy and the fluorescence signal of PPG (0.1 µg-mL⁻¹ to 1000 µg-mL⁻¹) was amplified at the same wavelength emission (≈ 630 nm). This can suggest that there is a strong interaction between PPG and Pep@AuNC, therefore, the increase of the fluorescence intensity can be related to the association mechanism that take place when the target molecule is sensing by the Pep@AuNC conjugate. Further spectroscopic studies are necessary to evaluate the fluorescence mechanism involve in the sensing of the PPG by the Pep@AuNC. To our best knowledge the fabrication of an optical biosensor based on Pep@AuNC for sensing biomolecules such as Proteophosphoglycans which are secreted in abundance by parasites Leishmania. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania" title=" Leishmania"> Leishmania</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide-gold%20nanoclusters" title=" peptide-gold nanoclusters"> peptide-gold nanoclusters</a>, <a href="https://publications.waset.org/abstracts/search?q=proteophosphoglycans" title=" proteophosphoglycans"> proteophosphoglycans</a> </p> <a href="https://publications.waset.org/abstracts/102599/peptide-gold-nanocluster-as-an-optical-biosensor-for-glycoconjugate-secreted-from-leishmania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Early Diagnosis and Treatment of Cancer Using Synthetic Cationic Peptide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Kalita">D. J. Kalita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer is one of the prime causes of early death worldwide. Mutation of the gene involve in DNA repair and damage, like BRCA2 (Breast cancer gene two) genes, can be detected efficiently by PCR-RFLP to early breast cancer diagnosis and adopt the suitable method of treatment. Host Defense Peptide can be used as blueprint for the design and synthesis of novel anticancer drugs to avoid the side effect of conventional chemotherapy and chemo resistance. The change at nucleotide position 392 of a -› c in the cancer sample of dog mammary tumour at BRCA2 (exon 7) gene lead the creation of a new restriction site for SsiI restriction enzyme. This SNP may be a marker for detection of canine mammary tumour. Support vector machine (SVM) algorithm was used to design and predict the anticancer peptide from the mature functional peptide. MTT assay of MCF-7 cell line after 48 hours of post treatment showed an increase in the number of rounded cells when compared with untreated control cells. The ability of the synthesized peptide to induce apoptosis in MCF-7 cells was further investigated by staining the cells with the fluorescent dye Hoechst stain solution, which allows the evaluation of the nuclear morphology. Numerous cells with dense, pyknotic nuclei (the brighter fluorescence) were observed in treated but not in control MCF-7 cells when viewed using an inverted phase-contrast microscope. Thus, PCR-RFLP is one of the attractive approach for early diagnosis, and synthetic cationic peptide can be used for the treatment of canine mammary tumour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20peptide" title=" cationic peptide"> cationic peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=host%20defense%20peptides" title=" host defense peptides"> host defense peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=Breast%20cancer%20genes" title=" Breast cancer genes"> Breast cancer genes</a> </p> <a href="https://publications.waset.org/abstracts/159574/early-diagnosis-and-treatment-of-cancer-using-synthetic-cationic-peptide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Leveraging SHAP Values for Effective Feature Selection in Peptide Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Li">Sharon Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhonghang%20Xia"> Zhonghang Xia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peptide%20identification" title="peptide identification">peptide identification</a>, <a href="https://publications.waset.org/abstracts/search?q=SHAP%20value" title=" SHAP value"> SHAP value</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest%20tree" title=" random forest tree"> random forest tree</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/192174/leveraging-shap-values-for-effective-feature-selection-in-peptide-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> MICA-TM Peptide Selectively Binds to HLAs Associated with Behçet&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirilak%20Kongkaew">Sirilak Kongkaew</a>, <a href="https://publications.waset.org/abstracts/search?q=Pathumwadee%20Yodmanee"> Pathumwadee Yodmanee</a>, <a href="https://publications.waset.org/abstracts/search?q=Nopporn%20Kaiyawet"> Nopporn Kaiyawet</a>, <a href="https://publications.waset.org/abstracts/search?q=Arthitaya%20Meeprasert"> Arthitaya Meeprasert</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanyada%20Rungrotmongkol"> Thanyada Rungrotmongkol</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshikatsu%20Kaburaki"> Toshikatsu Kaburaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Noguchi"> Hiroshi Noguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fujio%20Takeuch"> Fujio Takeuch</a>, <a href="https://publications.waset.org/abstracts/search?q=Nawee%20Kungwan"> Nawee Kungwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Supot%20Hannongbua"> Supot Hannongbua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Behçet’s disease (BD) is a genetic autoimmune expressed by multisystemic inflammatory disorder mostly occurred at the skin, joints, gastrointestinal tract, and genitalia, including ocular, oral, genital, and central nervous systems. Most BD patients in Japan and Korea were strongly indicated by the genetic factor namely HLA-B*51 (especially, HLA-B*51:01) marker in HMC class I, while HLA-A*26:01 allele has been detected from the BD patients in Greek, Japan, and Taiwan. To understand the selective binding of the MICA-TM peptide towards the HLAs associated with BD, the molecular dynamics simulations were applied on the four HLA alleles (B*51:01, B*35:01, A*26:01, and A*11:01) in complex with such peptide. As a result, the key residues in the binding groove of HLA protein which play an important role in the MICA-TM peptide binding and stabilization were revealed. The Van der Waals force was found to be the main protein-protein interaction. Based on the binding free energy prediction by MM/PBSA method, the MICA-TM peptide interacted stronger to the HLA alleles associated to BD in the identical class by 7-12 kcal/mol. The obtained results from the present study could help to differentiate the HLA alleles and explain a source of Behçet’s disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beh%C3%A7et%E2%80%99s%20disease" title="Behçet’s disease">Behçet’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=MD%20simulations" title=" MD simulations"> MD simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=HMC%20class%20I" title=" HMC class I"> HMC class I</a>, <a href="https://publications.waset.org/abstracts/search?q=autoimmune" title=" autoimmune"> autoimmune</a> </p> <a href="https://publications.waset.org/abstracts/18004/mica-tm-peptide-selectively-binds-to-hlas-associated-with-behcets-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Dual-functional Peptide With Defective Interfering Genes Protecting Mice From Avian and Seasonal Influenza Virus Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanjun%20Zhao">Hanjun Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Limited efficacy of current antivirals and antiviral-resistant mutations impair anti-influenza treatment. Here, we evaluated the in vitro and in vivo antiviral effect of three defective interfering genes (DIG-3) of influenza virus. Virus replication was significantly reduced in 293T and A549 cells transfected with DIG-3. Mice transfected with DIG-3 encoded by jetPEI-vector, as prophylaxis and therapeutics against A(H7N7) virus respectively, had significantly better survivals (80% and 50%) than control mice (0%). We further developed a dual-functional peptide TAT-P1, which delivers DIG-3 with high transfection efficiency and concomitantly exerts