CINXE.COM

(PDF) Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique | Dr. Davood Toghraie - Academia.edu

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="I7ukUZbLhm+G6v42XLbj85CqFN281DhgHF+DsA0p0inbnC/nddWwFMq8zbozy+4WtuW5IUxjnDKgulDGUQNz0g==" /> <meta name="citation_title" content="Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique" /> <meta name="citation_publication_date" content="2021/01/01" /> <meta name="citation_journal_title" content="Elsevier" /> <meta name="citation_author" content="Dr. Davood Toghraie" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/49303133/Investigation_of_the_mechanical_properties_of_a_bony_scaffold_for_comminuted_distal_radial_fractures_Addition_of_akermanite_nanoparticles_and_using_a_freeze_drying_technique" /> <meta name="twitter:title" content="Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique" /> <meta name="twitter:description" content="One of the methods of repairing the damaged bone is the fabrication of porous scaffold using synergic methods like three-dimensional (3D) printing and freeze-drying technology. These techniques improve the damaged and fracture parts rapidly for" /> <meta name="twitter:image" content="https://0.academia-photos.com/5734988/33550597/29850154/s200_d.d.jpg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/49303133/Investigation_of_the_mechanical_properties_of_a_bony_scaffold_for_comminuted_distal_radial_fractures_Addition_of_akermanite_nanoparticles_and_using_a_freeze_drying_technique" /> <meta property="og:title" content="Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="One of the methods of repairing the damaged bone is the fabrication of porous scaffold using synergic methods like three-dimensional (3D) printing and freeze-drying technology. These techniques improve the damaged and fracture parts rapidly for" /> <meta property="article:author" content="https://iaukhsh.academia.edu/DavoodToghraie" /> <meta name="description" content="One of the methods of repairing the damaged bone is the fabrication of porous scaffold using synergic methods like three-dimensional (3D) printing and freeze-drying technology. These techniques improve the damaged and fracture parts rapidly for" /> <title>(PDF) Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique | Dr. Davood Toghraie - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/49303133/Investigation_of_the_mechanical_properties_of_a_bony_scaffold_for_comminuted_distal_radial_fractures_Addition_of_akermanite_nanoparticles_and_using_a_freeze_drying_technique" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '8163e55c38c61270dc90c0fa6957810a1239b036'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1734129126000); window.Aedu.timeDifference = new Date().getTime() - 1734129126000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"One of the methods of repairing the damaged bone is the fabrication of porous scaffold using synergic methods like three-dimensional (3D) printing and freeze-drying technology. These techniques improve the damaged and fracture parts rapidly for better healing bone lesions using bioactive ceramic and polymer. This research, due to the need to increase the mechanical strength of 3D bone scaffolds for better mechanical performance. Akermanite bioceramic as a bioactive and calcium silicate bioceramic has been used besides the polymeric component. In this study, the porous scaffolds were designed using solid work with an appropriate porosity with a Gyroid shape. The prepared Gyroid scaffold was printed using a 3D printing machine with Electroconductive Polylactic Acid (EC-PLA) and then coated with a polymeric solution containing various amounts of akermanite bioceramic as reinforcement. The mechanical and biological properties were investigated according to the standard test. The mechanical properties of the porous-coated scaffold showed stress tolerance up to 30 MPa. The maximum strain obtained was 0.0008, the maximum stress was 32 MPa and the maximum displacement was 0.006 mm. Another problem of bone implants is the impossibility of controlling bone cancer and tumor size. To solve this problem, an electroconductive filament containing Magnetic Nanoparticles (MNPs) is used to release heat and control cancer cells. The mechanical feature of the porous scaffold containing 10 wt% akermanite was obtained as the highest stress tolerance of about 32 MPa with 46% porosity. Regarding the components and prepare the bony scaffold, the MNPs release heat when insert into the magnetic field and control the tumor size which helps the treatment of cancer. In general, it can be concluded that the produced porous scaffold using 3D printing and freeze-drying technology can be used to replace broken bones with the 3D printed EC-PLA coated with 10 wt% akermanite bioceramic with sufficient mechanical and biological behavior for the orthopedic application.","author":[{"@context":"https://schema.org","@type":"Person","name":"Dr. Davood Toghraie"}],"contributor":[],"dateCreated":"2021-06-20","datePublished":"2021-01-01","headline":"Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique","identifier":{"@type":"PropertyValue","propertyID":"DOI","value":"10.1016/j.jmbbm.2021.104643"},"image":"https://attachments.academia-assets.com/67684126/thumbnails/1.jpg","inLanguage":"en","keywords":["Scaffold 3D printer Akermanite Electro-conductive filament EC-PLA Mechanical properties"],"publication":"Elsevier","publisher":{"@context":"https://schema.org","@type":"Organization","name":null},"sameAs":"https://doi.org/10.1016/j.jmbbm.2021.104643","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"iaukhsh"}],"thumbnailUrl":"https://attachments.academia-assets.com/67684126/thumbnails/1.jpg","url":"https://www.academia.edu/49303133/Investigation_of_the_mechanical_properties_of_a_bony_scaffold_for_comminuted_distal_radial_fractures_Addition_of_akermanite_nanoparticles_and_using_a_freeze_drying_technique"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "018b9f6346588ace97caa47ee310685afdb414ba1977d096d9ee23a6abfc661b", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="HFxoT+l1/L6AI3naaNo2kszScFx5Lwy8cixF6PF0u/bke+P5CmvKxcx1SlYHpzt36p3doImYqO7OyZaerV4aDQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/49303133/Investigation_of_the_mechanical_properties_of_a_bony_scaffold_for_comminuted_distal_radial_fractures_Addition_of_akermanite_nanoparticles_and_using_a_freeze_drying_technique" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="FL5Oc8pDOFqvG9hn/HBn6GyzUKgdyX/EcS6C5QD+vWjsmcXFKV0OIeNN6+uTDWoNSvz9VO1+25bNy1GTXNQckw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><button class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign react-login-modal-opener" data-signup-modal="{&quot;location&quot;:&quot;login-button--header&quot;}" rel="nofollow">Log In</button><button class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign react-login-modal-opener" data-signup-modal="{&quot;location&quot;:&quot;signup-button--header&quot;}" rel="nofollow">Sign Up</button><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-61f9e14438d81215b1290538046211bffedb8bd5dffc20746e89cd72bd8d2375.