CINXE.COM
Earth beyond six of nine planetary boundaries | Science Advances
<!DOCTYPE html> <html lang="en" class="pb-page" data-request-id="75d0f370-5bdb-4c63-8893-9f22fc05d450"> <head data-pb-dropzone="head"><script type="text/javascript" src="/_static/js/bundle-playback.js?v=HxkREWBo" charset="utf-8"></script> <script type="text/javascript" src="/_static/js/wombat.js?v=txqj7nKC" charset="utf-8"></script> <script>window.RufflePlayer=window.RufflePlayer||{};window.RufflePlayer.config={"autoplay":"on","unmuteOverlay":"hidden"};</script> <script type="text/javascript" src="/_static/js/ruffle/ruffle.js"></script> <script type="text/javascript"> __wm.init("https://web.archive.org/web"); __wm.wombat("https://www.science.org/doi/10.1126/sciadv.adh2458","20240318040954","https://web.archive.org/","web","/_static/", "1710734994"); </script> <link rel="stylesheet" type="text/css" href="/_static/css/banner-styles.css?v=S1zqJCYt" /> <link rel="stylesheet" type="text/css" href="/_static/css/iconochive.css?v=3PDvdIFv" /> <!-- End Wayback Rewrite JS Include --> <meta name="pbContext" content=";page:string:Article/Chapter View;issue:issue:doi\:10.1126/sciadv.2023.9.issue-37;ctype:string:Journal Content;article:article:doi\:10.1126/sciadv.adh2458;journal:journal:sciadv;website:website:aaas-site;requestedJournal:journal:sciadv;wgroup:string:Publication Websites;pageGroup:string:Publication Pages;subPage:string:Full Text"/> <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/"></link><meta name="citation_journal_title" content="Science Advances"></meta><meta name="dc.Title" content="Earth beyond six of nine planetary boundaries"></meta><meta name="dc.Creator" content="Katherine Richardson"></meta><meta name="dc.Creator" content="Will Steffen"></meta><meta name="dc.Creator" content="Wolfgang Lucht"></meta><meta name="dc.Creator" content="Jørgen Bendtsen"></meta><meta name="dc.Creator" content="Sarah E. Cornell"></meta><meta name="dc.Creator" content="Jonathan F. Donges"></meta><meta name="dc.Creator" content="Markus Drüke"></meta><meta name="dc.Creator" content="Ingo Fetzer"></meta><meta name="dc.Creator" content="Govindasamy Bala"></meta><meta name="dc.Creator" content="Werner von Bloh"></meta><meta name="dc.Creator" content="Georg Feulner"></meta><meta name="dc.Creator" content="Stephanie Fiedler"></meta><meta name="dc.Creator" content="Dieter Gerten"></meta><meta name="dc.Creator" content="Tom Gleeson"></meta><meta name="dc.Creator" content="Matthias Hofmann"></meta><meta name="dc.Creator" content="Willem Huiskamp"></meta><meta name="dc.Creator" content="Matti Kummu"></meta><meta name="dc.Creator" content="Chinchu Mohan"></meta><meta name="dc.Creator" content="David Nogués-Bravo"></meta><meta name="dc.Creator" content="Stefan Petri"></meta><meta name="dc.Creator" content="Miina Porkka"></meta><meta name="dc.Creator" content="Stefan Rahmstorf"></meta><meta name="dc.Creator" content="Sibyll Schaphoff"></meta><meta name="dc.Creator" content="Kirsten Thonicke"></meta><meta name="dc.Creator" content="Arne Tobian"></meta><meta name="dc.Creator" content="Vili Virkki"></meta><meta name="dc.Creator" content="Lan Wang-Erlandsson"></meta><meta name="dc.Creator" content="Lisa Weber"></meta><meta name="dc.Creator" content="Johan Rockström"></meta><meta name="dc.Description" content="This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidific..."></meta><meta name="Description" content="This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidific..."></meta><meta name="dc.Publisher" content="American Association for the Advancement of Science"></meta><meta name="dc.Date" scheme="WTN8601" content="2023-09"></meta><meta name="dc.Type" content="research-article"></meta><meta name="dc.Format" content="text/HTML"></meta><meta name="dc.Identifier" scheme="publisher-id" content="adh2458"></meta><meta name="dc.Identifier" scheme="doi" content="10.1126/sciadv.adh2458"></meta><meta name="dc.Language" content="EN"></meta><meta name="dc.Coverage" content="world"></meta><meta name="dc.Rights" content="Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC)."