CINXE.COM

Search results for: causal realtion extraction

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: causal realtion extraction</title> <meta name="description" content="Search results for: causal realtion extraction"> <meta name="keywords" content="causal realtion extraction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="causal realtion extraction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="causal realtion extraction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2376</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: causal realtion extraction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2376</span> Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tharini%20N.%20de%20Silva">Tharini N. de Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Zhibo"> Xiao Zhibo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Rui"> Zhao Rui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mao%20Kezhi"> Mao Kezhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction" title="causal realtion extraction">causal realtion extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=relation%20extracton" title=" relation extracton"> relation extracton</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20representation" title=" text representation"> text representation</a> </p> <a href="https://publications.waset.org/abstracts/61573/causal-relation-identification-using-convolutional-neural-networks-and-knowledge-based-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">732</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2375</span> A Generative Adversarial Framework for Bounding Confounded Causal Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaowei%20Hu">Yaowei Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongkai%20Wu"> Yongkai Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Zhang"> Lu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xintao%20Wu"> Xintao Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=average%20causal%20effect" title="average causal effect">average causal effect</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20confounding" title=" hidden confounding"> hidden confounding</a>, <a href="https://publications.waset.org/abstracts/search?q=bound%20estimation" title=" bound estimation"> bound estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20learning" title=" generative adversarial learning"> generative adversarial learning</a> </p> <a href="https://publications.waset.org/abstracts/127808/a-generative-adversarial-framework-for-bounding-confounded-causal-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2374</span> Identification of Bayesian Network with Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Raouf%20Benmakrelouf">Mohamed Raouf Benmakrelouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafa%20Karouche"> Wafa Karouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Rynkiewicz"> Joseph Rynkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose an alternative method to construct a Bayesian Network (BN). This method relies on a convolutional neural network (CNN classifier), which determinates the edges of the network skeleton. We train a CNN on a normalized empirical probability density distribution (NEPDF) for predicting causal interactions and relationships. We have to find the optimal Bayesian network structure for causal inference. Indeed, we are undertaking a search for pair-wise causality, depending on considered causal assumptions. In order to avoid unreasonable causal structure, we consider a blacklist and a whitelist of causality senses. We tested the method on real data to assess the influence of education on the voting intention for the extreme right-wing party. We show that, with this method, we get a safer causal structure of variables (Bayesian Network) and make to identify a variable that satisfies the backdoor criterion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20network" title="Bayesian network">Bayesian network</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20learning" title=" structure learning"> structure learning</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20search" title=" optimal search"> optimal search</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20inference" title=" causal inference"> causal inference</a> </p> <a href="https://publications.waset.org/abstracts/151560/identification-of-bayesian-network-with-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2373</span> Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Fernandez">J. Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Aguilar"> N. Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Fernandez%20de%20Canete"> R. Fernandez de Canete</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Ramos-Diaz"> J. C. Ramos-Diaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20modeling" title="causal modeling">causal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose-insulin%20system" title=" glucose-insulin system"> glucose-insulin system</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20modeling" title=" causal modeling"> causal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenModelica%20software" title=" OpenModelica software"> OpenModelica software</a> </p> <a href="https://publications.waset.org/abstracts/72880/causal-modeling-of-the-glucose-insulin-system-in-type-i-diabetic-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2372</span> Application of Causal Inference and Discovery in Curriculum Evaluation and Continuous Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lunliang%20Zhong">Lunliang Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Duan"> Bin Duan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The undergraduate graduation project is a vital part of the higher education curriculum, crucial for engineering accreditation. Current evaluations often summarize data without identifying underlying issues. This study applies the Peter-Clark algorithm to analyze causal relationships within the graduation project data of an Electronics and Information Engineering program, creating a causal model. Structural equation modeling confirmed the model's validity. The analysis reveals key teaching stages affecting project success, uncovering problems in the process. Introducing causal discovery and inference into project evaluation helps identify issues and propose targeted improvement measures. The effectiveness of these measures is validated by comparing the learning outcomes of two student cohorts, stratified by confounding factors, leading to improved teaching quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20discovery" title="causal discovery">causal discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20inference" title=" causal inference"> causal inference</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20improvement" title=" continuous improvement"> continuous improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter-Clark%20algorithm" title=" Peter-Clark algorithm"> Peter-Clark algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modeling" title=" structural equation modeling"> structural equation modeling</a> </p> <a href="https://publications.waset.org/abstracts/191014/application-of-causal-inference-and-discovery-in-curriculum-evaluation-and-continuous-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2371</span> Causal Relationship between Corporate Governance and Financial Information Transparency: A Simultaneous Equations Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maali%20Kachouri">Maali Kachouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Anis%20Jarboui"> Anis Jarboui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We focus on the causal relationship between governance and information transparency as well as interrelation among the various governance mechanisms. This paper employs a simultaneous equations approach to show this relationship in the Tunisian context. Based on an 8-year dataset, our sample covers 28 listed companies over 2006-2013. Our findings suggest that internal and external governance mechanisms are interdependent. Moreover, in order to analyze the causal effect between information transparency and governance mechanisms, we found evidence that information transparency tends to increase good corporate governance practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20equations%20approach" title="simultaneous equations approach">simultaneous equations approach</a>, <a href="https://publications.waset.org/abstracts/search?q=transparency" title=" transparency"> transparency</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20relationship" title=" causal relationship"> causal relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20governance" title=" corporate governance"> corporate governance</a> </p> <a href="https://publications.waset.org/abstracts/46443/causal-relationship-between-corporate-governance-and-financial-information-transparency-a-simultaneous-equations-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2370</span> Alternative General Formula to Estimate and Test Influences of Early Diagnosis on Cancer Survival</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Yin">Li Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoqin%20Wang"> Xiaoqin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and purpose: Cancer diagnosis is part of a complex stochastic process, in which patients' personal and social characteristics influence the choice of diagnosing methods, diagnosing methods, in turn, influence the initial assessment of cancer stage, the initial assessment, in turn, influences the choice of treating methods, and treating methods in turn influence cancer outcomes such as cancer survival. To evaluate diagnosing methods, one needs to estimate and test the causal effect of a regime of cancer diagnosis and treatments. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to estimate and test these causal effects via point effects. The purpose of the work is to estimate and test causal effects under various regimes of cancer diagnosis and treatments via point effects. Challenges and solutions: The cancer stage has influences from earlier diagnosis as well as on subsequent treatments. As a consequence, it is highly difficult to estimate and test the causal effects via standard parameters, that is, the conditional survival given all stationary covariates, diagnosing methods, cancer stage and prognosis factors, treating methods. Instead of standard parameters, we use the point effects of cancer diagnosis and treatments to estimate and test causal effects under various regimes of cancer diagnosis and treatments. We are able to use familiar methods in the framework of single-point causal inference to accomplish the task. Achievements: we have applied this method to stomach cancer survival from a clinical study in Sweden. We have studied causal effects under various regimes, including the optimal regime of diagnosis and treatments and the effect moderation of the causal effect by age and gender. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20diagnosis" title="cancer diagnosis">cancer diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20effect" title=" causal effect"> causal effect</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20effect" title=" point effect"> point effect</a>, <a href="https://publications.waset.org/abstracts/search?q=G-formula" title=" G-formula"> G-formula</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20causal%20effect" title=" sequential causal effect"> sequential causal effect</a> </p> <a href="https://publications.waset.org/abstracts/135506/alternative-general-formula-to-estimate-and-test-influences-of-early-diagnosis-on-cancer-survival" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2369</span> Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Azian">M. N. Azian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Ilia%20Anisa"> A. N. Ilia Anisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Iwai"> Y. Iwai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanism" title="mechanism">mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20bioactive%20compounds" title=" ginger bioactive compounds"> ginger bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=soxhlet%20extraction" title=" soxhlet extraction"> soxhlet extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20water%20extraction" title=" accelerated water extraction"> accelerated water extraction</a> </p> <a href="https://publications.waset.org/abstracts/9278/mechanisms-of-ginger-bioactive-compounds-extract-using-soxhlet-and-accelerated-water-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2368</span> Influence of Causal beliefs on self-management in Korean patients with hypertension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-E%20Yeom">Hyun-E Yeom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Patients’ views about the cause of hypertension may influence their present and proactive behaviors to regulate high blood pressure. This study aimed to examine the internal structure underlying the causal beliefs about hypertension and the influence of causal beliefs on self-care intention and medical compliance in Korean patients with hypertension. The causal beliefs of 145 patients (M age = 57.7) were assessed using the Illness Perception Questionnaire-Revised. An exploratory factor analysis was used to identify