CINXE.COM

Search results for: haploid embryos

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: haploid embryos</title> <meta name="description" content="Search results for: haploid embryos"> <meta name="keywords" content="haploid embryos"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="haploid embryos" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="haploid embryos"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 100</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: haploid embryos</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Isolated Microspore Culture in Durum Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zelikha%20Labbani">Zelikha Labbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since its creation in 1964 by Guha and Maheshwari in India on Datura innoxia Mill, in vitro androgenesis has become the method of choice in the production of doubled haploid in many species. However in durum wheat, the Doubled haploid plant breeding programs remained limited due to the low production of androgenetic embryos and converting them into fertile green plants. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Durum%20wheat" title="Durum wheat">Durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=haploid%20embryos" title=" haploid embryos"> haploid embryos</a>, <a href="https://publications.waset.org/abstracts/search?q=on%20in%20vitro" title=" on in vitro"> on in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/47819/isolated-microspore-culture-in-durum-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> On In vitro Durum Wheat Isolated Microspore Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zelikha%20Labbani">Zelikha Labbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since its creation in 1964 by Guha and Maheshwari in India on Datura innoxia Mill, in vitro androgenesis has become the method of choice in the production of doubled haploid in many species. However, in durum wheat, the Doubled haploid plant breeding programs remained limited due to the low production of androgenetic embryos and converting them into fertile green plants. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durum%20wheat" title="durum wheat">durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=haploid%20embryos" title=" haploid embryos"> haploid embryos</a>, <a href="https://publications.waset.org/abstracts/search?q=on%20in%20vitro" title=" on in vitro"> on in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/44239/on-in-vitro-durum-wheat-isolated-microspore-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Investigating the Successes of in vitro Embryogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zelikha%20Labbani">Zelikha Labbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The in vitro isolated microspore culture is the most powerful androgenic pathway to produce doubled haploid plants in the short time. To deviate a microspore toward embryogenesis, a number of factors, different for each species, must concur at the same time and place. Once induced, the microspore undergoes numerous changes at different levels, from overall morphology to gene expression. Induction of microspore embryogenesis not only implies the expression of an embryogenic program, but also a stress-related cellular response and a repression of the gametophytic program to revert the microspore to a totipotent status. As haploid single cells, microspore became a strategy to achieve various objectives particularly in genetic engineering. In this communication we would show the most recent advances in the producing haploid embryos via in vitro isolated microspore culture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20isolated%20microspore%20culture" title="in vitro isolated microspore culture">in vitro isolated microspore culture</a>, <a href="https://publications.waset.org/abstracts/search?q=success" title=" success"> success</a>, <a href="https://publications.waset.org/abstracts/search?q=haploid%20cells" title=" haploid cells"> haploid cells</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicine" title=" biomedicine"> biomedicine</a> </p> <a href="https://publications.waset.org/abstracts/9122/investigating-the-successes-of-in-vitro-embryogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Successes on in vitro Isolated Microspores Embryogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zelikha%20Labbani">Zelikha Labbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The In Vitro isolated micro spore culture is the most powerful androgenic pathway to produce doubled haploid plants in the short time. To deviate a micro spore toward embryogenesis, a number of factors, different for each species, must concur at the same time and place. Once induced, the micro spore undergoes numerous changes at different levels, from overall morphology to gene expression. Induction of micro spore embryogenesis not only implies the expression of an embryogenic program, but also a stress-related cellular response and a repression of the gametophytic program to revert the microspore to a totipotent status. As haploid single cells, micro spore became a strategy to achieve various objectives particularly in genetic engineering. In this study we would show the most recent advances in the producing haploid embryos via In Vitro isolated micro spore culture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=haploid%20cells" title="haploid cells">haploid cells</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Vitro%20isolated%20microspore%20culture" title=" In Vitro isolated microspore culture"> In Vitro isolated microspore culture</a>, <a href="https://publications.waset.org/abstracts/search?q=success" title=" success"> success</a> </p> <a href="https://publications.waset.org/abstracts/26693/successes-on-in-vitro-isolated-microspores-embryogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> All Types of Base Pair Substitutions Induced by γ-Rays in Haploid and Diploid Yeast Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Koltovaya">Natalia Koltovaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadezhda%20Zhuchkina"> Nadezhda Zhuchkina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Lyubimova"> Ksenia Lyubimova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the biological effects induced by ionizing radiation in view of therapeutic exposure and the idea of space flights beyond Earth's magnetosphere. In particular, we examine the differences between base pair substitution induction by ionizing radiation in model haploid and diploid yeast <em>Saccharomyces cerevisiae</em> cells. Such mutations are difficult to study in higher eukaryotic systems. In our research, we have used a collection of six isogenic <em>trp5</em>-strains and 14 isogenic haploid and diploid <em>cyc1</em>-strains that are specific markers of all possible base-pair substitutions. These strains differ from each other only in single base substitutions within codon-50 of the <em>trp5</em> gene or codon-22 of the <em>cyc1</em> gene. Different mutation spectra for two different haploid genetic <em>trp5</em>- and <em>cyc1</em>-assays and different mutation spectra for the same genetic <em>cyc1</em>-system in cells with different ploidy — haploid and diploid — have been obtained. It was linear function for dose-dependence in haploid and exponential in diploid cells. We suggest that the differences between haploid yeast strains reflect the dependence on the sequence context, while the differences between haploid and diploid strains reflect the different molecular mechanisms of mutations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20pair%20substitutions" title="base pair substitutions">base pair substitutions</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-rays" title=" γ-rays"> γ-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=haploid%20and%20diploid%20cells" title=" haploid and diploid cells"> haploid and diploid cells</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast%20Saccharomyces%20cerevisiae" title=" yeast Saccharomyces cerevisiae"> yeast Saccharomyces cerevisiae</a> </p> <a href="https://publications.waset.org/abstracts/91922/all-types-of-base-pair-substitutions-induced-by-gh-rays-in-haploid-and-diploid-yeast-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Doubled Haploid Production in Wheat Using Imperata cylindrica Mediated Chromosome Elimination Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Patial">Madhu Patial</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharam%20Pal"> Dharam Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Kumar"> Jagdish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Chaudhary"> H. K. Chaudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doubled haploid breeding serves as a useful technique in wheat improvement by providing instant and complete homozygosity. Of the various techniques employed for haploid production chromosome elimination has a large scale practical application in wheat improvement. Barclay (1975) initiated the technique in wheat by crossing wheat variety Chinese spring with Hordeum bulbosum, but due to presence of the dominant crossability inhibitor genes Kr7 and Kr2 in many wheat varieties, the technique was however genotypic specific. The discovery of wheat X maize system of haploid production being genotype non-specific is quite successful but still maize needs to be grown in greenhouse to coincide flowering with wheat crop. Recently, wheat X Imperate cylindrica has been identified as a new chromosome mediated DH approach for efficient haploid induction. An experiment to use this technique in wheat was set up by crossing six F1s and two three way F1s with Imperata cylindrica. The data was recorded for the three component traits of haploid induction viz., seed formation, embryo formation and regeneration frequency. Variation among wheat F1s was observed and higher frequency for all the traits were recorded in cross HD 2997/2*FL-8/DONSK-POLL and