></meta> <link rel="meta" type="application/atom+xml" href="https://doi.org/10.1126%2Fsciadv.adh2458"></link> <link rel="meta" type="application/rdf+json" href="https://doi.org/10.1126%2Fsciadv.adh2458"></link> <link rel="meta" type="application/unixref+xml" href="https://doi.org/10.1126%2Fsciadv.adh2458"></link> <script>AAASdataLayer={"page":{"pageInfo":{"nlmArticleType":"research-article","issue":"37","pageTitle":"Earth beyond six of nine planetary boundaries | Science Advances","author":"Katherine Richardson|Will Steffen|Wolfgang Lucht|Jørgen Bendtsen|Sarah E. Cornell|Jonathan F. Donges|Markus Drüke|Ingo Fetzer|Govindasamy Bala|Werner von Bloh|Georg Feulner|Stephanie Fiedler|Dieter Gerten|Tom Gleeson|Matthias Hofmann|Willem Huiskamp|Matti Kummu|Chinchu Mohan|David Nogués-Bravo|Stefan Petri|Miina Porkka|Stefan Rahmstorf|Sibyll Schaphoff|Kirsten Thonicke|Arne Tobian|Vili Virkki|Lan Wang-Erlandsson|Lisa Weber|Johan Rockström","pubDate":"2023-09-13","volume":"9","pageType":"journal-article-full-text","articleType":"Research Article","viewType":"full","issnOnline":"2375-2548","pageURL":"https://web.archive.org/web/20240318040954/https://www.science.org/doi/10.1126/sciadv.adh2458","issueDate":"2023-09-15","inPress":"no","firstRelease":"no","DOI":"10.1126/sciadv.adh2458"},"attributes":{"accessType":"Free","freeAccess":"yes","subject":"ENVIRONMENTAL STUDIES|ENVIRONMENTAL STUDIES","openAccess":"yes","aaasProgram":"sciadv","OAS_subject":"subject\u003dENVIRONMENTAL STUDIES;"}},"user":{"accessMethod":"guest","registeredUser":"no","authenticated":"yes","entitled":"false","access":"yes","cookieConsent":"true"}};if(AAASdataLayer&&AAASdataLayer.user){let match=document.cookie&&document.cookie.match(/(?:^|; )consent=([^;]*)/);if(match){let jsonObj=JSON.parse(decodeURIComponent(match[1]));AAASdataLayer.user.cookieConsent=jsonObj.Marketing?'true':'false';}}</script> <link type="text/css" rel="stylesheet" href="/web/20240318040954cs_/https://www.science.org/pb-assets/css/local-1686056270170.css"> <title>Earth beyond six of nine planetary boundaries | Science Advances</title> <meta charset="UTF-8"> <meta name="robots" content="noarchive"/><meta property="og:title" content="Earth beyond six of nine planetary boundaries"/> <meta property="og:type" content="Article"/> <meta property="og:url" content="https://web.archive.org/web/20240318040954/https://www.science.org/doi/10.1126/sciadv.adh2458"/> <meta property="og:site_name" content="Science Advances"/> <meta property="og:description" content="Transgression of planetary boundaries by human activities have now brought humanity well beyond a “safe operating space.”"></meta><meta property="og:image" content="https://web.archive.org/web/20240318040954im_/https://www.science.org/cms/asset/edf6afa0-c606-4eb9-bed0-55a868b8f7e5/keyimage.gif"></meta><meta property="og:image:width" content="520"></meta><meta property="og:image:height" content="270"></meta><meta name="viewport" content="width=device-width,initial-scale=1"><meta name="citation_fulltext_world_readable" content=""/> <link rel="stylesheet" type="text/css" href="/web/20240318040954cs_/https://www.science.org/wro/n1hr~article-metrics-phase2.css"> <link rel="icon" href="/web/20240318040954im_/https://www.science.org/products/aaas/releasedAssets/images/favicon/favicon-2e8a2b125385ae5ae8b5890099c6f845.ico" type="image/x-icon"/> <link rel="icon" href="/web/20240318040954im_/https://www.science.org/products/aaas/releasedAssets/images/favicon/favicon-16x16-93a3ddc0ff5a9069e65a9b6a84e0dd1b.png" type="image/png" sizes="16x16"/> <link rel="icon" href="/web/20240318040954im_/https://www.science.org/products/aaas/releasedAssets/images/favicon/favicon-32x32-da7530e24672f255e6c1269e845c61a0.png" type="image/png" sizes="32x32"/> <link rel="apple-touch-icon" href="/web/20240318040954im_/https://www.science.org/products/aaas/releasedAssets/images/favicon/touch-icon-ipad-f07fc248077d69452cf6ab09c7df85db.png" sizes="152x152"/> <link rel="apple-touch-icon" href="/web/20240318040954im_/https://www.science.org/products/aaas/releasedAssets/images/favicon/touch-icon-iphone-retina-c2122c3927d48388693f76df982eab90.png" sizes="180x180"/> <link rel="apple-touch-icon" href="/web/20240318040954im_/https://www.science.org/products/aaas/releasedAssets/images/favicon/touch-icon-ipad-retina-7ab15a896e9d26885a8e8406bcf95ea5.png" sizes="167x167"/> <link rel="stylesheet" href="/web/20240318040954cs_/https://www.science.org/products/aaas/releasedAssets/css/build-4a02f7b259718e9a5a5c.css" media="all" id="build-style-sheet"> <link