the factor structure of the causal beliefs, and the factors’ influence on self-care intention and medication compliance was analyzed using multiple and logistic regression analyses. The four-factor structure including psychological, fate-related, risk and habitual factors was identified and the psychological factor was the most representative component of causal beliefs. The risk and fate-related factors were significant factors affecting lower intention to engage in self-care and poor compliance with medication regimens, respectively. The findings support the critical role of causal beliefs about hypertension in driving patients’ current and future self-care behaviors. This study highlights the importance of educational interventions corresponding to patients’ awareness of hypertension for improving their adherence to a healthy lifestyle and medication regimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypertension" title="hypertension">hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=self-care" title=" self-care"> self-care</a>, <a href="https://publications.waset.org/abstracts/search?q=beliefs" title=" beliefs"> beliefs</a>, <a href="https://publications.waset.org/abstracts/search?q=medication%20compliance" title=" medication compliance"> medication compliance</a> </p> <a href="https://publications.waset.org/abstracts/82892/influence-of-causal-beliefs-on-self-management-in-korean-patients-with-hypertension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2367</span> Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoqin%20Wang">Xiaoqin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Yin"> Li Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20effect" title="causal effect">causal effect</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20effect" title=" point effect"> point effect</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20modelling" title=" statistical modelling"> statistical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20causal%20inference" title=" sequential causal inference"> sequential causal inference</a> </p> <a href="https://publications.waset.org/abstracts/135503/modelling-causal-effects-from-complex-longitudinal-data-via-point-effects-of-treatments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2366</span> Analytical Study of Cobalt(II) and Nickel(II) Extraction with Salicylidene O-, M-, and P-Toluidine in Chloroform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20Almi">Sana Almi</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Barkat"> Djamel Barkat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The solvent extraction of cobalt (II) and nickel (II) from aqueous sulfate solutions were investigated with the analytical methods of slope analysis using salicylidene aniline and the three isomeric o-, m- and p-salicylidene toluidine diluted with chloroform at 25°C. By a statistical analysis of the extraction data, it was concluded that the extracted species are CoL2 with CoL2(HL) and NiL2 (HL denotes HSA, HSOT, HSMT, and HSPT). The extraction efficiency of Co(II) was higher than Ni(II). This tendency is confirmed from numerical extraction constants for each metal cations. The best extraction was according to the following order: HSMT > HSPT > HSOT > HSA for Co2+ and Ni2+. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title="solvent extraction">solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%28II%29" title=" nickel(II)"> nickel(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt%28II%29" title=" cobalt(II)"> cobalt(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylidene%20aniline" title=" salicylidene aniline"> salicylidene aniline</a>, <a href="https://publications.waset.org/abstracts/search?q=o-" title=" o-"> o-</a>, <a href="https://publications.waset.org/abstracts/search?q=m-" title=" m-"> m-</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20p-salicylidene%20toluidine" title=" and p-salicylidene toluidine"> and p-salicylidene toluidine</a> </p> <a href="https://publications.waset.org/abstracts/21677/analytical-study-of-cobaltii-and-nickelii-extraction-with-salicylidene-o-m-and-p-toluidine-in-chloroform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2365</span> Explanation and Temporality in International Relations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alasdair%20Stanton">Alasdair Stanton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> What makes for a good explanation? Twenty years after Wendt’s important treatment of constitution and causation, non-causal explanations (sometimes referred to as ‘understanding’, or ‘descriptive inference’) have become, if not mainstream, at least accepted within International Relations. This article proceeds in two parts: firstly, it examines closely Wendt’s constitutional claims, and while it agrees there is a difference between causal and constitutional, rejects the view that constitutional explanations lack temporality. In fact, this author concludes that a constitutional argument is only possible if it relies upon a more foundational, causal argument. Secondly, through theoretical analysis of the constitutional argument, this research seeks to delineate temporal and non-temporal ways of explaining within International Relations. This article concludes that while the constitutional explanation, like other logical arguments, including comparative, and counter-factual, are not truly non-causal explanations, they are not bound as tightly to the ‘real world’ as temporal arguments such as cause-effect, process tracing, or even interpretivist accounts. However, like mathematical models, non-temporal arguments should aim for empirical testability as well as internal consistency. This work aims to give clear theoretical grounding to those authors using non-temporal arguments, but also to encourage them, and their positivist critics, to engage in thoroughgoing empirical tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20explanation" title="causal explanation">causal explanation</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutional%20understanding" title=" constitutional understanding"> constitutional understanding</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical" title=" empirical"> empirical</a>, <a href="https://publications.waset.org/abstracts/search?q=temporality" title=" temporality"> temporality</a> </p> <a href="https://publications.waset.org/abstracts/86936/explanation-and-temporality-in-international-relations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2364</span> Extraction of Essential Oil From Orange Peels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aayush%20Bhisikar">Aayush Bhisikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Rajas"> Neha