CINXE.COM

Search results for: four mode fiber

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: four mode fiber</title> <meta name="description" content="Search results for: four mode fiber"> <meta name="keywords" content="four mode fiber"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="four mode fiber" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="four mode fiber"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3201</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: four mode fiber</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3201</span> Interferometric Demodulation Scheme Using a Mode-Locker Fiber Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Zhang">Liang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanfu%20Lu"> Yuanfu Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuming%20Dong"> Yuming Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Guohua%20Jiao"> Guohua Jiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Chen"> Wei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiancheng%20Lv"> Jiancheng Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We demonstrated an interferometric demodulation scheme using a mode-locked fiber laser. The mode-locked fiber laser is launched into a two-beam interferometer. When the ratio between the fiber path imbalance of interferometer and the laser cavity length is close to an integer, an interferometric fringe emerges as a result of vernier effect, and then the phase shift of the interferometer can be demodulated. The mode-locked fiber laser provides a large bandwidth and reduces the cost for wavelength division multiplexion (WDM). The proposed interferometric demodulation scheme can be further applied in multi-point sensing system such as fiber optics hydrophone array, seismic wave detection network with high sensitivity and low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20sensing" title="fiber sensing">fiber sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=interferometric%20demodulation" title=" interferometric demodulation"> interferometric demodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mode-locked%20fiber%20laser" title=" mode-locked fiber laser"> mode-locked fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=vernier%20effect" title=" vernier effect"> vernier effect</a> </p> <a href="https://publications.waset.org/abstracts/48278/interferometric-demodulation-scheme-using-a-mode-locker-fiber-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3200</span> Eye Diagram for a System of Highly Mode Coupled PMD/PDL Fiber </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suad%20M.%20Abuzariba">Suad M. Abuzariba</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Chen"> Liang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Hadjifaradji"> Saeed Hadjifaradji </a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate the optical eye diagram due to polarization-mode dispersion (PMD), polarization-dependent loss (PDL), and chromatic dispersion (CD) for a system of highly mode coupled fiber with lumped section at any given optical pulse sequence we present an analytical modle. We found that with considering PDL and the polarization direction correlation between PMD and PDL, a system with highly mode coupled fiber with lumped section can have either higher or lower Q-factor than a highly mode coupled system with same root mean square PDL/PMD values. Also we noticed that a system of two highly mode coupled fibers connected together is not equivalent to a system of highly mode coupled fiber when fluctuation is considered <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polarization%20mode%20dispersion" title="polarization mode dispersion">polarization mode dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20dependent%20loss" title=" polarization dependent loss"> polarization dependent loss</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatic%20dispersion" title=" chromatic dispersion"> chromatic dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20eye%20diagram" title=" optical eye diagram"> optical eye diagram</a> </p> <a href="https://publications.waset.org/abstracts/14665/eye-diagram-for-a-system-of-highly-mode-coupled-pmdpdl-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">865</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3199</span> Highly Sensitive Fiber-Optic Curvature Sensor Based on Four Mode Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qihang%20Zeng">Qihang Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Xu"> Wei Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Shen"> Ying Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Changyuan%20Yu"> Changyuan Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a highly sensitive fiber-optic curvature sensor based on four mode fiber (FMF) is presented and investigated. The proposed sensing structure is constructed by fusing a section of FMF into two standard single mode fibers (SMFs) concatenated with two no core fiber (NCF), i.e., SMF-NCF-FMF-NCF-SMF structure is fabricated. The length of the NCF is very short about 1 millimeter acting as exciting/recoupling the light from/into the core of the SMF, while the FMF is with 3 centimeters long supporting four eigenmodes including LP₀₁, LP₁₁, LP₂₁ and LP₀₂. High core modes in FMF can be effectively stimulated owing to mismatched mode field distribution and the mainly sensing principle is based on modal interferometer spectrum analysis. Different curvatures induce different strains on the FMF such that affecting the modal excitation, resulting spectrum shifts. One can get the curvature value by tracking the wavelength shifting. Experiments have been done to address the sensing performance, which is about 7.8 nm/m⁻¹ within a range of 1.90 m⁻¹~3.18 m⁻¹. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curvature" title="curvature">curvature</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber" title=" four mode fiber"> four mode fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=highly%20sensitive" title=" highly sensitive"> highly sensitive</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20interferometer" title=" modal interferometer"> modal interferometer</a> </p> <a href="https://publications.waset.org/abstracts/99798/highly-sensitive-fiber-optic-curvature-sensor-based-on-four-mode-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3198</span> Modelling and Simulation of Single Mode Optical Fiber Directional Coupler for Medical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Kulkarni">Shilpa Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujata%20Patrikar"> Sujata Patrikar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A single-mode fiber directional coupler is modeled and simulated for its application in medical field. Various fiber devices based on evanescent field absorption, interferometry, couplers, resonators, tip coated fibers, etc, have been developed so far, suitable