CINXE.COM

Search results for: green inhibitors

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: green inhibitors</title> <meta name="description" content="Search results for: green inhibitors"> <meta name="keywords" content="green inhibitors"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="green inhibitors" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="green inhibitors"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2530</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: green inhibitors</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2530</span> Use of Electrochemical Methods for the Inhibition of Scaling with Green Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Ghizellaoui">Samira Ghizellaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Manel%20Boumagoura"> Manel Boumagoura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The municipality of Constantine in eastern Algeria draws water from the Hamma groundwater source. The high fouling capacity is due to the high content of bicarbonate (442 mg/L) and calcium (136 mg/L). This work focuses on the use of three new green inhibitors for reducing calcium carbonate scale formation: gallic acid, quercetin and alginate, and on the comparison between them. These inhibitors have proven to be green antiscalants because they have no impact on the environment. Electrochemical methods (chronoamperometry and impedancemetry) were used to evaluate their performance. According to the study, these inhibitors are excellent green chemical inhibitors of scaling, and the best inhibitor is quercetin because it gave a good result with a lower concentration (2mg/L) compared to others inhibitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scaling" title="scaling">scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20inhibitor" title=" green inhibitor"> green inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=chronoamperometry" title=" chronoamperometry"> chronoamperometry</a>, <a href="https://publications.waset.org/abstracts/search?q=impedancemetry" title=" impedancemetry"> impedancemetry</a> </p> <a href="https://publications.waset.org/abstracts/167621/use-of-electrochemical-methods-for-the-inhibition-of-scaling-with-green-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2529</span> Amino Acid Derivatives as Green Corrosion Inhibitors for Mild Steel in 1M HCl: Electrochemical, Surface and Density Functional Theory Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiyaul%20Haque">Jiyaul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Vandana%20Srivastava"> Vandana Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Quraishi"> M. A. Quraishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The amino acids based corrosion inhibitors 2-(3-(carboxymethyl)-1H-imidazol-3-ium-1-yl) acetate (Z-1),2-(3-(1-carboxyethyl)-1H-imidazol-3-ium-1-yl) propanoate (Z-2) and 2-(3-(1-carboxy-2-phenylethyl)-1H-imidazol-3-ium-1-yl)-3- phenylpropanoate (Z-3) were synthesized by the reaction of amino acids, glyoxal and formaldehyde, and characterized by the FTIR and NMR spectroscopy. The corrosion inhibition performance of synthesized inhibitors was studied by electrochemical (EIS and PDP), surface and DFT methods. The results show, the studied Z-1, Z-2 and Z-3 are effective inhibitors, showed the maximum inhibition efficiency of 88.52 %, 89.48 and 96.08% at concentration 200ppm, respectively. The results of potentiodynamic polarization (PDP) study showed that Z-1 act as a cathodic inhibitor, while Z-2 and Z-3 act as mixed type inhibitors. The results of electrochemical impedance spectroscopy (EIS) studies showed that zwitterions inhibit the corrosion through adsorption mechanism. The adsorption of synthesized zwitterions on the mild steel surface was followed the Langmuir adsorption isotherm. The formation of zwitterions film on mild steel surface was confirmed by the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). The quantum chemical parameters were used to study the reactivity of inhibitors and supported the experimental results. An inhibitor adsorption model is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20impedance%20spectroscopy" title="electrochemical impedance spectroscopy">electrochemical impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20corrosion%20inhibitors" title=" green corrosion inhibitors"> green corrosion inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title=" mild steel"> mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20chemical%20calculation" title=" quantum chemical calculation"> quantum chemical calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=zwitterions" title=" zwitterions"> zwitterions</a> </p> <a href="https://publications.waset.org/abstracts/94750/amino-acid-derivatives-as-green-corrosion-inhibitors-for-mild-steel-in-1m-hcl-electrochemical-surface-and-density-functional-theory-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2528</span> A Comparative Performance of Polyaspartic Acid and Sodium Polyacrylate on Silicate Scale Inhibition </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Bin%20Mohd%20Saaid">Ismail Bin Mohd Saaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Abubakar%20Umar"> Abubakar Abubakar Umar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the successes recorded by Alkaline/Surfactant/Polymer (ASP) flooding as an effective chemical EOR technique, the combination CEOR is not unassociated with stern glitches, one of which is the scaling of downhole equipment. One of the major issues inside the oil industry is how to control scale formation, regardless of whether it is in the wellhead equipment, down-hole pipelines or even the actual field formation. The best approach to handle the challenge associated with oilfield scale formation is the application of scale inhibitors to avert the scale formation. Chemical inhibitors have been employed in doing such. But due to environmental regulations, the industry have focused on using green scale inhibitors to mitigate the formation of scales. This paper compares the scale inhibition performance of Polyaspartic acid and sodium polyacrylic acid, both commercial green scale inhibitors, in mitigating silicate scales formed during Alkaline/Surfactant/polymer flooding under static conditions. Both PASP and TH5000 are non-threshold inhibitors, therefore their efficiency was only seeing in delaying the deposition of the silicate scales. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%2Fsurfactant%2Fpolymer%20flooding%20%28ASP%29" title="alkaline/surfactant/polymer flooding (ASP)">alkaline/surfactant/polymer flooding (ASP)</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaspartic%20acid%20%28PASP%29" title=" polyaspartic acid (PASP)"> polyaspartic acid (PASP)</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20polyacrylate%20%28SPA%29" title=" sodium polyacrylate (SPA)"> sodium polyacrylate (SPA)</a> </p> <a href="https://publications.waset.org/abstracts/29025/a-comparative-performance-of-polyaspartic-acid-and-sodium-polyacrylate-on-silicate-scale-inhibition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2527</span> Drippers Scaling Inhibition of the Localized Irrigation System by Green Inhibitors Based on Plant Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Driouiche%20Ali">Driouiche Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Karmal%20Ilham"> Karmal Ilham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Agadir region is characterized by a dry climate, ranging from arid attenuated by oceanic influences to hyper-arid. The water mobilized in the agricultural sector of greater Agadir is 95% of underground origin and comes from the water table of Chtouka. The rest represents the surface waters of the Youssef Ben Tachfine dam. These waters are intended for the irrigation of 26880 hectares of modern agriculture. More than 120 boreholes and wells are currently exploited. Their depth varies between 10 m and 200 m and the unit flow rates of the boreholes are 5 to 