Rajas</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Bhingare"> Aditya Bhingare</a>, <a href="https://publications.waset.org/abstracts/search?q=Samarth%20Bhandare"> Samarth Bhandare</a>, <a href="https://publications.waset.org/abstracts/search?q=Amruta%20Amrurkar"> Amruta Amrurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orange%20peels" title="orange peels">orange peels</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation" title=" distillation"> distillation</a> </p> <a href="https://publications.waset.org/abstracts/173039/extraction-of-essential-oil-from-orange-peels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2363</span> Extraction of Essential Oil from Orange Peels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Rajas">Neha Rajas</a>, <a href="https://publications.waset.org/abstracts/search?q=Aayush%20Bhisikar"> Aayush Bhisikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Samarth%20Bhandare"> Samarth Bhandare</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Bhingare"> Aditya Bhingare</a>, <a href="https://publications.waset.org/abstracts/search?q=Amruta%20Amrutkar"> Amruta Amrutkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orange%20peels" title="orange peels">orange peels</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation" title=" distillation"> distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a> </p> <a href="https://publications.waset.org/abstracts/173321/extraction-of-essential-oil-from-orange-peels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2362</span> Citizens’ Satisfaction Causal Factors in E-Government Services</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alshehab">Abdullah Alshehab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Governments worldwide are intensely focused on digitizing public transactions to establish reliable e-government services. The advent of new digital technologies and ongoing advancements in ICT have profoundly transformed business operations. Citizen engagement and participation in e-government services are crucial for the system's success. However, it is essential to measure and enhance citizen satisfaction levels to effectively evaluate and improve these systems. Citizen satisfaction is a key criterion that allows government institutions to assess the quality of their services. There is a strong connection between information quality, service quality, and system quality, all of which directly impact user satisfaction. Additionally, both system quality and information quality have indirect effects on citizen satisfaction. A causal map, which is a network diagram representing causes and effects, can illustrate these relationships. According to the literature, the main factors influencing citizen satisfaction are trust, reliability, citizen support, convenience, and transparency. This paper investigates the causal relationships among these factors and identifies any interrelatedness between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-government%20services" title="e-government services">e-government services</a>, <a href="https://publications.waset.org/abstracts/search?q=e-satisfaction" title=" e-satisfaction"> e-satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=citizen%20satisfaction" title=" citizen satisfaction"> citizen satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20map." title=" causal map."> causal map.</a> </p> <a href="https://publications.waset.org/abstracts/189740/citizens-satisfaction-causal-factors-in-e-government-services" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2361</span> Microwave-Assisted Extraction of Lycopene from Gac Arils (Momordica cochinchinensis (Lour.) Spreng)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yardfon%20Tanongkankit">Yardfon Tanongkankit</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanjana%20Narkprasom"> Kanjana Narkprasom</a>, <a href="https://publications.waset.org/abstracts/search?q=Nukrob%20Narkprasom"> Nukrob Narkprasom</a>, <a href="https://publications.waset.org/abstracts/search?q=Khwanruthai%20Saiupparat"> Khwanruthai Saiupparat</a>, <a href="https://publications.waset.org/abstracts/search?q=Phatthareeya%20Siriwat"> Phatthareeya Siriwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gac fruit (Momordica cochinchinensis (Lour.) Spreng) possesses high potential for health food as it contains high lycopene contents. The objective of this study was to optimize the extraction of lycopene from gac arils using the microwave extraction method. Response surface method was used to find the conditions that optimize the extraction of lycopene from gac arils. The parameters of extraction used in this study were extraction time (120-600 seconds), the solvent to sample ratio (10:1, 20:1, 30:1, 40:1 and 50:1 mL/g) and set microwave power (100-800 watts). The results showed that the microwave extraction condition at the extraction time of 360 seconds, the sample ratio of 30:1 mL/g and the microwave power of 450 watts were suggested since it exhibited the highest value of lycopene content of 9.86 mg/gDW. It was also observed that lycopene contents extracted from gac arils by microwave method were higher than that by the conventional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20extraction" title="conventional extraction">conventional extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Gac%20arils" title=" Gac arils"> Gac arils</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave-assisted%20extraction" title=" microwave-assisted extraction"> microwave-assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Lycopene" title=" Lycopene"> Lycopene</a> </p> <a href="https://publications.waset.org/abstracts/62117/microwave-assisted-extraction-of-lycopene-from-gac-arils-momordica-cochinchinensis-lour-spreng" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2360</span> Solvent extraction of molybdenum (VI) with two organophosphorus reagents TBP and D2EHPA under microwave irradiations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Boucherit">Ahmed Boucherit</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Khalaf"> Hussein Khalaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Paredes"> Eduardo Paredes</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Luis%20Todol%C3%AD"> José Luis Todolí</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solvent extraction studies of molybdenum (VI) with two organophosphorus reagents namely TBP and D2EHPA have been carried out from aqueous acidic solutions of HCl, H2SO4 and H3PO4 under microwave irradiations. The extraction efficiencies of the investigated extractants in the extraction of molybdenum (Vl) were compared. Extraction yield was found unchanged when microwave