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 5734988; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F49303133%2FInvestigation_of_the_mechanical_properties_of_a_bony_scaffold_for_comminuted_distal_radial_fractures_Addition_of_akermanite_nanoparticles_and_using_a_freeze_drying_technique%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F49303133%2FInvestigation_of_the_mechanical_properties_of_a_bony_scaffold_for_comminuted_distal_radial_fractures_Addition_of_akermanite_nanoparticles_and_using_a_freeze_drying_technique%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":67684126,"identifier":"Attachment_67684126","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":49303133,"created_at":"2021-06-20T03:28:32.642-07:00","from_world_paper_id":null,"updated_at":"2022-07-25T13:30:34.014-07:00","_data":{"doi":"10.1016/j.jmbbm.2021.104643","abstract":"One of the methods of repairing the damaged bone is the fabrication of porous scaffold using synergic methods like three-dimensional (3D) printing and freeze-drying technology. These techniques improve the damaged and fracture parts rapidly for better healing bone lesions using bioactive ceramic and polymer. This research, due to the need to increase the mechanical strength of 3D bone scaffolds for better mechanical performance. Akermanite bioceramic as a bioactive and calcium silicate bioceramic has been used besides the polymeric component. In this study, the porous scaffolds were designed using solid work with an appropriate porosity with a Gyroid shape. The prepared Gyroid scaffold was printed using a 3D printing machine with Electroconductive Polylactic Acid (EC-PLA) and then coated with a polymeric solution containing various amounts of akermanite bioceramic as reinforcement. The mechanical and biological properties were investigated according to the standard test. The mechanical properties of the porous-coated scaffold showed stress tolerance up to 30 MPa. The maximum strain obtained was 0.0008, the maximum stress was 32 MPa and the maximum displacement was 0.006 mm. Another problem of bone implants is the impossibility of controlling bone cancer and tumor size. To solve this problem, an electroconductive filament containing Magnetic Nanoparticles (MNPs) is used to release heat and control cancer cells. The mechanical feature of the porous scaffold containing 10 wt% akermanite was obtained as the highest stress tolerance of about 32 MPa with 46% porosity. Regarding the components and prepare the bony scaffold, the MNPs release heat when insert into the magnetic field and control the tumor size which helps the treatment of cancer. In general, it can be concluded that the produced porous scaffold using 3D printing and freeze-drying technology can be used to replace broken bones with the 3D printed EC-PLA coated with 10 wt% akermanite bioceramic with sufficient mechanical and biological behavior for the orthopedic application.","publication_date":"2021,,","publication_name":"Elsevier"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique","broadcastable":true,"draft":false,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [5734988]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loginModal = {}; window.loginModal.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:67684126,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/67684126/mini_magick20210620-720-vuz2rv.png?1624184921" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="5734988" href="https://iaukhsh.academia.edu/DavoodToghraie"><img alt="Profile image of Dr. Davood Toghraie" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/5734988/33550597/29850154/s65_d.d.jpg" />Dr. Davood Toghraie</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2021, Elsevier</p><a class="js-loswp-work-card-doi-link ds2-5-body-sm ds2-5-body-link" href="https://doi.org/10.1016/j.jmbbm.2021.104643" rel="nofollow">https://doi.org/10.1016/j.jmbbm.2021.104643</a><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">9 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 49303133; const worksViewsPath = "/v0/works/views?subdomain_param=api&amp;work_ids%5B%5D=49303133"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { try { const viewCountNumber = parseInt(viewCount, 10); if (viewCountNumber === 0) { // Remove the whole views element if there are zero views. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); return; } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (!viewCountBody) { throw new Error('Failed to find work views element'); } viewCountBody.textContent = `${commaizedViewCount} views`; } catch (error) { // Remove the whole views element if there was some issue parsing. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); throw new Error(`Failed to parse view count: ${viewCount}`, error); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">One of the methods of repairing the damaged bone is the fabrication of porous scaffold using synergic methods like three-dimensional (3D) printing and freeze-drying technology. These techniques improve the damaged and fracture parts rapidly for better healing bone lesions using bioactive ceramic and polymer. This research, due to the need to increase the mechanical strength of 3D bone scaffolds for better mechanical performance. Akermanite bioceramic as a bioactive and calcium silicate bioceramic has been used besides the polymeric component. In this study, the porous scaffolds were designed using solid work with an appropriate porosity with a Gyroid shape. The prepared Gyroid scaffold was printed using a 3D printing machine with Electroconductive Polylactic Acid (EC-PLA) and then coated with a polymeric solution containing various amounts of akermanite bioceramic as reinforcement. The mechanical and biological properties were investigated according to the standard test. The mechanical properties of the porous-coated scaffold showed stress tolerance up to 30 MPa. The maximum strain obtained was 0.0008, the maximum stress was 32 MPa and the maximum displacement was 0.006 mm. Another problem of bone implants is the impossibility of controlling bone cancer and tumor size. To solve this problem, an electroconductive filament containing Magnetic Nanoparticles (MNPs) is used to release heat and control cancer cells. The mechanical feature of the porous scaffold containing 10 wt% akermanite was obtained as the highest stress tolerance of about 32 MPa with 46% porosity. Regarding the components and prepare the bony scaffold, the MNPs release heat when insert into the magnetic field and control the tumor size which helps the treatment of cancer. In general, it can be concluded that the produced porous scaffold using 3D printing and freeze-drying technology can be used to replace broken bones with the 3D printed EC-PLA coated with 10 wt% akermanite bioceramic with sufficient mechanical and biological behavior for the orthopedic application.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:67684126,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/49303133/Investigation_of_the_mechanical_properties_of_a_bony_scaffold_for_comminuted_distal_radial_fractures_Addition_of_akermanite_nanoparticles_and_using_a_freeze_drying_technique&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:67684126,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/49303133/Investigation_of_the_mechanical_properties_of_a_bony_scaffold_for_comminuted_distal_radial_fractures_Addition_of_akermanite_nanoparticles_and_using_a_freeze_drying_technique&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="67684126" data-landing_url="https://www.academia.edu/49303133/Investigation_of_the_mechanical_properties_of_a_bony_scaffold_for_comminuted_distal_radial_fractures_Addition_of_akermanite_nanoparticles_and_using_a_freeze_drying_technique" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="38939698" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/38939698/Characterization_and_In_Vitro_evaluation_of_a_novel_coated_nanocomposite_porous_3D_scaffold_for_bone_repair">Characterization and In Vitro evaluation of a novel coated nanocomposite porous 3D scaffold for bone repair</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="83306182" href="https://uomosul.academia.edu/SaharMohammedIbrahim">Sahar Mohammed Ibrahim</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="40007194" href="https://upm.academia.edu/fufagimbaIdo">fufa gimba Ido</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6997194" href="https://uomosul.academia.edu/SaffanahMahmood">Saffanah Mahmood</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Iraqi Journal of Veterinary Sciences, 2019</p><p class="ds-related-work--abstract ds2-5-body-sm">The aim of this study is to tissue engineer a 3D scaffold that can be used for load bearing segmental bone defects (SBDs) repair. Three different scaffolds were fabricated using cockle shell-derived CaCO 3 aragonite nanoparticles (CCAN), gelatin, dextran and dextrin with coated framework via Freeze-Drying Method (FDM) labeled as 5211, 5211 GTA+Alginate , 5211 PLA. Scaffolds were assessed using Scanning Electron Microscopy (SEM). The cytocompatibility of the organized scaffolds was assessed using cells multiplication and alkaline phosphatase (ALP) concentration via In Vitro cell culture using human Fetal OsteoBlast cells line (hFOB). The results showed a substantial difference in ALP concentrations between the cultures of different scaffolds leachable medium during the study period. The biological evaluation also showed that three scaffolds did enhanced the osteoblast proliferation rate and improved the osteoblast function as demonstrated by the significant increase in ALP concentration. Engineering analyses showed that scaffolds possessed 3D interconnected homogenous porous structure with a porosity ranging 6%-49%, pore sizes ranging 8-345 µm, mechanical strength ranging 20-65 MPa, young&#39;s modulus ranging 166-296 MPa and enzymatic degradation rate between 16%-38% within 2-10 weeks. The in vitro evaluation revealed that the scaffold 5211, 5211 GTA+Alginate and 5211 PLA fulfill all the main requirements to be considered as an ideal bone replacement.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Characterization and In Vitro evaluation of a novel coated nanocomposite porous 3D scaffold for bone repair&quot;,&quot;attachmentId&quot;:59041167,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/38939698/Characterization_and_In_Vitro_evaluation_of_a_novel_coated_nanocomposite_porous_3D_scaffold_for_bone_repair&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/38939698/Characterization_and_In_Vitro_evaluation_of_a_novel_coated_nanocomposite_porous_3D_scaffold_for_bone_repair"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="88767748" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/88767748/3D_printing_of_bone_scaffolds_with_hybrid_biomaterials">3D printing of bone scaffolds with hybrid biomaterials</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47029452" href="https://independent.academia.edu/BANKOLEIOLADAPO">BANKOLE I. OLADAPO</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Composites Part B: Engineering, 2019</p><p class="ds-related-work--abstract ds2-5-body-sm">In this research, a novel hybrid material bone implant manufacturing through the integration of two materials using additive manufacturing (AM) technology is proposed. Biomimetic application can manufacture high strength biomechanical implants with optimised geometry and mass. The combination of polymers allows a significant leap in the development and production of a great diversity of components and applications of biomaterials. A novel hybrid scaffold with a poly lactic acid (PLA) matrix reinforced with carbohydrate particles (cHA) is analysed using digital surface