CINXE.COM
{"title":"Optimization of a Bioremediation Strategy for an Urban Stream of Matanza-Riachuelo Basin","authors":"Mar\u00eda D. Groppa, Andrea Trentini, Myriam Zawoznik, Roxana Bigi, Carlos Nadra, Patricia L. Marconi","volume":149,"journal":"International Journal of Environmental and Ecological Engineering","pagesStart":418,"pagesEnd":425,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10010411","abstract":"<p>In the present work, a remediation bioprocess based on the use of a local isolate of the microalgae <em>Chlorella vulgaris<\/em> immobilized in alginate beads is proposed. This process was shown to be effective for the reduction of several chemical and microbial contaminants present in Cildáñez stream, a water course that is part of the Matanza-Riachuelo Basin (Buenos Aires, Argentina). The bioprocess, involving the culture of the microalga in autotrophic conditions in a stirred-tank bioreactor supplied with a marine propeller for 6 days, allowed a significant reduction of <em>Escherichia coli<\/em> and total coliform numbers (over 95%), as well as of ammoniacal nitrogen (96%), nitrates (86%), nitrites (98%), and total phosphorus (53%) contents. Pb content was also significantly diminished after the bioprocess (95%). Standardized cytotoxicity tests using<em> Allium cepa<\/em> seeds and Cildáñez water pre- and post-remediation were also performed. Germination rate and mitotic index of onion seeds imbibed in Cildáñez water subjected to the bioprocess was similar to that observed in seeds imbibed in distilled water and significantly superior to that registered when untreated Cildáñez water was used for imbibition. Our results demonstrate the potential of this simple and cost-effective technology to remove urban-water contaminants, offering as an additional advantage the possibility of an easy biomass recovery, which may become a source of alternative energy.<\/p>\r\n","references":"[1]\tM. Nassir Khan, F. Mohamed, \u201cEutrophication: challenges and solutions,\u201d in Eutrophication: Causes, Consequences and Control, vol. 2, A. A. Ansari, S. S. Gill, Eds. Dordrecht: Springer Science+Business Media, 2014, pp. 1\u201316.\r\n[2]\tAgencia de Protecci\u00f3n Ambiental (APRA), Ministerio de Ambiente y Espacio P\u00fablico, Informe Anual Ambiental 2016, retrieved from: http:\/\/cdn2.buenosaires.gob.ar\/espaciopublico\/apra\/informe_anual_ambiental_2016.pdf. Accessed on 15\/10\/2018.\r\n[3]\tL. E. Bashan, Y. Bashan, M. Moreno, V. K. Lebsky, and J. J. Bustillos, \u201cIncreased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when coimmobilized in alginate beads with the microalgae-growth promoting bacterium Azospirillum brasilense,\u201d Can. J. Microbiol., vol. 48, 2002, pp. 514\u2013521.\r\n[4]\tL. E. de Bashan and Y. Bashan, \u201cJoint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant\u2013bacterium interactions,\u201d Appl. Environ. Microbiol., vol. 74, 2008, pp. 6797\u20136802.\r\n[5]\tP. J. He, B. Mao, F. L\u00fc, L.M. Shao, D. J. Lee, and J. S. Chang. \u201cThe combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters,\u201d Bioresource Technol., vol. 146, 2013, pp. 562\u2013568.\r\n[6]\tB. Chekroun Kaoutar, E. S\u00e1nchez, and M. Baghour, \u201cThe role of algae in bioremediation of organic pollutants, Intl. Res. J. Public. Environ. Health, vol. 1, 2014, pp. 19\u201332.\r\n[7]\tA. Trentini, M. D. Groppa, M. Zawoznik, R. Bigi, P. E. Perelman, and P. L. Marconi, \u201cBiorremediaci\u00f3n del lago Lugano de la Cdad. Aut\u00f3noma de Bs. As. por algas unicelulares- estudios preliminares,\u201d Terra Mundus, vol. 4, 2017, http:\/\/dspace.uces.edu.ar:8180\/xmlui\/handle\/123456789\/4302. Accessed on 05\/03\/2018.\r\n[8]\tS. A. Covarrubias, L. E. de Bashan, M. Moreno, and Y. Bashan, \u201cAlginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae,\u201d Appl. Microbiol. Biotechnol., vol. 93, 2012, pp. 2669\u20132680.\r\n[9]\tM. Kube, A. Mohseni, L. Fan, and F. Roddick. \u201cImpact of alginate selection for wastewater treatment by immobilized Chlorella vulgaris,\u201d Chem. Eng. J., vol., 2019, pp.1601-1609. \r\n[10]\tM. M. El-Sheekh, M. A. Metwally, N. G. Allam, and H. E. Hendam, \u201cEffect of algal cell immobilization technique on sequencing batch reactors for sewage wastewater treatment,\u201d Int. J. Environ. Res., vol. 11, 2017, pp 603\u2013611. \r\n[11]\tJ. R. Benavente Vald\u00e9s, A. M\u00e9ndez Zavala, L. Morales Oyervides, Y. Chisti, and J Monta\u00f1ez, \u201cEffects of shear rate, photoautotrophy and photoheterotrophy on production of biomass and pigments by Chlorella vulgaris,\u201d Chemical Technol, Biotechnol., vol.92, 2017, pp. 2453\u20132459. \r\n[12]\tC. Wang and C. Lan, \u201cEffects of shear stress on microalgae \u2013 A review,\u201d Biotechnol. Adv., vol. 36, 2018, pp. 986\u20131002. \r\n[13]\tM. A. D. Silveira, D. L. Ribeiro, G. M. Vieira, N. Ribeiro Demarco, and L. P. Gr\u00e9gio d\u2019Arce, \u201cDirect and indirect anthropogenic contamination in water sources: evaluation of chromosomal stability and cytotoxicity using the Allium cepa test,\u201d Bull. Environ. Contam. Toxicol., vol. 100, 2018, pp. 216\u2013220. \r\n[14]\tD. M. Leme and A. Marin-Morales, \u201cAllium cepa test in environmental monitoring: A review on its application,\u201d Mutat. Res., vol. 682, 2009, pp. 71\u201381.