power varied in the range 20-100 Watts from H2SO4 or H3PO4 but it decreases in the range 20-60 Watts and increases in the range 60-100 Watts when TBP is used for extraction of molybdenum (VI) from 1 M HCl solutions. Extraction yield of molybdenum (VI) was found higher with TBP for HCl molarities greater than 1 M than with D2EHPA for H3PO4 molarities lower than 1 M. Extraction yield increases with HCl molarities in the range 0.50 - 1.80 M but it decreases with the increase in H2SO4 and H3PO4 molarities in the range of 0.05 - 1 M and 0.50 - 1 M, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdenum" title=" molybdenum"> molybdenum</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent" title=" solvent"> solvent</a> </p> <a href="https://publications.waset.org/abstracts/22227/solvent-extraction-of-molybdenum-vi-with-two-organophosphorus-reagents-tbp-and-d2ehpa-under-microwave-irradiations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">642</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2359</span> Optimization of Extraction Conditions for Phenolic Compounds from Deverra Scoparia Coss and Dur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roukia%20Hammoudi">Roukia Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabrouk%20Farid"> Chabrouk Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehak%20Karima"> Dehak Karima</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Hadj%20Mahammed"> Mahfoud Hadj Mahammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Didi%20Ouldelhadj"> Mohamed Didi Ouldelhadj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (acetone, ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. The optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deverra%20scoparia" title="Deverra scoparia">Deverra scoparia</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction" title=" ultrasound assisted extraction"> ultrasound assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/23755/optimization-of-extraction-conditions-for-phenolic-compounds-from-deverra-scoparia-coss-and-dur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2358</span> Optimization of Extraction Conditions for Phenolic Compounds from Deverra scoparia Coss. and Dur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roukia%20Hammoudi">Roukia Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehak%20Karima"> Dehak Karima</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabrouk%20Farid"> Chabrouk Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Hadj%20Mahammed"> Mahfoud Hadj Mahammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Didi%20Ouldelhadj"> Mohamed Didi Ouldelhadj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (Acetone, Ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. the optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deverra%20scoparia" title="Deverra scoparia">Deverra scoparia</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction" title=" ultrasound assisted extraction"> ultrasound assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/25874/optimization-of-extraction-conditions-for-phenolic-compounds-from-deverra-scoparia-coss-and-dur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">595</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2357</span> Change of Flavor Characteristics of Flavor Oil Made Using Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito) According to Extraction Temperature and Extraction Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyeong-Suk%20Jo">Gyeong-Suk Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo-Hyun%20Ji"> Soo-Hyun Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=You-Seok%20Lee"> You-Seok Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Hwa%20Kang"> Jeong-Hwa Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To develop an flavor oil using Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito), infiltration extraction method was used to add dried mushroom flavor of Sarcodon aspratus to base olive oil. Edible base oil used during infiltration extraction was pressed olive oil, and infiltration extraction was done while varying extraction temperature to 20, 30, 40 and 50(℃) extraction time to 24 hours, 48 hours and 72 hours. Amount of Sarcodon aspratus added to base oil was 20% compared to 100% of base oil. Production yield of Sarcodon aspratus flavor oil decreased with increasing extraction frequency. Aroma intensity was 2195~2447 (A.U./1㎖), and it increased with increasing extraction temperature and extraction time. Chromaticity of Sarcodon aspratus flavor oil was bright pale yellow with pH of 4.5, sugar content of 71~72 (°Brix), and highest average turbidity of 16.74 (Haze %) shown by the 40℃ group. In the aromatic evaluation, increasing extraction temperature and extraction time resulted in increase of cheese aroma, savory sweet aroma and beef jerky aroma, as well as spicy taste comprised of slight bitter taste, savory taste and slight acrid taste, to make aromatic oil with unique flavor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavor%20Characteristics" title="Flavor Characteristics">Flavor Characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavor%20Oil" title=" Flavor Oil"> Flavor Oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Infiltration%20extraction%20method" title=" Infiltration extraction method"> Infiltration extraction method</a>, <a href="https://publications.waset.org/abstracts/search?q=mushroom" title=" mushroom"> mushroom</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarcodon%20aspratus%20%28Sarcodon%20aspratus%20Berk.%20S.%20Ito%29" title=" Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito)"> Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito)</a> </p> <a href="https://publications.waset.org/abstracts/76522/change-of-flavor-characteristics-of-flavor-oil-made-using-sarcodon-aspratus-sarcodon-aspratus-berk-s-ito-according-to-extraction-temperature-and-extraction-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2356</span> Determinaton of Processing Parameters of Decaffeinated Black Tea by Using Pilot-Scale Supercritical CO₂ Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saziye%20Ilgaz">Saziye Ilgaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Atilla%20Polat"> Atilla Polat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a need for development of new processing techniques to ensure safety and quality of final product while minimizing the adverse impact of extraction solvents on environment and residue levels of these solvents in final product, decaffeinated black tea. In this study pilot scale supercritical carbon dioxide (SCCO₂) extraction was used to produce decaffeinated black tea in place of solvent extraction. Pressure (250, 375, 500 