KLE/BER/2*FL-8/DONSK-POLL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=haploid" title=" haploid"> haploid</a>, <a href="https://publications.waset.org/abstracts/search?q=imperata%20cylindrica" title=" imperata cylindrica"> imperata cylindrica</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%20elimination%20technique" title=" chromosome elimination technique"> chromosome elimination technique</a> </p> <a href="https://publications.waset.org/abstracts/24869/doubled-haploid-production-in-wheat-using-imperata-cylindrica-mediated-chromosome-elimination-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Policy to Improve in vitro Fertilization Outcome in Women with Poor Ovarian Response: Frozen Embryo Transfer (ET) of Accumulated Vitrified Embryos vs. Frozen ET of Accumulated Vitrified Embryos plus Fresh ET</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hwang%20Kwon">Hwang Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To assess the efficacy of embryo transfer (ET) of accumulated vitrified embryos and compare pregnancy outcomes between ET of thawed embryos following accumulation of vitrified embryos (frozen ET) and ET of fresh and thawed frozen embryos following accumulation of vitrified embryos (fresh ET + frozen ET). Study design: Patients were poor ovarian responders defined according to the Bologna criteria as well as a subgroup of women whose previous IVF-ET cycle through controlled ovarian stimulation (COS) yielded one or no embryos. Sixty-four frozen ETs were performed following accumulation of vitrified embryos (ACCE )(ACCE Frozen) and 51 fresh + frozen ETs were performed following accumulation of vitrified embryos (ACCE Fresh + Frozen). Positive βhCG rate, clinical pregnancy rate, ongoing pregnancy rate, and good quality embryos (%, ±SD) were compared between two groups. Results: There were more good quality embryos in the ACCE Fresh + Frozen group than in the ACCE Frozen group: 60±34.7 versus 42.9±28.9, respectively (p=0.03). Positive βhCG rate [18/64(28.2%) vs. 13/51(25.5%); p=0.75] and clinical pregnancy rate [12/64 (18.8%) vs. 11/51 (10.9%); p=0.71] were comparable between the two groups. Conclusion: Accumulation of vitrified embryos is an effective method in patients with poor ovarian response who fulfill the Bologna criteria. Pregnancy outcomes were comparable between the two groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accumulation%20of%20embryos" title="accumulation of embryos">accumulation of embryos</a>, <a href="https://publications.waset.org/abstracts/search?q=frozen%20embryo%20transfer" title=" frozen embryo transfer"> frozen embryo transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=poor%20responder" title=" poor responder"> poor responder</a>, <a href="https://publications.waset.org/abstracts/search?q=Bologna%20criteria" title=" Bologna criteria"> Bologna criteria</a> </p> <a href="https://publications.waset.org/abstracts/70796/policy-to-improve-in-vitro-fertilization-outcome-in-women-with-poor-ovarian-response-frozen-embryo-transfer-et-of-accumulated-vitrified-embryos-vs-frozen-et-of-accumulated-vitrified-embryos-plus-fresh-et" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Single Protoplast of Murraya paniculata L. Jack Regenerated Into Plantlets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Basri%20Jumin">Hasan Basri Jumin</a>, <a href="https://publications.waset.org/abstracts/search?q=Danil%20Endriand%20Basri">Danil Endriand Basri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Isolated protoplast from embryogenic callus of orange Jessamine (Murraya paniculata L. (Jack) cultured and maintained under growth chamber at the temperature +25oC. The parameter observed are the plating efficiency, the number of spherical embryos, heard-shaped embryos-like structure, shoot formation, and plantlets obtained. Treatment was arranged with 0.0, 0.001, 0.01, 0.1 or 1.0 mg 1-1 Naphthalene acetic acid (NAA), and 0, 300, 500 mg 1/l malt extract (ME) and 0.M sorbitol in the medium with 2.5 % sucrose. Interaction between 0.001 mg/l NAA and 500 mg/l was observed the higher percentage of planting efficiency. For embryo development from callus, the media was added to 0.0 mg/l, 0.001 mg/l, 0.01 ,mg/l, 0.1 mg/l, 1.0 mg/l NAA, and 1.0 %, 2.0 %, 3.0 %, 4.0 % sucrose. Media supplemented with 0.01mg/l NAA, and 1.0% sucrose was found to be a suitable medium for the development of spherical somatic embryos. A combination of 0.1 mg/ indole acetic acid (IAA) and 0.1 mg/l zeatin constituted the spherical somatic embryo became heart-shaped embryos-like structure. A combination between GA3 0.1 mg 1/l GA3 and 0.1 mg 1-1 zeatin is looking high, growing the heart-shaped embryos-like structure to form a shoot. Cells were developed into spherical embryos and grew into heart-shaped embryos, and then spherical somatic embryos developed into shoot formation. Sequence from single protoplast to plantlets was obtained by using a low concentration of plant growth regulator and sucrose; This recovery of single protoplast to be completed plantlets is a new technology in plant cell culture, and this could be used in genetic engineering in citrus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart-shaped-embryos-like-structure" title="heart-shaped-embryos-like-structure">heart-shaped-embryos-like-structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Muraya-paniculata" title=" Muraya-paniculata"> Muraya-paniculata</a>, <a href="https://publications.waset.org/abstracts/search?q=plant-growth-regulator" title=" plant-growth-regulator"> plant-growth-regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical-%20somatic-embryo" title=" spherical- somatic-embryo"> spherical- somatic-embryo</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20protoplast" title=" single protoplast"> single protoplast</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a> </p> <a href="https://publications.waset.org/abstracts/153880/single-protoplast-of-murraya-paniculata-l-jack-regenerated-into-plantlets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Differential Proteomic Profile and Terpenoid Production in Somatic Embryos of Jatropha curcas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anamarel%20Medina-Hernandez">Anamarel Medina-Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20Ponce-Noyola"> Teresa Ponce-Noyola</a>, <a href="https://publications.waset.org/abstracts/search?q=Ileana%20Vera-Reyes"> Ileana Vera-Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20C.%20Ramos-Valdivia"> Ana C. Ramos-Valdivia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Somatic embryos reproduce original seed characteristics and could be implemented in biotechnological studies. Jatropha curcas L. is an important plant for biodiesel production, but also is used in traditional medicine. Seeds from J. curcas are toxic because contain diterpenoids called phorbol esters, but in Mexico exist a non-toxic variety. Therefore, somatic embryos suspension cultures from non-toxic J. curcas variety were induced. In order to investigate the characteristics of somatic embryos, a differential proteomic analysis was made between pre-globular and globular stages by 2-D gel electrophoresis. 108 spots were differentially expressed (p<0.02), and 20 spots from globular somatic embryos were sequenced by MALDI-TOF-TOF mass spectrometry. A comparative analysis of terpenoids production between the two stages was made by RP-18 TLC plates. The sequenced proteins were related to energy production (68%), protein destination and storage (9%), secondary metabolism (9%), signal transduction (5%), cell structure (5%) and aminoacid metabolism (4%). Regarding terpenoid production, in pre-globular and globular somatic embryos were identified sterols and triterpenes of pharmacological interest (alpha-amyrin and betulinic acid) but also it was found compounds that were unique to each stage. The results of this work are the basis to characterize at different levels the J. curcas somatic embryos so that this system can be used efficiently in biotechnological processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title="Jatropha curcas">Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=somatic%20embryo" title=" somatic embryo"> somatic embryo</a>, <a href="https://publications.waset.org/abstracts/search?q=terpenoids" title=" terpenoids"> terpenoids</a> </p> <a href="https://publications.waset.org/abstracts/71308/differential-proteomic-profile-and-terpenoid-production-in-somatic-embryos-of-jatropha-curcas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Regeneration of Plantlets via Direct Somatic Embryogenesis from Different Explants of Murraya koenigii</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Khatik">Nisha Khatik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Joshi"> Ramesh Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An in vitro plant regeneration system was developed via direct somatic embryogenesis from different seedling explants of an important medicinal plant Murraya koenigii (L) Spreng. Cotyledons (COT), Hypocotyle (HYP)(10 to 15 mm) and Root (RT) segments (10 to 20 mm) were excised from 60 days old seedlings as explants. The somatic embryos induction was achieved on MS basal medium augmented with different concentrations of BAP 1.33 to 8.40 µM and TDZ 1.08 to 9.82 µM. The globular embryos originated from cut ends and entire surface of the root, hypocotyle explants and margins of cotyledons within 30-40days. The percentage of somatic embryos induction per explant was significantly higher in HYP explants (94.21±5.77%) in the MS basal medium supplemented with 6.20 µM BAP and 8.64 µM TDZ. The highest rate of conversion of torpedo, heart and cotyledonary stages from globular stage was obtained in MS medium supplemented with 8.64 µM TDZ. The matured somatic embryos were transferred to the MS basal medium without PGRs. Highest 88% of the matured embryos were germinated on transfer to the PGR free medium where they grew for a further 3-4 weeks. Out of seventy six hardened plants seventy (92%) plantlets were found healthy under field conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murraya%20koenigii" title="Murraya koenigii">Murraya koenigii</a>, <a href="https://publications.waset.org/abstracts/search?q=somatic%20embryogenesis" title=" somatic embryogenesis"> somatic embryogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=thidiazuron" title=" thidiazuron"> thidiazuron</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=rutaceae" title=" rutaceae"> rutaceae</a> </p> <a href="https://publications.waset.org/abstracts/20190/regeneration-of-plantlets-via-direct-somatic-embryogenesis-from-different-explants-of-murraya-koenigii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Culturing of Bovine Pre-Compacted Morlae in TCM-199 and Baf in a Standard 5% CO2 Laboratory Incubator and in the Vagina of a Goat Doe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20M.