50 l/s. A drop in the level of the water table of about 1.5 m/year, on average, has been observed during the last five years. Farmers are thus called upon to improve irrigation methods. Thus, localized or drip irrigation is adopted to allow rational use of water. The importance of this irrigation system is due to the fact that water is applied directly to the root zone and its compatibility with fertilization. However, this irrigation system faces a thorny problem which is the clogging of pipes and drippers. This leads to a lack of uniformity of irrigation over time. This so-called scaling phenomenon, the consequences of which are harmful (cleaning or replacement of pipes), leads to considerable unproductive expenditure. The objective set by this work is the search for green inhibitors likely to prevent this phenomenon of scaling. This study requires a better knowledge of these waters, their physico-chemical characteristics and their scaling power. Thus, using the "LCGE" controlled degassing technique, we initially evaluated, on pure calco-carbonic water at 30°F, the scaling-inhibiting power of some available plant extracts in our region of Souss-Massa. We then carried out a comparative study of the efficacy of these green inhibitors. The action of the most effective green inhibitor on real agricultural waters was then studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20inhibitors" title="green inhibitors">green inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20irrigation" title=" localized irrigation"> localized irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling%20inhibition" title=" scaling inhibition"> scaling inhibition</a> </p> <a href="https://publications.waset.org/abstracts/155083/drippers-scaling-inhibition-of-the-localized-irrigation-system-by-green-inhibitors-based-on-plant-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2526</span> Application of Chemical Tests for the Inhibition of Scaling From Hamma Hard Waters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Ghizellaoui">Samira Ghizellaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Manel%20Boumagoura"> Manel Boumagoura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium carbonate precipitation is a widespread problem, especially in hard water systems. The main water supply that supplies the city of Constantine with drinking water is underground water called Hamma water. This water has a very high hardness of around 590 mg/L CaCO₃. This leads to the formation of scale, consisting mainly of calcium carbonate, which can be responsible for the clogging of valves and the deterioration of equipment (water heaters, washing machines and encrustations in the pipes). Plant extracts used as scale inhibitors have attracted the attention of several researchers. In recent years, green inhibitors have attracted great interest because they are biodegradable, non-toxic and do not affect the environment. The aim of our work is to evaluate the effectiveness of a chemical antiscale treatment in the presence of three green inhibitors: gallicacid; quercetin; alginate, and three mixtures: (gallic acid-quercetin); (quercetin-alginate); (gallic acid-alginate). The results show that the inhibitory effect is manifested from an addition of 1mg/L of gallic acid, 10 mg/L of quercetin, 0.2 mg/L of alginate, 0.4mg/L of (gallic acid-quercetin), 2mg/L of (quercetin-alginate) and 0.4 mg/L of (gallic acid-alginate). On the other hand, 100 mg/L (Drinking water standard) of Ca2+is reached for partial softening at 4 mg/L of gallic acid, 40 mg/L of quercetin, 0.6mg/L of alginate, 4mg/L of (gallic acid-quercetin), 10mg/L of (quercetin-alginate) and 1.6 mg/L of (gallic acid-alginate). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling" title=" scaling"> scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title=" calcium carbonate"> calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20inhibitor" title=" green inhibitor"> green inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/167612/application-of-chemical-tests-for-the-inhibition-of-scaling-from-hamma-hard-waters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2525</span> Nanoparticle Based Green Inhibitor for Corrosion Protection of Zinc in Acidic Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Parekh">Neha Parekh</a>, <a href="https://publications.waset.org/abstracts/search?q=Divya%20Ladha"> Divya Ladha</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonam%20Wadhwani"> Poonam Wadhwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Shah"> Nisha Shah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano scaled materials have attracted tremendous interest as corrosion inhibitor due to their high surface area on the metal surfaces. It is well known that the zinc oxide nanoparticles have higher reactivity towards aqueous acidic solution. This work presents a new method to incorporate zinc oxide nanoparticles with white sesame seeds extract (nano-green inhibitor) for corrosion protection of zinc in acidic medium. The morphology of the zinc oxide nanoparticles was investigated by TEM and DLS. The corrosion inhibition efficiency of the green inhibitor and nano-green inhibitor was determined by Gravimetric and electrochemical impedance spectroscopy (EIS) methods. Gravimetric measurements suggested that nano-green inhibitor is more effective than green inhibitor. Furthermore, with the increasing temperature, inhibition efficiency increases for both the inhibitors. In addition, it was established the Temkin adsorption isotherm fits well with the experimental data for both the inhibitors. The effect of temperature and Temkin adsorption isotherm revealed Chemisorption mechanism occurring in the system. The activation energy (Ea) and other thermodynamic parameters for inhibition process were calculated. The data of EIS showed that the charge transfer controls the corrosion process. The surface morphology of zinc metal (specimen) in absence and presence of green inhibitor and nano-green inhibitor were performed using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) techniques. The outcomes indicated a formation of a protective layer over zinc metal (specimen). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20inhibitor" title=" green inhibitor"> green inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc "> zinc </a> </p> <a href="https://publications.waset.org/abstracts/40529/nanoparticle-based-green-inhibitor-for-corrosion-protection-of-zinc-in-acidic-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2524</span> Green Construction in EGYPT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Anwar">Hanan A. Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces green building construction in Egypt with different concepts and practices. The following study includes green building applied definition, guidelines, regulations and Standards. Evaluation of cost/benefit of green construction methods and green construction rating systems are presented. Relevant case studies will be reviewed. Four sites will be included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20construction" title="green construction">green construction</a>, <a href="https://publications.waset.org/abstracts/search?q=ecofreindly" title=" ecofreindly"> ecofreindly</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficient%20town" title=" self-sufficient town"> self-sufficient town</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20neutral%20atmosphere" title=" carbon neutral atmosphere"> carbon neutral atmosphere</a> </p> <a href="https://publications.waset.org/abstracts/21630/green-construction-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2523</span> Corrosion Fatigue of Al-Mg Alloy 5052 in Sodium Chloride Solution Contains Some Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Ahmed%20Eldwaib">Khalid Ahmed Eldwaib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Al-Mg alloy 5052 was used as the testing material. Corrosion fatigue life was studied for