bar), extraction time (60, 180, 300 min), temperature (55, 62.5, 70 °C), CO₂ flow rate (1, 2 ,3 LPM) and co-solvent quantity (0, 2.5, 5 %mol) were selected as extraction parameters. The five factors BoxBehnken experimental design with three center points was performed to generate 46 different processing conditions for caffeine removal from black tea samples. As a result of these 46 experiments caffeine content of black tea samples were reduced from 2.16 % to 0 – 1.81 %. The experiments showed that extraction time, pressure, CO₂ flow rate and co-solvent quantity had great impact on decaffeination yield. Response surface methodology (RSM) was used to optimize the parameters of the supercritical carbon dioxide extraction. Optimum extraction parameters obtained of decaffeinated black tea were as follows: extraction temperature of 62,5 °C, extraction pressure of 375 bar, CO₂ flow rate of 3 LPM, extraction time of 176.5 min and co-solvent quantity of 5 %mol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide" title="supercritical carbon dioxide">supercritical carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=decaffeination" title=" decaffeination"> decaffeination</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20tea" title=" black tea"> black tea</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a> </p> <a href="https://publications.waset.org/abstracts/58747/determinaton-of-processing-parameters-of-decaffeinated-black-tea-by-using-pilot-scale-supercritical-co2-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2355</span> Comparison of Different Extraction Methods for the Determination of Polyphenols</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Senem%20Suna">Senem Suna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extraction of bioactive compounds from several food/food products comes as an important topic and new trend related with health promoting effects. As a result of the increasing interest in natural foods, different methods are used for the acquisition of these components especially polyphenols. However, special attention has to be paid to the selection of proper techniques or several processing technologies (supercritical fluid extraction, microwave-assisted extraction, ultrasound-assisted extraction, powdered extracts production) for each kind of food to get maximum benefit as well as the obtainment of phenolic compounds. In order to meet consumer’s demand for healthy food and the management of quality and safety requirements, advanced research and development are needed. In this review, advantages, and disadvantages of different extraction methods, their opportunities to be used in food industry and the effects of polyphenols are mentioned in details. Consequently, with the evaluation of the results of several studies, the selection of the most suitable food specific method was aimed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactives" title="bioactives">bioactives</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=powdered%20extracts" title=" powdered extracts"> powdered extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20fluid%20extraction" title=" supercritical fluid extraction"> supercritical fluid extraction</a> </p> <a href="https://publications.waset.org/abstracts/89849/comparison-of-different-extraction-methods-for-the-determination-of-polyphenols" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2354</span> Solvent Extraction of Rb and Cs from Jarosite Slag Using t-BAMBP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Haiyan">Zhang Haiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Zujun"> Su Zujun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Fengqi"> Zhao Fengqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lepidolite after extraction of Lithium by sulfate produced many jarosite slag which contains a lot of Rb and Cs.The separation and recovery of Rubidium(Rb) and Cesium(Cs) can make full of use of Lithium mica. XRF analysis showed that the slag mainly including K Rb Cs Al and etc. Fractional solvent extraction tests were carried out; the results show that using20% t-BAMBP plus 80% sulfonated kerosene, the separation of Rb and Cs can be achieved by adjusting the alkalinity. Extraction is the order of Cs Rb, ratio of Cs to Rb and ratio of Rb to K can reach above 1500 and 2500 respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cesium" title="cesium">cesium</a>, <a href="https://publications.waset.org/abstracts/search?q=jarosite%20slag" title=" jarosite slag"> jarosite slag</a>, <a href="https://publications.waset.org/abstracts/search?q=rubidium" title=" rubidium"> rubidium</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=t-BAMBP" title=" t-BAMBP"> t-BAMBP</a> </p> <a href="https://publications.waset.org/abstracts/82683/solvent-extraction-of-rb-and-cs-from-jarosite-slag-using-t-bambp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2353</span> Removal Cobalt (II) and Copper (II) by Solvent Extraction from Sulfate Solutions by Capric Acid in Chloroform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bara">A. Bara</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Barkat"> D. Barkat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid-liquid extraction is one of the most useful techniques for selective removal and recovery of metal ions from aqueous solutions, applied in purification processes in numerous chemical and metallurgical industries. In this work, The liquid-liquid extraction of cobalt (II) and copper (II) from aqueous solution by capric acid (HL) in chloroform at 25°C has been studied. Our interest in this paper is to study the effect of concentration of capric acid on the extraction of Co(II) and Cu(II) to see the complexes could be formed in the organic phase using various concentration of capric acid. The extraction of cobalt (II) and copper (II) is extracted as the complex CoL2 (HL )2, CuL2 (HL)2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capric%20acid" title="capric acid">capric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=Cobalt%28II%29" title=" Cobalt(II)"> Cobalt(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%28II%29" title=" copper(II)"> copper(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20extraction" title=" liquid-liquid extraction "> liquid-liquid extraction </a> </p> <a href="https://publications.waset.org/abstracts/27656/removal-cobalt-ii-and-copper-ii-by-solvent-extraction-from-sulfate-solutions-by-capric-acid-in-chloroform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2352</span> Urdu Text Extraction Method from Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samabia%20Tehsin">Samabia Tehsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumaira%20Kausar"> Sumaira