%20Barry">Daniel M. Barry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since more than half a century ago, attempts have been made to culture cells and embryos outside the body (in vitro or ex vivo). This was done with different culture media and in various “incubators”. In the present study two different culture media were used: a standard TCM-199 culture medium and first trimester amniotic fluid (BAF) collected sterilely from pregnant cows after slaughter. Two different culture conditions were also investigated, the standard laboratory CO2 incubator versus culturing bovine embryos in the vagina of a goat doe. Two experiments were done: Firstly the permeability of different receptacles to CO2 gas was analyzed for possible culture in the vagina. Four-well plates and straws were used to incubate TCM-199 and BAF for a period of 120 h in the presence or absence of 5% CO2 gas. The pH values were measured and recorded every 24 h. In the second experiment pre-compacted morula stage bovine embryos were cultured in the above culture media in sealed 0.25 mL straws in a standard laboratory incubator and in the vagina of a goat doe. Evaluation was done on (1) stage of development and (2) number of blastomeres after 96 h of culture. In the first experiment it was shown that the CO2 gas diffused out of the 4-well plate as well as through the wall of the straws in the absence of CO2 gas, while in the presence of CO2 the pH of both media stabilized between 7.3 and 7.5. This meant that the semen straws were permeable to CO2 gas and could therefore be used as receptacles for culturing early stage bovine embryos. In the second experiment no statistical differences (p>0.05) were found in the number of pre-compacted bovine embryos that developed to the blastocyst stage, or the hatched blastocyst stage, neither for the culture medium used, or the method of culturing in the two incubators. Neither was there any difference (p>0.05) in the number of blastomeres that developed at the blastocyst stage between the two types of incubators. The bovine embryos tended to develop more blastomeres when cultured in BAF than when cultured in TCM-199 in both the standard laboratory incubator and when using the vagina of a goat doe as an incubator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20culture" title="alternative culture">alternative culture</a>, <a href="https://publications.waset.org/abstracts/search?q=bovine%20embryos" title=" bovine embryos"> bovine embryos</a>, <a href="https://publications.waset.org/abstracts/search?q=vagina" title=" vagina"> vagina</a>, <a href="https://publications.waset.org/abstracts/search?q=bovine%20amniotic%20fluid" title=" bovine amniotic fluid"> bovine amniotic fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=incubator" title=" incubator"> incubator</a> </p> <a href="https://publications.waset.org/abstracts/30224/culturing-of-bovine-pre-compacted-morlae-in-tcm-199-and-baf-in-a-standard-5-co2-laboratory-incubator-and-in-the-vagina-of-a-goat-doe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Beneficial Effect of Autologous Endometrial Stromal Cell Co-Culture on Day 3 Embryo Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Bochev">I. Bochev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shterev"> A. Shterev</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kyurkchiev"> S. Kyurkchiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the factors associated with poor success rates in human in vitro fertilization (IVF) is the suboptimal culture conditions in which fertilization and early embryonic growth occur. Co-culture systems with helper cell lines appear to enhance the in vitro conditions and allow embryos to demonstrate improved in vitro development. The co-culture of human embryos with monolayers of autologous endometrial stromal cell (EnSCs) results in increased blastocyst development with a larger number of blastomeres, lower incidence of fragmentation and higher pregnancy rates in patients with recurrent implantation failure (RIF). The aim of the study was to examine the influence of autologous endometrial stromal cell (EnSC) co-culture on day 3 embryo quality by comparing the morphological status of the embryos from the same patients undergoing consecutive IVF/Intracytoplasmic sperm injection (ICSI) cycles without and with EnSC co-culture. This retrospective randomized study (2015-2017) includes 20 couples and a total of 46 IVF/ICSI cycles. Each patient couple included had at least two IVF/ICSI procedures – one with and one without autologous EnSC co-culture. Embryo quality was assessed at 68±1 hours in culture, according to Istanbul consensus criteria (2010). Day 3 embryos were classified into three groups: good – grade 1; fair – grade 2; poor – grade 3. Embryos from all cycles were divided into two groups (A – co-cultivated; B – not co-cultivated) and analyzed. Second, for each patient couple, embryos from matched IVF/ICSI cycles (with and without co-culture) were analyzed separately. When an analysis of co-cultivated day 3 embryos from all cycles was performed (n=137; group A), 43.1% of the embryos were graded as “good”, which was not significantly different from the respective embryo quality rate of 42.2% (p = NS) in group B (n=147) with non-co-cultivated embryos. The proportions of fair and poor quality embryos in group A and group B were similar as well – 11.7% vs 10.2% and 45.2% vs 47.6% (p=NS), respectively. Nevertheless, the separate embryo analysis by matched cycles for each couple revealed that in 65% of the cases the proportion of morphologically better embryos was increased in cycles with co-culture in comparison with those without co-culture. A decrease in this proportion after endometrial stromal cell co-cultivation was found in 30% of the cases, whereas no difference was observed in only one couple. The results demonstrated that there is no marked difference in the overall morphological quality between co-cultured and non-co-cultured embryos on day 3. However, in significantly greater percentage of couples the process of autologous EnSC co-culture could increase the proportion of morphologically improved day 3 embryos. By mimicking the in vivo relationship between embryo and maternal environment, co-culture in autologous EnSC system represents a perspective approach to improve the quality of embryos in cases with elevated risk for development of embryos with impaired morphology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autologous%20endometrial%20stromal%20cells" title="autologous endometrial stromal cells">autologous endometrial stromal cells</a>, <a href="https://publications.waset.org/abstracts/search?q=co-culture" title=" co-culture"> co-culture</a>, <a href="https://publications.waset.org/abstracts/search?q=day%203%20embryo" title=" day 3 embryo"> day 3 embryo</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20quality" title=" morphological quality"> morphological quality</a> </p> <a href="https://publications.waset.org/abstracts/88663/beneficial-effect-of-autologous-endometrial-stromal-cell-co-culture-on-day-3-embryo-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Effects of Breed and Number of Embryos Transferred on the Efficacy of MOET in Sheep</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20A.%20Swelum">Ayman A. Swelum</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20N.%20Al-Owaimer"> Abdullah N. Al-Owaimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Abouheif"> Mohamed A. Abouheif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to evaluate the effects of sheep breed and the number of embryos transferred on the success of multiple ovulation and embryo transfer (MOET). Sixteen Najdi and Naeimi ewes were used as donors. Multiple ovulation was achieved using equine chorionic gonadotropin (eCG). Thirty-five recipient ewes were divided into four groups: Najdi or Naeimi ewes that received either one or two embryos. After lambing, the gestation length, litter size, and sex of the lambs were recorded. The rates of pregnancy, lambing, and embryo survival were lower in the recipient Najdi than Naeimi ewes when two embryos were transferred. In contrast, the Naeimi ewes that received one embryo had a significantly lower embryo transfer success. In conclusion, the response of ewes to multiple ovulation stimulation using eCG was significantly high in Naeimi ewes (9.8±1.17). Moreover, transferring one embryo resulted in a significantly high pregnancy rate in the Najdi sheep (60%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embryo%20transfer" title="embryo transfer">embryo transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20ovulation" title=" multiple ovulation"> multiple ovulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Najdi" title=" Najdi"> Najdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Naeimi" title=" Naeimi"> Naeimi</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep" title=" sheep"> sheep</a> </p> <a href="https://publications.waset.org/abstracts/5641/effects-of-breed-and-number-of-embryos-transferred-on-the-efficacy-of-moet-in-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">729</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Tocotrienol