CINXE.COM

{"title":"Optimization of a Bioremediation Strategy for an Urban Stream of Matanza-Riachuelo Basin","authors":"Mar\u00eda D. Groppa, Andrea Trentini, Myriam Zawoznik, Roxana Bigi, Carlos Nadra, Patricia L. Marconi","volume":149,"journal":"International Journal of Environmental and Ecological Engineering","pagesStart":418,"pagesEnd":425,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10010411","abstract":"<p>In the present work, a remediation bioprocess based on the use of a local isolate of the microalgae <em>Chlorella vulgaris<\/em> immobilized in alginate beads is proposed. This process was shown to be effective for the reduction of several chemical and microbial contaminants present in Cild&aacute;&ntilde;ez stream, a water course that is part of the Matanza-Riachuelo Basin (Buenos Aires, Argentina). The bioprocess, involving the culture of the microalga in autotrophic conditions in a stirred-tank bioreactor supplied with a marine propeller for 6 days, allowed a significant reduction of <em>Escherichia coli<\/em> and total coliform numbers (over 95%), as well as of ammoniacal nitrogen (96%), nitrates (86%), nitrites (98%), and total phosphorus (53%) contents. Pb content was also significantly diminished after the bioprocess (95%). Standardized cytotoxicity tests using<em> Allium cepa<\/em> seeds and Cild&aacute;&ntilde;ez water pre- and post-remediation were also performed. Germination rate and mitotic index of onion seeds imbibed in Cild&aacute;&ntilde;ez water subjected to the bioprocess was similar to that observed in seeds imbibed in distilled water and significantly superior to that registered when untreated Cild&aacute;&ntilde;ez water was used for imbibition. Our results demonstrate the potential of this simple and cost-effective technology to remove urban-water contaminants, offering as an additional advantage the possibility of an easy biomass recovery, which may become a source of alternative energy.<\/p>\r\n","references":"[1]\tM. Nassir Khan, F. Mohamed, \u201cEutrophication: challenges and solutions,\u201d in Eutrophication: Causes, Consequences and Control, vol. 2, A. A. Ansari, S. S. Gill, Eds. Dordrecht: Springer Science+Business Media, 2014, pp. 1\u201316.\r\n[2]\tAgencia de Protecci\u00f3n Ambiental (APRA), Ministerio de Ambiente y Espacio P\u00fablico, Informe Anual Ambiental 2016, retrieved from: http:\/\/cdn2.buenosaires.gob.ar\/espaciopublico\/apra\/informe_anual_ambiental_2016.pdf. Accessed on 15\/10\/2018.\r\n[3]\tL. E. Bashan, Y. Bashan, M. Moreno, V. K. Lebsky, and J. J. Bustillos, \u201cIncreased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when coimmobilized in alginate beads with the microalgae-growth promoting bacterium Azospirillum brasilense,\u201d Can. J. Microbiol., vol. 48, 2002, pp. 514\u2013521.\r\n[4]\tL. E. de Bashan and Y. Bashan, \u201cJoint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant\u2013bacterium interactions,\u201d Appl. Environ. Microbiol., vol. 74, 2008, pp. 6797\u20136802.\r\n[5]\tP. J. He, B. Mao, F. L\u00fc, L.M. Shao, D. J. Lee, and J. S. Chang. \u201cThe combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters,\u201d Bioresource Technol., vol. 146, 2013, pp. 562\u2013568.\r\n[6]\tB. Chekroun Kaoutar, E. S\u00e1nchez, and M. Baghour, \u201cThe role of algae in bioremediation of organic pollutants, Intl. Res. J. Public. Environ. Health, vol. 1, 2014, pp. 19\u201332.\r\n[7]\tA. Trentini, M. D. Groppa, M. Zawoznik, R. Bigi, P. E. Perelman, and P. L. Marconi, \u201cBiorremediaci\u00f3n del lago Lugano de la Cdad. Aut\u00f3noma de Bs. As. por algas unicelulares- estudios preliminares,\u201d Terra Mundus, vol. 4, 2017, http:\/\/dspace.uces.edu.ar:8180\/xmlui\/handle\/123456789\/4302. Accessed on 05\/03\/2018.\r\n[8]\tS. A. Covarrubias, L. E. de Bashan, M. Moreno, and Y. Bashan, \u201cAlginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae,\u201d Appl. Microbiol. Biotechnol., vol. 93, 2012, pp. 2669\u20132680.\r\n[9]\tM. Kube, A. Mohseni, L. Fan, and F. Roddick. \u201cImpact of alginate selection for wastewater treatment by immobilized Chlorella vulgaris,\u201d Chem. Eng. J., vol., 2019, pp.1601-1609. \r\n[10]\tM. M. El-Sheekh, M. A. Metwally, N. G. Allam, and H. E. Hendam, \u201cEffect of algal cell immobilization technique on sequencing batch reactors for sewage wastewater treatment,\u201d Int. J. Environ. Res., vol. 11, 2017, pp 603\u2013611. \r\n[11]\tJ. R. Benavente Vald\u00e9s, A. M\u00e9ndez Zavala, L. Morales Oyervides, Y. Chisti, and J Monta\u00f1ez, \u201cEffects of shear rate, photoautotrophy and photoheterotrophy on production of biomass and pigments by Chlorella vulgaris,\u201d Chemical Technol, Biotechnol., vol.92, 2017, pp. 2453\u20132459. \r\n[12]\tC. Wang and C. Lan, \u201cEffects of shear stress on microalgae \u2013 A review,\u201d Biotechnol. Adv., vol. 36, 2018, pp. 986\u20131002. \r\n[13]\tM. A. D. Silveira, D. L. Ribeiro, G. M. Vieira, N. Ribeiro Demarco, and L. P. Gr\u00e9gio d\u2019Arce, \u201cDirect and indirect anthropogenic contamination in water sources: evaluation of chromosomal stability and cytotoxicity using the Allium cepa test,\u201d Bull. Environ. Contam. Toxicol., vol. 100, 2018, pp. 216\u2013220. \r\n[14]\tD. M. Leme and A. Marin-Morales, \u201cAllium cepa test in environmental monitoring: A review on its application,\u201d Mutat. Res., vol. 682, 2009, pp. 71\u201381.