antiviral activity by preventing endosomal acidification. TAT-P1/DIG-3 was more effective than jetPEI/DIG-3 in treating A(H7N7) or A(H1N1)pdm09-infected mice and showed potent prophylactic protection on A(H7N7) or A(H1N1)pdm09-infected mice. The addition of P1 peptide, preventing endosomal acidification, could enhance the protection of TAT-P1/DIG-3 on A(H1N1)pdm09-infected mice. Dual-functional TAT-P1 with DIG-3 can effectively protect or treat mice infected by avian and seasonal influenza virus infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20peptide" title="antiviral peptide">antiviral peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-functional%20peptide" title=" dual-functional peptide"> dual-functional peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=defective%20interfering%20genes" title=" defective interfering genes"> defective interfering genes</a>, <a href="https://publications.waset.org/abstracts/search?q=influenza%20virus" title=" influenza virus"> influenza virus</a> </p> <a href="https://publications.waset.org/abstracts/98170/dual-functional-peptide-with-defective-interfering-genes-protecting-mice-from-avian-and-seasonal-influenza-virus-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Peptide Aptasensor for Electrochemical Detection of Rheumatoid Arthritis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shah%20Abbas">Shah Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheumatoid arthritis is a systemic, inflammatory autoimmune disease, affecting an overall 1% of the global population. Despite being tremendous efforts by scientists, early diagnosis of RA still has not been achieved. In the current study, a Graphene oxide (GO) based electrochemical sensor has been developed for early diagnosis of RA through Cyclic voltammetry. Chitosan (CHI), a CPnatural polymer has also been incorporated along with GO in order to enhance the biocompatibility and functionalization potential of the biosensor. CCPs are known antigens for Anti Citrullinated Peptide Antibodies (ACPAs) which can be detected in serum even 14 years before the appearance of symptoms, thus they are believed to be an ideal target for the early diagnosis of RA. This study has yielded some promising results regarding the binding and detection of ACPAs through changes in the electrochemical properties of biosensing material. The cyclic voltammogram of this biosensor reflects the binding of ACPAs to the biosensor surface, due to its shifts observed in the current flow (cathodic current) as compared to the when no ACPAs bind as it is absent in RA negative patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title="rheumatoid arthritis">rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide%20sensor" title=" peptide sensor"> peptide sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=anti%20citrullinated%20peptide%20antibodies" title=" anti citrullinated peptide antibodies"> anti citrullinated peptide antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/125129/peptide-aptasensor-for-electrochemical-detection-of-rheumatoid-arthritis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> A Platform to Screen Targeting Molecules of Ligand-EGFR Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Ting%20Kuo">Wei-Ting Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Huei%20Lin"> Feng-Huei Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epidermal growth factor receptor (EGFR) is often constitutively stimulated in cancer owing to the binding of ligands such as epidermal growth factor (EGF), so it is necessary to investigate the interaction between EGFR and its targeting biomolecules which were over ligands binding. This study would focus on the binding affinity and adhesion force of two targeting products anti-EGFR monoclonal antibody (mAb) and peptide A to EGFR comparing with EGF. Surface plasmon resonance (SPR) was used to obtain the equilibrium dissociation constant to evaluate the binding affinity. Atomic force microscopy (AFM) was performed to detect adhesion force. The result showed that binding affinity of mAb to EGFR was higher than that of EGF to EGFR, and peptide A to EGFR was lowest. The adhesion force between EGFR and mAb that was higher than EGF and peptide A to EGFR was lowest. From the studies, we could conclude that mAb had better adhesion force and binding affinity to EGFR than that of EGF and peptide A. SPR and AFM could confirm the interaction between receptor and targeting ligand easily and carefully. It provide a platform to screen ligands for receptor targeting and drug delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion%20force" title="adhesion force">adhesion force</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20affinity" title=" binding affinity"> binding affinity</a>, <a href="https://publications.waset.org/abstracts/search?q=epidermal%20growth%20factor%20receptor" title=" epidermal growth factor receptor"> epidermal growth factor receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20molecule" title=" target molecule"> target molecule</a> </p> <a href="https://publications.waset.org/abstracts/27370/a-platform-to-screen-targeting-molecules-of-ligand-egfr-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Effect of Oat-Protein Peptide in Cognitive Impairment Mice via Mediating Gut-Brain Axis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Rafique">Hamad Rafique</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bioactive peptide RDFPITWPW (RW-9) identified from oat protein has been reported to be positive in memory deficits. However, no clarity on the mechanisms responsible for the neuroprotective effects of RW-9 peptide against AD-like symptoms. Herein, it found that RW-9 intervention showed various improving effects in cognitive-behavioral tests and alleviated oxidative stress and inflammation in the scopolamine-induced mice model. The hippocampus proteomics analysis revealed the upregulation of memory-related proteins, including Grin3a, Ppp2r1b, Stat6, Pik3cd, Slc5a7, Chrm2, mainly involved in cAMP signaling, PI3K-Akt signaling, and JAK-STAT signaling pathways. The administration of RW-9 significantly upregulated the neurotransmitters, including 5-HT, DA, and Arg, in mice brains. Moreover, it regulated the serum metabolic profile and increased the expression levels of ABC transporters, biosynthesis of amino acids, and Amino acyl-tRNA biosynthesis, among others. The 16s-rRNA results illustrated that the RW-9 restored the abundance of Muribaculaceae, Lachnospiraceae, Lactobacillus, Clostridia and Bactericides. Taken together, our results suggest that the RW-9 may prevent the AD-like symptoms via modulation of the gut-serum-brain axis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oat%20protein" title="oat protein">oat protein</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20peptide" title=" active peptide"> active peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprotective" title=" neuroprotective"> neuroprotective</a>, <a href="https://publications.waset.org/abstracts/search?q=gut-brain%20axis" title=" gut-brain axis"> gut-brain axis</a> </p> <a href="https://publications.waset.org/abstracts/189320/effect-of-oat-protein-peptide-in-cognitive-impairment-mice-via-mediating-gut-brain-axis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Impact of Wastewater from Outfalls of River Ganga on Germination Percentage and Growth Parameters of Bitter Gourd (Momordica charantia L.) with Antioxidant Activity Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayanti%20Kar">Sayanti Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitava%20Ghosh"> Amitava Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritam%20Aitch"> Pritam Aitch</a>, <a href="https://publications.waset.org/abstracts/search?q=Gupinath%20Bhandari"> Gupinath Bhandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An extensive seasonal analysis of wastewater had been done from outfalls of river Ganga in Howrah, Hooghly, 24 PGS (N) District, West Bengal, India during 2017. The morphological parameters of Bitter gourd (Momordica charantia L.) were estimated under wastewater treatment. An approach to study the activity within the range of low molecular weight peptide 3-0.5 kDa were taken through its extraction and purification by ion exchange resin column, cation, and anion exchanger. HPLC analysis had been done for both in wastewater treated and untreated plants. The antioxidant activity by using DPPH and germination percentage in control and treated plants were also determined in relation to wastewater effect. The inhibition of growth and its parameters were maximum in pre-monsoon in comparing to post-monsoon and monsoon season. The study also helped to explore the effect of wastewater on the peptidome of Bitter gourd (Momordica charantia L.). Some of these low molecular weight peptide(s) (3-0.5 kDa) also inhibited during wastewater treatment. Expression of particular peptide(s) or absence of some peptide(s) in chromatogram indicated the adverse effects on plants which may be the indication of stressful condition. Pre monsoon waste water was found to create more impact than other two. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20gourd%20%28Momordica%20charantia%20l.%29" title="bitter gourd (Momordica charantia l.)">bitter gourd (Momordica charantia l.)</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20molecular%20weight%20peptide" title=" low molecular weight peptide"> low molecular weight peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20ganga" title=" river ganga"> river ganga</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/101111/impact-of-wastewater-from-outfalls-of-river-ganga-on-germination-percentage-and-growth-parameters-of-bitter-gourd-momordica-charantia-l-with-antioxidant-activity-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Design and Development of Small Peptides as Anti-inflammatory Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palwinder%20Singh">Palwinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beyond the conventional mode of working with anti-inflammatory agents through enzyme inhibition, herein, an alternate substrate of cyclooxygenase-2 was developed. Proline centered pentapeptide iso-conformational to arachidonic acid exhibited appreciable selectivity for COX-2 overcoming acetic acid and formalin induced pain in rats to almost 80% and was treated as a substrate by the enzyme. Remarkably, COX-2 metabolized the pentapeptide into small fragments consisting mainly of di- and tri-peptides that ensured the safe breakdown of the peptide under in-vivo conditions. The kinetic parameter Kcat/Km for COX-2 mediated metabolism of peptide 6.3 x 105 M-1 s-1 was quite similar to 9.5 x 105 M-1 s-1 for arachidonic acid. Evidenced by the dynamic molecular studies and the use of Y385F COX-2, it was observed that the breakage of the pentapeptide has probably taken place through H-bond activation of the peptide bond by the side chains of Y385 and S530. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20peptides" title="small peptides">small peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory%20agents" title=" anti-inflammatory agents"> anti-inflammatory agents</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclooxygenase-2" title=" cyclooxygenase-2"> cyclooxygenase-2</a>, <a href="https://publications.waset.org/abstracts/search?q=unnatural%20substrates" title=" unnatural substrates"> unnatural substrates</a> </p> <a href="https://publications.waset.org/abstracts/163697/design-and-development-of-small-peptides-as-anti-inflammatory-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Tetra Butyl Ammonium Cyanate Mediated Selective Synthesis of Sulfonyltriuret and Their Investigation towards Trypsin Protease Modulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amarjyoti%20Das%20Mahapatra">Amarjyoti Das Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Umesh%20Kumar"> Umesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhaskar%20Datta"> Bhaskar Datta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pseudo peptide can mimic the biological or structural properties of natural peptides. They have become an increasing attention in medicinal chemistry because of their interesting advantages like more bioavailability and less biodegradation than compare to the physiologically active native peptides which increase their therapeutic applications. Many biologically active compounds contain urea as functional groups, and they have improved pharmacokinetic properties because of their bioavailability and metabolic stability. Recently we have reported a single-step synthesis of sulfonyl urea and sulfonyltriuret from sulfonyl chloride and sodium cyanate. But the yield of sulfonyltriuret was less around 40-60% because of the formation of other products like sulfonamide and sulfonylureas. In the present work, we mainly focused on the selective synthesis of sulfonyltriuret using tetrabutylammonium cyanate and sulfonyl chloride. More precisely, we are interested in the controlled synthesis of oligomeric urea mainly sulfonyltriuret as a new class of pseudo peptide and their application as protease modulators. The distinctive architecture of these molecules in the form of their pseudo-peptide backbone offers promise as a potential pharmacophore. The synthesized molecules have been screened on trypsin enzyme, and we observed that these molecules are the efficient modulator of trypsin enzyme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pseudo%20peptide" title="pseudo peptide">pseudo peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacophore" title=" pharmacophore"> pharmacophore</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonyltriuret" title=" sulfonyltriuret"> sulfonyltriuret</a>, <a href="https://publications.waset.org/abstracts/search?q=trypsin" title=" trypsin"> trypsin</a> </p> <a href="https://publications.waset.org/abstracts/85539/tetra-butyl-ammonium-cyanate-mediated-selective-synthesis-of-sulfonyltriuret-and-their-investigation-towards-trypsin-protease-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> New Kinetic Approach to the Enzymatic Hydrolysis of Proteins: A Case of Thermolysin-Catalyzed Albumin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Trusek-Holownia">Anna Trusek-Holownia</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Noworyta"> Andrzej Noworyta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using an enzyme of known specificity the hydrolysis of protein was carried out in a controlled manner. The aim was to obtain oligopeptides being the so-called active peptides or their direct precursors. An original way of expression of the protein hydrolysis kinetics was introduced. Peptide bonds contained in the protein were recognized as a diverse-quality substrate for hydrolysis by the applied protease. This assumption was positively verified taking as an example the hydrolysis of albumin by thermolysin. Peptide linkages for this system should be divided into at least four groups. One of them is a group of bonds non-hydrolyzable by this enzyme. These that are broken are hydrolyzed at a rate that differs even by tens of thousands of times. Designated kinetic constants were k'F = 10991.4 L/g.h, k'M = 14.83L/g.h, k'S about 10-1 L/g.h for fast, medium and slow bonds, respectively. Moreover, a procedure for unfolding of the protein, conducive to the improved susceptibility to enzymatic hydrolysis (approximately three-fold increase in the rate) was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peptide%20bond%20hydrolysis" title="peptide bond hydrolysis">peptide bond hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20specificity" title=" enzyme specificity"> enzyme specificity</a>, <a href="https://publications.waset.org/abstracts/search?q=biologically%20active%20peptides" title=" biologically active peptides "> biologically active peptides </a> </p> <a href="https://publications.waset.org/abstracts/5523/new-kinetic-approach-to-the-enzymatic-hydrolysis-of-proteins-a-case-of-thermolysin-catalyzed-albumin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> An Investigation of Peptide Functionalized Gold Nanoparticles On Colon Cancer Cells For Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rolivhuwa%20Bishop%20Ramagoma1%2A">Rolivhuwa Bishop Ramagoma1*</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynn%20Cairncross1"> Lynn Cairncross1</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Saartjie%20Roux1">Saartjie Roux1</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the world health organisation, colon cancer is among the most common cancers diagnosed in both men and women. Specifically, it is the second leading cause of cancer related deaths accounting for over 860 000 deaths worldwide in 2018. Currently, chemotherapy has become an essential component of most cancer treatments. Despite progress in cancer drug development over the previous years, traditional chemotherapeutic drugs still have low selectivity for targeting tumour tissues and are frequently constrained by dose-limiting toxicity. The creation of nanoscale delivery vehicles capable of directly directing treatment into cancer cells has recently caught the interest of researchers. Herein, the development of peptide-functionalized polyethylene glycol gold nanoparticles (Peptide-PEG-AuNPs) as a cellular probe and delivery agent is described, with the higher aim to develop a specific diagnostic prototype and assess their specificity not only against cell lines but primary human cells as well. Gold nanoparticles (AuNPs) were synthesized and stabilized through chemical conjugation. The synthesized AuNPs were characterized, stability in physiological solutions was assessed, their cytotoxicity against colon carcinoma and non-carcinoma skin fibroblasts was also studied. Furthermore, genetic effect through real-time polymerase chain reaction (RT-PCR), localization and uptake, peptide specificity were also determined. In this study, different peptide-AuNPs were found to have preferential toxicity at higher concentrations, as revealed by cell viability assays, however, all AuNPs presented immaculate stability for over 3 months following the method of synthesis. The final obtained peptide-PEG-AuNP conjugates showed good biocompatibility in the presence of high ionic solutions and biological media and good cellular uptake. Formulation of colon cancer specific targeting peptide was successful, additionally, the genes/pathways affected by the treatments were determined through RT-PCR. Primary cells study is still on going with promising results thus far. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title="nanotechnology">nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutics" title=" therapeutics"> therapeutics</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles." title=" gold nanoparticles."> gold nanoparticles.</a> </p> <a href="https://publications.waset.org/abstracts/171315/an-investigation-of-peptide-functionalized-gold-nanoparticles-on-colon-cancer-cells-for-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Designing of Multi-Epitope Peptide Vaccines for Fasciolosis (Fasciola gigantica) using Immune Epitope and Analysis Resource (IEDB) Server</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supanan%20Chansap">Supanan Chansap</a>, <a href="https://publications.waset.org/abstracts/search?q=Werachon%20Cheukamud"> Werachon Cheukamud</a>, <a href="https://publications.waset.org/abstracts/search?q=Pornanan%20Kueakhai"> Pornanan Kueakhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Narin%20Changklungmoa"> Narin Changklungmoa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fasciola species (Fasciola spp.) is caused fasciolosis in ruminants such as cattle, sheep, and buffalo. Fasciola gigantica (F.gigantica) commonly infects tropical regions. Fasciola hepatica (F.hepatica) in temperate regions. Liver fluke infection affects livestock economically, for example, reduced milk and meat production, weight loss, sterile animals. Currently, Triclabendazole is used to treat liver flukes. However, liver flukes have also been found to be resistant to drugs in countries. Therefore, vaccination is an attractive alternative to prevent liver fluke infection. Peptide vaccines are new vaccine technologies that mimic epitope antigens that trigger an immune response. An interesting antigen used in vaccine production is catepsin L, a family of proteins that play an important role in the life of the parasite in the host. This study aims to identify immunogenic regions of protein and construct a multi-epidetope vaccine using an immunoinformatic tool. Fasciola gigantica Cathepsin L1 (FgCatL1), Fasciola gigantica Cathepsin L1G (FgCatL1G), and Fasciola gigantica Cathepsin L1H (FgCatL1H) were predicted B-cell and Helper T lymphocytes (HTL) by Immune Epitope and Analysis Resource (IEDB) servers. Both B-cell and HTL epitopes aligned with cathepsin L of the host and Fasciola hepatica (F. hepatica). Epitope groups were selected from non-conserved regions and overlapping sequences with F. hepatica. All overlapping epitopes were linked with the GPGPG and KK linker. GPGPG linker was linked between B-cell epitope. KK linker was linked between HTL epitope and B-cell and HTL epitope. The antigenic scores of multi-epitope peptide vaccine was 0.7824. multi-epitope peptide vaccine was non-allergen, non-toxic, and good soluble. Multi-epitope peptide vaccine was predicted tertiary structure and refinement model by I-Tasser and GalaxyRefine server, respectively. The result of refine structure model was good quality that was generated by Ramachandran plot analysis. Discontinuous and linear B-cell epitopes were predicted by ElliPro server. Multi-epitope peptide vaccine model was two and seven of discontinuous and linear B-cell epitopes, respectively. Furthermore, multi-epitope peptide vaccine was docked with Toll-like receptor 2 (TLR-2). The lowest energy ranged from -901.3 kJ/mol. In summary, multi-epitope peptide vaccine was antigenicity and probably immune response. Therefore, multi-epitope peptide vaccine could be used to prevent F. gigantica infections in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fasciola%20gigantica" title="fasciola gigantica">fasciola gigantica</a>, <a href="https://publications.waset.org/abstracts/search?q=Immunoinformatic%20tools" title=" Immunoinformatic tools"> Immunoinformatic tools</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-epitope" title=" multi-epitope"> multi-epitope</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaccine" title=" Vaccine"> Vaccine</a> </p> <a href="https://publications.waset.org/abstracts/171890/designing-of-multi-epitope-peptide-vaccines-for-fasciolosis-fasciola-gigantica-using-immune-epitope-and-analysis-resource-iedb-server" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Poudel">Saroj Poudel</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Mancini"> Joshua Mancini</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20Pike"> Douglas Pike</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Timm"> Jennifer Timm</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20Tyryshkin"> Alexei Tyryshkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Nanda"> Vikas Nanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Falkowski"> Paul Falkowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolism <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogenase" title="hydrogenase">hydrogenase</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotic%20enzyme" title=" prebiotic enzyme"> prebiotic enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=metalloenzyme" title=" metalloenzyme"> metalloenzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20design" title=" computational design"> computational design</a> </p> <a href="https://publications.waset.org/abstracts/138342/de-novo-design-of-a-minimal-catalytic-di-nickel-peptide-capable-of-sustained-hydrogen-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Effect of Maternal Factors and C-Peptide and Insulin Levels in Cord Blood on the Birth Weight of Newborns: A Preliminary Study from Southern Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20A.%20D.%20de%20Silva">M. H. A. D. de Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Hewawasam"> R. P. Hewawasam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20G.