Rich Fraction in Nicotine-Induced Embryos: Cytoskeletal Changes of Actin and Tubulin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Hamirah%20Kamsani">Nurul Hamirah Kamsani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hamim%20Rajikin"> Mohd Hamim Rajikin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Ashikin%20Mohamed%20Noor%20Khan"> Nor Ashikin Mohamed Noor Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharaniza%20Abdul%20Rahim"> Sharaniza Abdul Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cytoskeletal structures, in particular actin and tubulin, provide a fundamental framework in all cells, including embryos. Under influence of nicotine, the cytoskeletal organization may be subjected to oxidative stress (OS) insult and cause alteration. Tocotrienol-rich fraction (TRF) is proven to enhance fertility better than the other sub-group of Vitamin E, tocopherols (TCPs). The objective of this study was to evaluate the effects of TRF on 1) actin and tubulin of 2- and 8-cell murine embryos and 2) the regulation of reactive oxygen species (ROS)-scavenging enzymes; induced by nicotine. Twenty four female Balb/C were subjected to either subcutaneous (sc) injection of 0.9% NaCl; sc injection of 3.0 mg/kg bw/day nicotine; sc injection of 3.0 mg/kg bw/day nicotine + oral gavage (OG) of 60 mg/kg bw/day TRF; or OG of 60 mg/kg bw/day TRF for 7 consecutive days. After superovulation and mating, animals were euthanized. 2-cell developing embryos were retrieved. 50% of the retrieved embryos were visualized under confocal laser staining microscopy (CLSM) for alterations of actin and tubulin. The remaining amount of embryos was cultured in vitro until 8-cell stage followed by CLSM visualization. Blood plasma was subjected to OS assays. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined and analysed accordingly. At both 2- and 8-cell developing stages, actin intensities were significantly reduced in the nicotine group (p<0.001). After the intervention, actin intensity was significantly increased compared to that of the nicotine group (p<0.001). The same trend was seen in tubulin at both cell stages. TRF has minimized the deleterious effects of nicotine in actin and tubulin of both 2- and 8-cell developmental stages during pre-implantation embryonic development in mice in vitro. Levels of endogenous anti-oxidative enzymes were sustained close to control accompanied by decreased levels of OS biomarker. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actin" title="actin">actin</a>, <a href="https://publications.waset.org/abstracts/search?q=nicotine" title=" nicotine"> nicotine</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-implantation%20embryos" title=" pre-implantation embryos"> pre-implantation embryos</a>, <a href="https://publications.waset.org/abstracts/search?q=tocotrienol%20rich%20fraction" title=" tocotrienol rich fraction"> tocotrienol rich fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=tubulin" title=" tubulin"> tubulin</a> </p> <a href="https://publications.waset.org/abstracts/89395/tocotrienol-rich-fraction-in-nicotine-induced-embryos-cytoskeletal-changes-of-actin-and-tubulin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Efficient Method for Inducing Embryos from Isolated Microspores of Durum Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zelikha%20Labbani">Zelikha Labbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Durum wheat represents an attractive species to study androgenesis via isolated microspore culture in order to increase the efficiency of androgenic yield in recalcitrant species such as in induction embryogenesis. We describe here an efficient method for inducing embryos from isolated microspores of durum wheat. It is shown that this method, associated with cold alone or cold plus mannitol pretreatment, or mannitol alone of the spikes kept within their sheath leaves during different times, has significant positive effects on embryo production. The aim of this study was, therefore, to test the effect of mannitol 0,3M and cold pretreatment on the quality and quantity of embryos produced from microspore culture from wheat cultivars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20embryogenesis" title="in vitro embryogenesis">in vitro embryogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=isolated%20microspores%20culture" title=" isolated microspores culture"> isolated microspores culture</a>, <a href="https://publications.waset.org/abstracts/search?q=durum%20wheat" title=" durum wheat"> durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatments" title=" pretreatments"> pretreatments</a>, <a href="https://publications.waset.org/abstracts/search?q=mannitol%200.3m" title=" mannitol 0.3m"> mannitol 0.3m</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20pretreatment" title=" cold pretreatment"> cold pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/184559/efficient-method-for-inducing-embryos-from-isolated-microspores-of-durum-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Efficient Callus Induction and Plant Regeneration from Mature Embryo Culture of Barley (Hordeum vulgare L.) Genotypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCn%C3%BCre%20Tanur%20Erkoyuncu">Münüre Tanur Erkoyuncu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Yorganc%C4%B1lar"> Mustafa Yorgancılar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crop improvement through genetic engineering depends on effective and reproducible plant regeneration systems. Immature embryos are the most widely used explant source for <em>in vitro</em> regeneration in barley (<em>Hordeum vulgare</em> L.). However, immature embryos require the continuous growth of donor plants and the suitable stage for their culture is also certainly limited. On the other hand, mature embryos can be procured and stored easily; they can be studied throughout the year. In this study, an effective callus induction and plant regeneration were aimed to develop from mature embryos of different barley genotypes. The effect of medium (MS<sub>1</sub> and MS<sub>2</sub>), auxin type (2,4-D, dicamba, picloram and 2,4,5-T) and concentrations (2, 4, 6 mg/l) on callus formation and effect of cytokinin type (TDZ, BAP) and concentrations (0.2, 0.5, 1.0 mg/l) on green plant regeneration were evaluated in mature embryo culture of barley. Callus and shoot formation was successful for all genotypes. By depending on genotype, MS<sub>1 </sub>is the best medium, 4 mg/l dicamba is the best growth regulator in the callus induction and MS<sub>1 </sub>is the best medium, 1 mg/l BAP is the best growth regulator in the shoot formation were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barley" title="barley">barley</a>, <a href="https://publications.waset.org/abstracts/search?q=callus" title=" callus"> callus</a>, <a href="https://publications.waset.org/abstracts/search?q=embryo%20culture" title=" embryo culture"> embryo culture</a>, <a href="https://publications.waset.org/abstracts/search?q=mature%20embryo" title=" mature embryo"> mature embryo</a> </p> <a href="https://publications.waset.org/abstracts/49872/efficient-callus-induction-and-plant-regeneration-from-mature-embryo-culture-of-barley-hordeum-vulgare-l-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Sensitivity of Steindachneridion parahybae Mature Oocytes versus Embryos at Low Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tais%20Silva%20Lopes">Tais Silva Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Danilo%20Caneppele"> Danilo Caneppele</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Romagosa"> Elizabeth Romagosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surubim-do-Paraíba, Steindachneridion parahybae is a species of South American fish in critical conditions of extinction. Researches have been developed with the objective of conserving the biological material of this species. We evaluated the cooling of mature oocytes in the cryoprotective solutions containing the following alcohols: methanol, Propylene glycol and DMSO, each at concentrations of 1M, 2M and 4M, totaling nine treatments. After being submitted to treatments, the oocytes were maintained for 120 minutes in cooling to -5.52±2.58⁰C. A sample of oocytes was submitted to negative control (NC), kept in 90% L-15 solution, and positive control (PC), fertilized and taken directly to the incubator. Fertilization and hatching rates were evaluated. In order to compare the sensitivity of oocytes to embryos of the same species, the embryos maintained as CP in the previous assay were used in the free-flow stage (about 22 hours post fertilization) and submitted to the same treatments (prepared in distilled water) and also cooled for 120 min. The evaluation was done by the hatch rate. There was no fertilization rate of the oocytes submitted to the cooling with propylene glycol; the other cryoprotectants presented values of at most 3.7% of fertilization (Methanol 1M), and no treatment completed development until hatching. The cooled embryos had a significant percentage of normal larvae in all treatments, but inversely proportional to the increase in the concentration of the alcohols. DMSO 1M was the most promising treatment for embryo cooling, with 41.7% ± 20.2 of normal larvae, while mature oocytes were highly sensitive to cold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryoconservation" title="cryoconservation">cryoconservation</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=embryos" title=" embryos"> embryos</a>, <a href="https://publications.waset.org/abstracts/search?q=freezing" title=" freezing"> freezing</a>, <a href="https://publications.waset.org/abstracts/search?q=oocytes" title=" oocytes"> oocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=south%20American%20fish" title=" south American fish"> south American fish</a> </p> <a href="https://publications.waset.org/abstracts/72601/sensitivity-of-steindachneridion-parahybae-mature-oocytes-versus-embryos-at-low-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Plantlet Regeneration from Zygotic Embryos of Securidaca longepedunculata Fresen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uche%20C.