for medical application. This work focuses on the possibility of sensing by single mode fiber directional coupler. In the preset work, a fiber directional coupler is modeled to detect the changes taking place in the surrounding medium optoelectronically. In this work, waveguiding characteristics of the fiber are studied in depth. The sensor is modeled and simulated by finding photocurrent, sensitivity and detection limit by varying various parameters of the directional coupler. The device is optimized for the best possible output. It is found that the directional coupler shows measurable photocurrents and good sensitivity with coupling length in micrometers. It is thus a miniature device, hence, suitable for medical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20mode%20fiber%20directional%20coupler" title="single mode fiber directional coupler">single mode fiber directional coupler</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20simulation%20of%20fiber%20directional%20coupler%20sensor" title=" modeling and simulation of fiber directional coupler sensor"> modeling and simulation of fiber directional coupler sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing" title=" biomolecular sensing"> biomolecular sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20sensor%20device" title=" medical sensor device"> medical sensor device</a> </p> <a href="https://publications.waset.org/abstracts/84917/modelling-and-simulation-of-single-mode-optical-fiber-directional-coupler-for-medical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3197</span> Mode II Fracture Toughness of Hybrid Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20S%20Abou%20El-Mal">H. S. S Abou El-Mal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Sherbini"> A. S. Sherbini</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20E.%20M.%20Sallam"> H. E. M. Sallam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mode II fracture toughness (KIIc) of fiber reinforced concrete has been widely investigated under various patterns of testing geometries. The effect of fiber type, concrete matrix properties, and testing mechanisms were extensively studied. The area of hybrid fiber addition shows a lake of reported research data. In this paper an experimental investigation of hybrid fiber embedded in high strength concrete matrix is reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns, (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction (Vf) of 1.5%. The concrete matrix properties were kept the same for all hybrid fiber reinforced concrete patterns. In an attempt to estimate a fairly accepted value of fracture toughness KIIc, four testing geometries and loading types are employed in this investigation. Four point shear, Brazilian notched disc, double notched cube, and double edge notched specimens are investigated in a trial to avoid the limitations and sensitivity of each test regarding geometry, size effect, constraint condition, and the crack length to specimen width ratio a/w. The addition of all hybridization patterns of fiber reduced the compressive strength and increased mode II fracture toughness in pure mode II tests. Mode II fracture toughness of concrete KIIc decreased with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness KIIc is found to be sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness (KIIc). Four point shear (4PS) test set up reflects the most reliable values of mode II fracture toughness KIIc of concrete. Mode II fracture toughness KIIc of concrete couldn’t be assumed as a real material property. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title="fiber reinforced concrete">fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Hybrid%20fiber" title=" Hybrid fiber"> Hybrid fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=Mode%20II%20fracture%20toughness" title=" Mode II fracture toughness"> Mode II fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20geometry" title=" testing geometry"> testing geometry</a> </p> <a href="https://publications.waset.org/abstracts/29837/mode-ii-fracture-toughness-of-hybrid-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3196</span> Spectral Properties of Fiber Bragg Gratings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hamaizi">Y. Hamaizi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Triki"> H. Triki</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El-Akrmi"> A. El-Akrmi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the reflection spectra, group delay and dispersion of a uniform fiber Bragg grating (FBG) are obtained. FBGs with two types of apodized variations of the refractive index were modeled to show how the side-lobes can be suppressed. Apodization techniques are used to get optimized reflection spectra. The simulation is based on solving coupled mode equations together with the transfer matrix method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20bragg%20gratings" title="fiber bragg gratings">fiber bragg gratings</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled-mode%20theory" title=" coupled-mode theory"> coupled-mode theory</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectivity" title=" reflectivity"> reflectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=apodization" title=" apodization"> apodization</a> </p> <a href="https://publications.waset.org/abstracts/22861/spectral-properties-of-fiber-bragg-gratings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">704</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3195</span> Designing a Dispersion Flattened Single Mode PCF for E-Band to U-Band with Less Effective Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shabbir%20Chowdhury">Shabbir Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A signal is broadened when it is gone through a channel, this phenomenon is known as dispersion. And dispersion is different for different wavelength. So bandwidth become limited. Research have tried to design an optical fiber with flattened dispersion to use more bandwidth and also for wavelength division multiplexing. In this paper, a single mode photonic crystal fiber with a flattened dispersion and less effective area has been proposed where silica is used as fiber materials. The effective dispersion varies from -1.996 to 0.1783 [ps/(nm-km)] for enter E-band to U-band. This fiber will take only 3.048 [micrometer^2] (for 1.75 micrometer wavelength). Silica is being used as the fiber material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal%20fiber" title="photonic crystal fiber">photonic crystal fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title=" bandwidth"> bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatic%20dispersion" title=" chromatic dispersion"> chromatic dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20dispersion" title=" effective dispersion"> effective dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20compensation" title=" dispersion compensation"> dispersion compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20area" title=" effective area"> effective area</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20refractive%20index" title=" effective refractive index"> effective refractive index</a> </p> <a href="https://publications.waset.org/abstracts/51092/designing-a-dispersion-flattened-single-mode-pcf-for-e-band-to-u-band-with-less-effective-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3194</span> Mode-Locked Fiber Laser Using Charcoal and Graphene Saturable Absorbers to Generate 20-GHz and 50-GHz Pulse Trains, Respectively</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashiq%20Rahman">Ashiq Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Thapa"> Sunil Thapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunyao%20Fan"> Shunyao Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloy%20K.