CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,099 results for author: <span class="mathjax">Kim, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Kim%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kim, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kim%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kim, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kim%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.07900">arXiv:2502.07900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.07900">pdf</a>, <a href="https://arxiv.org/format/2502.07900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Long-Term X-ray Variability on the Benchmark YSO HL Tau </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Silverberg%2C+S+M">Steven M. Silverberg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wolk%2C+S+J">Scott J. Wolk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Principe%2C+D+A">David A. Principe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schneider%2C+P+C">P. Christian Schneider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guenther%2C+H+M">Hans Moritz Guenther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J+S">Jinyoung Serena Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kastner%2C+J+H">Joel H. Kastner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.07900v1-abstract-short" style="display: inline;"> HL Tau is one of the most well-studied Class I young stellar objects, including frequent observations at near- and mid-infrared, (sub-) millimeter, and X-ray wavelengths. We present the results of an X-ray variability monitoring campaign with XMM-Newton in 2020 and X-ray gratings spectroscopy from Chandra/HETGS in 2018. We find that the X-ray spectrum of HL Tau is consistently hot (with characteri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07900v1-abstract-full').style.display = 'inline'; document.getElementById('2502.07900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.07900v1-abstract-full" style="display: none;"> HL Tau is one of the most well-studied Class I young stellar objects, including frequent observations at near- and mid-infrared, (sub-) millimeter, and X-ray wavelengths. We present the results of an X-ray variability monitoring campaign with XMM-Newton in 2020 and X-ray gratings spectroscopy from Chandra/HETGS in 2018. We find that the X-ray spectrum of HL Tau is consistently hot (with characteristic plasma temperatures $T \gtrsim 30$ MK) over 31 epochs spanning 20 years, which is consistent in temperature with most Class I YSOs. The high-resolution HETG spectrum indicates the presence of some cooler plasma. We characterize the variability of the star across the 31 observations and find a subset of observations with significant variability on a $\sim$21-day timescale in the observed count rate and flux. We discuss the possible origins of this variability, and identify further observations that would better constrain the nature of the changes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.07900v1-abstract-full').style.display = 'none'; document.getElementById('2502.07900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, nine figures. Accepted to the Astronomical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.00692">arXiv:2502.00692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.00692">pdf</a>, <a href="https://arxiv.org/format/2502.00692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Machine learning based Photometric Redshifts for Galaxies in the North Ecliptic Pole Wide field: catalogs of spectroscopic and photometric redshifts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+T">Taewan Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sohn%2C+J">Jubee Sohn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+H+S">Ho Seong Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+C+-">Simon C. -C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgarella%2C+D">Denis Burgarella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goto%2C+T">Tomotsugu Goto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hashimoto%2C+T">Tetsuya Hashimoto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jeong%2C+W">Woong-Seob Jeong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+J">Seong Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malkan%2C+M+A">Matthew A. Malkan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miyaji%2C+T">Takamitsu Miyaji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oi%2C+N">Nagisa Oi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shim%2C+H">Hyunjin Shim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Song%2C+H">Hyunmi Song</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+N">Narae Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+B">Byeong-Gon Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.00692v1-abstract-short" style="display: inline;"> We perform an MMT/Hectospec redshift survey of the North Ecliptic Pole Wide (NEPW) field covering 5.4 square degrees, and use it to estimate the photometric redshifts for the sources without spectroscopic redshifts. By combining 2572 newly measured redshifts from our survey with existing data from the literature, we create a large sample of 4421 galaxies with spectroscopic redshifts in the NEPW fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00692v1-abstract-full').style.display = 'inline'; document.getElementById('2502.00692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.00692v1-abstract-full" style="display: none;"> We perform an MMT/Hectospec redshift survey of the North Ecliptic Pole Wide (NEPW) field covering 5.4 square degrees, and use it to estimate the photometric redshifts for the sources without spectroscopic redshifts. By combining 2572 newly measured redshifts from our survey with existing data from the literature, we create a large sample of 4421 galaxies with spectroscopic redshifts in the NEPW field. Using this sample, we estimate photometric redshifts of 77755 sources in the band-merged catalog of the NEPW field with a random forest model. The estimated photometric redshifts are generally consistent with the spectroscopic redshifts, with a dispersion of 0.028, an outlier fraction of 7.3%, and a bias of -0.01. We find that the standard deviation of the prediction from each decision tree in the random forest model can be used to infer the fraction of catastrophic outliers and the measurement uncertainties. We test various combinations of input observables, including colors and magnitude uncertainties, and find that the details of these various combinations do not change the prediction accuracy much. As a result, we provide a catalog of 77755 sources in the NEPW field, which includes both spectroscopic and photometric redshifts up to z~2. This dataset has significant legacy value for studies in the NEPW region, especially with upcoming space missions such as JWST, Euclid, and SPHEREx. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.00692v1-abstract-full').style.display = 'none'; document.getElementById('2502.00692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pagees, 12 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.17506">arXiv:2501.17506</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.17506">pdf</a>, <a href="https://arxiv.org/format/2501.17506">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> GECKO Follow-up Observation of the Binary Neutron Star-Black Hole Merger Candidate S230518h </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Paek%2C+G+S+H">Gregory S. H. Paek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Im%2C+M">Myungshin Im</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jeong%2C+M">Mankeun Jeong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+S">Seo-Won Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hur%2C+M+M">Martin Moonkuk Hur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hong%2C+Y">YoungPyo Hong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Sophia Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+J">Jaewon Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D">Dongjin Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+S">Seong-Heon Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+J">Jae-Hun Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Joonho Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+H+M">Hyung Mok Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seung-Lee Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.17506v1-abstract-short" style="display: inline;"> The gravitational wave (GW) event S230518h is a potential binary neutron star-black hole merger (NSBH) event that was detected during engineering run 15 (ER15), which served as the commissioning period before the LIGO-Virgo-KAGRA (LVK) O4a observing run. Despite its low probability of producing detectable electromagnetic emissions, we performed extensive follow-up observations of this event using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17506v1-abstract-full').style.display = 'inline'; document.getElementById('2501.17506v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.17506v1-abstract-full" style="display: none;"> The gravitational wave (GW) event S230518h is a potential binary neutron star-black hole merger (NSBH) event that was detected during engineering run 15 (ER15), which served as the commissioning period before the LIGO-Virgo-KAGRA (LVK) O4a observing run. Despite its low probability of producing detectable electromagnetic emissions, we performed extensive follow-up observations of this event using the GECKO telescopes in the southern hemisphere. Our observation covered 61.7\% of the 90\% credible region, a $\rm 284\:deg^2$ area accessible from the southern hemisphere, reaching a median limiting magnitude of $R=21.6$ mag. In these images, we conducted a systematic search for an optical counterpart of this event by combining a CNN-based classifier and human verification. We identified 128 transient candidates, but no significant optical counterpart was found that could have caused the GW signal. Furthermore, we provide feasible KN properties that are consistent with the upper limits of observation. Although no optical counterpart was found, our result demonstrates both GECKO&#39;s efficient wide-field follow-up capabilities and usefulness for constraining properties of kilonovae from NSBH mergers at distances of $\sim 200$ Mpc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.17506v1-abstract-full').style.display = 'none'; document.getElementById('2501.17506v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 14 figures, Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14904">arXiv:2501.14904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.14904">pdf</a>, <a href="https://arxiv.org/format/2501.14904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Probing small-scale power spectrum with gravitational-wave diffractive lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Sungjung Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+H+G">Han Gil Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+S">Sunghoon Jung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14904v2-abstract-short" style="display: inline;"> We develop a novel way to probe subgalactic-scale matter distribution with diffractive lensing on gravitational waves. Five-year observations from Einstein Telescope and DECIGO are expected to probe $k= 10^5\sim 10^8 \,{\rm Mpc}^{-1}$ down to $P(k) = 10^{-16} \sim 10^{-14} \,{\rm Mpc}^3$ level. These results can be interpreted in terms of primordial black holes in the range&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14904v2-abstract-full').style.display = 'inline'; document.getElementById('2501.14904v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14904v2-abstract-full" style="display: none;"> We develop a novel way to probe subgalactic-scale matter distribution with diffractive lensing on gravitational waves. Five-year observations from Einstein Telescope and DECIGO are expected to probe $k= 10^5\sim 10^8 \,{\rm Mpc}^{-1}$ down to $P(k) = 10^{-16} \sim 10^{-14} \,{\rm Mpc}^3$ level. These results can be interpreted in terms of primordial black holes in the range $M_{\rm PBH} \gtrsim 10^{-3}M_\odot$ down to $f_{\rm PBH} = 10^{-6}$ level, or QCD axion minihalos in the range $m_a = 10^{-3} \sim 10^{-12} \,{\rm eV}$. A key result of the paper is the approximate relation between the scale $k$ and the gravitational wave frequency $f$, derived in an ensemble of `multi-lensing&#39; events. This relation enables direct measurement of the power spectrum at specific scales, with sensitivities characterized by model-independent kernels $未P(k)$. Additionally, we delineate the statistical properties of `multi-lensing&#39; based on the `Fresnel number&#39; $N_F$. When $N_F \gtrsim {\cal O}(1)$, the statistical significance can be approximately calculated by Variance of lensing effects, which is directly related to the power spectrum among other moments of matter distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14904v2-abstract-full').style.display = 'none'; document.getElementById('2501.14904v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.14868">arXiv:2501.14868</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.14868">pdf</a>, <a href="https://arxiv.org/format/2501.14868">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Theoretical Predictions for the Inner Dark Matter Distribution in the Milky Way Informed by Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hussein%2C+A">Abdelaziz Hussein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Necib%2C+L">Lina Necib</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplinghat%2C+M">Manoj Kaplinghat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+Y">Stacy Y. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wetzel%2C+A">Andrew Wetzel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Read%2C+J+I">Justin I. Read</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rey%2C+M+P">Martin P. Rey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agertz%2C+O">Oscar Agertz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.14868v1-abstract-short" style="display: inline;"> We build a theoretical range for the Milky Way&#39;s (MW) inner dark matter (DM) distribution informed by the FIRE-2, Auriga, VINTERGATAN-GM, and TNG50 simulation suites assuming the canonical cold dark matter (CDM) model. The DM density profiles in Auriga, VINTERGATAN-GM, and TNG50 can be approximately modeled using the adiabatic contraction prescription of Gnedin et al. 2004, while FIRE-2 has strong&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14868v1-abstract-full').style.display = 'inline'; document.getElementById('2501.14868v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.14868v1-abstract-full" style="display: none;"> We build a theoretical range for the Milky Way&#39;s (MW) inner dark matter (DM) distribution informed by the FIRE-2, Auriga, VINTERGATAN-GM, and TNG50 simulation suites assuming the canonical cold dark matter (CDM) model. The DM density profiles in Auriga, VINTERGATAN-GM, and TNG50 can be approximately modeled using the adiabatic contraction prescription of Gnedin et al. 2004, while FIRE-2 has stronger baryonic feedback, leading to a departure from the adiabatic contraction model. The simulated halos that are adiabatically contracted are close to spherical (axis ratio $q \in [0.75-0.9]$ at $5^\circ$), whereas halos that experience strong baryonic feedback are oblate ($q \in [0.5-0.7]$). Using the adiabatic contraction and strong baryonic feedback models, along with the observed stellar distribution of the MW, the inner logarithmic density slope for CDM in the MW is predicted to range from $ -0.5$ to $-1.3$. The $J$-factor, which determines the DM-annihilation flux, averaged over a solid angle of $5^\circ$ ($10^\circ$) is predicted to span the range $0.8$-$30$ ($0.6$-$10$) $\times 10^{23} \rm{GeV}^2/\rm{cm}^5$. The $D$-factor, which determines the flux due to DM decay, is predicted to be in the range $0.6$-$2$ ($0.5-1$) $\times10^{23} \rm{GeV}/\rm{cm}^2$. GitHub: The results for this work can be found at https://github.com/abdelazizhussein/MW-Inner-DM-Profile. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.14868v1-abstract-full').style.display = 'none'; document.getElementById('2501.14868v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+12 pages, 3+4 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08574">arXiv:2501.08574</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08574">pdf</a>, <a href="https://arxiv.org/format/2501.08574">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Gamma-ray flares from the jet of the blazar CTA 102 in 2016-2018 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Sanghyun Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+S">Sang-Sung Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Algaba%2C+J+C">Juan Carlos Algaba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rani%2C+B">Bindu Rani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+J">Jongho Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jeong%2C+H">Hyeon-Woo Jeong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cheong%2C+W+Y">Whee Yeon Cheong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Ammando%2C+F">Filippo D&#39;Ammando</a>, <a href="/search/astro-ph?searchtype=author&amp;query=L%C3%A4hteenm%C3%A4ki%2C+A">Anne L盲hteenm盲ki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tornikoski%2C+M">Merja Tornikoski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tammi%2C+J">Joni Tammi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramakrishnan%2C+V">Venkatessh Ramakrishnan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">Iv谩n Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casadio%2C+C">Carolina Casadio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Escudero%2C+J">Juan Escudero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuentes%2C+A">Antonio Fuentes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Traianou%2C+E">Efthalia Traianou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Myserlis%2C+I">Ioannis Myserlis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thum%2C+C">Clemens Thum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08574v1-abstract-short" style="display: inline;"> CTA 102 is a $纬$-ray bright blazar that exhibited multiple flares in observations by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope during the period of 2016-2018. We present results from the analysis of multi-wavelength light curves aiming at revealing the nature of $纬$-ray flares from the relativistic jet in the blazar. We analyse radio, optical, X-ray, and $纬$-ray data ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08574v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08574v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08574v1-abstract-full" style="display: none;"> CTA 102 is a $纬$-ray bright blazar that exhibited multiple flares in observations by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope during the period of 2016-2018. We present results from the analysis of multi-wavelength light curves aiming at revealing the nature of $纬$-ray flares from the relativistic jet in the blazar. We analyse radio, optical, X-ray, and $纬$-ray data obtained in a period from 2012 September 29 to 2018 October 8. We identify six flares in the $纬$-ray light curve, showing a harder-when-brighter-trend in the $纬$-ray spectra. We perform a cross-correlation analysis of the multi-wavelength light curves. We find nearly zero time lags between the $纬$-ray and optical and X-ray light curves, implying a common spatial origin for the emission in these bands. We find significant correlations between the $纬$-ray and radio light curves as well as negative/positive time lags with the $纬$-ray emission lagging/leading the radio during different flaring periods. The time lags between $纬$-ray and radio emission propose the presence of multiple $纬$-ray emission sites in the source. As seen in 43 GHz images from the Very Long Baseline Array, two moving disturbances (or shocks) were newly ejected from the radio core. The $纬$-ray flares from 2016 to 2017 are temporally coincident with the interaction between a traveling shock and a quasi-stationary one at $\sim$0.1 mas from the core. The other shock is found to emerge from the core nearly simultaneous with the $纬$-ray flare in 2018. Our results suggest that the $纬$-ray flares originated from shock-shock interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08574v1-abstract-full').style.display = 'none'; document.getElementById('2501.08574v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 15 figures, 4 tables, accepted for publication in A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08568">arXiv:2501.08568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08568">pdf</a>, <a href="https://arxiv.org/format/2501.08568">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> ODIN: Star Formation Histories Reveal Formative Starbursts Experienced by Lyman Alpha Emitting Galaxies at Cosmic Noon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Firestone%2C+N+M">Nicole M. Firestone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gawiser%2C+E">Eric Gawiser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iyer%2C+K+G">Kartheik G. Iyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+K">Kyoung-Soo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramakrishnan%2C+V">Vandana Ramakrishnan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valdes%2C+F">Francisco Valdes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+C">Changbom Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yujin Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alavi%2C+A">Anahita Alavi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ciardullo%2C+R">Robin Ciardullo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grogin%2C+N">Norman Grogin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gronwall%2C+C">Caryl Gronwall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guaita%2C+L">Lucia Guaita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hong%2C+S">Sungryong Hong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+H+S">Ho Seong Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Im%2C+S+H">Sang Hyeok Im</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jeong%2C+W">Woong-Seob Jeong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seongjae Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koekemoer%2C+A+M">Anton M. Koekemoer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+A">Ankit Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+J">Jaehyun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mehta%2C+V">Vihang Mehta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagaraj%2C+G">Gautam Nagaraj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nantais%2C+J">Julie Nantais</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prichard%2C+L">Laura Prichard</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08568v1-abstract-short" style="display: inline;"> In this work, we test the conventional assumption that Lyman Alpha Emitting galaxies (LAEs) are experiencing their first major burst of star formation at the time of observation. To this end, we identify 74 LAEs from the ODIN Survey with rest-UV-through-NIR photometry from UVCANDELS. For each LAE, we perform non-parametric star formation history (SFH) reconstruction using the Dense Basis Gaussian&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08568v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08568v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08568v1-abstract-full" style="display: none;"> In this work, we test the conventional assumption that Lyman Alpha Emitting galaxies (LAEs) are experiencing their first major burst of star formation at the time of observation. To this end, we identify 74 LAEs from the ODIN Survey with rest-UV-through-NIR photometry from UVCANDELS. For each LAE, we perform non-parametric star formation history (SFH) reconstruction using the Dense Basis Gaussian process-based method of spectral energy distribution fitting. We find that a strong majority (67%) of our LAE SFHs align with the conventional archetype of a first major star formation burst, with at most modest star formation rates (SFRs) in the past. However, the rest of our LAE SFHs have significant amounts of star formation in the past, with 28% exhibiting earlier bursts of star formation with the ongoing burst having the highest SFR (dominant bursts), and the final 5% having experienced their highest SFR in the past (non-dominant bursts). Combining the SFHs indicating first and dominant bursts, 95% of LAEs are experiencing their largest burst yet -- a formative burst. This suggests that LAEs have more complicated stellar mass assembly than expected. We also find that the fraction of total stellar mass created in the last 200 Myr is ~1.33 times higher in LAEs than in control Lyman Break Galaxy (LBG) samples, and that a majority of LBGs are experiencing dominant bursts, reaffirming that LAEs differ from other star forming galaxies. Overall, our results suggest that multiple evolutionary paths can produce galaxies with strong observed Ly$伪$ emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08568v1-abstract-full').style.display = 'none'; document.getElementById('2501.08568v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures; submitted to ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06293">arXiv:2501.06293</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06293">pdf</a>, <a href="https://arxiv.org/format/2501.06293">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> LensNet: Enhancing Real-time Microlensing Event Discovery with Recurrent Neural Networks in the Korea Microlensing Telescope Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Via%C3%B1a%2C+J">Javier Via帽a</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+K">Kyu-Ha Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Beurs%2C+Z">Zo毛 de Beurs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vanderburg%2C+A">Andrew Vanderburg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albrow%2C+M+D">Michael D. Albrow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+S">Sun-Ju Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">Cheongho Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+Y+K">Youn Kil Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryu%2C+Y">Yoon-Hyun Ryu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+I">In-Gu Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hongjing Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zang%2C+W">Weicheng Zang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cha%2C+S">Sang-Mok Cha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Dong-Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seung-Lee Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D">Dong-Joo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y">Yongseok Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+B">Byeong-Gon Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pogge%2C+R+W">Richard W. Pogge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06293v1-abstract-short" style="display: inline;"> Traditional microlensing event vetting methods require highly trained human experts, and the process is both complex and time-consuming. This reliance on manual inspection often leads to inefficiencies and constrains the ability to scale for widespread exoplanet detection, ultimately hindering discovery rates. To address the limits of traditional microlensing event vetting, we have developed LensN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06293v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06293v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06293v1-abstract-full" style="display: none;"> Traditional microlensing event vetting methods require highly trained human experts, and the process is both complex and time-consuming. This reliance on manual inspection often leads to inefficiencies and constrains the ability to scale for widespread exoplanet detection, ultimately hindering discovery rates. To address the limits of traditional microlensing event vetting, we have developed LensNet, a machine learning pipeline specifically designed to distinguish legitimate microlensing events from false positives caused by instrumental artifacts, such as pixel bleed trails and diffraction spikes. Our system operates in conjunction with a preliminary algorithm that detects increasing trends in flux. These flagged instances are then passed to LensNet for further classification, allowing for timely alerts and follow-up observations. Tailored for the multi-observatory setup of the Korea Microlensing Telescope Network (KMTNet) and trained on a rich dataset of manually classified events, LensNet is optimized for early detection and warning of microlensing occurrences, enabling astronomers to organize follow-up observations promptly. The internal model of the pipeline employs a multi-branch Recurrent Neural Network (RNN) architecture that evaluates time-series flux data with contextual information, including sky background, the full width at half maximum of the target star, flux errors, PSF quality flags, and air mass for each observation. We demonstrate a classification accuracy above 87.5%, and anticipate further improvements as we expand our training set and continue to refine the algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06293v1-abstract-full').style.display = 'none'; document.getElementById('2501.06293v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 13 figures, Accepted for publication in the The Astronomical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 85-08 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02193">arXiv:2501.02193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.02193">pdf</a>, <a href="https://arxiv.org/ps/2501.02193">ps</a>, <a href="https://arxiv.org/format/2501.02193">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> MOA-2022-BLG-033Lb, KMT-2023-BLG-0119Lb, and KMT-2023-BLG-1896Lb: Three low mass-ratio microlensing planets detected through dip signals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">Cheongho Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+I+A">Ian A. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+Y+K">Youn Kil Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albrow%2C+M+D">Michael D. Albrow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+S">Sun-Ju Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+K">Kyu-Ha Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryu%2C+Y">Yoon-Hyun Ryu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+I">In-Gu Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hongjing Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zang%2C+W">Weicheng Zang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cha%2C+S">Sang-Mok Cha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Doeon Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Dong-Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seung-Lee Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D">Dong-Joo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y">Yongseok Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+B">Byeong-Gon Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pogge%2C+R+W">Richard W. Pogge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+F">Fumio Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barry%2C+R">Richard Barry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+D+P">David P. Bennett</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02193v1-abstract-short" style="display: inline;"> We examined the anomalies in the light curves of the lensing events MOA-2022-BLG-033, KMT-2023-BLG-0119, and KMT-2023-BLG-1896. We conducted detailed modeling of the light curves to uncover the nature of the anomalies. This modeling revealed that all signals originated from planetary companions to the primary lens. The planet-to-host mass ratios are very low: $q\sim 7.5\times 10^{-5}$ for MOA-2022&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02193v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02193v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02193v1-abstract-full" style="display: none;"> We examined the anomalies in the light curves of the lensing events MOA-2022-BLG-033, KMT-2023-BLG-0119, and KMT-2023-BLG-1896. We conducted detailed modeling of the light curves to uncover the nature of the anomalies. This modeling revealed that all signals originated from planetary companions to the primary lens. The planet-to-host mass ratios are very low: $q\sim 7.5\times 10^{-5}$ for MOA-2022-BLG-033, $q\sim 3.6\times 10^{-4}$ for KMT-2023-BLG-0119, and $q\sim 6.9\times 10^{-5}$ for KMT-2023-BLG-1896. The anomalies occurred as the source passed through the negative deviation region behind the central caustic along the planet-host axis. The solutions are subject to a common inner-outer degeneracy, resulting in variations in estimating the projected planet-host separation. For KMT-2023-BLG-1896, although the planetary scenario provides the best explanation of the anomaly, the binary companion scenario is marginally possible. We estimate the physical parameters of the planetary systems through Bayesian analyses based on the lensing observables. The analysis identifies MOA-2022-BLG-033L as a planetary system with an ice giant, approximately 12 times the mass of Earth, orbiting an early M dwarf star. The companion of KMT-2023-BLG-1896L is also an ice giant, with a mass around 16 Earth masses, orbiting a mid-K-type main-sequence star. The companion of KMT-2023-BLG-0119L, which has a mass about the mass of Saturn, orbits a mid-K-type dwarf star. The lens for MOA-2022-BLG-033 is highly likely to be located in the disk, whereas for the other events, the probabilities of the lens being in the disk or the bulge are roughly comparable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02193v1-abstract-full').style.display = 'none'; document.getElementById('2501.02193v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01495">arXiv:2501.01495</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.01495">pdf</a>, <a href="https://arxiv.org/format/2501.01495">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a> , et al. (1794 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01495v1-abstract-short" style="display: inline;"> Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent ana&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01495v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01495v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01495v1-abstract-full" style="display: none;"> Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering the single-harmonic and the dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is $6.4\!\times\!10^{-27}$ for the young energetic pulsar J0537-6910, while the lowest constraint on the ellipticity is $8.8\!\times\!10^{-9}$ for the bright nearby millisecond pulsar J0437-4715. Additionally, for a subset of 16 targets we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of non-standard polarizations as predicted by the Brans-Dicke theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01495v1-abstract-full').style.display = 'none'; document.getElementById('2501.01495v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main paper: 12 pages, 6 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400315 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17716">arXiv:2412.17716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.17716">pdf</a>, <a href="https://arxiv.org/format/2412.17716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad93d2">10.3847/2041-8213/ad93d2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Tale of Three: Magnetic Fields along the Orion Integral-Shaped Filament as Revealed by JCMT BISTRO survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+J">Jintai Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qiu%2C+K">Keping Qiu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poidevin%2C+F">Frederick Poidevin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bastien%2C+P">Pierre Bastien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+J">Junhao Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ching%2C+T">Tao-Chung Ching</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C+W">Chang Won Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fanciullo%2C+L">Lapo Fanciullo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Onaka%2C+T">Takashi Onaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gouellec%2C+V+J+M+L">Valentin J. M. Le Gouellec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soam%2C+A">Archana Soam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tamura%2C+M">Motohide Tamura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tahani%2C+M">Mehrnoosh Tahani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eswaraiah%2C+C">Chakali Eswaraiah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+H">Hua-Bai Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berry%2C+D">David Berry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furuya%2C+R+S">Ray S. Furuya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coude%2C+S">Simon Coude</a> , et al. (130 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17716v1-abstract-short" style="display: inline;"> As part of the BISTRO survey, we present JCMT 850 $渭$m polarimetric observations towards the Orion Integral-Shaped Filament (ISF) that covers three portions known as OMC-1, OMC-2, and OMC-3. The magnetic field threading the ISF seen in the JCMT POL-2 map appears as a tale of three: pinched for OMC-1, twisted for OMC-2, and nearly uniform for OMC-3. A multi-scale analysis shows that the magnetic fi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17716v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17716v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17716v1-abstract-full" style="display: none;"> As part of the BISTRO survey, we present JCMT 850 $渭$m polarimetric observations towards the Orion Integral-Shaped Filament (ISF) that covers three portions known as OMC-1, OMC-2, and OMC-3. The magnetic field threading the ISF seen in the JCMT POL-2 map appears as a tale of three: pinched for OMC-1, twisted for OMC-2, and nearly uniform for OMC-3. A multi-scale analysis shows that the magnetic field structure in OMC-3 is very consistent at all the scales, whereas the field structure in OMC-2 shows no correlation across different scales. In OMC-1, the field retains its mean orientation from large to small scales, but shows some deviations at small scales. Histograms of relative orientations between the magnetic field and filaments reveal a bimodal distribution for OMC-1, a relatively random distribution for OMC-2, and a distribution with a predominant peak at 90$^\circ$ for OMC-3. Furthermore, the magnetic fields in OMC-1 and OMC-3 both appear to be aligned perpendicular to the fibers, which are denser structures within the filament, but the field in OMC-2 is aligned along with the fibers. All these suggest that gravity, turbulence, and magnetic field are each playing a leading role in OMC-1, 2, and 3, respectively. While OMC-2 and 3 have almost the same gas mass, density, and non-thermal velocity dispersion, there are on average younger and fewer young stellar objects in OMC-3, providing evidence that a stronger magnetic field will induce slower and less efficient star formation in molecular clouds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17716v1-abstract-full').style.display = 'none'; document.getElementById('2412.17716v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published in the ApJ Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL, 977, L31 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15875">arXiv:2412.15875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.15875">pdf</a>, <a href="https://arxiv.org/format/2412.15875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Dynamical Evolution of Substructured Star Clusters at 3 kpc from the Galactic Center </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+S">So-Myoung Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+J">Jihye Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chun%2C+S">Sang-Hyun Chun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goodwin%2C+S+P">Simon P. Goodwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chun%2C+K">Kyungwon Chun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+S">Sungsoo S. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15875v1-abstract-short" style="display: inline;"> We investigate the evolution of initial fractal clusters at 3 kpc from the Galactic Center (GC) of the Milky Way and show how red supergiant clusters (RSGCs)-like objects, which are considered to be the result of active star formation in the Scutum complex, can form by 16 Myr. We find that initial tidal filling and tidal over-filling fractals are shredded by the tidal force, but some substructures&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15875v1-abstract-full').style.display = 'inline'; document.getElementById('2412.15875v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15875v1-abstract-full" style="display: none;"> We investigate the evolution of initial fractal clusters at 3 kpc from the Galactic Center (GC) of the Milky Way and show how red supergiant clusters (RSGCs)-like objects, which are considered to be the result of active star formation in the Scutum complex, can form by 16 Myr. We find that initial tidal filling and tidal over-filling fractals are shredded by the tidal force, but some substructures can survive as individual subclusters, especially when the initial virial ratio is $\leq$0.5.These surviving subclusters are weakly mass segregated and show a top-heavy mass function. This implies the possibility that a single substructured star cluster can evolve into multiple `star clusters&#39;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15875v1-abstract-full').style.display = 'none'; document.getElementById('2412.15875v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17086">arXiv:2411.17086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17086">pdf</a>, <a href="https://arxiv.org/format/2411.17086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Evidence for Mass-dependent Evolution of Transitional Dwarf Galaxies in the Virgo Cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Suk Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rey%2C+S">Soo-Chang Rey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y">Youngdae Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17086v1-abstract-short" style="display: inline;"> We present a study on the evolution of transitional dwarf galaxies, specifically dwarf lenticulars (dS0s) and early-type dwarfs with blue cores (ETdG(bc)s), driven by environmental processes in the Virgo cluster utilizing the Extended Virgo Cluster Catalog. We investigated the morphological fraction and stellar mass of transitional dwarf galaxies in relation to the clustercentric distance, compare&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17086v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17086v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17086v1-abstract-full" style="display: none;"> We present a study on the evolution of transitional dwarf galaxies, specifically dwarf lenticulars (dS0s) and early-type dwarfs with blue cores (ETdG(bc)s), driven by environmental processes in the Virgo cluster utilizing the Extended Virgo Cluster Catalog. We investigated the morphological fraction and stellar mass of transitional dwarf galaxies in relation to the clustercentric distance, compared to dwarf elliptical galaxies (dEs) and dwarf irregular galaxies (dIrrs). We found that dS0s beyond 0.7R_vir exhibit a similar trend in the morphology-clustercentric distance relation to dEs, demonstrating a decreasing fraction with clustercentric distance, whereas ETdG(bc)s display an opposite trend to dS0s. The spatial distributions of transitional dwarf galaxies and dEs correlate with the mass, in which fractions of bright, massive galaxies increase towards the central region of the Virgo cluster. In the mass-clustercentric distance plane, dS0s exhibit a skewed distribution that favors more massive galaxies than dEs at a given clustercentric distance. In the projected phase-space diagram, dS0s are scarce in the stripped region, whereas ETdG(bc)s are absent in both the stripped and virialized regions. In addition, the dS0s in the virialized region are predominantly brighter and more massive than the dEs, indicating that the transformation of dS0s into dEs depends on the stellar mass. We propose that the majority of observed dS0s constitute a population that has settled into the Virgo cluster, whereas ETdG(bc)s represent a recently accreted population. We discuss the impact of ram pressure stripping effects on mass-dependent morphological evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17086v1-abstract-full').style.display = 'none'; document.getElementById('2411.17086v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures. Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12106">arXiv:2411.12106</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12106">pdf</a>, <a href="https://arxiv.org/format/2411.12106">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad94f4">10.3847/1538-4357/ad94f4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiwavelength Afterglow Analysis of GRB 221009A: Unveiling the Evolution of a Cooling Break in a Wind-like Medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tak%2C+D">Donggeun Tak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Uhm%2C+Z+L">Z. Lucas Uhm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paek%2C+G+S+H">Gregory S. H. Paek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Im%2C+M">Myungshin Im</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arimoto%2C+M">Makoto Arimoto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+H">Hyeonho Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Sophia Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Omodei%2C+N">Nicola Omodei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Racusin%2C+J">Judith Racusin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Urata%2C+Y">Yuji Urata</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+B">Bing Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12106v2-abstract-short" style="display: inline;"> Gamma-ray bursts (GRBs) are the most energetic explosions in the universe, and their afterglow emission provides an opportunity to probe the physics of relativistic shock waves in an extreme environment. Several key pieces for completing the picture of the GRB afterglow physics are still missing, including jet properties, emission mechanism, and particle acceleration. Here we present a study of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12106v2-abstract-full').style.display = 'inline'; document.getElementById('2411.12106v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12106v2-abstract-full" style="display: none;"> Gamma-ray bursts (GRBs) are the most energetic explosions in the universe, and their afterglow emission provides an opportunity to probe the physics of relativistic shock waves in an extreme environment. Several key pieces for completing the picture of the GRB afterglow physics are still missing, including jet properties, emission mechanism, and particle acceleration. Here we present a study of the afterglow emission of GRB 221009A, the most energetic GRB ever observed. Using optical, X-ray, and gamma-ray data up to approximately two days after the trigger, we trace the evolution of the multi-wavelength spectrum and the physical parameters behind the emission process. The broadband spectrum is consistent with the synchrotron emission emitted by relativistic electrons with its index of $p = 2.29\pm 0.02$. We identify a break energy at keV and an exponential cutoff at GeV in the observed multi-wavelength spectrum. The break energy increases in time from $16.0_{-4.9}^{+7.1}$ keV at 0.65 days to $46.8_{-15.5}^{+25.0}$ keV at 1.68 days, favoring a stellar wind-like profile of the circumburst medium with $k=2.4\pm0.1$ as in $蟻(r) \propto r^{-k}$. The high-energy attenuation at around 0.4 to 4 GeV is attributed to the maximum of the particle acceleration in the relativistic shock wave. This study confirms that the synchrotron process can explain the multi-wavelength afterglow emission and its evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12106v2-abstract-full').style.display = 'none'; document.getElementById('2411.12106v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2025ApJ 978 29T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09096">arXiv:2411.09096</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09096">pdf</a>, <a href="https://arxiv.org/ps/2411.09096">ps</a>, <a href="https://arxiv.org/format/2411.09096">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> KMT-2021-BLG-0284, KMT-2022-BLG-2480, and KMT-2024-BLG-0412: Three microlensing events involving two lens masses and two source stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">Cheongho Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">Andrzej Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+I+A">Ian A. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albrow%2C+M+D">Michael D. Albrow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+S">Sun-Ju Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+K">Kyu-Ha Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+Y+K">Youn Kil Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryu%2C+Y">Yoon-Hyun Ryu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+I">In-Gu Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hongjing Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zang%2C+W">Weicheng Zang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cha%2C+S">Sang-Mok Cha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Doeon Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Dong-Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seung-Lee Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D">Dong-Joo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y">Yongseok Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+B">Byeong-Gon Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pogge%2C+R+W">Richard W. Pogge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mr%C3%B3z%2C+P">Przemek Mr贸z</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szyma%C5%84ski%2C+M+K">Micha艂 K. Szyma艅ski</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09096v1-abstract-short" style="display: inline;"> We carried out a project involving the systematic analysis of microlensing data from the Korea Microlensing Telescope Network survey. The aim of this project is to identify lensing events with complex anomaly features that are difficult to explain using standard binary-lens or binary-source models. Our investigation reveals that the light curves of microlensing events KMT-2021-BLG-0284, KMT-2022-B&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09096v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09096v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09096v1-abstract-full" style="display: none;"> We carried out a project involving the systematic analysis of microlensing data from the Korea Microlensing Telescope Network survey. The aim of this project is to identify lensing events with complex anomaly features that are difficult to explain using standard binary-lens or binary-source models. Our investigation reveals that the light curves of microlensing events KMT-2021-BLG-0284, KMT-2022-BLG-2480, and KMT-2024-BLG-0412 display highly complex patterns with three or more anomaly features. These features cannot be adequately explained by a binary-lens (2L1S) model alone. However, the 2L1S model can effectively describe certain segments of the light curve. By incorporating an additional source into the modeling, we identified a comprehensive model that accounts for all the observed anomaly features. Bayesian analysis, based on constraints provided by lensing observables, indicates that the lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are binary systems composed of M dwarfs. For KMT-2022-BLG-2480, the primary lens is an early K-type main-sequence star with an M dwarf companion. The lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are likely located in the bulge, whereas the lens of KMT-2022-BLG-2480 is more likely situated in the disk. In all events, the binary stars of the sources have similar magnitudes due to a detection bias favoring binary source events with a relatively bright secondary source star, which increases detection efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09096v1-abstract-full').style.display = 'none'; document.getElementById('2411.09096v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01960">arXiv:2411.01960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01960">pdf</a>, <a href="https://arxiv.org/format/2411.01960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The JCMT BISTRO Survey: The Magnetic Fields of the IC 348 Star-forming Region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+Y">Youngwoo Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kwon%2C+W">Woojin Kwon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pattle%2C+K">Kate Pattle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arzoumanian%2C+D">Doris Arzoumanian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoang%2C+T">Thiem Hoang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+J">Jihye Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koch%2C+P+M">Patrick M. Koch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadavoy%2C+S">Sarah Sadavoy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bastien%2C+P">Pierre Bastien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furuya%2C+R">Ray Furuya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lai%2C+S">Shih-Ping Lai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qiu%2C+K">Keping Qiu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ward-Thompson%2C+D">Derek Ward-Thompson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berry%2C+D">David Berry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Byun%2C+D">Do-Young Byun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+H+V">Huei-Ru Vivien Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+W+P">Wen Ping Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+M">Mike Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Z">Zhiwei Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ching%2C+T">Tao-Chung Ching</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cho%2C+J">Jungyeon Cho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+M">Minho Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+Y">Yunhee Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coud%C3%A9%2C+S">Simon Coud茅</a> , et al. (128 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01960v1-abstract-short" style="display: inline;"> We present 850 $渭$m polarization observations of the IC 348 star-forming region in the Perseus molecular cloud as part of the B-fields In STar-forming Region Observation (BISTRO) survey. We study the magnetic properties of two cores (HH 211 MMS and IC 348 MMS) and a filamentary structure of IC 348. We find that the overall field tends to be more perpendicular than parallel to the filamentary struc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01960v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01960v1-abstract-full" style="display: none;"> We present 850 $渭$m polarization observations of the IC 348 star-forming region in the Perseus molecular cloud as part of the B-fields In STar-forming Region Observation (BISTRO) survey. We study the magnetic properties of two cores (HH 211 MMS and IC 348 MMS) and a filamentary structure of IC 348. We find that the overall field tends to be more perpendicular than parallel to the filamentary structure of the region. The polarization fraction decreases with intensity, and we estimate the trend by power-law and the mean of the Rice distribution fittings. The power indices for the cores are much smaller than 1, indicative of possible grain growth to micron size in the cores. We also measure the magnetic field strengths of the two cores and the filamentary area separately by applying the Davis-Chandrasekhar-Fermi method and its alternative version for compressed medium. The estimated mass-to-flux ratios are 0.45-2.20 and 0.63-2.76 for HH 211 MMS and IC 348 MMS, respectively, while the ratios for the filament is 0.33-1.50. This result may suggest that the transition from subcritical to supercritical conditions occurs at the core scale ($\sim$ 0.05 pc) in the region. In addition, we study the energy balance of the cores and find that the relative strength of turbulence to the magnetic field tends to be stronger for IC 348 MMS than HH 211 MMS. The result could potentially explain the different configurations inside the two cores: a single protostellar system in HH 211 MMS and multiple protostars in IC 348 MMS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01960v1-abstract-full').style.display = 'none'; document.getElementById('2411.01960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ. 21 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19983">arXiv:2410.19983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19983">pdf</a>, <a href="https://arxiv.org/format/2410.19983">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A Two-Week $IXPE$ Monitoring Campaign on Mrk 421 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Maksym%2C+W+P">W. Peter Maksym</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liodakis%2C+I">Ioannis Liodakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saade%2C+M+L">M. Lynne Saade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D+E">Dawoon E. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Middei%2C+R">Riccardo Middei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Gesu%2C+L">Laura Di Gesu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiehlmann%2C+S">Sebastian Kiehlmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matzeu%2C+G">Gabriele Matzeu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">Iv谩n Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marscher%2C+A+P">Alan P. Marscher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ehlert%2C+S+R">Steven R. Ehlert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jorstad%2C+S+G">Svetlana G. Jorstad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaaret%2C+P">Philip Kaaret</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marshall%2C+H+L">Herman L. Marshall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pacciani%2C+L">Luigi Pacciani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perri%2C+M">Matteo Perri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puccetti%2C+S">Simonetta Puccetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouch%2C+P+M">Pouya M. Kouch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lindfors%2C+E">Elina Lindfors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aceituno%2C+F+J">Francisco Jos茅 Aceituno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonnoli%2C+G">Giacomo Bonnoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casanova%2C+V">V铆ctor Casanova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Escudero%2C+J">Juan Escudero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ag%C3%ADs-Gonz%C3%A1lez%2C+B">Beatriz Ag铆s-Gonz谩lez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Husillos%2C+C">C茅sar Husillos</a> , et al. (131 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19983v1-abstract-short" style="display: inline;"> X-ray polarization is a unique new probe of the particle acceleration in astrophysical jets made possible through the Imaging X-ray Polarimetry Explorer. Here we report on the first dense X-ray polarization monitoring campaign on the blazar Mrk 421. Our observations were accompanied by an even denser radio and optical polarization campaign. We find significant short-timescale variability in both X&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19983v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19983v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19983v1-abstract-full" style="display: none;"> X-ray polarization is a unique new probe of the particle acceleration in astrophysical jets made possible through the Imaging X-ray Polarimetry Explorer. Here we report on the first dense X-ray polarization monitoring campaign on the blazar Mrk 421. Our observations were accompanied by an even denser radio and optical polarization campaign. We find significant short-timescale variability in both X-ray polarization degree and angle, including a $\sim90^\circ$ angle rotation about the jet axis. We attribute this to random variations of the magnetic field, consistent with the presence of turbulence but also unlikely to be explained by turbulence alone. At the same time, the degree of lower-energy polarization is significantly lower and shows no more than mild variability. Our campaign provides further evidence for a scenario in which energy-stratified shock-acceleration of relativistic electrons, combined with a turbulent magnetic field, is responsible for optical to X-ray synchrotron emission in blazar jets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19983v1-abstract-full').style.display = 'none'; document.getElementById('2410.19983v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, including 8 pages of appendices. 12 figures, 3 tables. Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18341">arXiv:2410.18341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18341">pdf</a>, <a href="https://arxiv.org/format/2410.18341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> ODIN: Strong Clustering of Protoclusters at Cosmic Noon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ramakrishnan%2C+V">Vandana Ramakrishnan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+K">Kyoung-Soo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Firestone%2C+N">Nicole Firestone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gawiser%2C+E">Eric Gawiser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Artale%2C+M+C">Maria Celeste Artale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gronwall%2C+C">Caryl Gronwall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guaita%2C+L">Lucia Guaita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Im%2C+S+H">Sang Hyeok Im</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jeong%2C+W">Woong-Seob Jeong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seongjae Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+A">Ankit Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+J">Jaehyun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moon%2C+B">Byeongha Moon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+N">Nelson Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+C">Changbom Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Song%2C+H">Hyunmi Song</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Troncoso%2C+P">Paulina Troncoso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yujin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18341v1-abstract-short" style="display: inline;"> The One-hundred-deg$^2$ DECam Imaging in Narrowbands (ODIN) survey is carrying out a systematic search for protoclusters during Cosmic Noon, using Ly$伪$-emitting galaxies (LAEs) as tracers. Once completed, ODIN aims to identify hundreds of protoclusters at redshifts of 2.4, 3.1, and 4.5 across seven extragalactic fields, covering a total area of up to 91~deg$^2$. In this work, we report strong clu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18341v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18341v1-abstract-full" style="display: none;"> The One-hundred-deg$^2$ DECam Imaging in Narrowbands (ODIN) survey is carrying out a systematic search for protoclusters during Cosmic Noon, using Ly$伪$-emitting galaxies (LAEs) as tracers. Once completed, ODIN aims to identify hundreds of protoclusters at redshifts of 2.4, 3.1, and 4.5 across seven extragalactic fields, covering a total area of up to 91~deg$^2$. In this work, we report strong clustering of high-redshift protoclusters through the protocluster-LAE cross-correlation function measurements of 150 protocluster candidates at $z~=~2.4$ and 3.1, identified in two ODIN fields with a total area of 13.9 deg$^2$. At $z~=~2.4$ and 3.1, respectively, the inferred protocluster biases are $6.6^{+1.3}_{-1.1}$ and $6.1^{+1.3}_{-1.1}$, corresponding to mean halo masses of $\log \langle M /M_\odot\rangle = 13.53^{+0.21}_{-0.24}$ and $12.96^{+0.28}_{-0.33}$. By the present day, these protoclusters are expected to evolve into virialized galaxy clusters with a mean mass of $\sim$ $10^{14.5}~M_\odot$. By comparing the observed number density of protoclusters to that of halos with the measured clustering strength, we find that our sample is highly complete. Finally, the similar descendant masses derived for our samples at $z=2.4$ and 3.1 assuming that the halo number density remains constant suggest that they represent similar structures observed at different cosmic epochs. As a consequence, any observed differences between the two samples can be understood as redshift evolution. The ODIN protocluster samples will thus provide valuable insights into the cosmic evolution of cluster galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18341v1-abstract-full').style.display = 'none'; document.getElementById('2410.18341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16565">arXiv:2410.16565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16565">pdf</a>, <a href="https://arxiv.org/format/2410.16565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for gravitational waves emitted from SN 2023ixf </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a> , et al. (1758 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16565v1-abstract-short" style="display: inline;"> We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16565v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16565v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16565v1-abstract-full" style="display: none;"> We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16565v1-abstract-full').style.display = 'none'; document.getElementById('2410.16565v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400125 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09151">arXiv:2410.09151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09151">pdf</a>, <a href="https://arxiv.org/format/2410.09151">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a> , et al. (1758 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09151v1-abstract-short" style="display: inline;"> The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations&#39; O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09151v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09151v1-abstract-full" style="display: none;"> The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations&#39; O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09151v1-abstract-full').style.display = 'none'; document.getElementById('2410.09151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages of text including references, 4 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400192 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01884">arXiv:2410.01884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01884">pdf</a>, <a href="https://arxiv.org/format/2410.01884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Merian: A Wide-Field Imaging Survey of Dwarf Galaxies at z~0.06-0.10 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Danieli%2C+S">Shany Danieli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kado-Fong%2C+E">Erin Kado-Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+S">Song Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luo%2C+Y">Yifei Luo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+T+S">Ting S Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kelvin%2C+L+S">Lee S Kelvin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leauthaud%2C+A">Alexie Leauthaud</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greene%2C+J+E">Jenny E. Greene</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mintz%2C+A">Abby Mintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+X">Xiaojing Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+J">Jiaxuan Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baldassare%2C+V">Vivienne Baldassare</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerjee%2C+A">Arka Banerjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhattacharyya%2C+J">Joy Bhattacharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanco%2C+D">Diana Blanco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+A">Alyson Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+Z">Zheng Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+X">Xinjun Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cruz%2C+A">Akaxia Cruz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Geda%2C+R">Robel Geda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+R">Runquan Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+S">Sean Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kannawadi%2C+A">Arun Kannawadi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+Y">Stacy Y. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+M">Mingyu Li</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01884v2-abstract-short" style="display: inline;"> We present the Merian Survey, an optical imaging survey optimized for studying the physical properties of bright star-forming dwarf galaxies. Merian is carried out with two medium-band filters ($N708$ and $N540$, centered at $708$ and $540$ nm), custom-built for the Dark Energy Camera (DECam) on the Blanco telescope. Merian covers $\sim 750\,\mathrm{deg}^2$ of equatorial fields, overlapping with t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01884v2-abstract-full').style.display = 'inline'; document.getElementById('2410.01884v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01884v2-abstract-full" style="display: none;"> We present the Merian Survey, an optical imaging survey optimized for studying the physical properties of bright star-forming dwarf galaxies. Merian is carried out with two medium-band filters ($N708$ and $N540$, centered at $708$ and $540$ nm), custom-built for the Dark Energy Camera (DECam) on the Blanco telescope. Merian covers $\sim 750\,\mathrm{deg}^2$ of equatorial fields, overlapping with the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) wide, deep, and ultra-deep fields. When combined with the HSC-SSP imaging data ($grizy$), the new Merian DECam medium-band imaging allows for photometric redshift measurements via the detection of H$\rm伪$ and [OIII] line emission flux excess in the $N708$ and $N540$ filters, respectively, at $0.06&lt;z&lt;0.10$. We present an overview of the survey design, observations taken to date, data reduction using the LSST Science Pipelines, including aperture-matched photometry for accurate galaxy colors, and a description of the data included in the first data release (DR1). The key science goals of Merian include: probing the dark matter halos of dwarf galaxies out to their virial radii using high signal-to-noise weak lensing profile measurements, decoupling the effects of baryonic processes from dark matter, and understanding the role of black holes in dwarf galaxy evolution. This rich dataset will also offer unique opportunities for studying extremely metal-poor galaxies via their strong [OIII] emission and H$\rm伪$ lines, as well as [OIII] emitters at $z\sim 0.4$, and Ly$\rm伪$ emitters at $z\sim 3.3$ and $z\sim 4.8$. Merian showcases the power of utilizing narrow and medium-band filters alongside broad-band filters for sky imaging, demonstrating their synergistic capacity to unveil astrophysical insights across diverse astrophysical phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01884v2-abstract-full').style.display = 'none'; document.getElementById('2410.01884v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 13 figures, 2 tables. Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00576">arXiv:2410.00576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00576">pdf</a>, <a href="https://arxiv.org/format/2410.00576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Revisiting the Mysterious Origin of FRB 20121102A with Machine-learning Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+L+Y">Leah Ya-Ling Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hashimoto%2C+T">Tetsuya Hashimoto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goto%2C+T">Tomotsugu Goto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raquel%2C+B+J">Bjorn Jasper Raquel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+C+-">Simon C. -C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+B">Bo-Han Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+J">Seong Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ling%2C+C">Chih-Teng Ling</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00576v1-abstract-short" style="display: inline;"> Fast radio bursts (FRBs) are millisecond-duration radio waves from the Universe. Even though more than 50 physical models have been proposed, the origin and physical mechanism of FRB emissions are still unknown. The classification of FRBs is one of the primary approaches to understanding their mechanisms, but previous studies classified conventionally using only a few observational parameters, suc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00576v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00576v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00576v1-abstract-full" style="display: none;"> Fast radio bursts (FRBs) are millisecond-duration radio waves from the Universe. Even though more than 50 physical models have been proposed, the origin and physical mechanism of FRB emissions are still unknown. The classification of FRBs is one of the primary approaches to understanding their mechanisms, but previous studies classified conventionally using only a few observational parameters, such as fluence and duration, which might be incomplete. To overcome this problem, we use an unsupervised machine-learning model, the Uniform Manifold Approximation and Projection (UMAP) to handle seven parameters simultaneously, including amplitude, linear temporal drift, time duration, central frequency, bandwidth, scaled energy, and fluence. We test the method for homogeneous 977 sub-bursts of FRB 20121102A detected by the Arecibo telescope. Our machine-learning analysis identified five distinct clusters, suggesting the possible existence of multiple different physical mechanisms responsible for the observed FRBs from the FRB 20121102A source. The geometry of the emission region and the propagation effect of FRB signals could also make such distinct clusters. This research will be a benchmark for future FRB classifications when dedicated radio telescopes such as the Square Kilometer Array (SKA) or Bustling Universe Radio Survey Telescope in Taiwan (BURSTT) discover more FRBs than before. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00576v1-abstract-full').style.display = 'none'; document.getElementById('2410.00576v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication for PASA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18368">arXiv:2409.18368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.18368">pdf</a>, <a href="https://arxiv.org/format/2409.18368">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Constraining cosmological parameters using the pairwise kinematic Sunyaev-Zel&#39;dovich effect with CMB-S4 and future galaxy cluster surveys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Schiappucci%2C+E">E. Schiappucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raghunathan%2C+S">S. Raghunathan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=To%2C+C">C. To</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianchini%2C+F">F. Bianchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reichardt%2C+C+L">C. L. Reichardt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hadzhiyska%2C+B">B. Hadzhiyska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">S. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melin%2C+J+B">J. B. Melin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">C. Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">E. M. Vavagiakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18368v1-abstract-short" style="display: inline;"> We present a forecast of the pairwise kinematic Sunyaev-Zel&#39;dovich (kSZ) measurement that will be achievable with the future CMB-S4 experiment. CMB-S4 is the next stage for ground-based cosmic microwave background experiments, with a planned wide area survey that will observe approximately $50\%$ of the sky. We construct a simulated sample of galaxy clusters that have been optically selected in an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18368v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18368v1-abstract-full" style="display: none;"> We present a forecast of the pairwise kinematic Sunyaev-Zel&#39;dovich (kSZ) measurement that will be achievable with the future CMB-S4 experiment. CMB-S4 is the next stage for ground-based cosmic microwave background experiments, with a planned wide area survey that will observe approximately $50\%$ of the sky. We construct a simulated sample of galaxy clusters that have been optically selected in an LSST-like survey and have spectroscopic redshifts. For this cluster sample, we predict that CMB-S4 will reject the null hypothesis of zero pairwise kSZ signal at $36 \,蟽$. We estimate the effects of systematic uncertainties such as scatter in the mass-richness scaling relation and cluster mis-centering. We find that these effects can reduce the signal-to-noise ratio of the CMB-S4 pairwise kSZ measurement by $20\%$. We explore the constraining power of the measured kSZ signal in combination with measurements of the galaxy clusters&#39; thermal SZ emission on two extensions to the standard cosmological model. The first extension allows the dark energy equation of state $w$ to vary. We find the CMB-S4 pairwise kSZ measurement yields a modest reduction in the uncertainty on $w$ by a factor of 1.36 over the \Planck&#39;s 2018 uncertainty. The second extension tests General Relativity by varying the growth index $纬$. We find that CMB-S4&#39;s pairwise kSZ measurement will yield a $28蟽$ constraint on $纬$, and strongly constrain alternative theories of gravity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18368v1-abstract-full').style.display = 'none'; document.getElementById('2409.18368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2207.11937</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13810">arXiv:2409.13810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13810">pdf</a>, <a href="https://arxiv.org/format/2409.13810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> StreamGen: Connecting Populations of Streams and Shells to Their Host Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dropulic%2C+A">Adriana Dropulic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shipp%2C+N">Nora Shipp</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Stacy Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mezghanni%2C+Z">Zeineb Mezghanni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Necib%2C+L">Lina Necib</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lisanti%2C+M">Mariangela Lisanti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13810v1-abstract-short" style="display: inline;"> In this work, we study how the abundance and dynamics of populations of disrupting satellite galaxies change systematically as a function of host galaxy properties. We apply a theoretical model of the phase-mixing process to classify intact satellite galaxies, stellar stream-like and shell-like debris in ~1500 Milky Way-mass systems generated by a semi-analytic galaxy formation code, SatGen. In pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13810v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13810v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13810v1-abstract-full" style="display: none;"> In this work, we study how the abundance and dynamics of populations of disrupting satellite galaxies change systematically as a function of host galaxy properties. We apply a theoretical model of the phase-mixing process to classify intact satellite galaxies, stellar stream-like and shell-like debris in ~1500 Milky Way-mass systems generated by a semi-analytic galaxy formation code, SatGen. In particular, we test the effect of host galaxy halo mass, disk mass, ratio of disk scale height to length, and stellar feedback model on disrupting satellite populations. We find that the counts of tidal debris are consistent across all host galaxy models, within a given host mass range, and that all models can have stream-like debris on low-energy orbits, consistent with those observed around the Milky Way. However, we find a preference for stream-like debris on lower-energy orbits in models with a thicker (lower-density) host disk or on higher-energy orbits in models with a more-massive host disk. Importantly, we observe significant halo-to-halo variance across all models. These results highlight the importance of simulating and observing large samples of Milky Way-mass galaxies and accounting for variations in host properties when using disrupting satellites in studies of near-field cosmology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13810v1-abstract-full').style.display = 'none'; document.getElementById('2409.13810v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18+6 pages, 10+2 figures, code publicly available on GitHub</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12227">arXiv:2409.12227</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12227">pdf</a>, <a href="https://arxiv.org/format/2409.12227">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Observations of Microlensed Images with Dual-field Interferometry: On-sky Demonstration and Prospects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mroz%2C+P">P. Mroz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dong%2C+S">S. Dong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Merand%2C+A">A. Merand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shangguan%2C+J">J. Shangguan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woillez%2C+J">J. Woillez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">A. Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">A. Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eisenhauer%2C+F">F. Eisenhauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryu%2C+Y+-">Y. -H. Ryu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+Z">Z. Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+Z">Z. Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">H. Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourdarot%2C+G">G. Bourdarot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Defrere%2C+D">D. Defrere</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drescher%2C+A">A. Drescher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabricius%2C+M">M. Fabricius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garcia%2C+P">P. Garcia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Genzel%2C+R">R. Genzel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gillessen%2C+S">S. Gillessen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Honig%2C+S+F">S. F. Honig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kreidberg%2C+L">L. Kreidberg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bouquin%2C+J+-+L">J. -B. Le Bouquin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lutz%2C+D">D. Lutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Millour%2C+F">F. Millour</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ott%2C+T">T. Ott</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12227v2-abstract-short" style="display: inline;"> Interferometric observations of gravitational microlensing events offer an opportunity for precise, efficient, and direct mass and distance measurements of lensing objects, especially those of isolated neutron stars and black holes. However, such observations have previously been possible for only a handful of extremely bright events. The recent development of a dual-field interferometer, GRAVITY&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12227v2-abstract-full').style.display = 'inline'; document.getElementById('2409.12227v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12227v2-abstract-full" style="display: none;"> Interferometric observations of gravitational microlensing events offer an opportunity for precise, efficient, and direct mass and distance measurements of lensing objects, especially those of isolated neutron stars and black holes. However, such observations have previously been possible for only a handful of extremely bright events. The recent development of a dual-field interferometer, GRAVITY Wide, has made it possible to reach out to significantly fainter objects and increase the pool of microlensing events amenable to interferometric observations by two orders of magnitude. Here, we present the first successful observation of a microlensing event with GRAVITY Wide and the resolution of microlensed images in the event OGLE-2023-BLG-0061/KMT-2023-BLG-0496. We measure the angular Einstein radius of the lens with subpercent precision, $胃_{\rm E} = 1.280 \pm 0.009$ mas. Combined with the microlensing parallax detected from the event light curve, the mass and distance to the lens are found to be $0.472 \pm 0.012\,M_{\odot}$ and $1.81 \pm 0.05$ kpc, respectively. We present the procedure for the selection of targets for interferometric observations and discuss possible systematic effects affecting GRAVITY Wide data. This detection demonstrates the capabilities of the new instrument, and it opens up completely new possibilities for the follow-up of microlensing events and future routine discoveries of isolated neutron stars and black holes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12227v2-abstract-full').style.display = 'none'; document.getElementById('2409.12227v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15214">arXiv:2408.15214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15214">pdf</a>, <a href="https://arxiv.org/format/2408.15214">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> EDGE: Predictable Scatter in the Stellar Mass--Halo Mass Relation of Dwarf Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+Y">Stacy Y. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Read%2C+J+I">Justin I. Read</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rey%2C+M+P">Martin P. Rey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orkney%2C+M+D+A">Matthew D. A. Orkney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nigudkar%2C+S">Sushanta Nigudkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pontzen%2C+A">Andrew Pontzen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taylor%2C+E">Ethan Taylor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agertz%2C+O">Oscar Agertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+P">Payel Das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15214v1-abstract-short" style="display: inline;"> The stellar-mass--halo-mass (SMHM) relation is central to our understanding of galaxy formation and the nature of dark matter. However, its normalisation, slope, and scatter are highly uncertain at dwarf galaxy scales. In this paper, we present DarkLight, a new semi-empirical dwarf galaxy formation model designed to robustly predict the SMHM relation for the smallest galaxies. DarkLight harnesses&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15214v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15214v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15214v1-abstract-full" style="display: none;"> The stellar-mass--halo-mass (SMHM) relation is central to our understanding of galaxy formation and the nature of dark matter. However, its normalisation, slope, and scatter are highly uncertain at dwarf galaxy scales. In this paper, we present DarkLight, a new semi-empirical dwarf galaxy formation model designed to robustly predict the SMHM relation for the smallest galaxies. DarkLight harnesses a correlation between the mean star formation rate of dwarfs and their peak rotation speed -- the $\langle$SFR$\rangle$-$v_{\rm max}$ relation -- that we derive from simulations and observations. Given the sparsity of data for isolated dwarfs with $v_{\rm max} \lesssim 20$ km/s, we fit the $\langle$SFR$\rangle$-$v_{\rm max}$ relation to observational data for dwarfs above this velocity scale and to the high-resolution EDGE cosmological simulations below. Reionisation quenching is implemented via distinct $\langle$SFR$\rangle$-$v_{\rm max}$ relations before and after reionisation. We find that the SMHM scatter is small at reionisation, $\sim$0.2 dex, but rises to $\sim$0.5 dex ($1蟽$) at a halo mass of $\sim$10$^9$ M$_\odot$ as star formation is quenched by reionisation but dark matter halo masses continue to grow. While we do not find a significant break in the slope of the SMHM relation, one can be introduced if reionisation occurs early ($z_{\rm quench} \gtrsim 5$). Finally, we find that dwarfs can be star forming today down to a halo mass of $\sim$2 $\times 10^9$ M$_\odot$. We predict that the lowest mass star forming dwarf irregulars in the nearby universe are the tip of the iceberg of a much larger population of quiescent isolated dwarfs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15214v1-abstract-full').style.display = 'none'; document.getElementById('2408.15214v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures. Key results are summarized in Figures 3-6. To be submitted to MNRAS. Comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14005">arXiv:2408.14005</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14005">pdf</a>, <a href="https://arxiv.org/format/2408.14005">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad72e6">10.3847/1538-4357/ad72e6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Calibration of Polycyclic Aromatic Hydrocarbon Dust Emission as a Star Formation Rate Indicator in the AKARI NEP Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+H+K">Helen Kyung Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malkan%2C+M+A">Matthew A. Malkan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Takagi%2C+T">Toshinobu Takagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oi%2C+N">Nagisa Oi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgarella%2C+D">Denis Burgarella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miyaji%2C+T">Takamitsu Miyaji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shim%2C+H">Hyunjin Shim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsuhara%2C+H">Hideo Matsuhara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goto%2C+T">Tomotsugu Goto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ohyama%2C+Y">Yoichi Ohyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buat%2C+V">Veronique Buat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+J">Seong Jin Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14005v1-abstract-short" style="display: inline;"> Polycyclic aromatic hydrocarbon (PAH) dust emission has been proposed as an effective extinction-independent star formation rate (SFR) indicator in the mid-infrared (MIR), but this may depend on conditions in the interstellar medium. The coverage of the AKARI/Infrared Camera (IRC) allows us to study the effects of metallicity, starburst intensity, and active galactic nuclei on PAH emission in gala&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14005v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14005v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14005v1-abstract-full" style="display: none;"> Polycyclic aromatic hydrocarbon (PAH) dust emission has been proposed as an effective extinction-independent star formation rate (SFR) indicator in the mid-infrared (MIR), but this may depend on conditions in the interstellar medium. The coverage of the AKARI/Infrared Camera (IRC) allows us to study the effects of metallicity, starburst intensity, and active galactic nuclei on PAH emission in galaxies with $f_谓(L18W)\lesssim 19$ AB mag. Observations include follow-up, rest-frame optical spectra of 443 galaxies within the AKARI North Ecliptic Pole survey that have IRC detections from 7-24 $渭$m. We use optical emission line diagnostics to infer SFR based on H$伪$ and [O II]$位位3726,3729$ emission line luminosities. The PAH 6.2 $渭$m and PAH 7.7 $渭$m luminosities ($L(PAH\ 6.2\ 渭m)$ and $L(PAH\ 7.7\ 渭m)$, respectively) derived using multi-wavelength model fits are consistent with those derived from slitless spectroscopy within 0.2 dex. $L(PAH\ 6.2\ 渭m)$ and $L(PAH\ 7.7\ 渭m)$ correlate linearly with the 24 $渭$m-dust corrected H$伪$ luminosity only for normal, star-forming ``main-sequence&#34; galaxies. Assuming multi-linear correlations, we quantify the additional dependencies on metallicity and starburst intensity, which we use to correct our PAH SFR calibrations at $0&lt;z&lt;1.2$ for the first time. We derive the cosmic star formation rate density (SFRD) per comoving volume from $0.15 \lesssim z \lesssim 1$. The PAH SFRD is consistent with that of the far-infrared and reaches an order of magnitude higher than that of uncorrected UV observations at $z\sim1$. Starburst galaxies contribute $\gtrsim 0.7$ of the total SFRD at $z\sim1$ compared to main-sequence galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14005v1-abstract-full').style.display = 'none'; document.getElementById('2408.14005v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in The Astrophysical Journal. 