%20Okafor">Uche C. Okafor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nwanneka%20M.%20Okpokwu"> Nwanneka M. Okpokwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Nwafor"> Felix Nwafor</a>, <a href="https://publications.waset.org/abstracts/search?q=Carl%20E.%20A.%20Okezie"> Carl E. A. Okezie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Securidaca longepedunculata Fresen (Violet tree) belongs to the family Polygalaceae characterised by papillionaceous purplish flowers. This medicinally valued plant disappears at an alarming rate due to intensified anthropopressure particularly the unregulated manner of subterranean plant parts' collection from natural stands. Some indiscriminately harvested plants bear seeds containing both mature and immature zygotic embryos that are often discarded. Here, such seeds are collected for this experiment. Seeds were collected, washed, de-coated, and dipped in 70 % (v/v) ethanol for 30 s followed by rising in 5 % solution sodium hypochlorite, containing two drops of tween 20, for another 25 min. Mature zygotic embryos (MZEs) were excised from seeds and cultured in two basal media (MS and B5), three carbon sources (sucrose, glucose and fructose) at five concentrations (0-40 g/L) while immature zygotic embryos (iMZEs) were composed on similar basal media and carbon source supplemented with 0-2 mg/L Benzylaminopurine (BAP) and 0-2 mg/L Indole acetic acid (IAA). MZEs cultured on MS + 30g/L sucrose differed significantly from other treatments at p≤0.05 with maximum percent sprouting (85.24± 5.67 %) and shoot length (7.53±0.67 cm). MZEs culture had the maximum percent sprouting (85.24± 5.67 %) and shoot length (7.53±0.67 cm) in medium containing MS+ 30g L-1 sucrose. iMZEs on the other hand had maximum growth on MS + 40g/L sucrose supplemented with 1.5 mg/L IAA+ 1.0 mg/L BAP. This study is a geared towards creating an alternative path for the maximum production of plants in vitro, thereby, preventing the plants from disappearing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gamborg%27s%20medium" title="Gamborg&#039;s medium">Gamborg&#039;s medium</a>, <a href="https://publications.waset.org/abstracts/search?q=Murashige%20and%20Skoog%20medium" title=" Murashige and Skoog medium"> Murashige and Skoog medium</a>, <a href="https://publications.waset.org/abstracts/search?q=Securidaca%20longepedunculata" title=" Securidaca longepedunculata"> Securidaca longepedunculata</a>, <a href="https://publications.waset.org/abstracts/search?q=zygotic%20embryos" title=" zygotic embryos"> zygotic embryos</a> </p> <a href="https://publications.waset.org/abstracts/92660/plantlet-regeneration-from-zygotic-embryos-of-securidaca-longepedunculata-fresen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Analysis of Endogenous Sirevirus in Germinating Barley (Hordeum vulgare L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nermin%20Gozukirmizi">Nermin Gozukirmizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Buket%20Cakmak"> Buket Cakmak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevgi%20Marakli"> Sevgi Marakli </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sireviruses are genera of copia LTR retrotransposons with a unique genome structure among retrotransposons. Barley (Hordeum vulgare L.) is an economically important plant and has been studied as a model plant regarding its short annual life cycle and seven chromosome pairs. In this study, we used mature barley embryos, 10-day-old roots and 10-day-old leaves derived from the same barley plant to investigate SIRE1 retrotransposon movements by Inter-Retrotransposon Amplified Polymorphism (IRAP) technique. We found polymorphism rates between 0-64% among embryos, roots and leaves. Polymorphism rates were detected to be 0-27% among embryos, 8-60% among roots, and 11-50% among leaves. Polymorphisms were observed not only among the parts of different individuals, but also on the parts of the same plant (23-64%). The internal domains of SIRE1 (gag, env and rt) were also analyzed in the embryos, roots and leaves. Analysis of band profiles showed no polymorphism for gag, however, different band patterns were observed among samples for rt and env. The sequencing of SIRE1 gag, env and rt domains revealed 79% similarity for gag, 95% for env and 84% for rt to Ty1-copia retrotransposons. SIRE1 retrotransposon was identified in the soybean genome and has been studied on other plants (maize, rice, tomatoe etc.). This study is the first detailed investigation of SIRE1 in barley genome. The obtained findings are expected to contribute to the comprehension of SIRE1 retrotransposon and its role in barley genome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barley" title="barley">barley</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=retrotransposon" title=" retrotransposon"> retrotransposon</a>, <a href="https://publications.waset.org/abstracts/search?q=SIRE1%20virus" title=" SIRE1 virus "> SIRE1 virus </a> </p> <a href="https://publications.waset.org/abstracts/15188/analysis-of-endogenous-sirevirus-in-germinating-barley-hordeum-vulgare-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Embryonic Aneuploidy – Morphokinetic Behaviors as a Potential Diagnostic Biomarker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Banafsheh%20Nikmehr">Banafsheh Nikmehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Bahrami"> Mohsen Bahrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueqiang%20Song"> Yueqiang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuradha%20Koduru"> Anuradha Koduru</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20K.%20Vuruskan"> Ayse K. Vuruskan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongkun%20Lu"> Hongkun Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mallory%20Pitts"> Mallory Pitts</a>, <a href="https://publications.waset.org/abstracts/search?q=Tolga%20B.%20Mesen"> Tolga B. Mesen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20M.%20Yalcinkaya"> Tamer M. Yalcinkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of people who receive in vitro fertilization (IVF) treatment has increased on a startling trajectory over the past two decades. Despite advances in this field, particularly the introduction of intracytoplasmic sperm injection (ICSI) and the preimplantation genetic screening (PGS), the IVF success remains low. A major factor contributing to IVF failure is embryonic aneuploidy (abnormal chromosome content), which often results in miscarriage and birth defects. Although PGS is often used as the standard diagnostic tool to identify aneuploid embryos, it is an invasive approach that could affect the embryo development, and yet inaccessible to many patients due its high costs. As such, there is a clear need for a non-invasive cost-effective approach to identify euploid embryos for single embryo transfer (SET). The reported differences between morphokinetic behaviors of aneuploid and euploid embryos has shown promise to address this need. However, current literature is inconclusive and further research is urgently needed to translate current findings into clinical diagnostics. In this ongoing study, we found significant differences between morphokinetic behaviors of euploid and aneuploid embryos that provides important insights and reaffirms the promise of such behaviors for developing non-invasive methodologies. Methodology—A total of 242 embryos (euploid: 149, aneuploid: 93) from 74 patients who underwent IVF treatment in Carolinas Fertility Clinics in Winston-Salem, NC, were analyzed. All embryos were incubated in an EmbryoScope incubator. The patients were randomly selected from January 2019 to June 2021 with most patients having both euploid and aneuploid embryos. All embryos reached the blastocyst stage and had known PGS outcomes. The ploidy assessment was done by a third-party testing laboratory on day 5-7 embryo biopsies. The morphokinetic variables of each embryo were measured by the EmbryoViewer software (Uniesense FertiliTech) on time-lapse images using 7 focal depths. We compared the time to: pronuclei fading (tPNf), division to 2,3,…,9 cells (t2, t3,…,t9), start of embryo compaction (tSC), Morula formation (tM), start of blastocyst formation (tSC), blastocyst formation (tB), and blastocyst expansion (tEB), as well as intervals between them (e.g., c23 = t3 – t2). We used a mixed regression method for our statistical analyses to account for the correlation between multiple embryos per patient. Major Findings— The average age of the patients was 35.04 yrs. The average patient age associated with euploid and aneuploid embryos was not different (P = 0.6454). We found a significant difference in c45 = t5-t4 (P = 0.0298). Our results indicated this interval on average lasts significantly longer for aneuploid embryos - c45(aneuploid) = 11.93hr vs c45(euploid) = 7.97hr. In a separate analysis limited to embryos from the same patients (patients = 47, total embryos=200, euploid=112, aneuploid=88), we obtained the same results (P = 0.0316). The statistical power for this analysis exceeded 87%. No other variable was different between the two groups. Conclusion— Our results demonstrate the importance of morphokinetic variables as potential biomarkers that could aid in non-invasively characterizing euploid and aneuploid embryos. We seek to study a larger population of embryos and incorporate the embryo quality in future studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IVF" title="IVF">IVF</a>, <a href="https://publications.waset.org/abstracts/search?q=embryo" title=" embryo"> embryo</a>, <a href="https://publications.waset.org/abstracts/search?q=euploidy" title=" euploidy"> euploidy</a>, <a href="https://publications.waset.org/abstracts/search?q=aneuploidy" title=" aneuploidy"> aneuploidy</a>, <a href="https://publications.waset.org/abstracts/search?q=morphokinteic" title=" morphokinteic"> morphokinteic</a> </p> <a href="https://publications.waset.org/abstracts/156024/embryonic-aneuploidy-morphokinetic-behaviors-as-a-potential-diagnostic-biomarker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Evidence of Paternal Protein Provisioning During Male Pregnancy in the Seahorse, Hippocampus Abdominalis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zoe%20M.