software in the mass proportions of 100/0, 95/5, 90/10 and 80/20 for application in tissue and regenerative engineering, seeking a higher proposition strength of PLA. Filaments are used to fabricate scaffolds by 3D printing, using the fused deposition method. The frameworks are submitted to bioactivity tests, surface roughness evaluation, apparent porosity and mechanical analysis. Analysis of the microstructure of the composite particle evaluates the 3D surface luminance structure and the profile structure. Cross-sectional views of the specimens are extracted and analysed, and the surface roughness, waviness profile, and Gaussian filter of the structures are observed. In summary the structures are checked and analysed by SEM and EDS where possible, to observe the bioactive behaviour of the materials. The relationship between cHA content and roughness is shown to be proportional. The mechanical properties are shown to be affected by the reduced interaction between the PLA matrix and the cHA particles.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D printing of bone scaffolds with hybrid biomaterials&quot;,&quot;attachmentId&quot;:92681881,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/88767748/3D_printing_of_bone_scaffolds_with_hybrid_biomaterials&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/88767748/3D_printing_of_bone_scaffolds_with_hybrid_biomaterials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="67558411" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/67558411/Improving_the_Properties_of_the_Porous_Polylactic_Acid_Scaffold_by_Akermanite_Nanoparticles_for_Bone_Tissue_Engineering">Improving the Properties of the Porous Polylactic Acid Scaffold by Akermanite Nanoparticles for Bone Tissue Engineering</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="98804852" href="https://iaustb.academia.edu/miladjafarinodoushan">milad jafari nodoushan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2020</p><p class="ds-related-work--abstract ds2-5-body-sm">1 Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran 2 Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran 3 Department of Nano Biotecnology, Pasteur Institute of Iran, Tehran, Iran 4 Hard tissue engineering research center, tissue engineering and regenerative medicine institute, central Tehran Branch, Islamic Azad University, Tehran, Iran</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Improving the Properties of the Porous Polylactic Acid Scaffold by Akermanite Nanoparticles for Bone Tissue Engineering&quot;,&quot;attachmentId&quot;:78329797,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/67558411/Improving_the_Properties_of_the_Porous_Polylactic_Acid_Scaffold_by_Akermanite_Nanoparticles_for_Bone_Tissue_Engineering&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/67558411/Improving_the_Properties_of_the_Porous_Polylactic_Acid_Scaffold_by_Akermanite_Nanoparticles_for_Bone_Tissue_Engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="22862240" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/22862240/Three_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering">Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="44451008" href="https://independent.academia.edu/StephanIrsen">Stephan Irsen</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005</p><p class="ds-related-work--abstract ds2-5-body-sm">This article reports a new process chain for custom-made three-dimensional (3D) porous ceramic scaffolds for bone replacement with fully interconnected channel network for the repair of osseous defects from trauma or disease. Rapid prototyping and especially 3D printing is well suited to generate complex-shaped porous ceramic matrices directly from powder materials. Anatomical information obtained from a patient can be used to design the implant for a target defect. In the 3D printing technique, a box filled with ceramic powder is printed with a polymer-based binder solution layer by layer. Powder is bonded in wetted regions. Unglued powder can be removed and a ceramic green body remains. We use a modified hydroxyapatite (HA) powder for the fabrication of 3D printed scaffolds due to the safety of HA as biocompatible implantable material and efficacy for bone regeneration. The printed ceramic green bodies are consolidated at a temperature of 1250°C in a high temperature furnace in ambient air. The polymeric binder is pyrolysed during sintering. The resulting scaffolds can be used in tissue engineering of bone implants using patient-derived cells that are seeded onto the scaffolds.This article describes the process chain, beginning from data preparation to 3D printing tests and finally sintering of the scaffold. Prototypes were successfully manufactured and characterized. It was demonstrated that it is possible to manufacture parts with inner channels with a dimension down to 450 m and wall structures with a thickness down to 330 m. The mechanical strength of dense test parts is up to 22 MPa.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering&quot;,&quot;attachmentId&quot;:43402305,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/22862240/Three_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/22862240/Three_dimensional_printing_of_porous_ceramic_scaffolds_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="61868224" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/61868224/A_resorbable_scaffold_for_bone_replacement">A resorbable scaffold for bone replacement</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="123729042" href="https://independent.academia.edu/CarolinaAnessi">Carolina Anessi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Brazilian Journal of Radiation Sciences</p><p class="ds-related-work--abstract ds2-5-body-sm">All tissue banking activities are depending on tissue donors. The donor rate is still low in Argentina, and the tissue demanding is still not fulfilled. For this reason, tissue engineering has become a necessary discipline to be investigated. Our project is conducted to obtain a 3D resorbable printed scaffold seeded with mesenchymal stem cell (MSC), to conduct real bone. We produced three polylactic acid (PLA) filaments with different loads of hydroxyapatite (HA): 3%, 5% and 10%. The mixtures were homogenous and the three filaments were suitable for 3D printing and were used to print 3D scaffolds samples. The scaffolds were irradiated with range doses of 15 kGy to 25 kGy for sterilization purposes and to evaluate if the degradation polymer rate is regulated with the irradiation dose. The elaborated filaments were optimally printable. In addition they turned out to be not cytotoxic (cell viability greater than 70%) and whit good cellular adherence. In this way, our biomaterial seems ...