50 pages, 27 figures, 9 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11248">arXiv:2408.11248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11248">pdf</a>, <a href="https://arxiv.org/ps/2408.11248">ps</a>, <a href="https://arxiv.org/format/2408.11248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Microlensing brown-dwarf companions in binaries detected during the 2022 and 2023 seasons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">Cheongho Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+I+A">Ian A. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">Andrzej Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albrow%2C+M+D">Michael D. Albrow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+S">Sun-Ju Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+K">Kyu-Ha Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+Y+K">Youn Kil Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryu%2C+Y">Yoon-Hyun Ryu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+I">In-Gu Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hongjing Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zang%2C+W">Weicheng Zang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cha%2C+S">Sang-Mok Cha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Doeon Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Dong-Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seung-Lee Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D">Dong-Joo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y">Yongseok Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+B">Byeong-Gon Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pogge%2C+R+W">Richard W. Pogge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+F">Fumio Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bando%2C+K">Ken Bando</a> , et al. (41 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11248v1-abstract-short" style="display: inline;"> Building on previous works to construct a homogeneous sample of brown dwarfs in binary systems, we investigate microlensing events detected by the Korea Microlensing Telescope Network (KMTNet) survey during the 2022 and 2023 seasons. Given the difficulty in distinguishing brown-dwarf events from those produced by binary lenses with nearly equal-mass components, we analyze all lensing events detect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11248v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11248v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11248v1-abstract-full" style="display: none;"> Building on previous works to construct a homogeneous sample of brown dwarfs in binary systems, we investigate microlensing events detected by the Korea Microlensing Telescope Network (KMTNet) survey during the 2022 and 2023 seasons. Given the difficulty in distinguishing brown-dwarf events from those produced by binary lenses with nearly equal-mass components, we analyze all lensing events detected during the seasons that exhibit anomalies characteristic of binary-lens systems. Using the same criteria consistently applied in previous studies, we identify six additional brown dwarf candidates through the analysis of lensing events KMT-2022-BLG-0412, KMT-2022-BLG-2286, KMT-2023-BLG-0201, KMT-2023-BLG-0601, KMT-2023-BLG-1684, and KMT-2023-BLG-1743. An examination of the mass posteriors shows that the median mass of the lens companions ranges from 0.02 $M_\odot$ to 0.05 $M_\odot$, indicating that these companions fall within the brown-dwarf mass range. The mass of the primary lenses ranges from 0.11 $M_\odot$ to 0.68 $M_\odot$, indicating that they are low-mass stars with substantially lower masses compared to the Sun. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11248v1-abstract-full').style.display = 'none'; document.getElementById('2408.11248v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 17 figures, 12 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.09806">arXiv:2408.09806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.09806">pdf</a>, <a href="https://arxiv.org/format/2408.09806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Improved background modeling for dark matter search with COSINE-100 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Yu%2C+G+H">G. H. Yu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carlin%2C+N">N. Carlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cho%2C+J+Y">J. Y. Cho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+J+J">J. J. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S">S. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ezeribe%2C+A+C">A. C. Ezeribe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Franca%2C+L+E">L. E. Franca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ha%2C+C">C. Ha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hahn%2C+I+S">I. S. Hahn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hollick%2C+S+J">S. J. Hollick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jeon%2C+E+J">E. J. Jeon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joo%2C+H+W">H. W. Joo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kang%2C+W+G">W. G. Kang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kauer%2C+M">M. Kauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+B+H">B. H. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+H+J">H. J. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">J. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+K">S. K. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+W+K">W. K. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+Y+H">Y. H. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ko%2C+Y+J">Y. J. Ko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D+H">D. H. Lee</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.09806v1-abstract-short" style="display: inline;"> COSINE-100 aims to conclusively test the claimed dark matter annual modulation signal detected by DAMA/LIBRA collaboration. DAMA/LIBRA has released updated analysis results by lowering the energy threshold to 0.75 keV through various upgrades. They have consistently claimed to have observed the annual modulation. In COSINE-100, it is crucial to lower the energy threshold for a direct comparison wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09806v1-abstract-full').style.display = 'inline'; document.getElementById('2408.09806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.09806v1-abstract-full" style="display: none;"> COSINE-100 aims to conclusively test the claimed dark matter annual modulation signal detected by DAMA/LIBRA collaboration. DAMA/LIBRA has released updated analysis results by lowering the energy threshold to 0.75 keV through various upgrades. They have consistently claimed to have observed the annual modulation. In COSINE-100, it is crucial to lower the energy threshold for a direct comparison with DAMA/LIBRA, which also enhances the sensitivity of the search for low-mass dark matter, enabling COSINE-100 to explore this area. Therefore, it is essential to have a precise and quantitative understanding of the background spectrum across all energy ranges. This study expands the background modeling from 0.7 to 4000 keV using 2.82 years of COSINE-100 data. The modeling has been improved to describe the background spectrum across all energy ranges accurately. Assessments of the background spectrum are presented, considering the nonproportionality of NaI(Tl) crystals at both low and high energies and the characteristic X-rays produced by the interaction of external backgrounds with materials such as copper. Additionally, constraints on the fit parameters obtained from the alpha spectrum modeling fit are integrated into this model. These improvements are detailed in the paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.09806v1-abstract-full').style.display = 'none'; document.getElementById('2408.09806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06287">arXiv:2408.06287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06287">pdf</a>, <a href="https://arxiv.org/format/2408.06287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Infant Type Ia Supernovae from the KMTNet I. Multi-Color Evolution and Populations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ni%2C+Y+Q">Yuan Qi Ni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moon%2C+D">Dae-Sik Moon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drout%2C+M+R">Maria R. Drout</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y">Youngdae Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sandoval%2C+P">Patrick Sandoval</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+J">Jeehye Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+H+S">Hong Soo Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+C">Sang Chul Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oh%2C+K">Kyuseok Oh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06287v1-abstract-short" style="display: inline;"> We conduct a systematic analysis of the early multi-band light curves and colors of 19 Type Ia Supernovae (SNe) from the Korea Microlensing Telescope Network SN Program, including 16 previously unpublished events. Seven are detected $\lesssim$ 1 day since the estimated epoch of first light and the rest within $\lesssim$ 3 days. Some show excess emission within $&lt;$ 0.5 days to $\sim$ 2 days, but mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06287v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06287v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06287v1-abstract-full" style="display: none;"> We conduct a systematic analysis of the early multi-band light curves and colors of 19 Type Ia Supernovae (SNe) from the Korea Microlensing Telescope Network SN Program, including 16 previously unpublished events. Seven are detected $\lesssim$ 1 day since the estimated epoch of first light and the rest within $\lesssim$ 3 days. Some show excess emission within $&lt;$ 0.5 days to $\sim$ 2 days, but most show pure power-law rises. The colors are initially diverse before $\sim$ 5 days, but converge to a similar color at $\sim$ 10 days. We identify at least three populations based on 2--5-day color evolution: (1) &#34;early-blues&#34; exhibit slowly-evolving colors consistent with a $\sim$ 17,000 K blackbody; (2) &#34;early-reds&#34; have initially blue $B-V$ and red $V-i$ colors that cannot simultaneously be fit with a blackbody -- likely due to suppression of $B$- and $i$-band flux by Fe II/III and Ca II -- and evolve more rapidly; and (3) &#34;early-yellows&#34; evolve blueward, consistent with thermal heating from $\sim$ 8,000 to 13,000 K. The distributions of early-blue and early-red colors are compatible with them being either distinct populations -- with early-reds comprising (60 $\pm$ 15)% of them -- or extreme ends of one continuous population; whereas the early-yellow population identified here is clearly distinct. Compared to the other populations, early-blues in our sample differ by exhibiting excess emission within 1--2 days, nearly constant peak brightness regardless of $螖M_{15}(B)$ after standardization, and shallower Si II features. Early-blues also prefer star-forming host environments, while early-yellows and, to a lesser extent, early-reds prefer quiescent ones. These preferences appear to indicate at least two Type Ia SN production channels based on stellar population age, while early-reds and early-blues may still share a common origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06287v1-abstract-full').style.display = 'none'; document.getElementById('2408.06287v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted for publication in ApJ. 48 pages, 29 figures, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03128">arXiv:2408.03128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03128">pdf</a>, <a href="https://arxiv.org/format/2408.03128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad6b16">10.3847/1538-4357/ad6b16 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of Star Cluster Within Galaxy using Self-consistent Hybrid Hydro/N-body Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Jo%2C+Y">Yongseok Jo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seoyoung Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Ji-hoon Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryan%2C+G+L">Greg L. Bryan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03128v1-abstract-short" style="display: inline;"> We introduce a GPU-accelerated hybrid hydro/N-body code (Enzo-N) designed to address the challenges of concurrently simulating star clusters and their parent galaxies. This task has been exceedingly challenging, primarily due to the considerable computational time required, which stems from the substantial scale difference between galaxies (~ 0.1 Mpc) and star clusters (~ pc). Yet, this significan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03128v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03128v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03128v1-abstract-full" style="display: none;"> We introduce a GPU-accelerated hybrid hydro/N-body code (Enzo-N) designed to address the challenges of concurrently simulating star clusters and their parent galaxies. This task has been exceedingly challenging, primarily due to the considerable computational time required, which stems from the substantial scale difference between galaxies (~ 0.1 Mpc) and star clusters (~ pc). Yet, this significant scale separation means that particles within star clusters perceive those outside the star cluster in a semi-stationary state. By leveraging this aspect, we integrate the direct N-body code (Nbody6++GPU) into the cosmological (magneto-)hydrodynamic code (Enzo) through the utilization of the semi-stationary background acceleration approximation. We solve the dynamics of particles within star clusters using the direct N-body solver with regularization for few-body interactions, while evolving particles outside -- dark matter, gas, and stars -- using the particle-mesh gravity solver and hydrodynamic methods. We demonstrate that Enzo-N successfully simulates the co-evolution of star clusters and their parent galaxies, capturing phenomena such as core collapse of the star cluster and tidal stripping due to galactic tides. This comprehensive framework opens up new possibilities for studying the evolution of star clusters within galaxies, offering insights that were previously inaccessible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03128v1-abstract-full').style.display = 'none'; document.getElementById('2408.03128v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures, Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17002">arXiv:2407.17002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17002">pdf</a>, <a href="https://arxiv.org/ps/2407.17002">ps</a>, <a href="https://arxiv.org/format/2407.17002">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> KMT-2021-BLG-2609Lb and KMT-2022-BLG-0303Lb: Microlensing planets identified through signals produced by major-image perturbations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">Cheongho Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albrow%2C+M+D">Michael D. Albrow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+S">Sun-Ju Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+K">Kyu-Ha Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+Y+K">Youn Kil Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryu%2C+Y">Yoon-Hyun Ryu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+I">In-Gu Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hongjing Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zang%2C+W">Weicheng Zang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cha%2C+S">Sang-Mok Cha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Doeon Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Dong-Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seung-Lee Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D">Dong-Joo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y">Yongseok Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+B">Byeong-Gon Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pogge%2C+R+W">Richard W. Pogge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17002v1-abstract-short" style="display: inline;"> We investigate microlensing data collected by the Korea Microlensing Telescope Network (KMTNet) survey. Our investigation reveals that the light curves of two lensing events, KMT-2021-BLG-2609 and KMT-2022-BLG-0303, exhibit a similar anomaly, in which short-term positive deviations appear on the sides of the low-magnification lensing light curves. To unravel the nature of these anomalies, we metic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17002v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17002v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17002v1-abstract-full" style="display: none;"> We investigate microlensing data collected by the Korea Microlensing Telescope Network (KMTNet) survey. Our investigation reveals that the light curves of two lensing events, KMT-2021-BLG-2609 and KMT-2022-BLG-0303, exhibit a similar anomaly, in which short-term positive deviations appear on the sides of the low-magnification lensing light curves. To unravel the nature of these anomalies, we meticulously analyze each of the lensing events. Our investigations reveal that these anomalies stem from a shared channel, wherein the source passed near the planetary caustic induced by a planet with projected separations from the host star exceeding the Einstein radius. We find that interpreting the anomaly of KMT-2021-BLG-2609 is complicated by the &#34;inner--outer&#34; degeneracy, whereas for KMT-2022-BLG-0303, there is no such issue despite similar lens-system configurations. In addition to this degeneracy, interpreting the anomaly in KMT-2021-BLG-2609 involves an additional degeneracy between a pair of solutions, in which the source partially envelops the caustic and the other three solutions in which the source fully envelopes the caustic. As in an earlier case of this so-called von Schlieffen--Cannae degeneracy, the former solutions have substantially higher mass ratio. Through Bayesian analyses conducted based on the measured lensing observables of the event time scale and angular Einstein radius, the host of KMT-2021-BLG-2609L is determined to be a low-mass star with a mass $\sim 0.2~M_\odot$ in terms of a median posterior value, while the planet&#39;s mass ranges from approximately 0.032 to 0.112 times that of Jupiter, depending on the solutions. For the planetary system KMT-2022-BLG-0303L, it features a planet with a mass of approximately $0.51~M_{\rm J}$ and a host star with a mass of about $0.37~M_\odot$. In both cases, the lenses are most likely situated in the bulge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17002v1-abstract-full').style.display = 'none'; document.getElementById('2407.17002v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14579">arXiv:2407.14579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14579">pdf</a>, <a href="https://arxiv.org/format/2407.14579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae2748">10.1093/mnras/stae2748 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> EDGE: Dark matter core creation depends on the timing of star formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Muni%2C+C">Claudia Muni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pontzen%2C+A">Andrew Pontzen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Read%2C+J+I">Justin I. Read</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agertz%2C+O">Oscar Agertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rey%2C+M+P">Martin P. Rey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taylor%2C+E">Ethan Taylor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+Y">Stacy Y. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gray%2C+E+I">Emily I. Gray</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14579v2-abstract-short" style="display: inline;"> We study feedback-driven cold dark matter core creation in the EDGE suite of radiation-hydrodynamical dwarf galaxy simulations. Understanding this process is crucial when using observed dwarf galaxies to constrain the particle nature of dark matter. While previous studies have shown the stellar-mass to halo-mass ratio $(M_{\star} / M_{200})$ determines the extent of core creation, we find that in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14579v2-abstract-full').style.display = 'inline'; document.getElementById('2407.14579v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14579v2-abstract-full" style="display: none;"> We study feedback-driven cold dark matter core creation in the EDGE suite of radiation-hydrodynamical dwarf galaxy simulations. Understanding this process is crucial when using observed dwarf galaxies to constrain the particle nature of dark matter. While previous studies have shown the stellar-mass to halo-mass ratio $(M_{\star} / M_{200})$ determines the extent of core creation, we find that in low-mass dwarfs there is a crucial additional effect, namely the timing of star formation relative to reionisation. Sustained post-reionisation star formation decreases central dark matter density through potential fluctuations; conversely, pre-reionisation star formation is too short-lived to have such an effect. In fact, large stellar masses accrued prior to reionisation are a strong indicator of early collapse, and therefore indicative of an increased central dark matter density. We parameterise this differentiated effect by considering $M_{\star,\mathrm{post}}/M_{\star,\mathrm{pre}}$, where the numerator and denominator represent the amount of star formation after and before $z\sim6.5$, respectively. Our study covers the halo mass range $10^9 &lt; M_{200} &lt; 10^{10} M_\odot$ (stellar masses between $10^4 &lt; M_{\star} &lt; 10^8 M_\odot$), spanning both ultra-faint and classical dwarfs. In this regime, $M_{\star,\mathrm{post}}/M_{\star,\mathrm{pre}}$ correlates almost perfectly with the central dark matter density at $z=0$, even when including simulations with a substantially different variant of feedback and cooling. We provide fitting formulae to describe the newfound dependence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14579v2-abstract-full').style.display = 'none'; document.getElementById('2407.14579v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures, 1 appendix. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13864">arXiv:2407.13864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13864">pdf</a>, <a href="https://arxiv.org/format/2407.13864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450453">10.1051/0004-6361/202450453 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chandra Survey in the AKARI North Ecliptic Pole Deep Field Optical/Infrared Identifications of X-ray Sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Miyaji%2C+T">T. Miyaji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bravo-Navarro%2C+B+A">B. A. Bravo-Navarro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tello%2C+J+D">J. D铆az Tello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krumpe%2C+M">M. Krumpe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Herrera-Endoqui%2C+M">M. Herrera-Endoqui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ikeda%2C+H">H. Ikeda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Takagi%2C+T">T. Takagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oi%2C+N">N. Oi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shogaki%2C+A">A. Shogaki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsuura%2C+S">S. Matsuura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+H">H. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malkan%2C+M+A">M. A. Malkan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+H+S">H. S. Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+T">T. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ishigaki%2C+T">T. Ishigaki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanami%2C+H">H. Hanami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+J">S. J. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ohyama%2C+Y">Y. Ohyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goto%2C+T">T. Goto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsuhara%2C+H">H. Matsuhara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13864v2-abstract-short" style="display: inline;"> We present a catalog of optical and infrared identifications (ID) of X-ray sources in the AKARI North Ecliptic Pole (NEP) Deep field detected with Chandra covering $\sim 0.34\,{\rm deg^{2}}$ with 0.5-2 keV flux limits ranging $\sim 2 \mathrm{-} 20\times 10^{-16}\,{\rm erg\,s^{-1}\,cm^{-2}}$. The optical/near-infrared counterparts of the X-ray sources are taken from our Hyper Suprime Cam (HSC)/Suba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13864v2-abstract-full').style.display = 'inline'; document.getElementById('2407.13864v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13864v2-abstract-full" style="display: none;"> We present a catalog of optical and infrared identifications (ID) of X-ray sources in the AKARI North Ecliptic Pole (NEP) Deep field detected with Chandra covering $\sim 0.34\,{\rm deg^{2}}$ with 0.5-2 keV flux limits ranging $\sim 2 \mathrm{-} 20\times 10^{-16}\,{\rm erg\,s^{-1}\,cm^{-2}}$. The optical/near-infrared counterparts of the X-ray sources are taken from our Hyper Suprime Cam (HSC)/Subaru and Wide-Field InfraRed Camera (WIRCam)/Canada-France-Hawaii Telescope (CFHT) data because these have much more accurate source positions due to their spatial resolution than that of {Chandra} and longer wavelength infrared data. We concentrate our identifications in the HSC $g$ band and WIRCam $K_{\rm s}$ band-based catalogs. To select the best counterpart, we utilize a novel extension of the likelihood-ratio (LR) analysis, where we use the X-ray flux as well as $g - K_{\rm s}$ colors to calculate the likelihood ratio. Spectroscopic and photometric redshifts of the counterparts are summarized. Also, simple X-ray spectroscopy is made on the sources with sufficient source counts. We present the resulting catalog in an electronic form. The main ID catalog contains 403 X-ray sources and includes X-ray fluxes, luminosities, $g$ and $K_{\rm s}$ band magnitudes, redshifts, and their sources, optical spectroscopic properties, as well as intrinsic absorption column densities and power-law indices from simple X-ray spectroscopy. The identified X-ray sources include 27 Milky-Way objects, 57 type I AGNs, 131 other AGNs, and 15 galaxies. The catalog serves as a basis for further investigations of the properties of the X-ray and near-infrared sources in this field. (Abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13864v2-abstract-full').style.display = 'none'; document.getElementById('2407.13864v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, Three electronic (fits) tables are included in src. Accepted to Astronomy and Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 689, A83 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13740">arXiv:2407.13740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13740">pdf</a>, <a href="https://arxiv.org/format/2407.13740">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Analysis of the full Spitzer microlensing sample I: Dark remnant candidates and Gaia predictions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rybicki%2C+K+A">Krzysztof A. Rybicki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Novati%2C+S+C">Sebastiano Calchi Novati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ofek%2C+E+O">Eran O. Ofek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+I+A">Ian A. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beichman%2C+C">Charles Beichman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bryden%2C+G">Geoff Bryden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carey%2C+S">Sean Carey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henderson%2C+C">Calen Henderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+W">Wei Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fausnaugh%2C+M+M">Michael M. Fausnaugh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wibking%2C+B">Benjamin Wibking</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Udalski%2C+A">Andrzej Udalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poleski%2C+R">Radek Poleski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mr%C3%B3z%2C+P">Przemek Mr贸z</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szyma%C5%84ski%2C+M+K">Michal K. Szyma艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">Igor Soszy艅ski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pietrukowicz%2C+P">Pawe艂 Pietrukowicz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koz%C5%82owski%2C+S">Szymon Koz艂owski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowron%2C+J">Jan Skowron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ulaczyk%2C+K">Krzysztof Ulaczyk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iwanek%2C+P">Patryk Iwanek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wrona%2C+M">Marcin Wrona</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryu%2C+Y">Yoon-Hyun Ryu</a> , et al. (48 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13740v1-abstract-short" style="display: inline;"> In the pursuit of understanding the population of stellar remnants within the Milky Way, we analyze the sample of $\sim 950$ microlensing events observed by the Spitzer Space Telescope between 2014 and 2019. In this study we focus on a sub-sample of nine microlensing events, selected based on their long timescales, small microlensing parallaxes and joint observations by the Gaia mission, to increa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13740v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13740v1-abstract-full" style="display: none;"> In the pursuit of understanding the population of stellar remnants within the Milky Way, we analyze the sample of $\sim 950$ microlensing events observed by the Spitzer Space Telescope between 2014 and 2019. In this study we focus on a sub-sample of nine microlensing events, selected based on their long timescales, small microlensing parallaxes and joint observations by the Gaia mission, to increase the probability that the chosen lenses are massive and the mass is measurable. Among the selected events we identify lensing black holes and neutron star candidates, with potential confirmation through forthcoming release of the Gaia time-series astrometry in 2026. Utilizing Bayesian analysis and Galactic models, along with the Gaia Data Release 3 proper motion data, four good candidates for dark remnants were identified: OGLE-2016-BLG-0293, OGLE-2018-BLG-0483, OGLE-2018-BLG-0662, and OGLE-2015-BLG-0149, with lens masses of $2.98^{+1.75}_{-1.28}~M_{\odot}$, $4.65^{+3.12}_{-2.08}~M_{\odot}$, $3.15^{+0.66}_{-0.64}~M_{\odot}$ and $1.4^{+0.75}_{-0.55}~M_{\odot}$, respectively. Notably, the first two candidates are expected to exhibit astrometric microlensing signals detectable by Gaia, offering the prospect of validating the lens masses. The methodologies developed in this work will be applied to the full Spitzer microlensing sample, populating and analyzing the time-scale ($t_{\rm E}$) vs. parallax ($蟺_{\rm E}$) diagram to derive constraints on the population of lenses in general and massive remnants in particular. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13740v1-abstract-full').style.display = 'none'; document.getElementById('2407.13740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12867">arXiv:2407.12867</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12867">pdf</a>, <a href="https://arxiv.org/format/2407.12867">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Raman%2C+G">Gayathri Raman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ronchini%2C+S">Samuele Ronchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delaunay%2C+J">James Delaunay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tohuvavohu%2C+A">Aaron Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennea%2C+J+A">Jamie A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Parsotan%2C+T">Tyler Parsotan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+E">Elena Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">Maria Grazia Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">Sergio Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cusumano%2C+G">Giancarlo Cusumano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Ai%2C+A">Antonino D&#39;Ai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">Paolo D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">Valerio D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">Massimiliano De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dichiara%2C+S">Simone Dichiara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P">Phil Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D">Dieter Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuin%2C+P">Paul Kuin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">Andrea Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+P">Paul O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osborne%2C+J+P">Julian P. Osborne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+K">Kim Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmer%2C+D+M">David M. Palmer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sbarufatti%2C+B">Boris Sbarufatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tagliaferri%2C+G">Gianpiero Tagliaferri</a> , et al. (1797 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12867v1-abstract-short" style="display: inline;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12867v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12867v1-abstract-full" style="display: none;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum--likelihood NITRATES pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15-350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10$^{-3}$ Hz, we compute the GW--BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v1-abstract-full').style.display = 'none'; document.getElementById('2407.12867v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 10 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12227">arXiv:2407.12227</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12227">pdf</a>, <a href="https://arxiv.org/format/2407.12227">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Development of MMC-based lithium molybdate cryogenic calorimeters for AMoRE-II </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Agrawal%2C+A">A. Agrawal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alenkov%2C+V+V">V. V. Alenkov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aryal%2C+P">P. Aryal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bae%2C+H">H. Bae</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beyer%2C+J">J. Beyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandari%2C+B">B. Bhandari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boiko%2C+R+S">R. S. Boiko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boonin%2C+K">K. Boonin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buzanov%2C+O">O. Buzanov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Byeon%2C+C+R">C. R. Byeon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chanthima%2C+N">N. Chanthima</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cheoun%2C+M+K">M. K. Cheoun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choe%2C+J+S">J. S. Choe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S">S. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choudhury%2C+S">S. Choudhury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+J+S">J. S. Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Djamal%2C+M">M. Djamal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drung%2C+D">D. Drung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Enss%2C+C">C. Enss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fleischmann%2C+A">A. Fleischmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gangapshev%2C+A+M">A. M. Gangapshev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gastaldo%2C+L">L. Gastaldo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gavrilyuk%2C+Y+M">Y. M. Gavrilyuk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gezhaev%2C+A+M">A. M. Gezhaev</a> , et al. (84 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12227v1-abstract-short" style="display: inline;"> The AMoRE collaboration searches for neutrinoless double beta decay of $^{100}$Mo using molybdate scintillating crystals via low temperature thermal calorimetric detection. The early phases of the experiment, AMoRE-pilot and AMoRE-I, have demonstrated competitive discovery potential. Presently, the AMoRE-II experiment, featuring a large detector array with about 90 kg of $^{100}$Mo isotope, is und&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12227v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12227v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12227v1-abstract-full" style="display: none;"> The AMoRE collaboration searches for neutrinoless double beta decay of $^{100}$Mo using molybdate scintillating crystals via low temperature thermal calorimetric detection. The early phases of the experiment, AMoRE-pilot and AMoRE-I, have demonstrated competitive discovery potential. Presently, the AMoRE-II experiment, featuring a large detector array with about 90 kg of $^{100}$Mo isotope, is under construction.This paper discusses the baseline design and characterization of the lithium molybdate cryogenic calorimeters to be used in the AMoRE-II detector modules. The results from prototype setups that incorporate new housing structures and two different crystal masses (316 g and 517 - 521 g), operated at 10 mK temperature, show energy resolutions (FWHM) of 7.55 - 8.82 keV at the 2.615 MeV $^{208}$Tl $纬$ line, and effective light detection of 0.79 - 0.96 keV/MeV. The simultaneous heat and light detection enables clear separation of alpha particles with a discrimination power of 12.37 - 19.50 at the energy region around $^6$Li(n, $伪$)$^3$H with Q-value = 4.785 MeV. Promising detector performances were demonstrated at temperatures as high as 30 mK, which relaxes the temperature constraints for operating the large AMoRE-II array. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12227v1-abstract-full').style.display = 'none'; document.getElementById('2407.12227v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11128">arXiv:2407.11128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11128">pdf</a>, <a href="https://arxiv.org/format/2407.11128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> X-ray and multiwavelength polarization of Mrk 501 from 2022 to 2023 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+C+J">Chien-Ting J. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liodakis%2C+I">Ioannis Liodakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Middei%2C+R">Riccardo Middei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D+E">Dawoon E. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Gesu%2C+L">Laura Di Gesu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Marco%2C+A">Alessandro Di Marco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ehlert%2C+S+R">Steven R. Ehlert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Errando%2C+M">Manel Errando</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Negro%2C+M">Michela Negro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jorstad%2C+S+G">Svetlana G. Jorstad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marscher%2C+A+P">Alan P. Marscher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+K">Kinwah Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">Iv谩n Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poutanen%2C+J">Juri Poutanen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mizuno%2C+T">Tsunefumi Mizuno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouch%2C+P+M">Pouya M. Kouch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lindfors%2C+E">Elina Lindfors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borman%2C+G+A">George A. Borman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grishina%2C+T+S">Tatiana S. Grishina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kopatskaya%2C+E+N">Evgenia N. Kopatskaya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Larionova%2C+E+G">Elena G. Larionova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morozova%2C+D+A">Daria A. Morozova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Savchenko%2C+S+S">Sergey S. Savchenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Troitsky%2C+I+S">Ivan S. Troitsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Troitskaya%2C+Y+V">Yulia V. Troitskaya</a> , et al. (121 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11128v1-abstract-short" style="display: inline;"> We present multiwavelength polarization measurements of the luminous blazar Mrk~501 over a 14-month period. The 2--8 keV X-ray polarization was measured with the Imaging X-ray Polarimetry Explorer (IXPE) with six 100-ks observations spanning from 2022 March to 2023 April. Each IXPE observation was accompanied by simultaneous X-ray data from NuSTAR, Swift/XRT, and/or XMM-Newton. Complementary optic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11128v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11128v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11128v1-abstract-full" style="display: none;"> We present multiwavelength polarization measurements of the luminous blazar Mrk~501 over a 14-month period. The 2--8 keV X-ray polarization was measured with the Imaging X-ray Polarimetry Explorer (IXPE) with six 100-ks observations spanning from 2022 March to 2023 April. Each IXPE observation was accompanied by simultaneous X-ray data from NuSTAR, Swift/XRT, and/or XMM-Newton. Complementary optical-infrared polarization measurements were also available in the B, V, R, I, and J bands, as were radio polarization measurements from 4.85 GHz to 225.5 GHz. Among the first five IXPE observations, we did not find significant variability in the X-ray polarization degree and angle with IXPE. However, the most recent sixth observation found an elevated polarization degree at $&gt;3蟽$ above the average of the other five observations. The optical and radio measurements show no apparent correlations with the X-ray polarization properties. Throughout the six IXPE observations, the X-ray polarization degree remained higher than, or similar to, the R-band optical polarization degree, which remained higher than the radio value. This is consistent with the energy-stratified shock scenario proposed to explain the first two IXPE observations, in which the polarized X-ray, optical, and radio emission arises from different regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11128v1-abstract-full').style.display = 'none'; document.getElementById('2407.11128v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03828">arXiv:2407.03828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03828">pdf</a>, <a href="https://arxiv.org/format/2407.03828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> NuSTAR as an Axion Helioscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ruz%2C+J">J. Ruz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Todarello%2C+E">E. Todarello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vogel%2C+J+K">J. K. Vogel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giannotti%2C+M">M. Giannotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grefenstette%2C+B">B. Grefenstette</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hudson%2C+H+S">H. S. Hudson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hannah%2C+I+G">I. G. Hannah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irastorza%2C+I+G">I. G. Irastorza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+C+S">C. S. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Shea%2C+T">T. O&#39;Shea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Regis%2C+M">M. Regis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+D+M">D. M. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taoso%2C+M">M. Taoso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bueno%2C+J+T">J. Trujillo Bueno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03828v1-abstract-short" style="display: inline;"> The nature of dark matter in the Universe is still an open question in astrophysics and cosmology. Axions and axion-like particles (ALPs) offer a compelling solution, and traditionally ground-based experiments have eagerly, but to date unsuccessfully, searched for these hypothetical low-mass particles that are expected to be produced in large quantities in the strong electromagnetic fields in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03828v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03828v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03828v1-abstract-full" style="display: none;"> The nature of dark matter in the Universe is still an open question in astrophysics and cosmology. Axions and axion-like particles (ALPs) offer a compelling solution, and traditionally ground-based experiments have eagerly, but to date unsuccessfully, searched for these hypothetical low-mass particles that are expected to be produced in large quantities in the strong electromagnetic fields in the interior of stars. This work offers a fresh look at axions and ALPs by leveraging their conversion into X-rays in the magnetic field of the Sun&#39;s atmosphere rather than a laboratory magnetic field. Unique data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR) during the solar minimum in 2020 allows us to set stringent limits on the coupling of axions to photons using state-of-the-art magnetic field models of the solar atmosphere. We report pioneering limits on the axion-photon coupling strength of $6.9\times 10^{-12}$ GeV$^{-1}$ at 95\% confidence level for axion masses $m_a \lesssim 2\times 10^{-7}$ eV, surpassing current ground-based searches and further probing unexplored regions of the axion-photon coupling parameter space up to axion masses of $m_a \lesssim 5\times 10^{-4}$ eV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03828v1-abstract-full').style.display = 'none'; document.getElementById('2407.03828v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19287">arXiv:2406.19287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19287">pdf</a>, <a href="https://arxiv.org/format/2406.19287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Isotropy of cosmic rays beyond $10^{20}$ eV favors their heavy mass composition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Telescope+Array+Collaboration"> Telescope Array Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbasi%2C+R+U">R. U. Abbasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+Y">Y. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abu-Zayyad%2C+T">T. Abu-Zayyad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allen%2C+M">M. Allen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arimura%2C+R">R. Arimura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barcikowski%2C+E">E. Barcikowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Belz%2C+J+W">J. W. Belz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergman%2C+D+R">D. R. Bergman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blake%2C+S+A">S. A. Blake</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckland%2C+I">I. Buckland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chikawa%2C+M">M. Chikawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fujii%2C+T">T. Fujii</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fujisue%2C+K">K. Fujisue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fujita%2C+K">K. Fujita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fujiwara%2C+R">R. Fujiwara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fukushima%2C+M">M. Fukushima</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlich%2C+G">G. Furlich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Globus%2C+N">N. Globus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez%2C+R">R. Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanlon%2C+W">W. Hanlon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hayashida%2C+N">N. Hayashida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=He%2C+H">H. He</a> , et al. (118 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19287v2-abstract-short" style="display: inline;"> We report an estimation of the injected mass composition of ultra-high energy cosmic rays (UHECRs) at energies higher than 10 EeV. The composition is inferred from an energy-dependent sky distribution of UHECR events observed by the Telescope Array surface detector by comparing it to the Large Scale Structure of the local Universe. In the case of negligible extra-galactic magnetic fields the resul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19287v2-abstract-full').style.display = 'inline'; document.getElementById('2406.19287v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19287v2-abstract-full" style="display: none;"> We report an estimation of the injected mass composition of ultra-high energy cosmic rays (UHECRs) at energies higher than 10 EeV. The composition is inferred from an energy-dependent sky distribution of UHECR events observed by the Telescope Array surface detector by comparing it to the Large Scale Structure of the local Universe. In the case of negligible extra-galactic magnetic fields the results are consistent with a relatively heavy injected composition at E ~ 10 EeV that becomes lighter up to E ~ 100 EeV, while the composition at E &gt; 100 EeV is very heavy. The latter is true even in the presence of highest experimentally allowed extra-galactic magnetic fields, while the composition at lower energies can be light if a strong EGMF is present. The effect of the uncertainty in the galactic magnetic field on these results is subdominant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19287v2-abstract-full').style.display = 'none'; document.getElementById('2406.19287v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, accepted for publication in PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19286">arXiv:2406.19286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19286">pdf</a>, <a href="https://arxiv.org/format/2406.19286">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Mass composition of ultra-high energy cosmic rays from distribution of their arrival directions with the Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Telescope+Array+Collaboration"> Telescope Array Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbasi%2C+R+U">R. U. Abbasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+Y">Y. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abu-Zayyad%2C+T">T. Abu-Zayyad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allen%2C+M">M. Allen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arai%2C+Y">Y. Arai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arimura%2C+R">R. Arimura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barcikowski%2C+E">E. Barcikowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Belz%2C+J+W">J. W. Belz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergman%2C+D+R">D. R. Bergman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blake%2C+S+A">S. A. Blake</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckland%2C+I">I. Buckland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chikawa%2C+M">M. Chikawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fujii%2C+T">T. Fujii</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fujisue%2C+K">K. Fujisue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fujita%2C+K">K. Fujita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fujiwara%2C+R">R. Fujiwara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fukushima%2C+M">M. Fukushima</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlich%2C+G">G. Furlich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Globus%2C+N">N. Globus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez%2C+R">R. Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanlon%2C+W">W. Hanlon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hayashida%2C+N">N. Hayashida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=He%2C+H">H. He</a> , et al. (118 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19286v2-abstract-short" style="display: inline;"> We use a new method to estimate the injected mass composition of ultrahigh cosmic rays (UHECRs) at energies higher than 10 EeV. The method is based on comparison of the energy-dependent distribution of cosmic ray arrival directions as measured by the Telescope Array experiment (TA) with that calculated in a given putative model of UHECR under the assumption that sources trace the large-scale struc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19286v2-abstract-full').style.display = 'inline'; document.getElementById('2406.19286v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19286v2-abstract-full" style="display: none;"> We use a new method to estimate the injected mass composition of ultrahigh cosmic rays (UHECRs) at energies higher than 10 EeV. The method is based on comparison of the energy-dependent distribution of cosmic ray arrival directions as measured by the Telescope Array experiment (TA) with that calculated in a given putative model of UHECR under the assumption that sources trace the large-scale structure (LSS) of the Universe. As we report in the companion letter, the TA data show large deflections with respect to the LSS which can be explained, assuming small extra-galactic magnetic fields (EGMF), by an intermediate composition changing to a heavy one (iron) in the highest energy bin. Here we show that these results are robust to uncertainties in UHECR injection spectra, the energy scale of the experiment and galactic magnetic fields (GMF). The assumption of weak EGMF, however, strongly affects this interpretation at all but the highest energies E &gt; 100 EeV, where the remarkable isotropy of the data implies a heavy injected composition even in the case of strong EGMF. This result also holds if UHECR sources are as rare as $2 \times 10^{-5}$ Mpc$^{-3}$, that is the conservative lower limit for the source number density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19286v2-abstract-full').style.display = 'none'; document.getElementById('2406.19286v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, accepted for publication in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19132">arXiv:2406.19132</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19132">pdf</a>, <a href="https://arxiv.org/format/2406.19132">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Origin of extended Main Sequence Turn Off in open cluster NGC 2355 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Maurya%2C+J">Jayanand Maurya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Samal%2C+M+R">M. R. Samal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amard%2C+L">Louis Amard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niu%2C+H">Hubiao Niu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+C">Sang Chul Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+Y+C">Y. C. Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+B">B. Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19132v1-abstract-short" style="display: inline;"> The presence of extended Main Sequence Turn-Off (eMSTO) in the open clusters has been attributed to various factors, such as spread in rotation rates, binary stars, and dust-like extinction from stellar excretion discs. We present a comprehensive analysis of the eMSTO in the open cluster NGC 2355. Using spectra from the Gaia-ESO archives, we find that the stars in the red part of the eMSTO have a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19132v1-abstract-full').style.display = 'inline'; document.getElementById('2406.19132v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19132v1-abstract-full" style="display: none;"> The presence of extended Main Sequence Turn-Off (eMSTO) in the open clusters has been attributed to various factors, such as spread in rotation rates, binary stars, and dust-like extinction from stellar excretion discs. We present a comprehensive analysis of the eMSTO in the open cluster NGC 2355. Using spectra from the Gaia-ESO archives, we find that the stars in the red part of the eMSTO have a higher mean v sin i value of 135.3$\pm$4.6 km s$^{-1}$ compared to the stars in the blue part that have an average v sin i equal to 81.3$\pm$5.6 km s$^{-1}$. This suggests that the eMSTO in NGC 2355 is possibly caused by the spread in rotation rates of stars. We do not find any substantial evidence of the dust-like extinction from the eMSTO stars using ultraviolet data from the Swift survey. The estimated synchronization time for low mass ratio close binaries in the blue part of the eMSTO suggests that they would be mostly slow-rotating if present. However, the stars in the blue part of the eMSTO are preferentially located in the outer region of the cluster indicating that they may lack low mass ratio close binaries. The spread in rotation rates of eMSTO stars in NGC 2355 is most likely caused by the star-disc interaction mechanism. The stars in the lower main sequence beyond the eMSTO region of NGC 2355 are slow-rotating (mean v sin i = 26.5$\pm$1.3 km s$^{-1}$) possibly due to the magnetic braking of their rotations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19132v1-abstract-full').style.display = 'none'; document.getElementById('2406.19132v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16702">arXiv:2406.16702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16702">pdf</a>, <a href="https://arxiv.org/format/2406.16702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> North-PHASE: Studying Periodicity, Hot Spots, Accretion Stability and Early Evolution in young stars in the northern hemisphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sicilia-Aguilar%2C+A">A. Sicilia-Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kahar%2C+R+S">R. S. Kahar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pelayo-Bald%C3%A1rrago%2C+M+E">M. E. Pelayo-Bald谩rrago</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roccatagliata%2C+V">V. Roccatagliata</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Froebrich%2C+D">D. Froebrich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galindo-Guil%2C+F+J">F. J. Galindo-Guil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campbell-White%2C+J">J. Campbell-White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J+S">J. S. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mendigut%C3%ADa%2C+I">I. Mendigut铆a</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schlueter%2C+L">L. Schlueter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Teixeira%2C+P+S">P. S. Teixeira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsumura%2C+S">S. Matsumura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+M">M. Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scholz%2C+A">A. Scholz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%C3%81brah%C3%A1m%2C+P">P. 脕brah谩m</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frasca%2C+A">A. Frasca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garufi%2C+A">A. Garufi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Herbert%2C+C">C. Herbert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K%C3%B3sp%C3%A1l%2C+%C3%81">脕. K贸sp谩l</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manara%2C+C+F">C. F. Manara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16702v1-abstract-short" style="display: inline;"> We present the overview and first results from the North-PHASE Legacy Survey, which follows six young clusters for five years, using the 2 deg$^2$ FoV of the JAST80 telescope from the Javalambre Observatory (Spain). North-PHASE investigates stellar variability on timescales from days to years for thousands of young stars distributed over entire clusters. This allows us to find new YSO, characteris&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16702v1-abstract-full').style.display = 'inline'; document.getElementById('2406.16702v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16702v1-abstract-full" style="display: none;"> We present the overview and first results from the North-PHASE Legacy Survey, which follows six young clusters for five years, using the 2 deg$^2$ FoV of the JAST80 telescope from the Javalambre Observatory (Spain). North-PHASE investigates stellar variability on timescales from days to years for thousands of young stars distributed over entire clusters. This allows us to find new YSO, characterise accretion and study inner disk evolution within the cluster context. Each region (Tr37, CepOB3, IC5070, IC348, NGC2264, and NGC1333) is observed in six filters (SDSS griz, u band, and J0660, which covers H$伪$), detecting cluster members as well as field variable stars. Tr37 is used to prove feasibility and optimise the variability analysis techniques. In Tr37, variability reveals 50 new YSO, most of them proper motion outliers. North-PHASE independently confirms the youth of astrometric members, efficiently distinguishes accreting and non-accreting stars, reveals the extent of the cluster populations along Tr37/IC1396 bright rims, and detects variability resulting from rotation, dips, and irregular bursts. The proper motion outliers unveil a more complex star formation history than inferred from Gaia alone, and variability highlights previously hidden proper motion deviations in the surrounding clouds. We also find that non-YSO variables identified by North-PHASE cover a different variability parameter space and include long-period variables, eclipsing binaries, RR Lyr, and $未$ Scuti stars. These early results also emphasize the power of variability to complete the picture of star formation where it is missed by astrometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16702v1-abstract-full').style.display = 'none'; document.getElementById('2406.16702v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14888">arXiv:2406.14888</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.14888">pdf</a>, <a href="https://arxiv.org/format/2406.14888">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Finding dusty AGNs from the JWST CEERS survey with mid-infrared photometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chien%2C+T+C+-">Tom C. -C. Chien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ling%2C+C">Chih-Teng Ling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goto%2C+T">Tomotsugu Goto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+C+K+-">Cossas K. -W. Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+J">Seong Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hashimoto%2C+T">Tetsuya Hashimoto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+Y">Yu-Wei Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kilerci%2C+E">Ece Kilerci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+C+-">Simon C. -C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+P">Po-Ya Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raquel%2C+B+J+R">Bjorn Jasper R. Raquel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14888v1-abstract-short" style="display: inline;"> The nature of the interaction between active galactic nuclei (AGNs) and their host galaxies remains an unsolved question. Therefore, conducting an AGN census is valuable to AGN research. Nevertheless, a significant fraction of AGNs are obscured by their environment, which blocks UV and optical emissions due to the dusty torus surrounding the central supermassive black hole (SMBH). To overcome this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14888v1-abstract-full').style.display = 'inline'; document.getElementById('2406.14888v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14888v1-abstract-full" style="display: none;"> The nature of the interaction between active galactic nuclei (AGNs) and their host galaxies remains an unsolved question. Therefore, conducting an AGN census is valuable to AGN research. Nevertheless, a significant fraction of AGNs are obscured by their environment, which blocks UV and optical emissions due to the dusty torus surrounding the central supermassive black hole (SMBH). To overcome this challenge, mid-infrared (IR) surveys have emerged as a valuable tool for identifying obscured AGNs, as the obscured light is re-emitted in this range. With its high sensitivity, the James Webb Space Telescope (JWST) uncovered more fainter objects than previous telescopes. By applying the SED fitting, this work investigates AGN candidates in JWST Cosmic Evolution Early Release Science (CEERS) fields. We identified 42 candidates, 30 of them are classified as composites ($0.2\leq f_{\rm AGN, IR}&lt; 0.5$), and 12 of them are AGNs ($f_{\rm AGN, IR}\geq 0.5$). We report the AGN luminosity contributions and AGN number fractions as a function of redshift and total infrared luminosity, showing that previously reported increasing relations are not apparent in our sample due to the sample size. We also extend the previous results on ultra-luminous infrared galaxies (ULIRGs, $L_{\rm TIR}\geq 10^{12} L_{\odot}$) to less luminous AGNs, highlighting the power of JWST. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14888v1-abstract-full').style.display = 'none'; document.getElementById('2406.14888v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 20 figures, 4 tables. Accepted for publication in MNRAS. The 3 min summary: https://www.youtube.com/watch?v=mWUebbgUOh8</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10547">arXiv:2406.10547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.10547">pdf</a>, <a href="https://arxiv.org/ps/2406.10547">ps</a>, <a href="https://arxiv.org/format/2406.10547">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Four microlensing giant planets detected through signals produced by minor-image perturbations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">Cheongho Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+I+A">Ian A. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+C">Chung-Uk Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+A">Andrew Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albrow%2C+M+D">Michael D. Albrow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chung%2C+S">Sun-Ju Chung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+K">Kyu-Ha Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+Y+K">Youn Kil Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryu%2C+Y">Yoon-Hyun Ryu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shvartzvald%2C+Y">Yossi Shvartzvald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+I">In-Gu Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yee%2C+J+C">Jennifer C. Yee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hongjing Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zang%2C+W">Weicheng Zang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cha%2C+S">Sang-Mok Cha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Doeon Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Dong-Jin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S">Seung-Lee Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+D">Dong-Joo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y">Yongseok Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+B">Byeong-Gon Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pogge%2C+R+W">Richard W. Pogge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+F">Fumio Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bando%2C+K">Ken Bando</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barry%2C+R">Richard Barry</a> , et al. (41 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10547v1-abstract-short" style="display: inline;"> We investigated the nature of the anomalies appearing in four microlensing events KMT-2020-BLG-0757, KMT-2022-BLG-0732, KMT-2022-BLG-1787, and KMT-2022-BLG-1852. The light curves of these events commonly exhibit initial bumps followed by subsequent troughs that extend across a substantial portion of the light curves. We performed thorough modeling of the anomalies to elucidate their characteristic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10547v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10547v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10547v1-abstract-full" style="display: none;"> We investigated the nature of the anomalies appearing in four microlensing events KMT-2020-BLG-0757, KMT-2022-BLG-0732, KMT-2022-BLG-1787, and KMT-2022-BLG-1852. The light curves of these events commonly exhibit initial bumps followed by subsequent troughs that extend across a substantial portion of the light curves. We performed thorough modeling of the anomalies to elucidate their characteristics. Despite their prolonged durations, which differ from the usual brief anomalies observed in typical planetary events, our analysis revealed that each anomaly in these events originated from a planetary companion located within the Einstein ring of the primary star. It was found that the initial bump arouse when the source star crossed one of the planetary caustics, while the subsequent trough feature occurred as the source traversed the region of minor image perturbations lying between the pair of planetary caustics. The estimated masses of the host and planet, their mass ratios, and the distance to the discovered planetary systems are $(M_{\rm host}/M_\odot, M_{\rm planet}/M_{\rm J}, q/10^{-3}, \dl/{\rm kpc}) = (0.58^{+0.33}_{-0.30}, 10.71^{+6.17}_{-5.61}, 17.61\pm 2.25,6.67^{+0.93}_{-1.30})$ for KMT-2020-BLG-0757, $(0.53^{+0.31}_{-0.31}, 1.12^{+0.65}_{-0.65}, 2.01 \pm 0.07, 6.66^{+1.19}_{-1.84})$ for KMT-2022-BLG-0732, $(0.42^{+0.32}_{-0.23}, 6.64^{+4.98}_{-3.64}, 15.07\pm 0.86, 7.55^{+0.89}_{-1.30})$ for KMT-2022-BLG-1787, and $(0.32^{+0.34}_{-0.19}, 4.98^{+5.42}_{-2.94}, 8.74\pm 0.49, 6.27^{+0.90}_{-1.15})$ for KMT-2022-BLG-1852. These parameters indicate that all the planets are giants with masses exceeding the mass of Jupiter in our solar system and the hosts are low-mass stars with masses substantially less massive than the Sun. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10547v1-abstract-full').style.display = 'none'; document.getElementById('2406.10547v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 12 figures, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08645">arXiv:2406.08645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08645">pdf</a>, <a href="https://arxiv.org/format/2406.08645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> ODIN: Identifying Protoclusters and Cosmic Filaments Traced by Ly$伪$-emitting Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ramakrishnan%2C+V">Vandana Ramakrishnan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+K">Kyoung-Soo Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Artale%2C+M+C">Maria Celeste Artale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gawiser%2C+E">Eric Gawiser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yujin Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+C">Changbom Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ciardullo%2C+R">Robin Ciardullo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dey%2C+A">Arjun Dey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gronwall%2C+C">Caryl Gronwall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guaita%2C+L">Lucia Guaita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hwang%2C+H+S">Ho Seong Hwang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Im%2C+S+H">Sang Hyeok Im</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+W+J+S">Woong-Seob Jeong Seongjae Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+A">Ankit Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+J">Jaehyun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+S">Seong-Kook Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moon%2C+B">Byeongha Moon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Padilla%2C+N">Nelson Padilla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pope%2C+A">Alexandra Pope</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Popescu%2C+R">Roxana Popescu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singh%2C+A">Akriti Singh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Song%2C+H">Hyunmi Song</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Troncoso%2C+P">Paulina Troncoso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valdes%2C+F">Francisco Valdes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zabludoff%2C+A">Ann Zabludoff</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08645v2-abstract-short" style="display: inline;"> To understand the formation and evolution of massive cosmic structures, studying them at high redshift, in the epoch when they formed the majority of their mass is essential. The One-hundred-deg$^2$ DECam Imaging in Narrowbands (ODIN) survey is undertaking the widest-area narrowband program to date, to use Ly$伪$-emitting galaxies (LAEs) to trace the large-scale structure (LSS) of the Universe on t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08645v2-abstract-full').style.display = 'inline'; document.getElementById('2406.08645v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08645v2-abstract-full" style="display: none;"> To understand the formation and evolution of massive cosmic structures, studying them at high redshift, in the epoch when they formed the majority of their mass is essential. The One-hundred-deg$^2$ DECam Imaging in Narrowbands (ODIN) survey is undertaking the widest-area narrowband program to date, to use Ly$伪$-emitting galaxies (LAEs) to trace the large-scale structure (LSS) of the Universe on the scale of 10 - 100 cMpc at three cosmic epochs. In this work, we present results at $z$ = 3.1 based on early ODIN data in the COSMOS field. We identify and characterize protoclusters and cosmic filaments using multiple methods and discuss their strengths and weaknesses. We then compare our observations against the IllustrisTNG suite of cosmological hydrodynamical simulations. The two are in excellent agreement, with a similar number and angular size of structures identified above a specified density threshold. We are able to recover the simulated protoclusters with $\log$(M$_{z=0}$/$M_\odot$) $\gtrsim$ 14.4 in $\sim$ 60% of the cases. With these objects we show that the descendant masses of the protoclusters in our sample can be estimated purely based on our 2D measurements, finding a median $z$ = 0 mass of $\sim10^{14.5}$M$_\odot$. The lack of information on the radial extent of each protocluster introduces a $\sim$0.4 dex uncertainty in its descendant mass. Finally, we show that the recovery of the cosmic web in the vicinity of protoclusters is both efficient and accurate. The similarity of our observations and the simulations imply that our structure selection is likewise robust and efficient, demonstrating that LAEs are reliable tracers of the LSS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08645v2-abstract-full').style.display = 'none'; document.getElementById('2406.08645v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 20 figures; Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08612">arXiv:2406.08612</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08612">pdf</a>, <a href="https://arxiv.org/format/2406.08612">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Observation of Declination Dependence in the Cosmic Ray Energy Spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+Telescope+Array+Collaboration"> The Telescope Array Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbasi%2C+R+U">R. U. Abbasi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abu-Zayyad%2C+T">T. Abu-Zayyad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allen%2C+M">M. Allen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Belz%2C+J+W">J. W. Belz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergman%2C+D+R">D. R. Bergman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckland%2C+I">I. Buckland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campbell%2C+W">W. Campbell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Endo%2C+K">K. Endo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fedynitch%2C+A">A. Fedynitch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fujii%2C+T">T. Fujii</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fujisue%2C+K">K. Fujisue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fujita%2C+K">K. Fujita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fukushima%2C+M">M. Fukushima</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlich%2C+G">G. Furlich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gerber%2C+Z">Z. Gerber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Globus%2C+N">N. Globus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hanlon%2C+W">W. Hanlon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hayashida%2C+N">N. Hayashida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=He%2C+H">H. He</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hibino%2C+K">K. Hibino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Higuchi%2C+R">R. Higuchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ikeda%2C+D">D. Ikeda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ishii%2C+T">T. Ishii</a> , et al. (101 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08612v1-abstract-short" style="display: inline;"> We report on an observation of the difference between northern and southern skies of the ultrahigh energy cosmic ray energy spectrum with a significance of ${\sim}8蟽$. We use measurements from the two largest experiments$\unicode{x2014}$the Telescope Array observing the northern hemisphere and the Pierre Auger Observatory viewing the southern hemisphere. Since the comparison of two measurements fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08612v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08612v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08612v1-abstract-full" style="display: none;"> We report on an observation of the difference between northern and southern skies of the ultrahigh energy cosmic ray energy spectrum with a significance of ${\sim}8蟽$. We use measurements from the two largest experiments$\unicode{x2014}$the Telescope Array observing the northern hemisphere and the Pierre Auger Observatory viewing the southern hemisphere. Since the comparison of two measurements from different observatories introduces the issue of possible systematic differences between detectors and analyses, we validate the methodology of the comparison by examining the region of the sky where the apertures of the two observatories overlap. Although the spectra differ in this region, we find that there is only a $1.8蟽$ difference between the spectrum measurements when anisotropic regions are removed and a fiducial cut in the aperture is applied. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08612v1-abstract-full').style.display = 'none'; document.getElementById('2406.08612v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05752">arXiv:2406.05752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05752">pdf</a>, <a href="https://arxiv.org/format/2406.05752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Strong-field QED effects on polarization states in dipole and quadrudipole pulsar emissions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D">Dong-Hoon Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+C+M">Chul Min Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+P">Sang Pyo Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05752v3-abstract-short" style="display: inline;"> Highly magnetized neutron stars have quantum refraction effects on pulsar emission due to the non-linearity of the quantum electrodynamics (QED) action. In this paper, we investigate the evolution of the polarization states of pulsar emission under the quantum refraction effects, combined with the dependence on the emission frequency; we solve a system of evolution equations of the Stokes vector,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05752v3-abstract-full').style.display = 'inline'; document.getElementById('2406.05752v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05752v3-abstract-full" style="display: none;"> Highly magnetized neutron stars have quantum refraction effects on pulsar emission due to the non-linearity of the quantum electrodynamics (QED) action. In this paper, we investigate the evolution of the polarization states of pulsar emission under the quantum refraction effects, combined with the dependence on the emission frequency; we solve a system of evolution equations of the Stokes vector, where the birefringent vector, in which such effects are encoded, acts on the Stokes vector. At a fixed frequency of emission, depending on the magnitude of the birefringent vector, dominated mostly by the magnetic field strength, the evolution of the Stokes vector largely exhibits three different patterns: (i) monotonic, or (ii) half-oscillatory, or (iii) highly oscillatory behaviors. These features are understood and confirmed by means of approximate analytical solutions to the evolution equations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05752v3-abstract-full').style.display = 'none'; document.getElementById('2406.05752v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01693">arXiv:2406.01693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01693">pdf</a>, <a href="https://arxiv.org/format/2406.01693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449166">10.1051/0004-6361/202449166 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> IXPE observation of PKS 2155-304 reveals the most highly polarized blazar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kouch%2C+P+M">Pouya M. Kouch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liodakis%2C+I">Ioannis Liodakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Middei%2C+R">Riccardo Middei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+D+E">Dawoon E. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tavecchio%2C+F">Fabrizio Tavecchio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marscher%2C+A+P">Alan P. Marscher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marshall%2C+H+L">Herman L. Marshall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ehlert%2C+S+R">Steven R. Ehlert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Gesu%2C+L">Laura Di Gesu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jorstad%2C+S+G">Svetlana G. Jorstad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">Iv谩n Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madejski%2C+G+M">Grzegorz M. Madejski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romani%2C+R+W">Roger W. Romani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Errando%2C+M">Manel Errando</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lindfors%2C+E">Elina Lindfors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nilsson%2C+K">Kari Nilsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Toppari%2C+E">Ella Toppari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Potter%2C+S+B">Stephen B. Potter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Imazawa%2C+R">Ryo Imazawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sasada%2C+M">Mahito Sasada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fukazawa%2C+Y">Yasushi Fukazawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kawabata%2C+K+S">Koji S. Kawabata</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Uemura%2C+M">Makoto Uemura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mizuno%2C+T">Tsunefumi Mizuno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nakaoka%2C+T">Tatsuya Nakaoka</a> , et al. (111 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01693v1-abstract-short" style="display: inline;"> We report the X-ray polarization properties of the high-synchrotron-peaked (HSP) blazar PKS 2155$-$304 based on observations with the Imaging X-ray Polarimetry Explorer (IXPE). We observed the source between Oct 27 and Nov 7, 2023. We also conducted an extensive contemporaneous multiwavelength (MW) campaign. We find that during the first half ($T_1$) of the IXPE pointing, the source exhibited the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01693v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01693v1-abstract-full" style="display: none;"> We report the X-ray polarization properties of the high-synchrotron-peaked (HSP) blazar PKS 2155$-$304 based on observations with the Imaging X-ray Polarimetry Explorer (IXPE). We observed the source between Oct 27 and Nov 7, 2023. We also conducted an extensive contemporaneous multiwavelength (MW) campaign. We find that during the first half ($T_1$) of the IXPE pointing, the source exhibited the highest X-ray polarization degree detected for an HSP blazar thus far, (30.7$\pm$2.0)%, which dropped to (15.3$\pm$2.1)% during the second half ($T_2$). The X-ray polarization angle remained stable during the IXPE pointing at 129.4$^\circ$$\pm$1.8$^\circ$ and 125.4$^\circ$$\pm$3.9$^\circ$ during $T_1$ and $T_2$, respectively. Meanwhile, the optical polarization degree remained stable during the IXPE pointing, with average host-galaxy-corrected values of (4.3$\pm$0.7)% and (3.8$\pm$0.9)% during the $T_1$ and $T_2$, respectively. During the IXPE pointing, the optical polarization angle changed achromatically from $\sim$140$^\circ$ to $\sim$90$^\circ$ and back to $\sim$130$^\circ$. Despite several attempts, we only detected (99.7% conf.) the radio polarization once (during $T_2$, at 225.5 GHz): with degree (1.7$\pm$0.4)% and angle 112.5$^\circ$$\pm$5.5$^\circ$. The direction of the broad pc-scale jet is rather ambiguous and has been found to point to the east and south at different epochs; however, on larger scales (&gt; 1.5 pc) the jet points toward the southeast ($\sim$135$^\circ$), similar to all of the MW polarization angles. Moreover, the X-ray to optical polarization degree ratios of $\sim$7 and $\sim$4 during $T_1$ and $T_2$, respectively, are similar to previous IXPE results for several HSP blazars. These findings, combined with the lack of correlation of temporal variability between the MW polarization properties, agree with an energy-stratified shock-acceleration scenario in HSP blazars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01693v1-abstract-full').style.display = 'none'; document.getElementById('2406.01693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, 4 tables, Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 689, A119 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19286">arXiv:2405.19286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19286">pdf</a>, <a href="https://arxiv.org/format/2405.19286">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> EDGE: A new model for Nuclear Star Cluster formation in dwarf galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gray%2C+E+I">Emily I. Gray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Read%2C+J+I">Justin I. Read</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taylor%2C+E">Ethan Taylor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orkney%2C+M+D+A">Matthew D. A. Orkney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rey%2C+M+P">Martin P. Rey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yates%2C+R+M">Robert M. Yates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+S+Y">Stacy Y. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=No%C3%ABl%2C+N+E+D">Noelia E. D. No毛l</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agertz%2C+O">Oscar Agertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andersson%2C+E">Eric Andersson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pontzen%2C+A">Andrew Pontzen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19286v1-abstract-short" style="display: inline;"> Nuclear Star Clusters (NSCs) are amongst the densest stellar systems in the Universe and are found at the centres of many bright spiral and elliptical galaxies, and up to ${\sim}$40% of dwarf galaxies. However, their formation mechanisms, and possible links to globular clusters (GCs), remain debated. This paper uses the EDGE simulations - a collection of zoom-in, cosmological simulations of isolat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19286v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19286v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19286v1-abstract-full" style="display: none;"> Nuclear Star Clusters (NSCs) are amongst the densest stellar systems in the Universe and are found at the centres of many bright spiral and elliptical galaxies, and up to ${\sim}$40% of dwarf galaxies. However, their formation mechanisms, and possible links to globular clusters (GCs), remain debated. This paper uses the EDGE simulations - a collection of zoom-in, cosmological simulations of isolated dwarf galaxies -- to present a new formation mechanism for NSCs. We find that, at a gas spatial and mass resolution of ${\sim}3\,$pc and ${\sim}161$ M$_\odot$, respectively, NSCs naturally emerge in a subset of our EDGE dwarfs with redshift-zero halo masses of $\rm{M}_{\rm{r}200\rm{c}} \sim 5 \times 10^9$ M$_\odot$. These dwarfs are quenched by reionisation, but retain a significant reservoir of gas that is unable to cool and form stars. Sometime after reionisation, the dwarfs then undergo a major (${\sim}$1:1) merger that excites rapid gas cooling, leading to a significant starburst. An NSC forms in this starburst that then quenches star formation thereafter. The result is a nucleated dwarf that has two stellar populations with distinct age: one pre-reionisation and one post-reionisation. Our mechanism is unique for two key reasons. Firstly, the low mass of the host dwarf means that NSCs, formed in this way, can accrete onto galaxies of almost all masses, potentially seeding the formation of NSCs everywhere. Secondly, our model predicts that NSCs should have at least two stellar populations with a large ($\gtrsim$1 billion year) age separation. This yields a predicted colour magnitude diagram for our nucleated dwarfs that has two distinct main sequence turnoffs. Several GCs orbiting the Milky Way, including Omega Centauri and M54, show exactly this behaviour, suggesting that they may, in fact, be accreted NSCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19286v1-abstract-full').style.display = 'none'; document.getElementById('2405.19286v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text 12 pages, 8 figures. Submitted to MNRAS</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Kim%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Kim%2C+S&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10