%20Iresha"> M. A. G. Iresha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Macrosomia is common in infants born to not only women diagnosed with gestational diabetes mellitus but also non-diabetic obese women. Maternal Body Mass Index (BMI) correlates with the incidence of large for gestational age infants. Obesity has reached epidemic levels in modern societies. During the past two decades, obesity in children and adolescents has risen significantly in Asian populations including Sri Lanka. There is increasing evidence to believe that infants who are born large for gestational age are more likely to be obese in childhood and adolescence and are at risk of cardiovascular and metabolic complications later in life. It is also established that Asians have lower skeletal muscle mass, low bone mineral content and excess body fat for a given BMI indicating a genetic predisposition in the occurrence of obesity. The objective of this study is to determine the effect of maternal weight, weight gain during pregnancy, c-peptide and insulin concentrations in the cord blood on the birth of appropriate for and large for gestational age infants in a tertiary care center in Southern Sri Lanka. Umbilical cord blood was collected from 90 newborns (Male 40, Female 50; gestational age 35-42 weeks) after double clamping the umbilical cord before separation of the placenta and the concentration of insulin and C-peptide were measured by ELISA technique. Anthropometric parameters of the newborn such as birth weight, length, ponderal index, occipital frontal, chest, hip and calf circumferences were measured, and characteristics of the mother were collected. The relationship between insulin, C-peptide and anthropometrics were assessed by Spearman correlation. The multiple logistic regression analysis examined influences of maternal weight, weight gain during pregnancy, C-peptide and insulin concentrations in cord blood as covariates on the birth of large for gestational age infants. A significant difference (P<0.001) was observed between the insulin levels of infants born large for gestational age (18.73 ± 0.52 µlU/ml) and appropriate for gestational age (13.08 ± 0.56 µlU/ml). Consistently, A significant decrease in concentration (41.68%, P<0.001) was observed between C-peptide levels of infants born large for gestational age and appropriate for gestational age. Cord blood insulin and C-peptide levels had a significant correlation with birth weight (r=0.35, P<0.05) of the newborn at delivery. Maternal weight and BMI which are indicators of maternal nutrition were proven to be directly correlated with birth weight and length. To our knowledge, this relationship was investigated for the first time in a Sri Lankan setting and was also evident in our results. This study confirmed the fact that insulin and C-peptide play a major role in regulating fetal growth. According to the results obtained in this study, we can suggest that the increased BMI of the mother has a direct influence on increased maternal insulin secretion, which may subsequently affect cord insulin and C-peptide levels and also birth weight of the infant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C-peptide" title="C-peptide">C-peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin" title=" insulin"> insulin</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20for%20gestational%20age" title=" large for gestational age"> large for gestational age</a>, <a href="https://publications.waset.org/abstracts/search?q=maternal%20weight" title=" maternal weight"> maternal weight</a> </p> <a href="https://publications.waset.org/abstracts/76415/effect-of-maternal-factors-and-c-peptide-and-insulin-levels-in-cord-blood-on-the-birth-weight-of-newborns-a-preliminary-study-from-southern-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> Isolation and Characterization of the First Known Inhibitor Cystine Knot Peptide in Sea Anemone: Inhibitory Activity on Acid-Sensing Ion Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armando%20A.%20Rodr%C3%ADguez">Armando A. Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Salceda"> Emilio Salceda</a>, <a href="https://publications.waset.org/abstracts/search?q=Anoland%20Garateix"> Anoland Garateix</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20J.%20Zaharenko"> André J. Zaharenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Peigneur"> Steve Peigneur</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20L%C3%B3pez"> Omar López</a>, <a href="https://publications.waset.org/abstracts/search?q=Tirso%20Pons"> Tirso Pons</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Richardson"> Michael Richardson</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayl%C3%ADn%20D%C3%ADaz"> Maylín Díaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasnay%20Hern%C3%A1ndez"> Yasnay Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludger%20St%C3%A4ndker"> Ludger Ständker</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Tytgat"> Jan Tytgat</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Soto"> Enrique Soto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acid-sensing ion channels are cation (Na+) channels activated by a pH drop. These proteins belong to the ENaC/degenerin superfamily of sodium channels. ASICs are involved in sensory perception, synaptic plasticity, learning, memory formation, cell migration and proliferation, nociception, and neurodegenerative disorders, among other processes; therefore those molecules that specifically target these channels are of growing pharmacological and biomedical interest. Sea anemones produce a large variety of ion channels peptide toxins; however, those acting on ligand-gated ion channels, such as Glu-gated, Ach-gated ion channels, and acid-sensing ion channels (ASICs), remain barely explored. The peptide PhcrTx1 is the first compound characterized from the sea anemone Phymanthus crucifer, and it constitutes a novel ASIC inhibitor. This peptide was purified by chromatographic techniques and pharmacologically characterized on acid-sensing ion channels of mammalian neurons using patch-clamp techniques. PhcrTx1 inhibited ASIC currents with an IC50 of 100 nM. Edman degradation yielded a sequence of 32 amino acids residues, with a molecular mass of 3477 Da by MALDI-TOF. No similarity to known sea anemone peptides was found in protein databases. The computational analysis of Cys-pattern and secondary structure arrangement suggested that this is a structurally ICK (Inhibitor Cystine Knot)-type peptide, a scaffold that had not been found in sea anemones but in other venomous organisms. These results show that PhcrTx1 represents the first member of a new structural group of sea anemones toxins acting on ASICs. Also, this peptide constitutes a novel template for the development of drugs against pathologies related to ASICs function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20toxin" title="animal toxin">animal toxin</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor%20cystine%20knot" title=" inhibitor cystine knot"> inhibitor cystine knot</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20channel" title=" ion channel"> ion channel</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20anemone" title=" sea anemone"> sea anemone</a> </p> <a href="https://publications.waset.org/abstracts/66405/isolation-and-characterization-of-the-first-known-inhibitor-cystine-knot-peptide-in-sea-anemone-inhibitory-activity-on-acid-sensing-ion-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Identification of Promiscuous Epitopes for Cellular Immune Responses in the Major Antigenic Protein Rv3873 Encoded by Region of Difference 1 of Mycobacterium tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Salim%20Mustafa">Abu Salim Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rv3873 is a relatively large size protein (371 amino acids in length) and its gene is located in the immunodominant genomic region of difference (RD)1 that is present in the genome of <em>Mycobacterium tuberculosis</em> but deleted from the genomes of all the vaccine strains