%20Dutta"> Niloy K. Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 20-GHz and a 50-GHz pulse train are generated using a fiber ring laser setup that incorporates Rational Harmonic Mode Locking. Two separate experiments were carried out using charcoal nanoparticles and graphene nanoparticles acting as saturable absorbers to reduce the pulse width generated from rational harmonic mode-locking (RHML). Autocorrelator trace shows that the pulse width is reduced from 5.6-ps to 3.2-ps using charcoal at 20-GHz, and to 2.7-ps using graphene at 50-GHz repetition rates, which agrees with the simulation findings. Numerical simulations have been carried out to study the effect of varying the linear and nonlinear absorbance parameters of both absorbers on output pulse widths. Experiments closely agree with the simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20optics" title="fiber optics">fiber optics</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20lasers" title=" fiber lasers"> fiber lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20locking" title=" mode locking"> mode locking</a>, <a href="https://publications.waset.org/abstracts/search?q=saturable%20absorbers" title=" saturable absorbers"> saturable absorbers</a> </p> <a href="https://publications.waset.org/abstracts/157130/mode-locked-fiber-laser-using-charcoal-and-graphene-saturable-absorbers-to-generate-20-ghz-and-50-ghz-pulse-trains-respectively" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3193</span> Inverse Saturable Absorption in Non-linear Amplifying Loop Mirror Mode-Locked Fiber Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haobin%20Zheng">Haobin Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Zhang"> Xiang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Shen"> Yong Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongxin%20Zou"> Hongxin Zou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research focuses on mode-locked fiber lasers with a non-linear amplifying loop mirror (NALM). Although these lasers have shown potential, they still have limitations in terms of low repetition rate. The self-starting of mode-locking in NALM is influenced by the cross-phase modulation (XPM) effect, which has not been thoroughly studied. The aim of this study is two-fold. First, to overcome the difficulties associated with increasing the repetition rate in mode-locked fiber lasers with NALM. Second, to analyze the influence of XPM on self-starting of mode-locking. The power distributions of two counterpropagating beams in the NALM and the differential non-linear phase shift (NPS) accumulations are calculated. The analysis is conducted from the perspective of NPS accumulation. The differential NPSs for continuous wave (CW) light and pulses in the fiber loop are compared to understand the inverse saturable absorption (ISA) mechanism during pulse formation in NALM. The study reveals a difference in differential NPSs between CW light and pulses in the fiber loop in NALM. This difference leads to an ISA mechanism, which has not been extensively studied in artificial saturable absorbers. The ISA in NALM provides an explanation for experimentally observed phenomena, such as active mode-locking initiation through tapping the fiber or fine-tuning light polarization. These findings have important implications for optimizing the design of NALM and reducing the self-starting threshold of high-repetition-rate mode-locked fiber lasers. This study contributes to the theoretical understanding of NALM mode-locked fiber lasers by exploring the ISA mechanism and its impact on self-starting of mode-locking. The research fills a gap in the existing knowledge regarding the XPM effect in NALM and its role in pulse formation. This study provides insights into the ISA mechanism in NALM mode-locked fiber lasers and its role in selfstarting of mode-locking. The findings contribute to the optimization of NALM design and the reduction of self-starting threshold, which are essential for achieving high-repetition-rate operation in fiber lasers. Further research in this area can lead to advancements in the field of mode-locked fiber lasers with NALM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20saturable%20absorption" title="inverse saturable absorption">inverse saturable absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=NALM" title=" NALM"> NALM</a>, <a href="https://publications.waset.org/abstracts/search?q=mode-locking" title=" mode-locking"> mode-locking</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20phase%20shift" title=" non-linear phase shift"> non-linear phase shift</a> </p> <a href="https://publications.waset.org/abstracts/173606/inverse-saturable-absorption-in-non-linear-amplifying-loop-mirror-mode-locked-fiber-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3192</span> Large Core Silica Few-Mode Optical Fibers with Reduced Differential Mode Delay and Enhanced Mode Effective Area over &#039;C&#039;-Band</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anton%20V.%20Bourdine">Anton V. Bourdine</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20A.%20Burdin"> Vladimir A. Burdin</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20R.