the alloy in 3.5% NaCl (pH=1, 3, 5, 7, 9, and 11), and 3.5% NaCl (pH=1) with inhibitors. The compound inhibitors were composed mainly of phosphate (PO4³-), adding a certain proportion of other nontoxic inhibitors so as to select alternatives to environmentally hazardous chromate (Cr2O7²-). The inhibitors were sodium dichromate Na2Cr2O7, sodium phosphate Na3PO4, sodium molybdate Na2MoO4, and sodium citrate Na3C6H5O7. The total amount of inhibiting pigments was at different concentrations (250,500,750, and 1000 ppm) in the solutions. Corrosion fatigue behavior was studied by using plane-bending corrosion fatigue machine with stress ratio R=0.5 and under the constant frequency of 13.3 Hz. Results show that in 3.5% NaCl the highest fatigue life (number of cycles to failure Nf) is obtained at pH=5 where the oxide film on aluminum has very low solubility, and the lowest number of cycles is obtained at pH=1, where the media is too aggressive (extremely acidic). When the concentration of inhibitor increases the cycles to failure increase. The surface morphology and fracture section of the specimens had been characterized through scanning electron microscope (SEM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Mg%20alloy%205052" title="Al-Mg alloy 5052">Al-Mg alloy 5052</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitors" title=" inhibitors"> inhibitors</a> </p> <a href="https://publications.waset.org/abstracts/71775/corrosion-fatigue-of-al-mg-alloy-5052-in-sodium-chloride-solution-contains-some-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2522</span> The Application of Green Technology to Residential Architecture in Hangzhou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huiru%20Chen">Huiru Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuran%20Zhang"> Xuran Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the residential architecture in China are still causing high energy consumption and high pollution during their whole life cycle, which can be backward compared with the developed countries. The aim of this paper is to discuss the application of green technology to residential architecture in Hangzhou. This article will start with the development of green buildings, then analyzes the use status of green technology in Hangzhou from several specific measures. Analysis of the typical existing green residential buildings in Hangzhou is an attempt to form a preliminary Hangzhou’s green technology application strategy system. Through research, it has been found that the application of green technology in Hangzhou has changed from putting green to the facade, to the combination of the preservation of the traditional green concept and the modern green technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application" title="application">application</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title=" green technology"> green technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangzhou" title=" Hangzhou"> Hangzhou</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20architecture" title=" residential architecture"> residential architecture</a> </p> <a href="https://publications.waset.org/abstracts/92930/the-application-of-green-technology-to-residential-architecture-in-hangzhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2521</span> Inhibition Effect of Natural Junipers Extract towards Steel Corrosion in HCl Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Bammou">L. Bammou</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belkhaouda%20R.%20Salghi"> M. Belkhaouda R. Salghi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bazzi"> L. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hammouti"> B. Hammouti </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel and steel-based alloys of different grades steel are extensively used in numerous applications where acid solutions are widely applied such as industrial acid pickling, industrial acid cleaning and oil-well acidizing. The use of chemical inhibitors is one of the most practical methods for the protection against corrosion in acidic media. Most of the excellent acid inhibitors are organic compounds containing nitrogen, oxygen, phosphorus and sulphur. The use of non-toxic inhibitors called green or eco-friendly environmental inhibitors is one of the solutions possible to prevent the corrosion of the material. These advantages have incited us to draw a large part of program of our laboratory to examine natural substances as corrosion inhibitors such as: prickly pear seed oil, Argan oil, Argan extract, Fennel oil, Rosemary oil, Thymus oil, Lavender oil, Jojoba oil, Pennyroyal Mint oil, and Artemisia. In the present work, we investigate the corrosion inhibition of steel in 1 M HCl by junipers extract using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The result obtained of junipers extract (JE) shows excellent inhibition properties for the corrosion of C38 steel in 1M HCl at 298K, and the inhibition efficiency increases with increasing of the JE concentration. The inhibitor efficiencies determined by weight loss, Tafel polarisation and EIS methods are in reasonable agreement. Based on the polarisation results, the investigated junipers extract can be classified as mixed inhibitor. The calculated structural parameters show increase of the obtained Rct values and decrease of the capacitance, Cdl, with JE concentration increase. It is suggested to attribute this to the increase of the thickness of the adsorption layer at steel surface. The adsorption model obeys to the Langmuir adsorption isotherm. The adsorption process is a spontaneous and exothermic process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibition" title="corrosion inhibition">corrosion inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=friendly%20inhibitors" title=" friendly inhibitors"> friendly inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=Tafel%20polarisation" title=" Tafel polarisation "> Tafel polarisation </a> </p> <a href="https://publications.waset.org/abstracts/17504/inhibition-effect-of-natural-junipers-extract-towards-steel-corrosion-in-hcl-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2520</span> Green Corrosion Inhibitor from Essential Oil of Linseed for Aluminum in Na2CO3 Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Bazzi">L. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Azzouyahar"> E. Azzouyahar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lamiri"> A. Lamiri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Essahli"> M. Essahli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of addition of linseed oil (LSO) on the corrosion of aluminium in 0.1 M Na2CO3 has been studied by weight loss measurements, potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements. The inhibition efficiency was found to increase with inhibitor content to attain 70% for LSO at 4g/L. Inhibition efficiency E (%) obtained from the various methods is in good agreement. The temperature effect on the corrosion behavior of aluminium was studied by potentiodynamic technique in the range from 298 to 308 K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20inhibitors" title=" green inhibitors"> green inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate" title=" carbonate"> carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=linseed%20oil" title=" linseed oil"> linseed oil</a> </p> <a href="https://publications.waset.org/abstracts/17554/green-corrosion-inhibitor-from-essential-oil-of-linseed-for-aluminum-in-na2co3-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2519</span> Identification and Characterization of Inhibitors of Epoxide Hydrolase from Trichoderma reesei</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20S.%20De%20Oliveira">Gabriel S. De Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20P.%20Adriani"> Patricia P. Adriani</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Moriseau"> Christophe Moriseau</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20D.