%20G.%20Skalkos">Zoe M. G. Skalkos</a>, <a href="https://publications.waset.org/abstracts/search?q=Sam%20N.%20Dowland"> Sam N. Dowland</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20U.%20Van%20Dyke"> James U. Van Dyke</a>, <a href="https://publications.waset.org/abstracts/search?q=Camilla.%20M.%20Whittington"> Camilla. M. Whittington</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Syngnathid fishes (seahorses, pipefishes, and seadragons) are unique because embryos develop on or in the male in a specialised brooding structure. Many seahorse species are endangered or vulnerable, while others are popular in the ornamental fish trade. Seahorses are capable of nutrient provisioning (patrotrophy) of lipids during pregnancy via their fully enclosed brood pouch. Protein is vital for gene regulation and tissue growth during embryogenesis. We tested the hypothesis that protein is paternally transported to developing embryos during pregnancy in the Australian Pot-bellied seahorse, Hippocampus abdominalis. We compared the dry masses and nitrogen content in recently fertilised H. abdominalis embryos and newborns. We calculated an updated patrotrophy index, 1.34, but without a significant difference in dry mass between the two developmental stages. There was, however, a significant increase in total protein content from recently fertilised embryos to neonates. This suggests paternal protein transport is essential for H. abdominalis embryogenesis because protein yolk reserves are depleted by embryonic metabolism, and supplementation is required. This study is the first to provide evidence for paternal protein transport during pregnancy in seahorses. It furthers our understanding of the paternal influence on embryonic development in male pregnancy and how a protein-deficient diet during pregnancy may limit the allocation of resources to embryos, reducing offspring fitness. This research contributes to a deeper understanding of the fundamental reproductive biology of seahorses, which can help improve conservation and farming production outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brood%20pouch" title="brood pouch">brood pouch</a>, <a href="https://publications.waset.org/abstracts/search?q=embryonic%20provisioning" title=" embryonic provisioning"> embryonic provisioning</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=parentotrophy" title=" parentotrophy"> parentotrophy</a>, <a href="https://publications.waset.org/abstracts/search?q=paternal%20investment" title=" paternal investment"> paternal investment</a>, <a href="https://publications.waset.org/abstracts/search?q=reproduction" title=" reproduction"> reproduction</a> </p> <a href="https://publications.waset.org/abstracts/161833/evidence-of-paternal-protein-provisioning-during-male-pregnancy-in-the-seahorse-hippocampus-abdominalis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Understanding Embryology in Promoting Peace Leadership: A Document Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasudev%20Das">Vasudev Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The specific problem is that many leaders of the 21st century do not understand that the extermination of embryos wreaks havoc on peace leadership. The purpose of the document review is to understand embryology in facilitating peace leadership. Extermination of human embryos generates a requital wave of violence which later falls on human society in the form of disturbances, considering that violence breeds further violence as a consequentiality. The study results reveal that a deep understanding of embryology facilitates peace leadership, given that minimizing embryo extermination enhances non-violence in the global village. Neo-Newtonians subscribe to the idea that every action has an equal and opposite reaction. The US Federal Government recognizes the embryo or fetus as a member of Homo sapiens. The social change implications of this study are that understanding human embryology promotes peace leadership, considering that the consequentiality of embryo extermination can serve as a deterrent for violence on embryos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consequentiality" title="consequentiality">consequentiality</a>, <a href="https://publications.waset.org/abstracts/search?q=Homo%20sapiens" title=" Homo sapiens"> Homo sapiens</a>, <a href="https://publications.waset.org/abstracts/search?q=neo-Newtonians" title=" neo-Newtonians"> neo-Newtonians</a>, <a href="https://publications.waset.org/abstracts/search?q=violence" title=" violence"> violence</a> </p> <a href="https://publications.waset.org/abstracts/137887/understanding-embryology-in-promoting-peace-leadership-a-document-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Effect of Pristine Graphene on Developmental Toxicity in Zebrafish (Danio rerio) Embryos: Cardiovascular Defects, Apoptosis, and Globin Expression Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjunatha%20Bangeppagari">Manjunatha Bangeppagari</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Sang%20Joon"> Lee Sang Joon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, graphene-related nanomaterials are receiving fast-increasing attention with augmented applications in various fields. Especially, graphene-related materials have been widely applied to the biomedical field in the past years. In the present study, we evaluated the adverse effects of pristine graphene (pG) in zebrafish (Danio rerio) embryos in various aspects, such as mortality rate, heart rate, hatching rate, cardiotoxicity, cardiovascular defect, cardiac looping, apoptosis, and globin expression. For various trace concentrations of pG (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 μg/L), early life-stage parameters were observed at 24, 48, 72, and 96 hpf. As a result, pG induces significant developmental defects including yolk sac edema, pericardial edema, embryonic mortality, delayed hatching, heartbeat, several morphological defects, pericardial toxicity, and bradycardia. Moreover, the exposure to pG was found to be a potential risk factor to the cardiovascular system of zebrafish embryos. However, further study on their properties which vary according to production methods and surface functionalization is essentially required. In addition, the possible risks of pG flakes to aquatic animals, and public health should be evaluated before releasing them to the surrounding environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20toxicity" title=" cardiovascular toxicity"> cardiovascular toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=globin%20expression" title=" globin expression"> globin expression</a>, <a href="https://publications.waset.org/abstracts/search?q=pristine%20graphene" title=" pristine graphene"> pristine graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish%20embryos" title=" zebrafish embryos"> zebrafish embryos</a> </p> <a href="https://publications.waset.org/abstracts/104957/effect-of-pristine-graphene-on-developmental-toxicity-in-zebrafish-danio-rerio-embryos-cardiovascular-defects-apoptosis-and-globin-expression-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Bahrami">Mohsen Bahrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Banafsheh%20Nikmehr"> Banafsheh Nikmehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueqiang%20Song"> Yueqiang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuradha%20Koduru"> Anuradha Koduru</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20K.%20Vuruskan"> Ayse K. Vuruskan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongkun%20Lu"> Hongkun Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20M.%20Yalcinkaya"> Tamer M. Yalcinkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IVF" title="IVF">IVF</a>, <a href="https://publications.waset.org/abstracts/search?q=embryo" title=" embryo"> embryo</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=time-lapse%20imaging%20data" title=" time-lapse imaging data"> time-lapse imaging data</a> </p> <a href="https://publications.waset.org/abstracts/156028/prediction-of-live-birth-in-a-matched-cohort-of-elective-single-embryo-transfers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Somatic Embryogenesis of Lachenalia viridiflora, a Critically Endangered Ornamental Geophyte with High Floricultural Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Kumar">Vijay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mack%20Moyo"> Mack Moyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Van%20Staden"> Johannes Van Staden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lachenalia viridiflora is a critically endangered bulbous plant with high potential on the international floriculture market. In the present study, an efficient protocol for in vitro plantlet regeneration through somatic embryogenesis was developed. Embryogenic callus was established on Murashige and Skoog (MS) basal medium supplemented with various concentrations and combinations of picloram and thidiazuron (TDZ). A high number of SEs (28.5 ± 1.49) with at different developmental stages of somatic embryos (SEs: globular embryos, torpedo and cotyledon embryo with bipolar characteristics) was obtained on Murashige and Skoog (MS) (Murashige and Skoog 1962) medium with 2.5 μM picloram, and 1.0 μM TDZ. Histological and scanning electron microscopic (SEM) analysis confirmed the presence of somatic embryos. Mature somatic embryos germinated and developed into plantlets after 6 weeks on half/full strength MS medium. High plant regeneration frequency (91.11 %) was achieved on full-strength MS medium supplemented