%20Delmukhametov"> Oleg R. Delmukhametov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a fast and simple method for the design of large core silica optical fibers with differential mode delay (DMD) management. Some results are reported concerned with refractive index profile optimization for 42 µm core 16-LP-mode optical fiber for next-generation optical networks. Here special refractive index profile form provides total DMD reducing over all mode staff under desired enhanced mode effective area. Method for the simulation of 'real manufactured' few-mode optical fiber (FMF) core geometry differing from the desired optimized structure by core non-symmetrical ellipticity and refractive index profile deviation including local fluctuations is proposed. Results of the following analysis of optimized FMF with inserted geometry distortions performed by earlier on developed modification of rigorous mixed finite-element method showed strong DMD degradation that requires additional higher-order mode management. In addition, this work also presents a method for design mode division multiplexer channel precision spatial positioning scheme at FMF core end that provides one of the potentiality solutions of described DMD degradation problem concerned with 'distorted' core geometry due to features of optical fiber manufacturing techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20mode%20delay" title="differential mode delay">differential mode delay</a>, <a href="https://publications.waset.org/abstracts/search?q=few-mode%20optical%20fibers" title=" few-mode optical fibers"> few-mode optical fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Shannon%20limit" title=" nonlinear Shannon limit"> nonlinear Shannon limit</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber%20non-circularity" title=" optical fiber non-circularity"> optical fiber non-circularity</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%98real%20manufactured%E2%80%99%20optical%20fiber%20core%20geometry%20simulation" title=" ‘real manufactured’ optical fiber core geometry simulation"> ‘real manufactured’ optical fiber core geometry simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=refractive%20index%20profile%20optimization" title=" refractive index profile optimization"> refractive index profile optimization</a> </p> <a href="https://publications.waset.org/abstracts/99073/large-core-silica-few-mode-optical-fibers-with-reduced-differential-mode-delay-and-enhanced-mode-effective-area-over-c-band" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3191</span> A Tunable Long-Cavity Passive Mode-Locked Fiber Laser Based on Nonlinear Amplifier Loop Mirror</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinghe%20Wang">Pinghe Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we demonstrate a tunable long-cavity passive mode-locked fiber laser. The mode locker is a nonlinear amplifying loop mirror (NALM). The cavity frequency of the laser is 465 kHz because that 404m SMF is inserted in the cavity. A tunable bandpass filter with ~1nm 3dB bandwidth is inserted into the cavity to realize tunable mode locking. The passive mode-locked laser at a fixed wavelength is investigated in detail. The experimental results indicate that the laser operates in dissipative soliton resonance (DSR) region. When the pump power is 400mW, the laser generates the rectangular pulses with 10.58 ns pulse duration, 70.28nJ single-pulse energy. When the pump power is 400mW, the laser keeps stable mode locking status in the range from 1523.4nm to 1575nm. During the whole tuning range, the SNR, the pulse duration, the output power and single pulse energy have a little fluctuation because that the gain of the EDF changes with the wavelength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20laser" title="fiber laser">fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20soliton%20resonance" title=" dissipative soliton resonance"> dissipative soliton resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20locking" title=" mode locking"> mode locking</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable" title=" tunable"> tunable</a> </p> <a href="https://publications.waset.org/abstracts/78191/a-tunable-long-cavity-passive-mode-locked-fiber-laser-based-on-nonlinear-amplifier-loop-mirror" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3190</span> Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Bakry">Ahmed Bakry</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Ahmed"> Moustafa Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We model and simulate the combined effect of fiber dispersion and frequency chirp of a directly modulated high-speed laser diode on the figures of merit of a non-amplified 40-Gbps optical fiber link. We consider both the return to zero (RZ) and non-return to zero (NRZ) patterns of the pseudorandom modulation bits. The performance of the fiber communication system is assessed by the fiber-length limitation due to the fiber dispersion. We study the influence of replacing standard single-mode fibers by non-zero dispersion-shifted fibers on the maximum fiber length and evaluate the associated power penalty. We introduce new dispersion tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps optical fiber links. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bit%20error%20rate" title="bit error rate">bit error rate</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20chirp" title=" frequency chirp"> frequency chirp</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20communications" title=" fiber communications"> fiber communications</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser" title=" semiconductor laser"> semiconductor laser</a> </p> <a href="https://publications.waset.org/abstracts/10587/influence-of-chirp-of-high-speed-laser-diodes-and-fiber-dispersion-on-performance-of-non-amplified-40-gbps-optical-fiber-links" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">641</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3189</span> Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Khelil">K. Khelil</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ammar"> H. Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Saouchi"> K. Saouchi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bragg%20wavelength" title="Bragg wavelength">Bragg wavelength</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20mode%20theory" title=" coupled mode theory"> coupled mode theory</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber" title=" optical fiber"> optical fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20measurement" title=" temperature measurement"> temperature measurement</a> </p> <a href="https://publications.waset.org/abstracts/80169/numerical-study-of-fiber-bragg-grating-sensor-longitudinal-and-transverse-detection-of-temperature-and-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3188</span> Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Hassoon">O. Hassoon</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tarfoui"> M. Tarfoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El%20Malk"> A. El Malk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20bragg%20grating" title="fiber bragg grating">fiber bragg grating</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination%20detection" title=" delamination detection"> delamination detection</a>, <a href="https://publications.waset.org/abstracts/search?q=DCB" title=" DCB"> DCB</a>, <a href="https://publications.waset.org/abstracts/search?q=FBG%20spectrum" title=" FBG spectrum"> FBG spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20health%20monitoring" title=" structure health monitoring "> structure health monitoring </a> </p> <a