rel="stylesheet" href="/web/20240318040954cs_/https://www.science.org/products/aaas/releasedAssets/css/print-4a02f7b259718e9a5a5c.css" media="print"> <link rel="stylesheet" href="/web/20240318040954cs_/https://www.science.org/products/aaas/releasedAssets/css/build-article-4a02f7b259718e9a5a5c.css" media="all" id="article-style-sheet"> <script> try { document.documentElement.classList.add('js'); } catch (e) { } </script> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <script src="//web.archive.org/web/20240318040954js_/https://securepubads.g.doubleclick.net/tag/js/gpt.js" async></script> <script src="//web.archive.org/web/20240318040954js_/https://weby.aaas.org/weby-lazyload-shim-console.js" async></script> <!-- script src="//hawkeye4.semetricmedia.com/content-targeting-v4.js" async></script --> <script src="//web.archive.org/web/20240318040954js_/https://assets.adobedtm.com/a48c09ba9d50/1e36ca10b673/launch-ea90f2ac46ad.min.js" async></script> <!-- AAAS-1243 <style id=temp-always> .grouped.download-toggle-hidden { display: none; } .element-view.flex-container .grouped { border: none; } </style> <style id=temp-this-week-in-science> a.fv__download { display: none; } .figure__actions { display: none; } </style> <script> if (!(document.title=="This Week in Science" || document.title=="Editors' Choice")) { document.getElementById("temp-this-week-in-science").remove(); } </script>--> <link href="//web.archive.org/web/20240318040954im_/https://www.science.org/apple-touch-icon.png" rel="apple-touch-icon"/> <link href="//web.archive.org/web/20240318040954im_/https://www.science.org/apple-touch-icon-precomposed.png" rel="apple-touch-icon"/> <link href="//web.archive.org/web/20240318040954im_/https://www.science.org/pb-assets/images/logos/apple-touch-icon-120x120.png" rel="apple-touch-icon" sizes="120x120"/> <link href="//web.archive.org/web/20240318040954im_/https://www.science.org/pb-assets/images/logos/apple-touch-icon-120x120-precomposed.png" rel="apple-touch-icon" sizes="120x120"/> <meta name="facebook-domain-verification" content="d7d83rddklmy6vh0uy6rrm9j4hptwp"/> <meta name="baidu-site-verification" content="code-asrYXzJgzI"/> <script defer src="https://web.archive.org/web/20240318040954js_/https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="" data-cf-beacon="{"rayId":"7182859a6eb796e4","token":"3bb0add5452d43a2b5d4b3d6c628944c","version":"2021.12.0","si":100}" crossorigin="anonymous"></script> <script defer src="https://web.archive.org/web/20240318040954js_/https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="" data-cf-beacon="{"rayId":"71bd806bfa036428","token":"fd35e09e6f6c4295b7260d5c09bf2450","version":"2022.6.0","si":100}" crossorigin="anonymous"></script> <script defer src="https://web.archive.org/web/20240318040954js_/https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="" data-cf-beacon="{"rayId":"739668a64817980c","token":"fd35e09e6f6c4295b7260d5c09bf2450","version":"2022.6.0","si":100}" crossorigin="anonymous"></script> <script defer src="https://web.archive.org/web/20240318040954js_/https://static.cloudflareinsights.com/beacon.min.js/v652eace1692a40cfa3763df669d7439c1639079717194" integrity="" data-cf-beacon="{"rayId":"73f40724bae39453","token":"fd35e09e6f6c4295b7260d5c09bf2450","version":"2022.8.0","si":100}" crossorigin="anonymous"></script> <script defer src="https://web.archive.org/web/20240318040954js_/https://static.cloudflareinsights.com/beacon.min.js/v84a3a4012de94ce1a686ba8c167c359c1696973893317" integrity="" data-cf-beacon="{"rayId":"84d1b7b47f115824","version":"2024.1.0","token":"3bb0add5452d43a2b5d4b3d6c628944c"}" crossorigin="anonymous"></script> <script defer src="https://web.archive.org/web/20240318040954js_/https://static.cloudflareinsights.com/beacon.min.js/v84a3a4012de94ce1a686ba8c167c359c1696973893317" integrity="" data-cf-beacon="{"rayId":"858615e4f924cfcc","version":"2024.2.0","token":"3bb0add5452d43a2b5d4b3d6c628944c"}" crossorigin="anonymous"></script> <link rel="canonical" href="https://web.archive.org/web/20240318040954/https://www.science.org/doi/10.1126/sciadv.adh2458"> <script src="//web.archive.org/web/20240318040954js_/https://scholar.google.com/scholar_js/casa.js" async></script> <link rel="shortcut icon" href="/web/20240318040954im_/https://www.science.org/favicon.ico"> </head> <body