%20Hammock"> Bruce D. Hammock</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20S.%20Chambergo"> Felipe S. Chambergo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxide hydrolases (EHs) are enzymes that are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EHs have high biotechnological interest for the drug design and chemistry transformation for industries. In this study, we describe the identification of substrates and inhibitors of epoxide hydrolase enzyme from the filamentous fungus Trichoderma reesei (TrEH), and these inhibitors showed the fungal growth inhibitory activity. We have used the cloned enzyme and expressed in E. coli to develop the screening in the library of fluorescent substrates with the objective of finding the best substrate to be used in the identification of good inhibitors for the enzyme TrEH. The substrate (3-phenyloxiranyl)-acetic acid cyano-(6-methoxy-naphthalen-2-yl)-methyl ester showed the highest specific activity and was chosen for the next steps of the study. The inhibitors screening was performed in the library with more than three thousand molecules and we could identify the 6 best inhibitors. The IC50 of these molecules were determined in nM and all the best inhibitors have urea or amide in their structure, because It has been recognized that these groups fit well in the hydrolase catalytic pocket of the epoxide hydrolases. Then the growth of T. reesei in PDA medium containing these TrEH inhibitors was tested, and fungal growth inhibition activity was demonstrated with more than 60% of inhibition of fungus growth in the assay with the TrEH inhibitor with the lowest IC50. Understanding how this EH enzyme from T. reesei responds to inhibitors may contribute for the study of fungal metabolism and drug design against pathogenic fungi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxide%20hydrolases" title="epoxide hydrolases">epoxide hydrolases</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20growth%20inhibition" title=" fungal growth inhibition"> fungal growth inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichoderma%20reesei" title=" Trichoderma reesei"> Trichoderma reesei</a> </p> <a href="https://publications.waset.org/abstracts/84796/identification-and-characterization-of-inhibitors-of-epoxide-hydrolase-from-trichoderma-reesei" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2518</span> Computer Aided Screening of Secreted Frizzled-Related Protein 4 (SFRP4): A Potential Control for Diabetes Mellitus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shazia%20Anwer%20Bukhari">Shazia Anwer Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Akhtar%20Shamshari"> Waseem Akhtar Shamshari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood-Ur-Rahman"> Mahmood-Ur-Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zia-Ul-Haq"> Muhammad Zia-Ul-Haq</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawa%20Z.%20E.%20Jaafar"> Hawa Z. E. Jaafar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes mellitus is a life threatening disease and scientists are doing their best to find a cost effective and permanent treatment of this malady. The recent trend is to control the disease by target base inhibiting of enzymes or proteins. Secreted frizzled-related protein 4 (SFRP4) is found to cause five times more risk of diabetes when expressed above average levels. This study was therefore designed to analyze the SFRP4 and to find its potential inhibitors. SFRP4 was analyzed by bio-informatics tools of sequence tool and structure tool. A total of three potential inhibitors of SFRP4 were found, namely cyclothiazide, clopamide and perindopril. These inhibitors showed significant interactions with SFRP4 as compared to other inhibitors as well as control (acetohexamide). The findings suggest the possible treatment of diabetes mellitus type 2 by inhibiting the SFRP4 using the inhibitors cyclothiazide, clopamide and perindopril. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioscreening" title="bioscreening">bioscreening</a>, <a href="https://publications.waset.org/abstracts/search?q=clopamide" title=" clopamide"> clopamide</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclothiazide" title=" cyclothiazide"> cyclothiazide</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=perindopril" title=" perindopril"> perindopril</a>, <a href="https://publications.waset.org/abstracts/search?q=SFRP4" title=" SFRP4"> SFRP4</a> </p> <a href="https://publications.waset.org/abstracts/33442/computer-aided-screening-of-secreted-frizzled-related-protein-4-sfrp4-a-potential-control-for-diabetes-mellitus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2517</span> Utilization of Watermelon Rind Extract as Green Anti-Scalent for Cooling Water Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elsayed%20G.%20Zaki">Elsayed G. Zaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20A.%20Hamad"> Nora A. Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadeel%20G.%20El-Shorbagy"> Hadeel G. El-Shorbagy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of watermelon rind extract as green inhibitors for the formation of calcium sulphate scale have been investigated using conductivity measurements concurrently with the scanning electron microscopy (SEM), and optical microscopic examinations. Mineral scales were deposited from the brine solution by cathodic polarization of the steel surface. The results show up that the anti-scaling property of the extracts could be attributed to the presence of citrulline. In solution, citrulline retards calcium sulphate precipitation via formation of a complex with the calcium cations. Thin, smooth and non adherent film formed over the steel surface, under cathodic polarization, by the deposition of the calcium- citrulline complex. The stability of the aqueous extracts with time was also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-scaling" title="anti-scaling">anti-scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20inhibitor" title=" scale inhibitor"> scale inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20extracts" title=" green extracts"> green extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/54459/utilization-of-watermelon-rind-extract-as-green-anti-scalent-for-cooling-water-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2516</span> Eco-Friendly Polymeric Corrosion Inhibitor for Sour Oilfield Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Rahimi">Alireza Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolreza%20Farhadian"> Abdolreza Farhadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Tajik"> Arash Tajik</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaheh%20Sadeh"> Elaheh Sadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Avni%20Berisha"> Avni Berisha</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Akbari%20Nezhad"> Esmaeil Akbari Nezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although natural polymers have been shown to have some inhibitory properties on sour corrosion, they are not considered very effective green corrosion inhibitors. Accordingly, effective corrosion inhibitors should be developed based on natural resources to mitigate sour corrosion in the oil and gas industry. Here, Arabic gum was employed as an eco-friendly precursor for the synthesis of innovative polyurethanes designed as highly efficient corrosion inhibitors for sour oilfield solutions. A comprehensive assessment, combining experimental and computational analyses, was conducted to evaluate the inhibitory performance of the inhibitor. Electrochemical measurements demonstrated that a concentration of 200 mM of the inhibitor offered substantial protection to mild steel against sour corrosion, yielding inhibition efficiencies of 98% and 95% at 25 ºC and 60 ºC, respectively. Additionally, the presence of the inhibitor led to a smoother steel surface, indicating the adsorption of polyurethane molecules onto the metal surface. X-ray photoelectron spectroscopy