href="https://publications.waset.org/abstracts/14913/numerical-simulation-of-fiber-bragg-grating-spectrum-for-mode-i-delamination-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3187</span> Raman Scattering Broadband Spectrum Generation in Compact Yb-Doped Fiber Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanrong%20Song">Yanrong Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Zikai%20Dong"> Zikai Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Runqin%20Xu"> Runqin Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinrong%20Tian"> Jinrong Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Kexuan%20Li"> Kexuan Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear polarization rotation (NPR) technique has become one of the main techniques to achieve mode-locked fiber lasers for its compactness, implementation, and low cost. In this paper, we demonstrate a compact mode-locked Yb-doped fiber laser based on NPR technique in the all normal dispersion (ANDi) regime. In the laser cavity, there are no physical filter and polarization controller in laser cavity. Mode-locked pulse train is achieved in ANDi regime based on NPR technique. The fiber birefringence induced filtering effect is the mainly reason for mode-locking. After that, an extra 20 m long single-mode fiber is inserted in two different positions, dissipative soliton operation and noise like pulse operations are achieved correspondingly. The nonlinear effect is obviously enhanced in the noise like pulse regime and broadband spectrum generated owing to enhanced stimulated Raman scattering effect. When the pump power is 210 mW, the central wavelength is 1030 nm, and the corresponding 1st order Raman scattering stokes wave generates and locates at 1075 nm. When the pump power is 370 mW, the 1st and 2nd order Raman scattering stokes wave generate and locate at 1080 nm, 1126 nm respectively. When the pump power is 600 mW, the Raman continuum is generated with cascaded multi-order stokes waves, and the spectrum extends to 1188 nm. The total flat spectrum is from 1000nm to 1200nm. The maximum output average power and pulse energy are 18.0W and 14.75nJ, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20laser" title="fiber laser">fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=mode-locking" title=" mode-locking"> mode-locking</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20polarization%20rotation" title=" nonlinear polarization rotation"> nonlinear polarization rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20scattering" title=" Raman scattering"> Raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/74790/raman-scattering-broadband-spectrum-generation-in-compact-yb-doped-fiber-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3186</span> Damage Strain Analysis of Parallel Fiber Eutectic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Zheng">Jian Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhua%20Ni"> Xinhua Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiequan%20Liu"> Xiequan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to isotropy of parallel fiber eutectic, the no- damage strain field in parallel fiber eutectic is obtained from the flexibility tensor of parallel fiber eutectic. Considering the damage behavior of parallel fiber eutectic, damage variables are introduced to determine the strain field of parallel fiber eutectic. The damage strains in the matrix, interphase, and fiber of parallel fiber eutectic are quantitatively analyzed. Results show that damage strains are not only associated with the fiber volume fraction of parallel fiber eutectic, but also with the damage degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20strain" title="damage strain">damage strain</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20strain" title=" initial strain"> initial strain</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20volume%20fraction" title=" fiber volume fraction"> fiber volume fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20fiber%20eutectic" title=" parallel fiber eutectic"> parallel fiber eutectic</a> </p> <a href="https://publications.waset.org/abstracts/60032/damage-strain-analysis-of-parallel-fiber-eutectic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3185</span> Propagation of W Shaped of Solitons in Fiber Bragg Gratings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mezghiche%20Kamel">Mezghiche Kamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present solitary wave solutions for the perturbed nonlinear Schrodinger (PNLS) equation describing propagation of femtosecond light pulses through the fiber Bragg grating structure where the pulse dynamics is governed by the nonlinear-coupled mode (NLCM) equations. Using the multiple scale analysis, we reduce the NLCM equations into the perturbed nonlinear Schrodinger (PNLS) type equation. Unlike the reported solitary wave solutions of the PNLS equation, the novel ones can describe W shaped of solitons and their properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%EF%AC%81ber%20bragg%20grating" title="fiber bragg grating">fiber bragg grating</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear-coupled%20mode%20equations" title=" nonlinear-coupled mode equations"> nonlinear-coupled mode equations</a>, <a href="https://publications.waset.org/abstracts/search?q=w%20shaped%20of%20solitons" title=" w shaped of solitons"> w shaped of solitons</a>, <a href="https://publications.waset.org/abstracts/search?q=PNLS" title=" PNLS"> PNLS</a> </p> <a href="https://publications.waset.org/abstracts/12669/propagation-of-w-shaped-of-solitons-in-fiber-bragg-gratings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">769</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3184</span> Bias Optimization of Mach-Zehnder Modulator Considering RF Gain on OFDM Radio-Over-Fiber System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20Al%20Sukkar">Ghazi Al Sukkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yazid%20Khattabi"> Yazid Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shifen%20Zhong"> Shifen Zhong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the recent wireless LANs, broadband access networks, and digital broadcasting use Orthogonal Frequency Division Multiplexing techniques. In addition, the increasing demand of Data and Internet makes fiber optics an important technology, as fiber optics has many characteristics that make it the best solution for transferring huge frames of Data from a point to another. Radio over fiber is the place where high quality RF is converted to optical signals over single mode fiber. Optimum values for the bias level and the switching voltage for Mach-Zehnder modulator are important for the performance of radio over fiber links. In this paper, we propose a method to optimize the two parameters simultaneously; the bias and the switching voltage point of the external modulator of a radio over fiber system considering RF gain. Simulation results show the optimum gain value under these two parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OFDM" title="OFDM">OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach%20Zehnder%20bias%20voltage" title=" Mach Zehnder bias voltage"> Mach Zehnder bias voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20voltage" title=" switching voltage"> switching voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=radio-over-fiber" title=" radio-over-fiber"> radio-over-fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20gain" title=" RF gain"> RF gain</a> </p> <a href="https://publications.waset.org/abstracts/82338/bias-optimization-of-mach-zehnder-modulator-considering-rf-gain-on-ofdm-radio-over-fiber-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3183</span> Fuzzy Sliding Mode Control of a Flexible Structure for Vibration Suppression Using MFC Actuator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinsiang%20Shaw">Jinsiang Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Chieh%20Tseng"> Shih-Chieh Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper use a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to suppress the disturbance. A fuzzy sliding mode controller is developed and applied to this system. Experimental results illustrate that the controller and MFC actuator are very effective in attenuating the structural vibration near the first resonant freuqency. Furthermore, this controller is shown to outperform the traditional skyhook controller, with nearly 90% of the vibration suppressed at the first resonant frequency of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuzzy%20sliding%20mode%20controller" title="Fuzzy sliding mode controller">Fuzzy sliding mode controller</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-fiber-composite%20actuator" title=" macro-fiber-composite actuator"> macro-fiber-composite actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=skyhook%20controller" title=" skyhook controller"> skyhook controller</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20suppression" title=" vibration suppression"> vibration suppression</a> </p> <a href="https://publications.waset.org/abstracts/25138/fuzzy-sliding-mode-control-of-a-flexible-structure-for-vibration-suppression-using-mfc-actuator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3182</span> Research on Carbon Fiber Tow Spreading Technique with Multi-Rolls </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soon%20Ok%20Jo">Soon Ok Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Kyu%20Jeung"> Han Kyu Jeung</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%20Woo%20Park"> Si Woo Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the process of consistent expansion of carbon fiber in width (Carbon Fiber Tow Spreading Technique), it can be expected that such process can enhance the production of carbon fiber reinforced composite material and quality of the product. In this research, the method of mechanically expanding carbon fiber and increasing its width was investigated by using various geometric rolls. In addition, experimental type of carbon fiber expansion device was developed and tested using 12K carbon fiber. As a result, the effects of expansion of such fiber under optimized operating conditions and geometric structure of an elliptical roll, were analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=tow%20spreading%20fiber" title=" tow spreading fiber"> tow spreading fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-preg" title=" pre-preg"> pre-preg</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20structure" title=" roll structure"> roll structure</a> </p> <a href="https://publications.waset.org/abstracts/51684/research-on-carbon-fiber-tow-spreading-technique-with-multi-rolls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3181</span> Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matej%20Komanec">Matej Komanec</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Bohata"> Jan Bohata</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20Zvanovec"> Stanislav Zvanovec</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Nemecek"> Tomas Nemecek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Broucek"> Jan Broucek</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Beran"> Josef Beran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber" title="optical fiber">optical fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-mode" title=" multi-mode"> multi-mode</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20centers" title=" data centers"> data centers</a>, <a href="https://publications.waset.org/abstracts/search?q=encircled%20flux" title=" encircled flux"> encircled flux</a> </p> <a href="https://publications.waset.org/abstracts/67343/detailed-analysis-of-multi-mode-optical-fiber-infrastructures-for-data-centers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3180</span> Bright–Dark Pulses in Nonlinear Polarisation Rotation Based Erbium-Doped Fiber Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Z.%20R.%20R.%20Rosdin">R. Z. R. R. Rosdin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Ali"> N. M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Harun"> S. W. Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Arof"> H. Arof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have experimentally demonstrated bright-dark pulses in a nonlinear polarization rotation (NPR) based mode-locked Erbium-doped fiber laser (EDFL) with a long cavity configuration. Bright–dark pulses could be achieved when the laser works in the passively mode-locking regime and the net group velocity dispersion is quite anomalous. The EDFL starts to generate a bright pulse train with degenerated dark pulse at the mode-locking threshold pump power of 35.09 mW by manipulating the polarization states of the laser oscillation modes using a polarization controller (PC). A split bright–dark pulse is generated when further increasing the pump power up to 37.95 mW. Stable bright pulses with no obvious evidence of a dark pulse can also be generated when further adjusting PC and increasing the pump power up to 52.19 mW. At higher pump power of 54.96 mW, a new form of bright-dark pulse emission was successfully identified with the repetition rate of 29 kHz. The bright and dark pulses have a duration of 795.5 ns and 640 ns, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erbium-doped%20fiber%20laser" title="Erbium-doped fiber laser">Erbium-doped fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20polarization%20rotation" title=" nonlinear polarization rotation"> nonlinear polarization rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=bright-dark%20pulse" title=" bright-dark pulse"> bright-dark pulse</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic" title=" photonic"> photonic</a> </p> <a href="https://publications.waset.org/abstracts/19127/bright-dark-pulses-in-nonlinear-polarisation-rotation-based-erbium-doped-fiber-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3179</span> Characteristics