class="pb-ui website-aaas-site"> <script type="text/javascript" src="https://web.archive.org/web/20240318040954js_/https://weby.aaas.org/weby_bundle_header_v4.js"></script> <script> if(window.WebyGam) { window.WebyGam.setHandlers({ onload: function() { window.WebyGam.loadComponent('Hawkeye', function callback() { window.WebyGam.loadComponent('GAM'); }); }, onupdate: function() { } }); } </script> <div id="pb-page-content" data-ng-non-bindable> <div data-pb-dropzone="main" data-pb-dropzone-name="Main"> <div class="sciadv"> <div data-widget-def="literatumAd" data-widget-id="f38e18a2-b0ae-4308-b016-30f241516bba" class="pb-ad bg-black-gray header-ads border-dark-divider border-bottom position-sticky" data-visible="4000"> </div> <header class="main-header header--compact main-header--compact no-sticky "><nav id="mainNavbar" class="main-navbar navbar navbar-dark"><div class="header-row d-flex justify-content-center w-100"><div class="navbar-in d-flex justify-content-between w-100 resizeable-menu__wrapper"><div class="col d-flex justify-content-start p-0 header-row__item"><ul class="nav header-menu align-items-center main-menu resizeable-menu flex-nowrap"><li class="nav-item d-flex align-items-center h-100"><button type="button" data-toggle="collapse" data-target="#header-side-menu" data-fixed-height="true" aria-controls="#header-side-menu" aria-expanded="false" aria-label="Toggle navigation" class="navbar-toggler btn-animate-bg d-inline-block collapsed"><i class="icon-burger"></i></button></li> <li class="nav-item text-uppercase fade align-items-center d-none d-lg-flex"> <a href="/web/20240318040954/https://www.science.org/news" class="nav-link">news</a> </li> <li class="nav-item text-uppercase fade align-items-center d-none d-header-md-flex"> <a href="/web/20240318040954/https://www.science.org/careers" class="nav-link">careers</a> </li> <li class="nav-item text-uppercase fade align-items-center d-none d-header-lg-flex"> <a href="/web/20240318040954/https://www.science.org/commentary" class="nav-link">commentary</a> </li> <li class="nav-item text-uppercase fade align-items-center d-none d-lg-flex"> <a aria-controls="journal-menu" aria-expanded="false" href="/web/20240318040954/https://www.science.org/journals" role="button" data-toggle="collapse" class="d-flex align-items-center accordion__toggle collapsed nav-link" data-target="#journal-menu"> <span>Journals</span> <i class="icon-arrow-down ml-1"></i> </a> </li> </ul></div><div class="col justify-content-center d-flex p-0 navbar-brand__wrapper header-row__item align-items-center"> <a href="/web/20240318040954/https://www.science.org/" class="navbar-brand text-center"> <img src="/web/20240318040954im_/https://www.science.org/pb-assets/images/styleguide/logo-dark-1672180581427.svg" alt="Science" class="visible-on-dark"/> <img src="/web/20240318040954im_/https://www.science.org/pb-assets/images/styleguide/logo-1672180580750.svg" alt="Science" class="hidden-on-dark"/> </a> </div><div class="col justify-content-end d-flex p-0 header-row__item"> <ul class="main-menu nav align-items-center"> <li class="nav-item"> </li> <li class="nav-item p-0 mr-lg-4"> <a href="#header-quick-search-wrapper" title="Search" aria-controls="header-quick-search-wrapper" aria-expanded="false" data-toggle="collapse" class="btn btn-animate-bg quick-search__toggle p-0 d-flex align-items-center justify-content-center collapsed"><i class="icon-search"></i></a> </li> <li class="nav-item d-none d-lg-flex"> <div class="login-bar text-uppercase"><a href="/web/20240318040954/https://www.science.org/action/ssostart?redirectUri=%2Fdoi%2F10.1126%2Fsciadv.adh2458" class="font-weight-bold nav-link">Log in </a></div> </li> <li class="nav-item d-none d-lg-flex pr-0"> </li> </ul> </div></div></div></nav> <div id="journal-menu" data-slider-vport="screen-xl" class="collapse journal-menu bg-black-gray viewport-slider border-top border-dark-divider"><div class="journal-menu__container text-uppercase"><div class="slideshow"><div data-loop="false" class="swiper-container"><div class="swiper-wrapper"><div class="swiper-slide"><div class="journal-menu__item"><a href="/web/20240318040954/https://www.science.org/journal/science" title="Science" class="text-center text-light d-flex flex-column h-100"><img