results further validated the chemical adsorption of the inhibitor on mild steel surfaces. Scanning Kelvin probe microscopy revealed a shift in the potential distribution of the steel surface towards negative values, indicating inhibitor adsorption and corrosion process inhibition. Molecular dynamic simulation indicated high adsorption energy values for the inhibitor, suggesting its spontaneous adsorption onto the Fe (110) surface. These findings underscore the potential of Arabic gum as a viable resource for the development of polyurethanes under mild conditions, serving as effective corrosion inhibitors for sour solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20effect" title="environmental effect">environmental effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic%20gum" title=" Arabic gum"> Arabic gum</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibitor" title=" corrosion inhibitor"> corrosion inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=sour%20corrosion" title=" sour corrosion"> sour corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a> </p> <a href="https://publications.waset.org/abstracts/177782/eco-friendly-polymeric-corrosion-inhibitor-for-sour-oilfield-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2515</span> Assessment of Isatin as Surface Recognition Group: Design, Synthesis and Anticancer Evaluation of Hydroxamates as Novel Histone Deacetylase Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harish%20Rajak">Harish Rajak</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamlesh%20Raghuwanshi"> Kamlesh Raghuwanshi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Histone deacetylase (HDAC) are promising target for cancer treatment. The panobinostat (Farydak; Novartis; approved by USFDA in 2015) and chidamide (Epidaza; Chipscreen Biosciences; approved by China FDA in 2014) are the novel HDAC inhibitors ratified for the treatment of patients with multiple myeloma and peripheral T cell lymphoma, respectively. On the other hand, two other HDAC inhibitors, Vorinostat (SAHA; approved by USFDA in 2006) and Romidepsin (FK228; approved by USFDA in 2009) are already in market for the treatment of cutaneous T-cell lymphoma. Several hydroxamic acid based HDAC inhibitors i.e., belinostat, givinostat, PCI24781 and JNJ26481585 are in clinical trials. HDAC inhibitors consist of three pharmacophoric features - an aromatic cap group, zinc binding group (ZBG) and a linker chain connecting cap group to ZBG. Herein, we report synthesis, characterization and biological evaluation of HDAC inhibitors possessing substituted isatin moiety as cap group which recognize the surface of active enzyme pocket and thiosemicarbazide moiety incorporated as linker group responsible for connecting cap group to ZBG (hydroxamic acid). Several analogues were found to inhibit HDAC and cellular proliferation of Hela cervical cancer cells with GI50 values in the micro molar range. Some of the compounds exhibited promising results in vitro antiproliferative studies. Attempts were also made to establish the structure activity relationship among synthesized HDAC inhibitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HDAC%20inhibitors" title="HDAC inhibitors">HDAC inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxamic%20acid%20derivatives" title=" hydroxamic acid derivatives"> hydroxamic acid derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=isatin%20derivatives" title=" isatin derivatives"> isatin derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=antiproliferative%20%09%09%09activity" title=" antiproliferative activity"> antiproliferative activity</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a> </p> <a href="https://publications.waset.org/abstracts/40759/assessment-of-isatin-as-surface-recognition-group-design-synthesis-and-anticancer-evaluation-of-hydroxamates-as-novel-histone-deacetylase-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2514</span> Zika Virus NS5 Protein Potential Inhibitors: An Enhanced in silico Approach in Drug Discovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pritika%20Ramharack">Pritika Ramharack</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20E.%20S.%20Soliman"> Mahmoud E. S. Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The re-emerging Zika virus is an arthropod-borne virus that has been described to have explosive potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of transmission has allowed the spread of the disease over continents. The virus already been linked to irreversible chronic central nervous system (CNS) conditions. The concerns of the scientific and clinical community are the consequences of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine development against the virus but there are still no FDA-approved drugs available. Rapid rational drug design and discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique in the discovery of two potential small molecule inhibitors of Zika virus Methyltransferase and RNA-dependent RNA polymerase. This in silico “per-residue energy decomposition pharmacophore” virtual screening approach will be critical in aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NS5%20protein%20inhibitors" title="NS5 protein inhibitors">NS5 protein inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=per-residue%20decomposition" title=" per-residue decomposition"> per-residue decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacophore%20model" title=" pharmacophore model"> pharmacophore model</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20screening" title=" virtual screening"> virtual screening</a>, <a href="https://publications.waset.org/abstracts/search?q=Zika%20virus" title=" Zika virus"> Zika virus</a> </p> <a href="https://publications.waset.org/abstracts/59456/zika-virus-ns5-protein-potential-inhibitors-an-enhanced-in-silico-approach-in-drug-discovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2513</span> β-Lactamase Inhibitory Effects of Anchusa azurea Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naoual%20Boussoualim">Naoual Boussoualim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayat%20Trabsa"> Hayat Trabsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Iman%20Krache"> Iman Krache</a>, <a href="https://publications.waset.org/abstracts/search?q=Lekhmici%20Arrar"> Lekhmici Arrar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahmane%20Baghiani"> Abderrahmane Baghiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resistance to antibiotics has emerged following their widespread use; the important mechanism of beta-lactam resistance in bacteria is the production of beta-lactamase. In order to find new bioactive beta-lactamase inhibitors, this study investigated the inhibition effect of the extracts of Anchusa azurea (AA) on a beta-lactamase from Bacillus cereus. The extracts exerted inhibitory effects on beta-lactamase in a dose-dependent manner, the results showed that the crude extract (BrE) and the ethyl acetate extract (AcE) of Anchusa azurea showed a very high inhibitory activity at a concentration of 10 mg, the percentage of inhibition was between 58% and 68%. Not all extracts were as potent as the original inhibitors such as clavulanic acid, the isolation and the structural elucidation of the active constituents in these extracts will provide useful means in the development of beta -lactamase inhibitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anchusa%20azurea" title="Anchusa azurea">Anchusa azurea</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20product" title=" natural product"> natural product</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-lactamase" title=" beta-lactamase"> beta-lactamase</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitors" title=" inhibitors"> inhibitors</a> </p> <a href="https://publications.waset.org/abstracts/41796/v-lactamase-inhibitory-effects-of-anchusa-azurea-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2512</span> Electrochemical