Kausar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the vast increase in the multimedia data in recent years, efficient and robust retrieval techniques are needed to retrieve and index images/ videos. Text embedded in the images can serve as the strong retrieval tool for images. This is the reason that text extraction is an area of research with increasing attention. English text extraction is the focus of many researchers but very less work has been done on other languages like Urdu. This paper is focusing on Urdu text extraction from video frames. This paper presents a text detection feature set, which has the ability to deal up with most of the problems connected with the text extraction process. To test the validity of the method, it is tested on Urdu news dataset, which gives promising results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caption%20text" title="caption text">caption text</a>, <a href="https://publications.waset.org/abstracts/search?q=content-based%20image%20retrieval" title=" content-based image retrieval"> content-based image retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=document%20analysis" title=" document analysis"> document analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20extraction" title=" text extraction"> text extraction</a> </p> <a href="https://publications.waset.org/abstracts/9566/urdu-text-extraction-method-from-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2351</span> Personalized Intervention through Causal Inference in mHealth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Guitart%20Atienza">Anna Guitart Atienza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Fern%C3%A1ndez%20del%20R%C3%ADo"> Ana Fernández del Río</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhav%20Nekkar"> Madhav Nekkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Ljubicic"> Jelena Ljubicic</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81frica%20Peri%C3%A1%C3%B1ez"> África Periáñez</a>, <a href="https://publications.waset.org/abstracts/search?q=Eura%20Shin"> Eura Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lauren%20Bellhouse"> Lauren Bellhouse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of digital devices in healthcare or mobile health (mHealth) has increased in recent years due to the advances in digital technology, making it possible to nudge healthy behaviors through individual interventions. In addition, mHealth is becoming essential in poor-resource settings due to the widespread use of smartphones in areas where access to professional healthcare is limited. In this work, we evaluate mHealth interventions in low-income countries with a focus on causal inference. Counterfactuals estimation and other causal computations are key to determining intervention success and assisting in empirical decision-making. Our main purpose is to personalize treatment recommendations and triage patients at the individual level in order to maximize the entire intervention's impact on the desired outcome. For this study, collected data includes mHealth individual logs from front-line healthcare workers, electronic health records (EHR), and external variables data such as environmental, demographic, and geolocation information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20inference" title="causal inference">causal inference</a>, <a href="https://publications.waset.org/abstracts/search?q=mHealth" title=" mHealth"> mHealth</a>, <a href="https://publications.waset.org/abstracts/search?q=intervention" title=" intervention"> intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=personalization" title=" personalization"> personalization</a> </p> <a href="https://publications.waset.org/abstracts/133558/personalized-intervention-through-causal-inference-in-mhealth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2350</span> Supercritical CO2 Extraction of Cymbopogon martini Essential Oil and Comparison of Its Composition with Traditionally Extracted Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aarti%20Singh">Aarti Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anees%20Ahmad"> Anees Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oil was extracted from lemon grass (Cymbopogon martini) with supercritical carbondioxide (SC-CO2) at pressure of 140 bar and temperature of 55 °C and CO2 flow rate of 8 gmin-1, and its composition and yield were compared with other conventional extraction methods of oil, HD (Hydrodistillation), SE (Solvent Extraction), UAE (Ultrasound Assisted Extraction). SC-CO2 extraction is a green and sustainable extraction technique. Each oil was analysed by GC-MS, the major constituents were neral (44%), Z-citral (43%), geranial (27%), caryophyllene (4.6%) and linalool (1%). The essential oil of lemon grass is valued for its neral and citral concentration. The oil obtained by supercritical carbon-dioxide extraction contained maximum concentration of neral (55.05%) whereas ultrasonication extracted oil contained minimum content (5.24%) and it was absent in solvent extracted oil. The antioxidant properties have been assessed by DPPH and superoxide scavenging methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cymbopogon%20martini" title="cymbopogon martini">cymbopogon martini</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=HPTLC" title=" HPTLC"> HPTLC</a>, <a href="https://publications.waset.org/abstracts/search?q=SC-CO2" title=" SC-CO2"> SC-CO2</a> </p> <a href="https://publications.waset.org/abstracts/36550/supercritical-co2-extraction-of-cymbopogon-martini-essential-oil-and-comparison-of-its-composition-with-traditionally-extracted-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2349</span> Non-Linear Causality Inference Using BAMLSS and Bi-CAM in Finance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flora%20Babongo">Flora Babongo</a>, <a href="https://publications.waset.org/abstracts/search?q=Valerie%20Chavez"> Valerie Chavez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inferring causality from observational data is one of the fundamental subjects, especially in quantitative finance. So far most of the papers analyze additive noise models with either linearity, nonlinearity or Gaussian noise. We fill in the gap by providing a nonlinear and non-gaussian causal multiplicative noise model that aims to distinguish the cause from the effect using a two steps method based on Bayesian additive models for location, scale and shape (BAMLSS) and on causal additive models (CAM). We have tested our method on simulated and real data and we reached an accuracy of 0.86 on average. As real data, we considered the causality between financial indices such as S&P 500, Nasdaq, CAC 40 and Nikkei, and companies' log-returns. Our