src="/web/20240318040954im_/https://www.science.org/cms/asset/6826210e-1750-4611-954e-3c2727916efd/science.2024.383.issue-6688.cover.gif" loading="lazy" width="226" height="287" alt="journal-menu-img" class="journal-menu__img mb-3"><div class="journal-menu__text">science</div></a></div></div><div class="swiper-slide"><div class="journal-menu__item"><a href="/web/20240318040954/https://www.science.org/journal/sciadv" title="Science" class="text-center text-light d-flex flex-column h-100"><img src="/web/20240318040954im_/https://www.science.org/cms/asset/c07ee9ff-3675-4333-9e03-03f2aa0f56ba/sciadv.2024.10.issue-11.cover.gif" loading="lazy" width="226" height="287" alt="journal-menu-img" class="journal-menu__img mb-3"><div class="journal-menu__text">science advances</div></a></div></div><div class="swiper-slide"><div class="journal-menu__item"><a href="/web/20240318040954/https://www.science.org/journal/sciimmunol" title="Science" class="text-center text-light d-flex flex-column h-100"><img src="/web/20240318040954im_/https://www.science.org/cms/asset/a6669132-fca8-4288-9776-b66f9dcc30f9/sciimmunol.2024.9.issue-93.cover.gif" loading="lazy" width="226" height="287" alt="journal-menu-img" class="journal-menu__img mb-3"><div class="journal-menu__text">science immunology</div></a></div></div><div class="swiper-slide"><div class="journal-menu__item"><a href="/web/20240318040954/https://www.science.org/journal/scirobotics" title="Science" class="text-center text-light d-flex flex-column h-100"><img src="/web/20240318040954im_/https://www.science.org/cms/asset/a5a10576-aaa2-4324-b33f-748c676f2787/scirobotics.2024.9.issue-88.cover.gif" loading="lazy" width="226" height="287" alt="journal-menu-img" class="journal-menu__img mb-3"><div class="journal-menu__text">science robotics</div></a></div></div><div class="swiper-slide"><div class="journal-menu__item"><a href="/web/20240318040954/https://www.science.org/journal/signaling" title="Science" class="text-center text-light d-flex flex-column h-100"><img src="/web/20240318040954im_/https://www.science.org/cms/asset/02e2019a-6236-4aac-bcfc-88db0945b3ee/signaling.2024.17.issue-827.cover.gif" loading="lazy" width="226" height="287" alt="journal-menu-img" class="journal-menu__img mb-3"><div class="journal-menu__text">science signaling</div></a></div></div><div class="swiper-slide"><div class="journal-menu__item"><a href="/web/20240318040954/https://www.science.org/journal/stm" title="Science" class="text-center text-light d-flex flex-column h-100"><img src="/web/20240318040954im_/https://www.science.org/cms/asset/4180e03f-8e9a-4a9d-8ed3-a82323b1a396/stm.2024.16.issue-738.cover.gif" loading="lazy" width="226" height="287" alt="journal-menu-img" class="journal-menu__img mb-3"><div class="journal-menu__text">science translational medicine</div></a></div></div><div class="swiper-slide"><div class="journal-menu__item"><a href="https://web.archive.org/web/20240318040954/https://spj.science.org/" title="Science Partner Journals" class="text-center text-light d-flex flex-column h-100"><img src="/web/20240318040954im_/https://www.science.org/pb-assets/images/styleguide/spj-cover-1695403298717.png" loading="lazy" width="348" height="440" alt="journal-menu-img" class="journal-menu__img mb-3"><div class="journal-menu__text">science partner journals</div></a></div></div></div></div></div></div><a data-toggle="collapse" href="#journal-menu" role="button" aria-expanded="false" aria-controls="journal-menu" class="journal-menu__overlay header-overlay"></a></div> <div id="header-quick-search-wrapper" class="bg-black-gray header-quick-search collapse border-dark-divider border-top"> <div class="container-fluid text-white"> <div class="row justify-content-center"> <div class="col-lg-11 col-xl-9"> <div class="quick-search row no-gutters flex-column quick-search--header flex-column"><div class="quick-search__items col"><div aria-labelledby="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-0" id="quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-0" data-parent=".quick-search__items" role="tabpanel" class="collapse show "><form action="/web/20240318040954/https://www.science.org/action/doSearch" name="defaultQuickSearch" method="get"><fieldset><legend class="sr-only">Quick Search anywhere</legend><div class="input-group option-0 animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac010" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac010" name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3" value="" class="quick-search__input form-control autocomplete"/></div></fieldset></form></div><div aria-labelledby="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-1" id="quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-1" data-parent=".quick-search__items" role="tabpanel" class="collapse "><form action="/web/20240318040954/https://www.science.org/action/doSearch" name="publicationQuickSearch" method="get"><fieldset><legend class="sr-only">Quick Search in Journals</legend><div class="input-group option-1 option-journal animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac011" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac011" name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3" value="" class="quick-search__input form-control autocomplete"/><input type="hidden" name="SeriesKey" value="science"/></div></fieldset></form></div><div aria-labelledby="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-2" id="quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-2" data-parent=".quick-search__items" role="tabpanel" class="collapse "><form action="/web/20240318040954/https://www.science.org/action/doSearch" name="publicationQuickSearch" method="get"><fieldset><legend class="sr-only">Quick Search in Journals</legend><div class="input-group option-2 option-journal animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac012" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac012" name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3" value="" class="quick-search__input form-control autocomplete"/><input type="hidden" name="SeriesKey" value="sciadv"/></div></fieldset></form></div><div aria-labelledby="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-3" id="quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-3" data-parent=".quick-search__items" role="tabpanel" class="collapse "><form action="/web/20240318040954/https://www.science.org/action/doSearch" name="publicationQuickSearch" method="get"><fieldset><legend class="sr-only">Quick Search in Journals</legend><div class="input-group option-3 option-journal animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac013" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac013" name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3" value="" class="quick-search__input form-control autocomplete"/><input type="hidden" name="SeriesKey" value="sciimmunol"/></div></fieldset></form></div><div aria-labelledby="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-4" id="quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-4" data-parent=".quick-search__items" role="tabpanel" class="collapse "><form action="/web/20240318040954/https://www.science.org/action/doSearch" name="publicationQuickSearch" method="get"><fieldset><legend class="sr-only">Quick Search in Journals</legend><div class="input-group option-4 option-journal animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac014" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac014" name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3" value="" class="quick-search__input form-control autocomplete"/><input type="hidden" name="SeriesKey" value="scirobotics"/></div></fieldset></form></div><div aria-labelledby="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-5" id="quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-5" data-parent=".quick-search__items" role="tabpanel" class="collapse "><form action="/web/20240318040954/https://www.science.org/action/doSearch" name="publicationQuickSearch" method="get"><fieldset><legend class="sr-only">Quick Search in Journals</legend><div class="input-group option-5 option-journal animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac015" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac015" name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3" value="" class="quick-search__input form-control autocomplete"/><input type="hidden" name="SeriesKey" value="signaling"/></div></fieldset></form></div><div aria-labelledby="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-6" id="quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-6" data-parent=".quick-search__items" role="tabpanel" class="collapse "><form