with 5 μM phloroglucinol (PG). Well-developed healthy plantlets were successfully acclimatized in the greenhouse with a survival rate of 80%. The result of this study is beneficial in the mass propagation of high-quality Lachenalia viridiflora clonal plants for the commercial horticultural market and also provides a platform for future genetic transformation studies on the plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=horticultural%20plant" title="horticultural plant">horticultural plant</a>, <a href="https://publications.waset.org/abstracts/search?q=Lachenalia%20viridiflora" title=" Lachenalia viridiflora"> Lachenalia viridiflora</a>, <a href="https://publications.waset.org/abstracts/search?q=phloroglucinol" title=" phloroglucinol"> phloroglucinol</a>, <a href="https://publications.waset.org/abstracts/search?q=somatic%20embryogenesis" title=" somatic embryogenesis"> somatic embryogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=thidiazuron" title=" thidiazuron"> thidiazuron</a> </p> <a href="https://publications.waset.org/abstracts/53535/somatic-embryogenesis-of-lachenalia-viridiflora-a-critically-endangered-ornamental-geophyte-with-high-floricultural-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">630</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Selection of Developmental Stages of Bovine in vitro-Derived Blastocysts Prior to Vitrification and Embryo Transfer: Implications for Cattle Breeding Programs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20Huong%20Do">Van Huong Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Walton"> Simon Walton</a>, <a href="https://publications.waset.org/abstracts/search?q=German%20Amaya"> German Amaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Madeline%20Batsiokis"> Madeline Batsiokis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sally%20Catt"> Sally Catt</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Taylor-Robinson"> Andrew Taylor-Robinson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identification of the most suitable stages of bovine in vitro-derived blastocysts (early, expanded and hatching) prior to vitrification is a straightforward process that facilitates the decision as to which blastocyst stage to use for transfer of fresh and vitrified embryos. Research on in vitro evaluation of suitable stages has shown that the more advanced developmental stage of blastocysts is recommended for fresh embryo transfer while the earlier stage is proposed for embryo transfer following vitrification. There is, however, limited information on blastocyst stages using in vivo assessment. Hence, the aim of the present study was to determine the optimal stage of a blastocyst for vitrification and embryo transfer through a two-step procedure of embryo transfer followed by pregnancy testing at 35, 60 and 90 days of pregnancy. 410 good quality oocytes aspirated by the ovum pick-up technique from 8 donor cows were subjected to in vitro embryo production, vitrification and embryo transfer. Good quality embryos were selected, subjected to vitrification and embryo transfer. Subsequently, 77 vitrified embryos at different blastocyst stages were transferred to synchronised recipient cows. The overall cleavage and blastocyst rates of oocytes were 68.8% and 41.7%, respectively. In addition, the fertility and blastocyst production of 6 bulls used for in vitro fertilization was examined and shown to be statistically different (P<0.05). Results of ongoing pregnancy trials conducted at 35 days, 60 days and 90 days will be discussed. However, preliminary data indicate that individual bulls demonstrate distinctly different fertility performance in vitro. Findings from conception rates would provide a useful tool to aid selection of bovine in vitro-derived embryos for vitrification and embryo transfer in commercial settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blastocyst" title="blastocyst">blastocyst</a>, <a href="https://publications.waset.org/abstracts/search?q=embryo%20transfer" title=" embryo transfer"> embryo transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro-derived%20embryos" title=" in vitro-derived embryos"> in vitro-derived embryos</a>, <a href="https://publications.waset.org/abstracts/search?q=ovum%20pick-up" title=" ovum pick-up"> ovum pick-up</a>, <a href="https://publications.waset.org/abstracts/search?q=vitrification" title=" vitrification"> vitrification</a> </p> <a href="https://publications.waset.org/abstracts/78837/selection-of-developmental-stages-of-bovine-in-vitro-derived-blastocysts-prior-to-vitrification-and-embryo-transfer-implications-for-cattle-breeding-programs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Effect of Vitrification on Embryos Euploidy Obtained from Thawed Oocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Buderatskaya">Natalia Buderatskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Ilyin"> Igor Ilyin</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Gontar"> Julia Gontar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Lavrynenko"> Sergey Lavrynenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Parnitskaya"> Olga Parnitskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20Ilyina"> Ekaterina Ilyina</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduard%20Kapustin"> Eduard Kapustin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yana%20Lakhno"> Yana Lakhno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: It is known that cryopreservation of oocytes has peculiar features due to the complex structure of the oocyte. One of the most important features is that mature oocytes contain meiotic division spindle which is very sensitive even to the slightest variation in temperature. Thus, the main objective of this study is to analyse the resulting euploid embryos obtained from thawed oocytes in comparison with the data of preimplantation genetic screening (PGS) in fresh embryo cycles. Material and Methods: The study was conducted at 'Medical Centre IGR' from January to July 2016. Data were analysed for 908 donor oocytes obtained in 67 cycles of assisted reproductive technologies (ART), of which 693 oocytes were used in the 51 'fresh' cycles (group A), and 215 oocytes - 16 ART programs with vitrification female gametes (group B). The average age of donors in the groups match 27.3±2.9 and 27.8±6.6 years. Stimulation of superovulation was conducted the standard way. Vitrification was performed in 1-2 hours after transvaginal puncture and thawing of oocytes were carried out in accordance with the standard protocol of Cryotech (Japan). Manipulation ICSI was performed 4-5 hours after transvaginal follicle puncture for fresh oocytes, or after defrosting - for vitrified female gametes. For the PGS, an embryonic biopsy was done on the third or on the fifth day after fertilization. Diagnostic procedures were performed using fluorescence in situ hybridization with the study of such chromosomes as 13, 16, 18, 21, 22, X, Y. Only morphologically quality blastocysts were used for the transfer, the estimation of which corresponded to the Gardner criteria. The statistical hypotheses were done using the criteria t, x^2 at a significance levels p<0.05, p<0.01, p<0.001. Results: The mean number of mature oocytes per cycle in group A was 13.58±6.65 and in group B - 13.44±6.68 oocytes for patient. The survival of oocytes after thawing totaled 95.3% (n=205), which indicates a highly effective quality of performed vitrification. The proportion of zygotes in the group A corresponded to 91.1%(n=631), in the group B – 80.5%(n=165), which shows statistically significant difference between the groups (p<0.001) and explained by non-viable oocytes elimination after vitrification. This is confirmed by the fact that on the fifth day of embryos development a statistically significant difference in the number of blastocysts was absent (p>0.05), and constituted respectively 61.6%(n=389) and 63.0%(n=104) in the groups. For the PGS performing 250 embryos analyzed in the group A and 72 embryos - in the group B. The results showed that euploidy in the studied chromosomes were 40.0%(n=100) embryos in the group A and 41.7% (n=30) - in the group B, which shows no statistical significant difference (p>0.05). The indicators of clinical pregnancies in the groups amounted to 64.7% (22 pregnancies per 34 embryo transfers) and 61.5% (8 pregnancies per 13 embryo transfers) respectively, and also had no significant difference between the groups (p>0.05). Conclusions: The results showed that the vitrification does not affect the resulting euploid embryos in assisted reproductive technologies and are not reflected in their morphological characteristics in ART programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=euploid%20embryos" title="euploid embryos">euploid embryos</a>, <a href="https://publications.waset.org/abstracts/search?q=preimplantation%20genetic%20screening" title=" preimplantation genetic screening"> preimplantation genetic screening</a>, <a href="https://publications.waset.org/abstracts/search?q=thawing%20oocytes" title=" thawing oocytes"> thawing oocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=vitrification" title=" vitrification"> vitrification</a> </p> <a href="https://publications.waset.org/abstracts/57504/effect-of-vitrification-on-embryos-euploidy-obtained-from-thawed-oocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Analysis of the Blastocysts Chromosomal Set Obtained after the Use of Donor Oocyte Cytoplasmic Transfer Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julia%20Gontar">Julia Gontar</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Buderatskaya"> Natalia Buderatskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Ilyin"> Igor Ilyin</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Parnitskaya"> Olga Parnitskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Lavrynenko"> Sergey Lavrynenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduard%20Kapustin"> Eduard Kapustin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20Ilyina"> Ekaterina