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A resorbable scaffold for bone replacement&quot;,&quot;attachmentId&quot;:74793573,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/61868224/A_resorbable_scaffold_for_bone_replacement&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/61868224/A_resorbable_scaffold_for_bone_replacement"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="81698528" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/81698528/Mechanical_characterization_of_a_polymeric_scaffold_for_bone_implant">Mechanical characterization of a polymeric scaffold for bone implant</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="108134434" href="https://dmu.academia.edu/Victoradebiyi">Victor adebiyi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Materials Science, 2020</p><p class="ds-related-work--abstract ds2-5-body-sm">The 3D printing of polyether ether ketone (PEEK) composite of lightweight, high strength, and relatively low-cost composite are rare. This is due to the high melting temperature and poor adhesion problems. This research carefully examines the computational characterization of the nanos-tructure and finite element analysis (FEA) of PEEK/hydroxyapatite (HAP)/-graphene oxide (GO) to solve the problems of high melting temperature and poor adhesion and makes it possible to achieve the lightweight characteristic. Based on the loading condition, a new principal stress trajectory is generated through FEA and used as the guidance for the placement path of PEEK/HAP/GO. The design of the hot extrusion head was implemented at the ambient temperature. Many essential factors were considered while printing PEEK/HAP/GO structures without distortion and degradation of the composite. Compression and traction tests were performed to investigate the mechanical properties of the new PEEK/ HAP/GO structure. These were done using three-point flexure test techniques. The addition of physiologically active substances such as bioglass and the incorporation of porosity in PEEK/HAP/GO have been identified as an effective way to improve the osseointegration of bone-implant interfaces, produce a lightweight structure, and improve the biocompatibility of product. A 3000 mm/min printing speed was observed in the 3D-printed PEEK/HAP/GO, with a porosity of 1.2% of maximum increasing strength. This article will help researchers to strengthen their conceptual and computational knowledge of 3D printing tools and medical devices as well as explore future possibilities based on the use of PEEK/HAP/GO.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Mechanical characterization of a polymeric scaffold for bone implant&quot;,&quot;attachmentId&quot;:87652939,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/81698528/Mechanical_characterization_of_a_polymeric_scaffold_for_bone_implant&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/81698528/Mechanical_characterization_of_a_polymeric_scaffold_for_bone_implant"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="20577000" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/20577000/Characterization_of_HA_and_x03B2_TCP_3_D_printed_scaffolds_for_custom_bone_repair_applications">Characterization of HA/&amp;#x03B2;TCP 3-D printed scaffolds for custom bone repair applications</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="41929525" href="https://independent.academia.edu/AMurriky">A. Murriky</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC), 2010</p><p class="ds-related-work--abstract ds2-5-body-sm">The objective of this study was to characterize the chemical and physical properties of bioactive ceramics prepared from an aqueous paste containing hydroxyapatite (HA) and beta tri-calcium phosphate (β-TCP). Prior to formulating the paste, HA and β-TCP were calcined at 800 ℃ and 975 ℃ (11 h), milled, and blended into 15%/85% HA/β-TCP volume-mixed paste. Fabricated cylindrical rods were subsequently sintered to 900 ℃, 1100 ℃ or 1250 ℃. The sintered specimens were characterized by helium pycnometry, X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), and inductively coupled plasma (ICP) spectroscopy for evaluation of porosity, crystalline phase, functional-groups, and Ca:P ratio, respectively. Mechanical properties were assessed via 3-point bending and diametral compression. Qualitative microstructural evaluation using scanning electron microscopy (SEM) showed larger pores and a broader pore size distribution (PSD) for materials sintered at 900 ℃ and 1100 ℃, whereas the 1250 ℃ samples showed more uniform PSD. Porosity quantification showed significantly higher porosity for materials sintered to 900 ℃ and 1250 ℃ (p &lt; 0.05). XRD indicated substantial deviations from the 15%/85% HA/β-TCP formulation following sintering where lower amounts of HA were observed when sintering temperature was increased. Mechanical testing demonstrated significant differences between calcination temperatures and different sintering regimes (p &lt; 0.05). Variation in chemical composition and mechanical properties of bioactive ceramics were direct consequences of calcination and sintering.