of PET-Based Conductive Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung-Yang%20Chuang">Chung-Yang Chuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Lung%20Chen"> Chi-Lung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Min%20Wang"> Hui-Min Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Jung%20Chang"> Chang-Jung Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conductive fiber is the key material for e-textiles and wearable devices. However, the durability of the conductive fiber after the wash process is an important issue for conductive fiber applications in e-textiles. Therefore, it is necessary for conductive fiber with good performance on electrically conductive behavior during the product life cycle. In this research, the PET-based conductive fiber was prepared by silver conductive ink continuous coating. The conductive fiber showed low fiber resistance (10-¹~10Ω/cm), and the conductive behavior still had good performance (fiber resistance:10-¹~10Ω/cm, percentage of fiber resistance change:<60%) after the water wash durability test (AATCC-135, 30 times). This research provides a better solution to resolve the issues of resistance increase after the water wash process due to the damage to the conductive fiber structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PET" title="PET">PET</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20fiber" title=" conductive fiber"> conductive fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=e-textiles" title=" e-textiles"> e-textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20devices" title=" wearable devices"> wearable devices</a> </p> <a href="https://publications.waset.org/abstracts/166142/characteristics-of-pet-based-conductive-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3178</span> Labview-Based System for Fiber Links Events Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Liu">Bo Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingshan%20Kong"> Qingshan Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiqing%20Huang"> Weiqing Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title="empirical mode decomposition">empirical mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=events%20detection" title=" events detection"> events detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabor%20transform" title=" Gabor transform"> Gabor transform</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20time%20domain%20reflectometer" title=" optical time domain reflectometer"> optical time domain reflectometer</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20threshold%20denoising" title=" wavelet threshold denoising"> wavelet threshold denoising</a> </p> <a href="https://publications.waset.org/abstracts/105512/labview-based-system-for-fiber-links-events-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3177</span> Shear Behavior of Steel-Fiber-Reinforced Precast/Prestressed Concrete Hollow Core Slabs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Nguyet%20Hang%20Nguyen">Thi Nguyet Hang Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Hai%20Tan"> Kang Hai Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precast/prestressed concrete hollow core (PCHC) slabs, especially ones with depth more than 300 mm, are susceptible to web-shear failure. The reasons lie on the fact that the production process of PCHC slabs, i.e., the extrusion method (the most common method to cast PCHC slabs nowadays), does not allow them to contain any shear reinforcement. Moreover, due to the presence of the longitudinal voids, cross sections of PCHC slabs are reduced. Therefore, the shear capacity of the slabs depends solely on the tensile strength of concrete which is relatively low. Given that shear is a major concern in using hollow-core slabs, this paper investigates the possibility of adopting steel fibers in PCHC slabs produced by the extrusion method to enhance the shear capacity of the slabs. Three full-scale PCHC slabs with and without hooked-steel fibers were cast and tested until failure. Three different volumetric fiber contents of 0, 0.51 and 0.89% were investigated. The test results showed that there were substantial increases in shear capacity and ductility with the use of hooked-steel fibers. Ultimate shear strength increased with fiber content. In addition, while the specimen without steel fibers and the one with the steel-fiber volume fraction of 0.51% failed in web-shear mode, the specimen with the higher fiber content (0.89%) collapsed in flexural-shear mode. However, as the hooked-steel fibers with the fiber content of 0.89% were used, difficulties in concrete consolidation were observed while concrete was being cast. This could lead to a lower ultimate shear capacity due to a poorer bond between the concrete and the steel fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hollow-core%20slabs" title="hollow-core slabs">hollow-core slabs</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=web-shear%20failure" title=" web-shear failure"> web-shear failure</a> </p> <a href="https://publications.waset.org/abstracts/108492/shear-behavior-of-steel-fiber-reinforced-precastprestressed-concrete-hollow-core-slabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3176</span> The Effect of Nylon and Kevlar Stitching on the Mode I Fracture of Carbon/Epoxy Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisrin%20R.%20Abdelal">Nisrin R. Abdelal</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20L.%20Donaldson"> Steven L. Donaldson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials are widely used in aviation industry due to their superior properties; however, they are susceptible to delamination. Through-thickness stitching is one of the techniques to alleviate delamination. Kevlar is one of the most common stitching materials; in contrast, it is expensive and presents stitching fabrication challenges. Therefore, this study compares the performance of Kevlar with an inexpensive and easy-to-use nylon fiber in stitching to alleviate delamination. Three laminates of unidirectional carbon fiber-epoxy composites were manufactured using vacuum assisted resin transfer molding process. One panel was stitched with Kevlar, one with nylon, and one unstitched. Mode I interlaminar fracture tests were carried out on specimens from the three composite laminates, and the results were compared. Fractographic analysis using optical and scanning electron microscope were conducted to reveal the differences between stitching with Kevlar and nylon on the internal microstructure of the composite with respect to the interlaminar fracture toughness values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevlar" title=" Kevlar"> Kevlar</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20I" title=" mode I"> mode I</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon" title=" nylon"> nylon</a>, <a