Ilyina</a>, <a href="https://publications.waset.org/abstracts/search?q=Yana%20Lakhno"> Yana Lakhno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: It is well known that oocytes obtained from older reproductive women have accumulated mitochondrial DNA mutations, which negatively affects the morphology of a developing embryo and may lead to the birth of a child with mitochondrial disease. Special techniques have been developed to allow a donor oocyte cytoplasmic transfer with the parents’ biological nuclear DNA retention. At the same time, it is important to understand whether the procedure affects the future embryonic chromosome sets as the nuclear DNA is the transfer subject in this new complex procedure. Material and Methods: From July 2015 to July 2016, the investigation was carried out in the Medical Centre IGR. 34 donor oocytes (group A) were used for the manipulation with the aim of donating cytoplasm: 21 oocytes were used for zygotes pronuclear transfer and oocytes 13 – for the spindle transfer. The mean age of the oocyte donors was 28.4±2.9 years. The procedure was performed using Nikon Ti Eclipse inverted microscope equipped with the micromanipulators Narishige system (Japan), Saturn 3 laser console (UK), Oosight imaging systems (USA). For the preimplantation genetic screening (PGS) blastocyst biopsy was performed, trophectoderm samples were diagnosed using fluorescent in situ hybridization on chromosomes 9, 13, 15, 16, 17, 18, 21, 22, X, Y. For comparison of morphological characteristics and euploidy, was chosen a group of embryos (group B) with the amount of 121 blastocysts obtained from 213 oocytes, which were gotten from the donor programs of assisted reproductive technologies (ART). Group B was not subjected to donor oocyte cytoplasmic transfer procedure and studied on the above mentioned chromosomes. Statistical analysis was carried out using the criteria t, x^2 at a significance levels p<0.05, p<0.01, p<0.001. Results: After the donor cytoplasm transfer process the amount of the third day developing embryos was 27 (79.4%). In this stage, the group B consisted of 189 (88.7%) developing embryos, and there was no statistically significant difference (SSD) between the two groups (p>0.05). After a comparative analysis of the morphological characteristics of the embryos on the fifth day, we also found no SSD among the studied groups (p>0.05): from 34 oocytes exposed to manipulation, 14 (41.2%) blastocysts was obtained, while the group B blastocyst yield was 56.8% (n=121) from 213 oocytes. The following results were obtained after PGS performing: in group A euploidy in studied chromosomes were 28.6%(n=4) blastocysts, whereas in group B this rate was 40.5%(n=49), 28.6%(n=4) and 21.5%(n=26) of mosaic embryos and 42.8%(n=6) and 38.0%(n=46) aneuploid blastocysts respectively were identified. None of these specified parameters had an SSD (p>0.05). But attention was drawn by the blastocysts in group A with identified mosaicism, which was chaotic without any cell having euploid chromosomal set, in contrast to the mosaic embryos in group B where identified chaotic mosaicism was only 2.5%(n=3). Conclusions: According to the obtained results, there is no direct procedural effect on the chromosome in embryos obtained following donor oocyte cytoplasmic transfer. Thus, the technology introduction will enhance the infertility treating effectiveness as well as avoiding having a child with mitochondrial disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=donor%20oocyte%20cytoplasmic%20transfer" title="donor oocyte cytoplasmic transfer">donor oocyte cytoplasmic transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=embryos%E2%80%99%20chromosome%20set" title=" embryos’ chromosome set"> embryos’ chromosome set</a>, <a href="https://publications.waset.org/abstracts/search?q=oocyte%20spindle%20transfer" title=" oocyte spindle transfer"> oocyte spindle transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=pronuclear%20transfer" title=" pronuclear transfer"> pronuclear transfer</a> </p> <a href="https://publications.waset.org/abstracts/57502/analysis-of-the-blastocysts-chromosomal-set-obtained-after-the-use-of-donor-oocyte-cytoplasmic-transfer-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> The Effect of Acute Toxicity and Thyroid Hormone Treatments on Hormonal Changes during Embryogenesis of Acipenser persicus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Nazeri">Samaneh Nazeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Bagher%20Mojazi%20Amiri"> Bagher Mojazi Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Farahmand"> Hamid Farahmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of high quality fish eggs with reasonable hatching rate makes a success in aquaculture industries. It is influenced by the environmental stimulators and inhibitors. Diazinon is a widely-used pesticide in Golestan province (Southern Caspian Sea, North of Iran) which is washed to the aquatic environment (3 mg/L in the river). It is little known about the effect of this pesticide on the embryogenesis of sturgeon fish, the valuable species of the Caspian Sea. Hormonal content of the egg is an important factor to guaranty the successful passes of embryonic stages. In this study, the fate of Persian sturgeon embryo to 24, 48, 72, and 96-hours exposure of diazinon (LC<sub>50</sub> dose) was tested. Also, the effect of thyroid hormones (T3 and T4) on these embryos was tested concurrently or separately with diazinon LC <sub>50</sub> dose. Fertilized eggs are exposed to T3 (low dose: 1 ng/ml, high dose: 10 ng/ml), T4 (low dose: 1 ng/ml, high dose: 10 ng/ml). Six eggs were randomly selected from each treatment (with three replicates) in five developmental stages (two cell- division, neural, heart present, heart beaten, and hatched larvae). The possibility of changing T3, T4, and cortisol contents of the embryos were determined in all treated groups and in every mentioned embryonic stage. The hatching rate in treated groups was assayed at the end of the embryogenesis to clarify the effect of thyroid hormones and diazinon. The results indicated significant differences in thyroid hormone contents, but no significant differences were recognized in cortisol levels at various early life stages of embryos. There was also significant difference in thyroid hormones in (T3, T4) + diazinon treated embryos (<em>P</em>˂0.05), while no significant difference between control and treatments in cortisol levels was observed. The highest hatching rate was recorded in HT3 treatment, while the lowest hatching rate was recorded for diazinon LC<sub>50</sub> treatment. The result confirmed that Persian sturgeon embryo is less sensitive to diazinon compared to teleost embryos, and thyroid hormones may increase hatching rate even in the presence of diazinon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Persian%20sturgeon" title="Persian sturgeon">Persian sturgeon</a>, <a href="https://publications.waset.org/abstracts/search?q=diazinon" title=" diazinon"> diazinon</a>, <a href="https://publications.waset.org/abstracts/search?q=thyroid%20hormones" title=" thyroid hormones"> thyroid hormones</a>, <a href="https://publications.waset.org/abstracts/search?q=cortisol" title=" cortisol"> cortisol</a>, <a href="https://publications.waset.org/abstracts/search?q=embryo" title=" embryo"> embryo</a> </p> <a href="https://publications.waset.org/abstracts/57048/the-effect-of-acute-toxicity-and-thyroid-hormone-treatments-on-hormonal-changes-during-embryogenesis-of-acipenser-persicus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Effect of IGF-I on Ovine Oocytes Maturation and Subsequent Embryo Development following in Vitro Fertilization (IVF)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Qasemi-Panahi">Babak Qasemi-Panahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamali%20Moghaddam"> Gholamali Moghaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed-Abbas%20Rafat"> Seyed-Abbas Rafat</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Daghigh%20Kia"> Hossein Daghigh Kia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoureh%20Movahedin"> Mansoureh Movahedin</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hadavi"> Reza Hadavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to determine the effects of IGF-I on ovine oocytes maturation and subsequent development of embryos derived from in vitro fertilization (IVF). In vitro maturation (IVM) of oocytes and in vitro culture (IVC) of embryos was conducted with or without 100 ng/mL IGF-1. In the IGF-I treated group, mean percentage of oocyte maturation was significantly higher than the control group (57.67 ± 3.04 versus 49.81 ± 3.04%, respectively, P < 0.05). However, in comparison with control group, there was no significant effect of IGF-1 on rates of cleavage, morula, and blastocyst formation (85% versus 84%; 63% versus 65%, and 40% to 39%, respectively). These data demonstrate that IGF-I has a positive effect on ovine oocyte maturation rate, but it has not the significant outcome on embryo development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ovine" title="ovine">ovine</a>, <a href="https://publications.waset.org/abstracts/search?q=IGF-I" title=" IGF-I"> IGF-I</a>, <a href="https://publications.waset.org/abstracts/search?q=IVM" title=" IVM"> IVM</a>, <a href="https://publications.waset.org/abstracts/search?q=ICSI" title=" ICSI"> ICSI</a> </p> <a href="https://publications.waset.org/abstracts/21011/effect-of-igf-i-on-ovine-oocytes-maturation-and-subsequent-embryo-development-following-in-vitro-fertilization-ivf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">688</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=haploid%20embryos&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=haploid%20embryos&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=haploid%20embryos&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=haploid%20embryos&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10