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Characterization of HA/\u0026#x03B2;TCP 3-D printed scaffolds for custom bone repair applications&quot;,&quot;attachmentId&quot;:41446752,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/20577000/Characterization_of_HA_and_x03B2_TCP_3_D_printed_scaffolds_for_custom_bone_repair_applications&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/20577000/Characterization_of_HA_and_x03B2_TCP_3_D_printed_scaffolds_for_custom_bone_repair_applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="96081266" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/96081266/Comprehensive_Review_on_the_Feasibility_Study_of_Traditional_versus_3D_Bio_scaffold_Synthesizing_Process_for_Bone_Cell_Regeneration_A_Nisitha_S_Product_Research_Analyst_MedCuore_Medical_Solutions_Pvt_Ltd_Chennai">Comprehensive Review on the Feasibility Study of Traditional versus 3D Bio-scaffold Synthesizing Process for Bone Cell Regeneration A. Nisitha S, Product Research Analyst, MedCuore Medical Solutions Pvt Ltd, Chennai</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="219285525" href="https://sathyabamauniversity.academia.edu/NisithaS">Nisitha S</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="102937034" href="https://sathyabamauniversity.academia.edu/GeethaBalasubramani">Geetha Balasubramani</a></div><p class="ds-related-work--abstract ds2-5-body-sm">Scaffolds are three-dimensional (3D) porous, fibrous, or permeable biomaterials designed to increase intercellular communication, cell survival, and extracellular matrix (ECM) deposition with the least amount of toxicity, inflammation and itbiodegrades at a specific time.Bio-scaffolds need to satisfy a few criteria to allow osseointegration, Osseo-conductivity and Osseo-inductivity. A growing number of Traditional synthesizing processes and threedimensional (3D) printing processes have been applied to tissue engineering. This project presents a feasibility study of traditional versus 3D-printing technologies for tissue-engineering applications, with particular focus on the development of a traditional synthesizing process versus computer-aided scaffold design system; the 3D printed methodology used here is Fused Deposition Modeling (FDM) and traditional methodology used here is Freeze casting.Inorganic materials and natural or synthetic materials are now used to develop a bone scaffold. The mechanical properties of the designed 3D scaffold were simulated and analyzed by using Ansys software where freeze casted scaffold was characterized by FTIR, Light microscope.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Comprehensive Review on the Feasibility Study of Traditional versus 3D Bio-scaffold Synthesizing Process for Bone Cell Regeneration A. Nisitha S, Product Research Analyst, MedCuore Medical Solutions Pvt Ltd, Chennai&quot;,&quot;attachmentId&quot;:98079197,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/96081266/Comprehensive_Review_on_the_Feasibility_Study_of_Traditional_versus_3D_Bio_scaffold_Synthesizing_Process_for_Bone_Cell_Regeneration_A_Nisitha_S_Product_Research_Analyst_MedCuore_Medical_Solutions_Pvt_Ltd_Chennai&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/96081266/Comprehensive_Review_on_the_Feasibility_Study_of_Traditional_versus_3D_Bio_scaffold_Synthesizing_Process_for_Bone_Cell_Regeneration_A_Nisitha_S_Product_Research_Analyst_MedCuore_Medical_Solutions_Pvt_Ltd_Chennai"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="115386696" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/115386696/3D_printed_biomimetic_bone_implant_polymeric_composite_scaffolds">3D-printed biomimetic bone implant polymeric composite scaffolds</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="102592162" href="https://independent.academia.edu/OmolayoIkumapayi">Omolayo Ikumapayi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">The International Journal of Advanced Manufacturing Technology</p><p class="ds-related-work--abstract ds2-5-body-sm">This research introduced a new poly-ether-ether-ketone calcium hydroxyapatite (PEEK-cHAp) composite for a convenient, fast, and inexpensive femur bone-implant scaffold with different lattice structures to mimic natural bone structure. Fused deposition modelling (FDM) was used to print a hybrid PEEK-based filament-bearing bioactive material suited for developing cHAp. Using FDM, the same bone scaffold PEEK will be fabricated, depending on the shape of the bone fracture. The scaffolds were examined for in vitro bioactivity by immersing them in a simulated bodily fluid (SBF) solution. Furthermore, in vitro cytotoxicity tests validated the suitability of the composite materials employed to create minimal toxicity of the scaffolds. After spreading PEEK nanoparticles in the grains, the suggested spherical nanoparticle cell expanded over time. The motif affected the microstructure of PEEK-cHAp in terms of grain size and 3D shape. The results established the proposed optimum design and suit...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D-printed biomimetic bone implant polymeric composite scaffolds&quot;,&quot;attachmentId&quot;:111808011,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/115386696/3D_printed_biomimetic_bone_implant_polymeric_composite_scaffolds&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/115386696/3D_printed_biomimetic_bone_implant_polymeric_composite_scaffolds"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="39634995" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/39634995/3D_printed_poly_lactic_acid_scaffolds_for_trabecular_bone_repair_and_regeneration_scaffold_and_native_bone_characterization">3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="12869704" href="https://etu.academia.edu/EceBayrak">Ece Bayrak</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="20013976" href="https://nu-kz.academia.edu/CevatErisken">Cevat Erisken</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal Paper, 2019</p><p class="ds-related-work--abstract ds2-5-body-sm">Purpose: Study objectives were set to (i) fabricate 3D-printed scaffolds/grafts with varying pore sizes, (ii) characterize surface and mechanical properties of scaffolds, (iii) characterize biomechanical properties of bovine trabecular bone, and (iv) evaluate attachment and proliferation of human bone marrow mesenchymal stem cells on 3D-printed scaffolds. Materials and Methods: Poly(lactic acid) scaffolds were fabricated using 3D-printing technology, and characterized in terms of their surface as well as compressive mechanical properties. Trabecular bone specimens were obtained from bovine and characterized biomechanically under compression. Human bone marrow mesenchymal stem cells were seeded on the scaffolds, and their attachment capacity and proliferation were evaluated. Results: Contact angles and compressive moduli of scaffolds decreased with increasing pore dimensions of 0.5 mm, 1.0 mm, and 1.25 mm. Biomechanical characterization of trabecular bone yielded higher modulus values as compared to scaffolds with all pore sizes studied. Human bone marrow mesenchymal stem cells attached to the surfaces of all scaffolds yet proliferated more on scaffolds with 1.25 mm pore size. Conclusions: Collectively, given the similarity between 3D-printed scaffolds and native bone in terms of pore size, porosity, and appropriate mechanical properties of scaffolds, the 3D-printed poly(lactic acid) (PLA) scaffolds of this study appear as candidate substitutes for bone repair and regeneration.