of Bacillus Calmette Guerin (BCG) and most other mycobacteria. However, when tested for cellular immune responses using peripheral blood mononuclear cells from tuberculosis patients and <em>BCG</em>-vaccinated healthy subjects, this protein was found to be a major stimulator of cell mediated immune responses in both groups of subjects. In order to further identify the sequence of immunodominant epitopes and explore their Human Leukocyte Antigen (HLA)-restriction for epitope recognition, 24 peptides (25-mers overlapping with the neighboring peptides by 10 residues) covering the sequence of Rv3873 were synthesized chemically using fluorenylmethyloxycarbonyl chemistry and tested in cell mediated immune responses. The results of these experiments helped in the identification of an immunodominant peptide P9 that was recognized by people expressing varying HLA-DR types. Furthermore, it was also predicted to be a promiscuous binder with multiple epitopes for binding to HLA-DR, HLA-DP and HLA-DQ alleles of HLA-class II molecules that present antigens to T helper cells, and to HLA-class I molecules that present antigens to T cytotoxic cells. In addition, the evaluation of peptide P9 using an immunogenicity predictor server yielded a high score (0.94), which indicated a greater probability of this peptide to elicit a protective cellular immune response. In conclusion, P9, a peptide with multiple epitopes and ability to bind several HLA class I and class II molecules for presentation to cells of the cellular immune response, may be useful as a peptide-based vaccine against tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycobacterium%20tuberculosis" title="mycobacterium tuberculosis">mycobacterium tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=PPE68" title=" PPE68"> PPE68</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccine" title=" vaccine"> vaccine</a> </p> <a href="https://publications.waset.org/abstracts/82250/identification-of-promiscuous-epitopes-for-cellular-immune-responses-in-the-major-antigenic-protein-rv3873-encoded-by-region-of-difference-1-of-mycobacterium-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Antibody Reactivity of Synthetic Peptides Belonging to Proteins Encoded by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions of Differences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Salim%20Mustafa">Abu Salim Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comparisons of mycobacterial genomes have identified several <em>Mycobacterium tuberculosis</em>-specific genomic regions that are absent in other mycobacteria and are known as regions of differences. Due to <em>M. tuberculosis</em>-specificity, the peptides encoded by these regions could be useful in the specific diagnosis of tuberculosis. To explore this possibility, overlapping synthetic peptides corresponding to 39 proteins predicted to be encoded by genes present in regions of differences were tested for antibody-reactivity with sera from tuberculosis patients and healthy subjects. The results identified four immunodominant peptides corresponding to four different proteins, with three of the peptides showing significantly stronger antibody reactivity and rate of positivity with sera from tuberculosis patients than healthy subjects. The fourth peptide was recognized equally well by the sera of tuberculosis patients as well as healthy subjects. Predication of antibody epitopes by bioinformatics analyses using ABCpred server predicted multiple linear epitopes in each peptide. Furthermore, peptide sequence analysis for sequence identity using BLAST suggested <em>M. tuberculosis</em>-specificity for the three peptides that had preferential reactivity with sera from tuberculosis patients, but the peptide with equal reactivity with sera of TB patients and healthy subjects showed significant identity with sequences present in nob-tuberculous mycobacteria. The three identified <em>M. tuberculosis</em>-specific immunodominant peptides may be useful in the serological diagnosis of tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genomic%20regions%20of%20differences" title="genomic regions of differences">genomic regions of differences</a>, <a href="https://publications.waset.org/abstracts/search?q=Mycobacterium%20tuberculossis" title=" Mycobacterium tuberculossis"> Mycobacterium tuberculossis</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=serodiagnosis" title=" serodiagnosis"> serodiagnosis</a> </p> <a href="https://publications.waset.org/abstracts/83354/antibody-reactivity-of-synthetic-peptides-belonging-to-proteins-encoded-by-genes-located-in-mycobacterium-tuberculosis-specific-genomic-regions-of-differences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Bioinformatic Design of a Non-toxic Modified Adjuvant from the Native A1 Structure of Cholera Toxin with Membrane Synthetic Peptide of Naegleria fowleri</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frida%20Carrillo%20Morales">Frida Carrillo Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Maricela%20Carrasco%20Y%C3%A9pez"> Maria Maricela Carrasco Yépez</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C3%BAl%20Rojas%20Hern%C3%A1ndez"> Saúl Rojas Hernández</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Naegleria fowleri is the causative agent of primary amebic meningoencephalitis, this disease is acute and fulminant that affects humans. It has been reported that despite the existence of therapeutic options against this disease, its mortality rate is 97%. Therefore, the need arises to have vaccines that confer protection against this disease and, in addition to developing adjuvants to enhance the immune response. In this regard, in our work group, we obtained a peptide designed from the membrane protein MP2CL5 of Naegleria fowleri called Smp145 that was shown to be immunogenic; however, it would be of great importance to enhance its immunological response, being able to co-administer it with a non-toxic adjuvant. Therefore, the objective of this work was to carry out the bioinformatic design of a peptide of the Naegleria fowleri membrane protein MP2CL5 conjugated with a non-toxic modified adjuvant from the native A1 structure of Cholera Toxin. For which different bioinformatics tools were used to obtain a model with a modification in amino acid 61 of the A1 subunit of the CT (CTA1), to which the Smp145 peptide was added and both molecules were joined with a 13-glycine linker. As for the results obtained, the modification in CTA1 bound to the peptide produces a reduction in the toxicity of the molecule in in silico experiments, likewise, the prediction in the binding of Smp145 to the receptor of B cells suggests that the molecule is directed in specifically to the BCR receptor, decreasing its native enzymatic activity. The stereochemical evaluation showed that the generated model has a high number of adequately predicted residues. In the ERRAT test, the confidence with which it is possible to reject regions that exceed the error values was evaluated, in the generated model, a high score was obtained, which determines that the model has a good structural resolution. Therefore, the design of the conjugated peptide in this work will allow us to proceed with its chemical synthesis and subsequently be able to use it in the mouse meningitis protection model caused by N. fowleri. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immunology" title="immunology">immunology</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccines" title=" vaccines"> vaccines</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogens" title=" pathogens"> pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=infectious%20disease" title=" infectious disease"> infectious disease</a> </p> <a href="https://publications.waset.org/abstracts/166457/bioinformatic-design-of-a-non-toxic-modified-adjuvant-from-the-native-a1-structure-of-cholera-toxin-with-membrane-synthetic-peptide-of-naegleria-fowleri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Concentrations of Leptin, C-Peptide and Insulin in Cord Blood as Fetal Origins of Insulin Resistance and Their Effect on the Birth Weight of the Newborn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Hewawasam">R. P. Hewawasam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20A.