href="https://publications.waset.org/abstracts/search?q=stitching" title=" stitching"> stitching</a> </p> <a href="https://publications.waset.org/abstracts/79708/the-effect-of-nylon-and-kevlar-stitching-on-the-mode-i-fracture-of-carbonepoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3175</span> A Study on the Improvement of the Bond Performance of Polypropylene Macro Fiber according to Longitudinal Shape Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-yong%20Choi">Sung-yong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo-tai%20Jung"> Woo-tai Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-hwan%20Park"> Young-hwan Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study intends to improve the bond performance of the polypropylene fiber used as reinforcing fiber for concrete by changing its shape into double crimped type through the enhancement its fabrication process. The bond performance of such double crimped fiber is evaluated by applying the JCI SF-8 (dog-bone shape) testing method. The test results reveal that the double crimped fiber develops bond performance improved by more than 19% compared to the conventional crimped type fiber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bond" title="Bond">Bond</a>, <a href="https://publications.waset.org/abstracts/search?q=Polypropylene" title=" Polypropylene"> Polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforcement" title=" fiber reinforcement"> fiber reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20fiber" title=" macro fiber"> macro fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20change" title=" shape change"> shape change</a> </p> <a href="https://publications.waset.org/abstracts/1536/a-study-on-the-improvement-of-the-bond-performance-of-polypropylene-macro-fiber-according-to-longitudinal-shape-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3174</span> Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Bohata">Jan Bohata</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20Zvanovec"> Stanislav Zvanovec</a>, <a href="https://publications.waset.org/abstracts/search?q=Matej%20Komanec"> Matej Komanec</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Jaros"> Jakub Jaros</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Hruby"> David Hruby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber" title="optical fiber">optical fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20mode%20dispersion" title=" polarization mode dispersion"> polarization mode dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=harsh%20environment" title=" harsh environment"> harsh environment</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a> </p> <a href="https://publications.waset.org/abstracts/67340/special-single-mode-fiber-tests-of-polarization-mode-dispersion-changes-in-a-harsh-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3173</span> Automation of Process Waste-Free Air Filtration in Production of Concrete, Reinforced with Basalt Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20Perepechko">Stanislav Perepechko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial companies - one of the major sources of harmful substances to the atmosphere. The main cause of pollution on the concrete plants are cement dust emissions. All the cement silos, pneumatic transport, and ventilation systems equipped with filters, to avoid this. Today, many Russian companies have to decide on replacement morally and physically outdated filters and guided back to the electrostatic filters as usual equipment. The offered way of a cleaning of waste-free filtering of air differs in the fact that a filtering medium of the filter is used in concrete manufacture. Basalt is widespread and pollution-free material. In the course of cleaning, one part of basalt fiber and cement immediately goes to the mixer through flow-control units of initial basalt fiber and cement. Another part of basalt fiber goes to filters for purification of the air used in systems of an air lift, and ventilating emissions passes through them, and with trapped particles also goes to the mixer through flow-control units of the basalt fiber fulfilled in filters. At the same time, regulators are adjusted in such a way that total supply of basalt fiber and cement into the mixer remains invariable and corresponds to a given technological mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste-free%20air%20filtration" title="waste-free air filtration">waste-free air filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=basalt%20fiber" title=" basalt fiber"> basalt fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20automation" title=" building automation"> building automation</a> </p> <a href="https://publications.waset.org/abstracts/66004/automation-of-process-waste-free-air-filtration-in-production-of-concrete-reinforced-with-basalt-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3172</span> Thermal Fracture Analysis of Fibrous Composites with Variable Fiber Spacing Using Jk-Integral</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Saeidi">Farid Saeidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Dag"> Serkan Dag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, fracture analysis of a fibrous composite laminate with variable fiber spacing is carried out using Jk-integral method. The laminate is assumed to be under thermal loading. Jk-integral is formulated by using the constitutive relations of plane orthotropic thermoelasticity. Developed domain independent form of the Jk-integral is then integrated into the general purpose finite element analysis software ANSYS. Numerical results are generated so as to assess the influence of variable fiber spacing on mode I and II stress intensity factors, energy release rate, and T-stress. For verification, some of the results are compared to those obtained using displacement correlation technique (DCT). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jk-integral" title="Jk-integral">Jk-integral</a>, <a href="https://publications.waset.org/abstracts/search?q=Variable%20Fiber%20Spacing" title=" Variable Fiber Spacing"> Variable Fiber Spacing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermoelasticity" title=" Thermoelasticity"> Thermoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=T-stress" title=" T-stress"> T-stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Method" title=" Finite Element Method"> Finite Element Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Fibrous%20Composite." title=" Fibrous Composite."> Fibrous Composite.</a> </p> <a href="https://publications.waset.org/abstracts/58021/thermal-fracture-analysis-of-fibrous-composites-with-variable-fiber-spacing-using-jk-integral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber&amp;page=106">106</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber&amp;page=107">107</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=four%20mode%20fiber&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10