Studies of Some Schiff Bases on the Corrosion of Steel in H2SO4 Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Farag">Ahmed A. Farag</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hgazy"> M. A. Hgazy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of three Schiff bases (SB-I, SB-II, and SB-III) on the corrosion of carbon steel in 0.5 M H2SO4 solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiency increases with the concentration of the Schiff bases and follow the trend: SB-III > SB-II > SB-I. Tafel polarization measurements revealed that the three tested inhibitors function as anodic inhibitors. The thermodynamic parameters Kads and ΔGºads are calculated and discussed. The Langmuir isotherm equation was found to provide an accurate description of the adsorption behaviour of the investigated Schiff bases. Depending on the results, the inhibitive mechanism was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schiff%20bases" title="Schiff bases">Schiff bases</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibitors" title=" corrosion inhibitors"> corrosion inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=EIS" title=" EIS"> EIS</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/2135/electrochemical-studies-of-some-schiff-bases-on-the-corrosion-of-steel-in-h2so4-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2511</span> Liquid Chromatographic Determination of Alprazolam with ACE Inhibitors in Bulk, Respective Pharmaceutical Products and Human Serum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeeda%20Nadir%20Ali">Saeeda Nadir Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Najma%20Sultana"> Najma Sultana</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saeed%20Arayne"> Muhammad Saeed Arayne</a>, <a href="https://publications.waset.org/abstracts/search?q=Amtul%20Qayoom"> Amtul Qayoom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present study describes a simple and a fast liquid chromatographic method using ultraviolet detector for simultaneous determination of anxiety relief medicine alprazolam with ACE inhibitors i.e; lisinopril, captopril and enalapril employing purospher star C18 (25 cm, 0.46 cm, 5 µm). Separation was achieved within 5 min at ambient temperature via methanol: water (8:2 v/v) with pH adjusted to 2.9, monitoring the detector response at 220 nm. Optimum parameters were set up as per ICH (2006) guidelines. Calibration range was found out to be 0.312-10 µg mL-1 for alprazolam and 0.625-20 µg mL-1 for all the ACE inhibitors with correlation coefficients > 0.998 and detection limits 85, 37, 68 and 32 ng mL-1 for lisinopril, captopril, enalapril and alprazolam respectively. Intra-day, inter-day precision and accuracy of the assay were in acceptable range of 0.05-1.62% RSD and 98.85-100.76% recovery. Method was determined to be robust and effectively useful for the estimation of studied drugs in dosage formulations and human serum without obstruction of excipients or serum components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alprazolam" title="alprazolam">alprazolam</a>, <a href="https://publications.waset.org/abstracts/search?q=ACE%20inhibitors" title=" ACE inhibitors"> ACE inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=RP%20HPLC" title=" RP HPLC"> RP HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=serum" title=" serum"> serum</a> </p> <a href="https://publications.waset.org/abstracts/34837/liquid-chromatographic-determination-of-alprazolam-with-ace-inhibitors-in-bulk-respective-pharmaceutical-products-and-human-serum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2510</span> Entry Inhibitors Are Less Effective at Preventing Cell-Associated HIV-2 Infection than HIV-1</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Diniz">A. R. Diniz</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Borrego"> P. Borrego</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20B%C3%A1rtolo"> I. Bártolo</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Taveira"> N. Taveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell-to-cell transmission plays a critical role in the spread of HIV-1 infection in vitro and in vivo. Inhibition of HIV-1 cell-associated infection by antiretroviral drugs and neutralizing antibodies (NAbs) is more difficult compared to cell-free infection. Limited data exists on cell-associated infection by HIV-2 and its inhibition. In this work, we determined the ability of entry inhibitors to inhibit HIV-1 and HIV-2 cell-to cell fusion as a proxy to cell-associated infection. We developed a method in which Hela-CD4-cells are first transfected with a Tat expressing plasmid (pcDNA3.1+/Tat101) and infected with recombinant vaccinia viruses expressing either the HIV-1 (vPE16: from isolate HTLV-IIIB, clone BH8, X4 tropism) or HIV-2 (vSC50: from HIV-2SBL/ISY, R5 and X4 tropism) envelope glycoproteins (M.O.I.=1 PFU/cell).These cells are added to TZM-bl cells. When cell-to-cell fusion (syncytia) occurs the Tat protein diffuses to the TZM-bl cells activating the expression of a reporter gene (luciferase). We tested several entry inhibitors including the fusion inhibitors T1249, T20 and P3, the CCR5 antagonists MVC and TAK-779, the CXCR4 antagonist AMD3100 and several HIV-2 neutralizing antibodies (Nabs). All compounds inhibited HIV-1 and HIV-2 cell fusion albeit to different levels. Maximum percentage of HIV-2 inhibition (MPI) was higher for fusion inhibitors (T1249- 99.8%; P3- 95%, T20-90%) followed by co-receptor antagonists (MVC- 63%; TAK-779- 55%; AMD3100- 45%). NAbs from HIV-2 infected patients did not prevent cell fusion up to the tested concentration of 4μg/ml. As for HIV-1, MPI reached 100% with TAK-779 and T1249. For the other antivirals, MPIs were: P3-79%; T20-75%; AMD3100-61%; MVC-65%.These results are consistent with published data. Maraviroc had the lowest IC50 both for HIV-2 and HIV-1 (IC50 HIV-2= 0.06 μM; HIV-1=0.0076μM). Highest IC50 were observed with T20 for HIV-2 (3.86μM) and with TAK-779 for HIV-1 (12.64μM). Overall, our results show that entry inhibitors in clinical use are less effective at preventing Env mediated cell-to-cell-fusion in HIV-2 than in HIV-1 which suggests that cell-associated HIV-2 infection will be more difficult to inhibit compared to HIV-1. The method described here will be useful to screen for new HIV entry inhibitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-to-cell%20fusion" title="cell-to-cell fusion">cell-to-cell fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=entry%20inhibitors" title=" entry inhibitors"> entry inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV" title=" HIV"> HIV</a>, <a href="https://publications.waset.org/abstracts/search?q=NAbs" title=" NAbs"> NAbs</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccinia%20virus" title=" vaccinia virus"> vaccinia virus</a> </p> <a href="https://publications.waset.org/abstracts/42899/entry-inhibitors-are-less-effective-at-preventing-cell-associated-hiv-2-infection-than-hiv-1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2509</span> Very First Synthesis of Carbazole Conjugates with Efflux Pump Inhibitor as Dual Action Hybrids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazala%20Yaqub">Ghazala Yaqub</a>, <a href="https://publications.waset.org/abstracts/search?q=Zubi%20Sadiq"> Zubi Sadiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Almas%20Hamid"> Almas Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Saira%20Iqbal"> Saira Iqbal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is the very first report of three dual action hybrids synthesized by covalent linkage of carbazole based novel antibacterial compounds with efflux pump inhibitors i.e., indole acetic acid/gallic acid. Novel carbazole based antibacterial compounds were prepared first and then these were covalently linked with efflux pump inhibitors which leads to the successful formation of hybrids. All prepared compounds were evaluated for their bacterial cell killing capability