%20D.%20de%20Silva"> M. H. A. D. de Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20G.%20Iresha"> M. A. G. Iresha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obesity is associated with an increased risk of developing insulin resistance. Insulin resistance often progresses to type-2 diabetes mellitus and is linked to a wide variety of other pathophysiological features including hypertension, hyperlipidemia, atherosclerosis (metabolic syndrome) and polycystic ovarian syndrome. Macrosomia is common in infants born to not only women with gestational diabetes mellitus but also non-diabetic obese women. During the past two decades, obesity in children and adolescents has risen significantly in Asian populations including Sri Lanka. There is increasing evidence to believe that infants who are born large for gestational age (LGA) are more likely to be obese in childhood. It is also established from previous studies that Asian populations have higher percentage body fat at a lower body mass index compared to Caucasians. High leptin levels in cord blood have been reported to correlate with fetal adiposity at birth. Previous studies have also shown that cord blood C-peptide and insulin levels are significantly and positively correlated with birth weight. Therefore, the objective of this preliminary study was to determine the relationship between parameters of fetal insulin resistance such as leptin, C-peptide and insulin and the birth weight of the newborn in a study population in Southern Sri Lanka. Umbilical cord blood was collected from 90 newborns and the concentration of insulin, leptin, and C-peptide were measured by ELISA technique. Birth weight, length, occipital frontal, chest, hip and calf circumferences of newborns were measured and characteristics of the mother such as age, height, weight before pregnancy and weight gain were collected. The relationship between insulin, leptin, C-peptide, and anthropometrics were assessed by Pearson’s correlation while the Mann-Whitney U test was used to assess the differences in cord blood leptin, C-peptide, and insulin levels between groups. A significant difference (p < 0.001) was observed between the insulin levels of infants born LGA (18.73 ± 0.64 µlU/ml) and AGA (13.08 ± 0.43 µlU/ml). Consistently, A significant increase in concentration (p < 0.001) was observed in C-peptide levels of infants born LGA (9.32 ± 0.77 ng/ml) compared to AGA (5.44 ± 0.19 ng/ml). Cord blood leptin concentration of LGA infants (12.67 ng/mL ± 1.62) was significantly higher (p < 0.001) compared to the AGA infants (7.10 ng/mL ± 0.97). Significant positive correlations (p < 0.05) were observed among cord leptin levels and the birth weight, pre-pregnancy maternal weight and BMI between the infants of AGA and LGA. Consistently, a significant positive correlation (p < 0.05) was observed between the birth weight and the C peptide concentration. Significantly high concentrations of leptin, C-peptide and insulin levels in the cord blood of LGA infants suggest that they may be involved in regulating fetal growth. Although previous studies suggest comparatively high levels of body fat in the Asian population, values obtained in this study are not significantly different from values previously reported from Caucasian populations. According to this preliminary study, maternal pre-pregnancy BMI and weight may contribute as significant indicators of cord blood parameters of insulin resistance and possibly the birth weight of the newborn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20for%20gestational%20age" title="large for gestational age">large for gestational age</a>, <a href="https://publications.waset.org/abstracts/search?q=leptin" title=" leptin"> leptin</a>, <a href="https://publications.waset.org/abstracts/search?q=C-peptide" title=" C-peptide"> C-peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin" title=" insulin"> insulin</a> </p> <a href="https://publications.waset.org/abstracts/80454/concentrations-of-leptin-c-peptide-and-insulin-in-cord-blood-as-fetal-origins-of-insulin-resistance-and-their-effect-on-the-birth-weight-of-the-newborn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> Analysis of Formyl Peptide Receptor 1 Protein Value as an Indicator of Neutrophil Chemotaxis Dysfunction in Aggressive Periodontitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prajna%20Metta">Prajna Metta</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanti%20Rusyanti"> Yanti Rusyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Nunung%20Rusminah"> Nunung Rusminah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bremmy%20Laksono"> Bremmy Laksono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decrease of neutrophil chemotaxis function may cause increased susceptibility to aggressive periodontitis (AP). Neutrophil chemotaxis is affected by formyl peptide receptor 1 (FPR1), which when activated will respond to bacterial chemotactic peptide formyl methionyl leusyl phenylalanine (FMLP). FPR1 protein value is decreased in response to a wide number of inflammatory stimuli in AP patients. This study was aimed to assess the alteration of FPR1 protein value in AP patients and if FPR1 protein value could be used as an indicator of neutrophil chemotaxis dysfunction in AP. This is a case control study with 20 AP patients and 20 control subjects. Three milliliters of peripheral blood were drawn and analyzed for FPR1 protein value with ELISA. The data were statistically analyzed with Mann-Whitney test (p&gt;0,05<u>)</u>. Results showed that the mean value of FPR1 protein value in AP group is 0,353 pg/mL (0,11 to 1,18 pg/mL) and the mean value of FPR1 protein value in control group is 0,296 pg/mL (0,05 to 0,88 pg/mL). P value 0,787 &gt; 0,05 suggested that there is no significant difference of FPR1 protein value in both groups. The present study suggests that FPR1 protein value has no significance alteration in AP patients and could not be used as an indicator of neutrophil chemotaxis dysfunction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggressive%20periodontitis" title="aggressive periodontitis">aggressive periodontitis</a>, <a href="https://publications.waset.org/abstracts/search?q=chemotaxis%20dysfunction" title=" chemotaxis dysfunction"> chemotaxis dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=FPR1%20protein%20value" title=" FPR1 protein value"> FPR1 protein value</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophil" title=" neutrophil"> neutrophil</a> </p> <a href="https://publications.waset.org/abstracts/58541/analysis-of-formyl-peptide-receptor-1-protein-value-as-an-indicator-of-neutrophil-chemotaxis-dysfunction-in-aggressive-periodontitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> Acceptability of ‘Fish Surimi Peptide’ in Under Five Children Suffering from Moderate Acute Malnutrition in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Iqbal%20Hossain">M. Iqbal Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Azharul%20Islam%20Khan"> Azharul Islam Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Rafiqul%20Islam"> S. M. Rafiqul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahmeed%20Ahmed"> Tahmeed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Moderate acute malnutrition (MAM) is a major cause of morbidity and mortality in under-5 children of low-income countries. Approximately 14.6% of all under-5 mortality worldwide is attributed to MAM with >3 times increased risk of death compared to well-nourished peers. Prevalence of MAM among under-5 children in Bangladesh is ~12% (~1.7 million). Providing a diet containing adequate nutrients is the mainstay of treatment of children with MAM. It is now possible to process fish into fish peptides with longer shelf-life without refrigerator, known as ‘Fish Surimi peptide’ and this could be an attractive alternative to supply fish protein in the diet of children in low-income countries like Bangladesh. We conducted