results can be useful in inferring causality when the data is heteroskedastic or non-injective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20inference" title="causal inference">causal inference</a>, <a href="https://publications.waset.org/abstracts/search?q=DAGs" title=" DAGs"> DAGs</a>, <a href="https://publications.waset.org/abstracts/search?q=BAMLSS" title=" BAMLSS"> BAMLSS</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20index" title=" financial index"> financial index</a> </p> <a href="https://publications.waset.org/abstracts/106620/non-linear-causality-inference-using-bamlss-and-bi-cam-in-finance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2348</span> Optimization, Yield and Chemical Composition of Essential Oil from Cymbopogon citratus: Comparative Study with Microwave Assisted Extraction and Hydrodistillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irsha%20Dhotre">Irsha Dhotre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cymbopogon citratus is generally known as Indian Lemongrass and is widely applicable in the cosmetic, pharmaceutical, dairy puddings, and food industries. To enhance the quality of extraction, microwave-oven-aided hydro distillation processes were implemented. The basic parameter which influences the rate of extraction is considered, such as the temperature of extraction, the time required for extraction, and microwave-oven power applied. Locally available CKP 25 Cymbopogon citratus was used for the extraction of essential oil. Optimization of Extractions Parameters and full factorial Box–Behnken design (BBD) evaluated by using Design expert 13 software. The regression model revealed that the optimum parameters required for extractions are a temperature of 35℃, a time of extraction of 130 minutes, and microwave-oven power of 700 W. The extraction efficiency of yield is 4.76%. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis confirmed the significant components present in the extraction of lemongrass oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Box%E2%80%93Behnken%20design" title="Box–Behnken design">Box–Behnken design</a>, <a href="https://publications.waset.org/abstracts/search?q=Cymbopogon%20citratus" title=" Cymbopogon citratus"> Cymbopogon citratus</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro%20distillation" title=" hydro distillation"> hydro distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave-oven" title=" microwave-oven"> microwave-oven</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/160880/optimization-yield-and-chemical-composition-of-essential-oil-from-cymbopogon-citratus-comparative-study-with-microwave-assisted-extraction-and-hydrodistillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2347</span> A Targeted Maximum Likelihood Estimation for a Non-Binary Causal Variable: An Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Raouf%20Benmakrelouf">Mohamed Raouf Benmakrelouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Rynkiewicz"> Joseph Rynkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Targeted maximum likelihood estimation (TMLE) is well-established method for causal effect estimation with desirable statistical properties. TMLE is a doubly robust maximum likelihood based approach that includes a secondary targeting step that optimizes the target statistical parameter. A causal interpretation of the statistical parameter requires assumptions of the Rubin causal framework. The causal effect of binary variable, E, on outcomes, Y, is defined in terms of comparisons between two potential outcomes as E[YE=1 − YE=0]. Our aim in this paper is to present an adaptation of TMLE methodology to estimate the causal effect of a non-binary categorical variable, providing a large application. We propose coding on the initial data in order to operate a binarization of the interest variable. For each category, we get a transformation of the non-binary interest variable into a binary variable, taking value 1 to indicate the presence of category (or group of categories) for an individual, 0 otherwise. Such a dummy variable makes it possible to have a pair of potential outcomes and oppose a category (or a group of categories) to another category (or a group of categories). Let E be a non-binary interest variable. We propose a complete disjunctive coding of our variable E. We transform the initial variable to obtain a set of binary vectors (dummy variables), E = (Ee : e ∈ {1, ..., |E|}), where each vector (variable), Ee, takes the value of 0 when its category is not present, and the value of 1 when its category is present, which allows to compute a pairwise-TMLE comparing difference in the outcome between one category and all remaining categories. In order to illustrate the application of our strategy, first, we present the implementation of TMLE to estimate the causal effect of non-binary variable on outcome using simulated data. Secondly, we apply our TMLE adaptation to survey data from the French Political Barometer (CEVIPOF), to estimate the causal effect of education level (A five-level variable) on a potential vote in favor of the French extreme right candidate Jean-Marie Le Pen. Counterfactual reasoning requires us to consider some causal questions (additional causal assumptions). Leading to different coding of E, as a set of binary vectors, E = (Ee : e ∈ {2, ..., |E|}), where each vector (variable), Ee, takes the value of 0 when the first category (reference category) is present, and the value of 1 when its category is present, which allows to apply a pairwise-TMLE comparing difference in the outcome between the first level (fixed) and each remaining level. We confirmed that the increase in the level of education decreases the voting rate for the extreme right party. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20inference" title="statistical inference">statistical inference</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20inference" title=" causal inference"> causal inference</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20learning" title=" super learning"> super learning</a>, <a href="https://publications.waset.org/abstracts/search?q=targeted%20maximum%20likelihood%20estimation" title=" targeted maximum likelihood estimation"> targeted maximum likelihood estimation</a> </p> <a href="https://publications.waset.org/abstracts/147591/a-targeted-maximum-likelihood-estimation-for-a-non-binary-causal-variable-an-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction&amp;page=79">79</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction&amp;page=80">80</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=causal%20realtion%20extraction&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10