against Escherichia coli, Staphylococcus aureus, Pasteurella multocida and Bacillus subtilis. Compound were effective against all tested bacterial strains at different concentrations. But when these compounds were linked with efflux pump inhibitors they showed dramatic enhancement in their bacterial cell killing potential and minimum inhibitory concentration of all hybrids ranges from 7.250 µg/mL to 0.0283 µg/mL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay" title="antimicrobial assay">antimicrobial assay</a>, <a href="https://publications.waset.org/abstracts/search?q=carbazole" title=" carbazole"> carbazole</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20action%20hybrids" title=" dual action hybrids"> dual action hybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=efflux%20pump%20inhibitors" title=" efflux pump inhibitors"> efflux pump inhibitors</a> </p> <a href="https://publications.waset.org/abstracts/11746/very-first-synthesis-of-carbazole-conjugates-with-efflux-pump-inhibitor-as-dual-action-hybrids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2508</span> Contextual Paper on Green Finance: Analysis of the Green Bonds Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dina%20H.%20Gabr">Dina H. Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20A.%20El%20Bannan"> Mona A. El Bannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With growing worldwide concern for global warming, green finance has become the fuel that pushes the world to act in combating and mitigating climate change. Coupled with adopting the Paris Agreement and the United Nations Sustainable Development Goals, Green finance became a vital tool in creating a pathway to sustainable development, as it connects the financial world with environmental and societal benefits. This paper provides a comprehensive review of the concepts and definitions of green finance and the importance of 'green' impact investments today. The core challenge in combating climate change is reducing and controlling Greenhouse gas emissions; therefore, this study explores the solutions green finance provides putting emphasis on the use of renewable energy, which is necessary for enhancing the transition to the green economy. With increasing attention to the concept of green finance, multiple forms of green investments and financial tools have come to fruition; the most prominent are green bonds. The rise of green bonds, a debt market to finance climate solutions, provide a promising mechanism for sustainable finance. Following the review, this paper compiles a comprehensive green bond dataset, presenting a statistical study of the evolution of the green bonds market from its first appearance in 2006 until 2021. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emissions" title=" GHG emissions"> GHG emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20bonds" title=" green bonds"> green bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20finance" title=" green finance"> green finance</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20finance" title=" sustainable finance"> sustainable finance</a> </p> <a href="https://publications.waset.org/abstracts/149244/contextual-paper-on-green-finance-analysis-of-the-green-bonds-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2507</span> Design of Organic Inhibitors from Quantum Chemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahma%20Tibigui">Rahma Tibigui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Hadj%20Said"> Ikram Hadj Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Belkada"> Rachid Belkada</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalila%20Hammoutene"> Dalila Hammoutene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vulnerability of industrial facilities is highly concerned with multiple risks from corrosion. The commonly adopted solution is based on the use of organic inhibitors, which are gradually being replaced by environmentally friendly organic inhibitors. In our work, we carried out a quantum chemical study based on the Density Functional Theory (DFT) method at the B3LYP/6-311G (d,p) level of theory. The inhibitory performance of a derivative of the tetrazole molecule has been investigated and reported as a carbon steel-friendly corrosion inhibitor in hydrochloric acid (HCl) medium. The relationship is likely to exist between the molecular structure of this compound as well as its various global reactivity descriptors, and its corrosion inhibition efficiency, which was examined and then discussed. The results show low values of ΔE, which represent strong adsorption of the inhibitor on the steel surface. Moreover, the flat adsorption orientation confirmed the great ability to donate (accept) electrons to (from) steel, fabricating an anchored barrier to prevent steel from corrosion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title="eco-friendly">eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibitors" title=" corrosion inhibitors"> corrosion inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=tetrazole" title=" tetrazole"> tetrazole</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a> </p> <a href="https://publications.waset.org/abstracts/169362/design-of-organic-inhibitors-from-quantum-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2506</span> In Silico Study of Alpha glucosidase Inhibitors by Flavonoids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukli%20Hacene%20Faiza">Boukli Hacene Faiza</a>, <a href="https://publications.waset.org/abstracts/search?q=Soufi%20Wassila"> Soufi Wassila</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghalem%20Said"> Ghalem Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oral antidiabetics drugs such as alpha glucosidase inhibitors present undesirable effects like acarbose. Flavonoids are class of molecules widely distributed in plants, for this reason we are interested in our work to study the inhibition in silico of alpha glucosidase by natural ligands ( flavonoids analogues) using molecular modeling methods using MOE (Molecular Operating Environment) software to predict their interaction with this enzyme with score energy, ADME /T tests and druglikeness properties experiments. Two flavonoids Beicalein and Apigenin have high binding affinity with alpha glucosidase with lower IC50 supposed potent inhibitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha%20glucosidase" title="alpha glucosidase">alpha glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoides%20analogues" title=" flavonoides analogues"> flavonoides analogues</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20research" title=" drug research"> drug research</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a> </p> <a href="https://publications.waset.org/abstracts/156715/in-silico-study-of-alpha-glucosidase-inhibitors-by-flavonoids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2505</span> Agriroofs and Agriwalls: Applications of Food Production in Green Roofs and Green Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20M.