this study to assess the acceptability of Fish Surimi peptide given with various foods/meals in 2-5 years old children with MAM. Design/methods: Fish Surimi peptide is broken down from white fish meat using plant-derived enzyme and the ingredient is just fish meat consisted of 20 different kinds of amino acids including nine essential amino acids. In a convenience sample of 34 children we completed the study ward of Dhaka Hospital of icddr,b in Bangladesh during November 2014 through February 2015. For each child the study was for two consecutive days: i.e. direct observation of food intake of two lunches and two suppers. In a randomly and blinded manner and cross over design an individual child received Fish Surimi peptide (5g at lunch and 5g at supper) mixed meal [e.g. 30g rice and 30g dahl (thick lentil soup) or 60g of a vegetables-lentil-rice mixed local dish known as khichuri in one day and the same meal on other day without any Fish Surimi peptide. We observed the completeness and eagerness of eating and any possible side effect (e.g. allergy, vomiting, diarrhea etc.) over these two days. Results: The mean±SD age of the enrolled children was 38.4±9.4 months, weight 11.22±1.41 kg, height 91.0±6.3 cm, and WHZ was -2.13±0.76. Their mean±SD total feeding time (minutes) for lunch was 25.4±13.6 vs. 20.6±11.1 (p=0.130) and supper was 22.3±9.7 vs. 19.7±11.2 (p=0.297), and total amount (g) of food eaten in lunch and supper was found similar 116.1±7.0 vs. 117.7±8.0 (p=3.01) in A (Fish Surimi) and B group respectively. Score in Hedonic scale by mother on test of food given to children at lunch or supper was 3.9±0.2 vs. 4.0±0.2 (p=0.317) and on overall acceptance (including the texture, smell, and appearance) of food at lunch or supper was 3.9±0.2 vs. 4.0±0.2 (p=0.317) for A and B group respectively. No adverse event was observed in any food group during the study period. Conclusions: Fish Surimi peptide may be a cost effective supplementary food, which should be tested by appropriately designed randomized community level intervention trial both in wasted children and stunted children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protein-energy%20malnutrition" title="protein-energy malnutrition">protein-energy malnutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=moderate%20acute%20malnutrition" title=" moderate acute malnutrition"> moderate acute malnutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=weight-for-height%20z-score" title=" weight-for-height z-score"> weight-for-height z-score</a>, <a href="https://publications.waset.org/abstracts/search?q=mid%20upper%20arm%20circumference" title=" mid upper arm circumference"> mid upper arm circumference</a>, <a href="https://publications.waset.org/abstracts/search?q=acceptability" title=" acceptability"> acceptability</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20surimi%20peptide" title=" fish surimi peptide"> fish surimi peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=under-5%20children" title=" under-5 children"> under-5 children</a> </p> <a href="https://publications.waset.org/abstracts/36996/acceptability-of-fish-surimi-peptide-in-under-five-children-suffering-from-moderate-acute-malnutrition-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Comparison of Physicochemical Properties of Catfish Myofibrillar and Sarcoplasmic Protein Hydrolysates and Characterization of Their Bioactive Peptides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Najafian">Leila Najafian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sarcoplasmic protein hydrolysates (SPHs) and myofibrillar protein hydrolysates (MPHs) from patin (Pangasius sutchi) were produced using two types of proteases: Papain and Alcalase. 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging activities and metal chelating activity assays for antioxidant activities were carried out on the SPHs and MPHs. The hydrolysates were isolated and purified by ultrafiltration, gel filtration and reverse phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography with tandem mass spectrometry detection (LC-MS/MS) was used in identifying peptide sequences. The results showed that when the DH of MPHs increased, the protein solubility increased, while the highest amount of the protein solubility of SPHs was after 60 min incubation. The effect of DH on antioxidant activities of SPHs and MPHs was investigated. Among the hydrolysates, papain-MPH and Alcalase-SPH, which had the highest antioxidant activities, were purified. The potent fractions obtained from RP-HPLC of sarcoplasmic (SI 3 fraction) and myofibrillar (MI 4 fraction) hydrolysates showed the highest DPPH radical scavenging activity. The FVNQPYLLYSVHMK peptide for MPH and the LVVDIPAALQHA peptide for SPH exhibited the highest antioxidant activity. The presence of hydrophobic and hydrophilic amino acids, namely leucine (L), valine (V), phenylalanine (F), histidine (H) and proline (P), in the peptide sequences of SPH and MPH are believed to contribute to high antioxidant activity. Hence, SPH and MPH from patin have the potential as a natural functional ingredient in food and pharmaceutical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patin%20%28Pangasius%20sutchi%29" title="patin (Pangasius sutchi)">patin (Pangasius sutchi)</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20hydrolysates" title=" protein hydrolysates"> protein hydrolysates</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidative%20peptides" title=" antioxidative peptides"> antioxidative peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/49761/comparison-of-physicochemical-properties-of-catfish-myofibrillar-and-sarcoplasmic-protein-hydrolysates-and-characterization-of-their-bioactive-peptides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Optimization and Evaluation of 177lu-Dotatoc as a Potential Agent for Peptide Receptor Radionuclide Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia">H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=MS.%20Mousavi-Daramoroudi"> MS. Mousavi-Daramoroudi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Abbasi-Davani"> F. Abbasi-Davani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High expression of somatostatin receptors on a wide range of human tumours makes them as potential targets for peptide receptor radionuclide tomography. A series of octreotide analogues were synthesized while [DOTA-DPhe1, Tyr3]octreotide (DOTATOC) indicated advantageous properties in tumour models. In this study, 177Lu-DOTATOC was prepared with the radiochemical purity of higher than 99% in 30 min at the optimized condition. Biological behavior of the complex was studied after intravenous injection into the Syrian rats. Major difference uptake was observed compared to 177LuCl3 solution especially in somatostatin receptor-positive tissues such as pancreas and adrenal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biodistribution" title="Biodistribution">Biodistribution</a>, <a href="https://publications.waset.org/abstracts/search?q=177Lu" title=" 177Lu"> 177Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Octreotide" title=" Octreotide"> Octreotide</a>, <a href="https://publications.waset.org/abstracts/search?q=Syrian%20rats" title=" Syrian rats"> Syrian rats</a> </p> <a href="https://publications.waset.org/abstracts/34294/optimization-and-evaluation-of-177lu-dotatoc-as-a-potential-agent-for-peptide-receptor-radionuclide-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dual-functional%20peptide&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dual-functional%20peptide&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dual-functional%20peptide&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dual-functional%20peptide&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dual-functional%20peptide&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dual-functional%20peptide&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dual-functional%20peptide&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dual-functional%20peptide&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10