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization&quot;,&quot;attachmentId&quot;:59796410,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/39634995/3D_printed_poly_lactic_acid_scaffolds_for_trabecular_bone_repair_and_regeneration_scaffold_and_native_bone_characterization&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/39634995/3D_printed_poly_lactic_acid_scaffolds_for_trabecular_bone_repair_and_regeneration_scaffold_and_native_bone_characterization"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:67684126,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:67684126,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_67684126" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="86487982" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/86487982/A_porous_polymeric_hydroxyapatite_scaffold_used_for_femur_fractures_treatment_fabrication_analysis_and_simulation">A porous polymeric–hydroxyapatite scaffold used for femur fractures treatment: fabrication, analysis, and simulation</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="41570379" href="https://independent.academia.edu/amirhusseinMontazeran">amir hussein Montazeran</a></div><p class="ds-related-work--metadata ds2-5-body-xs">European Journal of Orthopaedic Surgery &amp;amp; Traumatology, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A porous polymeric–hydroxyapatite scaffold used for femur fractures treatment: fabrication, analysis, and simulation&quot;,&quot;attachmentId&quot;:90929735,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/86487982/A_porous_polymeric_hydroxyapatite_scaffold_used_for_femur_fractures_treatment_fabrication_analysis_and_simulation&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/86487982/A_porous_polymeric_hydroxyapatite_scaffold_used_for_femur_fractures_treatment_fabrication_analysis_and_simulation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="96081483" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/96081483/Comprehensive_Review_on_the_Feasibility_Study_of_Traditional_versus_3D_Bio_scaffold_Synthesizing_Process_for_Bone_Cell_Regeneration">Comprehensive Review on the Feasibility Study of Traditional versus 3D Bio-scaffold Synthesizing Process for Bone Cell Regeneration</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="102937034" href="https://sathyabamauniversity.academia.edu/GeethaBalasubramani">Geetha Balasubramani</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="219285525" href="https://sathyabamauniversity.academia.edu/NisithaS">Nisitha S</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IJREAM, 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Comprehensive Review on the Feasibility Study of Traditional versus 3D Bio-scaffold Synthesizing Process for Bone Cell Regeneration&quot;,&quot;attachmentId&quot;:98079312,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/96081483/Comprehensive_Review_on_the_Feasibility_Study_of_Traditional_versus_3D_Bio_scaffold_Synthesizing_Process_for_Bone_Cell_Regeneration&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/96081483/Comprehensive_Review_on_the_Feasibility_Study_of_Traditional_versus_3D_Bio_scaffold_Synthesizing_Process_for_Bone_Cell_Regeneration"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="75259483" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/75259483/3D_Printed_Poly_Caprolactone_Hydroxyapatite_Scaffolds_for_Bone_Tissue_Engineering_A_Comparative_Study_on_Composite_Preparation_by_Melt_Blending_or_Solvent_Casting_Techniques_and_Influence_of_Bioceramic_Content_on_Scaffold_Properties">3D Printed Poly(?-Caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on Composite Preparation by Melt Blending or Solvent Casting Techniques and Influence of Bioceramic Content on Scaffold Properties</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="65969491" href="https://independent.academia.edu/ArturMateus">Artur Mateus</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D Printed Poly(?-Caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on Composite Preparation by Melt Blending or Solvent Casting Techniques and Influence of Bioceramic Content on Scaffold Properties&quot;,&quot;attachmentId&quot;:83100402,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/75259483/3D_Printed_Poly_Caprolactone_Hydroxyapatite_Scaffolds_for_Bone_Tissue_Engineering_A_Comparative_Study_on_Composite_Preparation_by_Melt_Blending_or_Solvent_Casting_Techniques_and_Influence_of_Bioceramic_Content_on_Scaffold_Properties&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/75259483/3D_Printed_Poly_Caprolactone_Hydroxyapatite_Scaffolds_for_Bone_Tissue_Engineering_A_Comparative_Study_on_Composite_Preparation_by_Melt_Blending_or_Solvent_Casting_Techniques_and_Influence_of_Bioceramic_Content_on_Scaffold_Properties"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="76012620" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/76012620/Three_dimensional_printing_of_polycaprolactone_hydroxyapatite_bone_tissue_engineering_scaffolds_mechanical_properties_and_biological_behavior">Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="50615829" href="https://independent.academia.edu/MortezaMehrjoo">Morteza Mehrjoo</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Materials Science: Materials in Medicine, 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior&quot;,&quot;attachmentId&quot;:83697557,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/76012620/Three_dimensional_printing_of_polycaprolactone_hydroxyapatite_bone_tissue_engineering_scaffolds_mechanical_properties_and_biological_behavior&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/76012620/Three_dimensional_printing_of_polycaprolactone_hydroxyapatite_bone_tissue_engineering_scaffolds_mechanical_properties_and_biological_behavior"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="18203110" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/18203110/Biocompatibility_of_ceramic_scaffolds_for_bone_replacement_made_by_3D_printing">Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="38008568" href="https://lmu-munich.academia.edu/StefanMilz">Stefan