%20Elmazek">Eman M. Elmazek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roofs and walls are a rising technology in the global sustainable architectural industry. The idea takes great steps towards the future of sustainable design due to its many benefits. However, there are many barriers and constraints. Economical, structural, and knowledge barriers prevent the spread of the usage of green roofs and living walls. Understanding the benefits and expanding them will spread the idea. Benefits provided by these green spots interrupt and maintain the current urban cover. Food production is one of the benefits of green roofs. It can save money and energy spent in food transportation. The goal of this paper is to put a better understanding of implementing green systems. The paper aims to identify gains versus challenges facing the technology. It surveys with case studies buildings with green roofs and walls used for food production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20walls" title=" green walls"> green walls</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20farming" title=" urban farming"> urban farming</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden" title=" roof herb garden"> roof herb garden</a> </p> <a href="https://publications.waset.org/abstracts/46610/agriroofs-and-agriwalls-applications-of-food-production-in-green-roofs-and-green-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2504</span> Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Jye%20Tseng">Yuan-Jye Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin-Han%20Lin"> Shin-Han Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title="supply chain management">supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20supply%20chain" title=" green supply chain"> green supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20design" title=" green design"> green design</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20manufacturing" title=" green manufacturing"> green manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a> </p> <a href="https://publications.waset.org/abstracts/10104/integrated-evaluation-of-green-design-and-green-manufacturing-processes-using-a-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">807</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2503</span> Sustainable Building Law - The Legal Issues Abound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20J.%20Sobelsohn">Richard J. Sobelsohn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green Building and Sustainable Development help fight climate change, and protects the ozone, animal habitats, air quality, and ground water. The myriad of reasons to go Green has multiplied to the point that a developer that is building a ground-up or renovating/retrofitting a property has a plethora of choices to get to the green goal post. Sustainability not affects the bottom line but satisfies corporate mandates (ESG), consumer demand, market requirements, and the many laws dictating green building practices. The good news is that there are many paths a property owner can take to become green. The bad news is that there are many paths a property owner can take to become green, and they need to choose which direction to take. Certification of a building used to be the highest achievement in the Green building world. Now there are so many variables and laws with which a property owner must comply, and the legal analysis has mushroomed. Operation and Maintenance have also become one of the most important functions for a prudent Green Building owner. So adding to the “development/retrofit” parties involved in the sustainable building legal world, we now need to include all those people who keep the building green, and there are a lot of them! <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20issues" title=" legal issues"> legal issues</a>, <a href="https://publications.waset.org/abstracts/search?q=greenwashing" title=" greenwashing"> greenwashing</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20cleaning" title=" green cleaning"> green cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=compliance" title=" compliance"> compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=ESQ" title=" ESQ"> ESQ</a> </p> <a href="https://publications.waset.org/abstracts/154541/sustainable-building-law-the-legal-issues-abound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2502</span> Using a GIS-Based Method for Green Infrastructure Accessibility of Different Socio-Economic Groups in Auckland, New Zealand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Ma">Jing Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Xindong%20An"> Xindong An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green infrastructure, the most important aspect of improving the quality of life, has been a crucial element of the liveability measurement. With demanding of more liveable urban environment from increasing population in city area, access to green infrastructure in walking distance should be taken into consideration. This article exemplifies the study on accessibility measurement of green infrastructure in central Auckland (New Zealand), using network analysis tool on the basis of GIS, to verify the accessibility levels of green infrastructure. It analyses the overall situation of green infrastructure and draws some conclusions on the city’s different levels of accessibility according to the categories and facilities distribution, which provides valuable references and guidance for the future facility improvement in planning strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title="quality of life">quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20infrastructure" title=" green infrastructure"> green infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=accessibility" title=" accessibility"> accessibility</a> </p> <a href="https://publications.waset.org/abstracts/40617/using-a-gis-based-method-for-green-infrastructure-accessibility-of-different-socio-economic-groups-in-auckland-new-zealand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2501</span> A Framework for Green Use and Disposal of Information Communication Technology Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frezer%20Alem%20Kebede">Frezer Alem Kebede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The notion of viewing ICT as merely support for the business process has shifted towards viewing ICT as a critical business enabler. As such, the need for ICT devices has increased, contributing to high electronic equipment acquisition and disposal. Hence, its use and disposal must be seen in light of environmental sustainability, i.e., in terms of green use and disposal. However, there are limited studies on green Use and Disposal framework to be used as guiding lens by organizations in developing countries. And this study endeavors to address that need taking one of the largest multinational ICT intensive company in the country. The design and development of this framework passed through several stages, initially factors affecting green use and disposal were identified after quantitative and qualitative data analysis then there were multiple brainstorming sessions for the design enhancement as participative modelling was employed. Given the difference in scope and magnitude of the challenges identified, the proposed framework approaches green use and disposal in four imperatives; strategically, tactically, operationally and through continuous improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20disposal" title=" green disposal"> green disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20ICT" title=" green ICT"> green ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20use" title=" green use"> green use</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20use%20and%20disposal%20framework" title=" green use and disposal framework"> green use and disposal framework</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/123464/a-framework-for-green-use-and-disposal-of-information-communication-technology-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20inhibitors&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20inhibitors&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20inhibitors&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20inhibitors&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20inhibitors&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20inhibitors&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20inhibitors&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20inhibitors&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20inhibitors&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20inhibitors&amp;page=84">84</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20inhibitors&amp;page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20inhibitors&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10