\r\n[15]\tT. Murashige and F. Skoog, \u201cA revised medium for rapid growth and bioassays with tobacco tissue cultures,\u201d Physiol. Plantarum, vol. 15, 1962, pp. 473\u2013497.\r\n[16]\tFermenter Tool software 2018, retrieved from www.fermentertool.com\/en\/. Accessed on 20\/07\/2018.\r\n[17]\tAmerican Public Health Association (APHA), Standard methods for the examination of water and wastewater, 21st Ed., Washington DC: American Public Health Association, 2005.\r\n[18]\tF. Garc\u00eda-Ochoa and E. Gomez, \u201cBioreactor scale-up and oxygen transfer rate in microbial processes: An overview,\u201d. Biotechnol. Adv., vol. 27, 2009, pp. 153\u2013176. \r\n[19]\tG. Bas\u00edlico, A. Magdaleno, M. Paz, J. Moretton, A. Faggi, and L. de Cabo, \u201cSewage pollution: genotoxicity assessment and phytoremediation of nutrients excess with Hydrocotyle ranunculoides,\u201d Environ Monit. Assess., vol. 189, 2017, pp. 182.\r\n[20]\tJ. W. Tukey, \u201cSome selected quick and easy methods of statistical analysis,\u201d Trans NY Acad. Sc., vol. 16, 1953, pp. 88\u201397. \r\n[21]\tJ. A. Di Rienzo, F. Casanoves, M. G. Balzarini, L. Gonzalez, M. Tablada, and C. W. Robledo, InfoStat versi\u00f3n 2013. Grupo InfoStat, FCA, Universidad Nacional de C\u00f3rdoba, Argentina, retrieved from http:\/\/www.infostat.com.ar. Accessed on 10\/10\/2018.\r\n[22]\tE. Sforza, E. Armandina Ramos-Tercero, B. Gris, F. Bettin, A. Milani, and A. Bertucco, \u201cIntegration of Chlorella protothecoides production in wastewater treatment plant: From lab measurements to process design,\u201d Algal Res., vol. 6, 2014, pp. 223\u2013233.\r\n[23]\tL. Evans, S. J. Hennige, N. Willoughby, A.J. Adeloye, M. Skroblin, and T. Gutierrez, \u201cEffect of organic carbon enrichment on the treatment efficiency of primary settled wastewater by Chlorella vulgaris,\u201d Algal Res., vol. 24, 2017, pp. 368\u2013377.\r\n[24]\tEPA WEB Archive 2017, United States Environmental Protection Agency, Ground Water and Drinking Water, Basic Information about Lead in Drinking Water, retrieved from https:\/\/www.epa.gov\/. Accessed on 12\/07\/2018.\r\n[25]\tL. Regaldo, S. Gervasio, H. Troiani, and A. M. Gagneten, \u201cBioaccumulation and toxicity of copper and lead in Chlorella vulgaris,\u201d J. Algal Biomass Utln., vol. 4, 2013, pp. 59\u201366.\r\n[26]\tAustralian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. 1. National Water Quality Management Strategy, October 2000.\r\n[27]\tResoluci\u00f3n 46-E\/2017, Anexo III caracter\u00edsticas y valores de par\u00e1metros asociados a los usos. Ministerio de Ambiente y Desarrollo Sustentable - ACUMAR - Rep\u00fablica Argentina, 2017.\r\n[28]\tResoluciones de CONAMA, 1984-2012. Calidad de agua, Resoluci\u00f3n N\u00b0 274, Edici\u00f3n Especial, Ministerio de Medio Ambiente, Brasilia, 2012, pp. 371\u2013385.\r\n[29]\tG. Mujtaba, M. Rizwan, and K. Lee K, \u201cRemoval of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris,\u201d J. Ind. Engin. Chem., vol. 49, 2017, pp. 145\u2013151.\r\n[30]\tP. L. Marconi, M. A. Alvarez, S. P. Klykov, and V. V. Kurako, \u201cApplication of a mathematical model for production of recombinant antibody 14D9 by Nicotiana tabacum cell suspension batch culture,\u201d BioProcess Int., vol. 12, 2014, pp. 42\u201349.\r\n[31]\tE. Zhang, B. Wang, S. Ning, H. Sun, B. Yang, M. Jin, and L. Hou, \u201cAmmonia-nitrogen and orthophosphate removal by immobilized Chlorella sp. isolated from municipal wastewater for potential use in tertiary treatment,\u201d Afr. J. Biotechnol., vol. 11, 2012, pp. 6529\u20136534.\r\n[32]\tR. Madadi, A. A. Pourbabaee, M. Tabatabaei, M. A. Zahed, and M. R. Naghavi, \u201cTreatment of petrochemical wastewater by the green algae Chlorella vulgaris,\u201d Int. J. Environ. Res., vol. 10, 2016, pp. 555\u2013560.\r\n[33]\tJ. L. Salgueiro, L. P\u00e9rez, R. Maceiras, A. S\u00e1nchez, and A. Cancela, \u201cBioremediation of wastewater using Chlorella vulgaris microalgae: phosphorus and organic matter,\u201d Int. J. Environ. Res., vol 10, 2016, pp. 465\u2013470.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 149, 2019"}