\r\n[15]\tT. Murashige and F. Skoog, \u201cA revised medium for rapid growth and bioassays with tobacco tissue cultures,\u201d Physiol. Plantarum, vol. 15, 1962, pp. 473\u2013497.\r\n[16]\tFermenter Tool software 2018, retrieved from www.fermentertool.com\/en\/. Accessed on 20\/07\/2018.\r\n[17]\tAmerican Public Health Association (APHA), Standard methods for the examination of water and wastewater, 21st Ed., Washington DC: American Public Health Association, 2005.\r\n[18]\tF. Garc\u00eda-Ochoa and E. Gomez, \u201cBioreactor scale-up and oxygen transfer rate in microbial processes: An overview,\u201d. Biotechnol. Adv., vol. 27, 2009, pp. 153\u2013176. \r\n[19]\tG. Bas\u00edlico, A. Magdaleno, M. Paz, J. Moretton, A. Faggi, and L. de Cabo, \u201cSewage pollution: genotoxicity assessment and phytoremediation of nutrients excess with Hydrocotyle ranunculoides,\u201d Environ Monit. Assess., vol. 189, 2017, pp. 182.\r\n[20]\tJ. W. Tukey, \u201cSome selected quick and easy methods of statistical analysis,\u201d Trans NY Acad. Sc., vol. 16, 1953, pp. 88\u201397. \r\n[21]\tJ. A. Di Rienzo, F. Casanoves, M. G. Balzarini, L. Gonzalez, M. Tablada, and C. W. Robledo, InfoStat versi\u00f3n 2013. Grupo InfoStat, FCA, Universidad Nacional de C\u00f3rdoba, Argentina, retrieved from http:\/\/www.infostat.com.ar. Accessed on 10\/10\/2018.\r\n[22]\tE. Sforza, E. Armandina Ramos-Tercero, B. Gris, F. Bettin, A. Milani, and A. Bertucco, \u201cIntegration of Chlorella protothecoides production in wastewater treatment plant: From lab measurements to process design,\u201d Algal Res., vol. 6, 2014, pp. 223\u2013233.\r\n[23]\tL. Evans, S. J. Hennige, N. Willoughby, A.J. Adeloye, M. Skroblin, and T. Gutierrez, \u201cEffect of organic carbon enrichment on the treatment efficiency of primary settled wastewater by Chlorella vulgaris,\u201d Algal Res., vol. 24, 2017, pp. 368\u2013377.\r\n[24]\tEPA WEB Archive 2017, United States Environmental Protection Agency, Ground Water and Drinking Water, Basic Information about Lead in Drinking Water, retrieved from https:\/\/www.epa.gov\/. Accessed on 12\/07\/2018.\r\n[25]\tL. Regaldo, S. Gervasio, H. Troiani, and A. M. Gagneten, \u201cBioaccumulation and toxicity of copper and lead in Chlorella vulgaris,\u201d J. Algal Biomass Utln., vol. 4, 2013, pp. 59\u201366.\r\n[26]\tAustralian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. 1. National Water Quality Management Strategy, October 2000.\r\n[27]\tResoluci\u00f3n 46-E\/2017, Anexo III caracter\u00edsticas y valores de par\u00e1metros asociados a los usos. Ministerio de Ambiente y Desarrollo Sustentable - ACUMAR - Rep\u00fablica Argentina, 2017.\r\n[28]\tResoluciones de CONAMA, 1984-2012. Calidad de agua, Resoluci\u00f3n N\u00b0 274, Edici\u00f3n Especial, Ministerio de Medio Ambiente, Brasilia, 2012, pp. 371\u2013385.\r\n[29]\tG. Mujtaba, M. Rizwan, and K. Lee K, \u201cRemoval of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris,\u201d J. Ind. Engin. Chem., vol. 49, 2017, pp. 145\u2013151.\r\n[30]\tP. L. Marconi, M. A. Alvarez, S. P. Klykov, and V. V. Kurako, \u201cApplication of a mathematical model for production of recombinant antibody 14D9 by Nicotiana tabacum cell suspension batch culture,\u201d BioProcess Int., vol. 12, 2014, pp. 42\u201349.\r\n[31]\tE. Zhang, B. Wang, S. Ning, H. Sun, B. Yang, M. Jin, and L. Hou, \u201cAmmonia-nitrogen and orthophosphate removal by immobilized Chlorella sp. isolated from municipal wastewater for potential use in tertiary treatment,\u201d Afr. J. Biotechnol., vol. 11, 2012, pp. 6529\u20136534.\r\n[32]\tR. Madadi, A. A. Pourbabaee, M. Tabatabaei, M. A. Zahed, and M. R. Naghavi, \u201cTreatment of petrochemical wastewater by the green algae Chlorella vulgaris,\u201d Int. J. Environ. Res., vol. 10, 2016, pp. 555\u2013560.\r\n[33]\tJ. L. Salgueiro, L. P\u00e9rez, R. Maceiras, A. S\u00e1nchez, and A. Cancela, \u201cBioremediation of wastewater using Chlorella vulgaris microalgae: phosphorus and organic matter,\u201d Int. J. Environ. Res., vol 10, 2016, pp. 465\u2013470.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 149, 2019"}