Milz</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Materialwissenschaft und Werkstofftechnik, 2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing&quot;,&quot;attachmentId&quot;:39931230,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/18203110/Biocompatibility_of_ceramic_scaffolds_for_bone_replacement_made_by_3D_printing&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/18203110/Biocompatibility_of_ceramic_scaffolds_for_bone_replacement_made_by_3D_printing"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="102469216" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/102469216/3D_printed_bioceramics_fabricated_using_negative_thermoresponsive_hydrogels_and_silicone_oil_sealing_to_promote_bone_formation_in_calvarial_defects">3D printed bioceramics fabricated using negative thermoresponsive hydrogels and silicone oil sealing to promote bone formation in calvarial defects</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="3115859" href="https://kmu.academia.edu/ChihKuangWang">Chih Kuang Wang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Ceramics International, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D printed bioceramics fabricated using negative thermoresponsive hydrogels and silicone oil sealing to promote bone formation in calvarial defects&quot;,&quot;attachmentId&quot;:102731359,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/102469216/3D_printed_bioceramics_fabricated_using_negative_thermoresponsive_hydrogels_and_silicone_oil_sealing_to_promote_bone_formation_in_calvarial_defects&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/102469216/3D_printed_bioceramics_fabricated_using_negative_thermoresponsive_hydrogels_and_silicone_oil_sealing_to_promote_bone_formation_in_calvarial_defects"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="23205930" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/23205930/Improvement_of_Mechanical_Properties_of_Bone_Tissue_Engineered_Scaffolds_through_Sintering_and_Infiltration_with_Biopolymers">Improvement of Mechanical Properties of Bone Tissue Engineered Scaffolds through Sintering and Infiltration with Biopolymers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="44889692" href="https://uni-rostock.academia.edu/HermannSeitz">Hermann Seitz</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Biomedical Engineering, 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Improvement of Mechanical Properties of Bone Tissue Engineered Scaffolds through Sintering and Infiltration with Biopolymers&quot;,&quot;attachmentId&quot;:43694139,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/23205930/Improvement_of_Mechanical_Properties_of_Bone_Tissue_Engineered_Scaffolds_through_Sintering_and_Infiltration_with_Biopolymers&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/23205930/Improvement_of_Mechanical_Properties_of_Bone_Tissue_Engineered_Scaffolds_through_Sintering_and_Infiltration_with_Biopolymers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="35342408" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/35342408/In_vivo_Evaluation_of_a_Novel_Nanocomposite_Porous_3D_Scaffold_in_a_Rabbit_Model_Histological_Analysis">In vivo Evaluation of a Novel Nanocomposite Porous 3D Scaffold in a Rabbit Model Histological Analysis</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="72617427" href="https://independent.academia.edu/ZaidKhudhurMahmood">Zaid Khudhur Mahmood</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6997194" href="https://uomosul.academia.edu/SaffanahMahmood">Saffanah Mahmood</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;In vivo Evaluation of a Novel Nanocomposite Porous 3D Scaffold in a Rabbit Model Histological Analysis&quot;,&quot;attachmentId&quot;:55203406,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/35342408/In_vivo_Evaluation_of_a_Novel_Nanocomposite_Porous_3D_Scaffold_in_a_Rabbit_Model_Histological_Analysis&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/35342408/In_vivo_Evaluation_of_a_Novel_Nanocomposite_Porous_3D_Scaffold_in_a_Rabbit_Model_Histological_Analysis"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="117217439" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/117217439/3D_Printed_Composite_Structures_for_Bone_Repair_and_Drug_Delivery_Application">3D Printed Composite Structures for Bone Repair and Drug Delivery Application</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="10653620" href="https://epfl.academia.edu/MahamuduMtebwa">Mahamudu Mtebwa</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Tanzania Journal of Engeering and Technology, 2023</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D Printed Composite Structures for Bone Repair and Drug Delivery Application&quot;,&quot;attachmentId&quot;:113132385,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/117217439/3D_Printed_Composite_Structures_for_Bone_Repair_and_Drug_Delivery_Application&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/117217439/3D_Printed_Composite_Structures_for_Bone_Repair_and_Drug_Delivery_Application"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="89092600" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89092600/3D_printing_of_acellular_scaffolds_for_bone_defect_regeneration_A_review">3D printing of acellular scaffolds for bone defect regeneration: A review</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47469261" href="https://independent.academia.edu/GhorbaniFarnaz">Farnaz Ghorbani</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Materials Today Communications, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;3D printing of acellular scaffolds for bone defect regeneration: A review&quot;,&quot;attachmentId&quot;:92955342,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/89092600/3D_printing_of_acellular_scaffolds_for_bone_defect_regeneration_A_review&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/89092600/3D_printing_of_acellular_scaffolds_for_bone_defect_regeneration_A_review"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10