action="/web/20240318040954/https://www.science.org/action/doSearch" name="publicationQuickSearch" method="get"><fieldset><legend class="sr-only">Quick Search in Journals</legend><div class="input-group option-6 option-journal animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac016" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac016" name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3" value="" class="quick-search__input form-control autocomplete"/><input type="hidden" name="SeriesKey" value="stm"/></div></fieldset></form></div></div><div class="row no-gutters justify-content-end align-items-center quick-search__actions flex-column flex-sm-row"><div class="col d-flex align-items-center flex-grow-1"><label class="mb-0 text-uppercase dropdown-selectable__label mr-2">Searching:</label><div class="d-flex align-items-center flex-fill "><div class="quick-search__dropdown dropdown dropdown-selectable"><button id="dropdownMenuButton" type="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false" class="btn dropdown-toggle">Anywhere</button><div aria-labelledby="dropdownMenuButton" role="tablist" class="dropdown-menu"><a href="#quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-0" id="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-0" data-toggle="collapse" class="dropdown-item">Anywhere</a><a href="#quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-1" id="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-1" data-toggle="collapse" class="dropdown-item">Science</a><a href="#quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-2" id="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-2" data-toggle="collapse" class="dropdown-item">Science Advances</a><a href="#quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-3" id="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-3" data-toggle="collapse" class="dropdown-item">Science Immunology</a><a href="#quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-4" id="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-4" data-toggle="collapse" class="dropdown-item">Science Robotics</a><a href="#quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-5" id="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-5" data-toggle="collapse" class="dropdown-item">Science Signaling</a><a href="#quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-6" id="trigger-quick-search-form-9ea9b667-c3ce-40d1-870b-f7e001bbac01-6" data-toggle="collapse" class="dropdown-item">Science Translational Medicine</a></div></div></div></div><div class="col justify-content-end d-flex align-items-center quick-search__buttons"> <a href="/web/20240318040954/https://www.science.org/search/advanced" class="text-white text-uppercase mini-title quick-search__advanced"><u>Advanced Search</u></a> <button type="submit" title="Search" class="quick-search__btn btn d-flex btn-primary align-items-center justify-content-center justify-content-sm-between mb-3 mb-sm-0"><span class="font-weight-bold text-uppercase mini-title">Search</span><i class="icon-arrow-right align-middle ml-2"></i></button></div></div></div> </div> </div> </div> <div class="container-fluid header-trending__wrapper"> <div class="row justify-content-center no-gutters"> <div class="col-lg-11 col-xl-9 header-trending"> <h6 class="header-trending__title mini-title text-uppercase text-white font-weight-bold mb-2">Trending Terms:</h6> <ul class="text-uppercase list-unstyled pt-1 header-trending__list font-weight-bold list-inline"> <li class="pb-3 pr-3 list-inline-item"> <a href="/web/20240318040954/https://www.science.org/action/doSearch?AllField=cancer" class="btn btn-outline-primary--on-dark">cancer</a> </li> <li class="pb-3 pr-3 list-inline-item"> <a href="/web/20240318040954/https://www.science.org/action/doSearch?AllField=climate" class="btn btn-outline-primary--on-dark">climate</a> </li> <li class="pb-3 pr-3 list-inline-item"> <a href="/web/20240318040954/https://www.science.org/action/doSearch?AllField=artificial intelligence" class="btn btn-outline-primary--on-dark">artificial intelligence</a> </li> <li class="pb-3 pr-3 list-inline-item"> <a href="/web/20240318040954/https://www.science.org/action/doSearch?AllField=postdoc" class="btn btn-outline-primary--on-dark">postdoc</a> </li> <li class="pb-3 list-inline-item"> <a href="/web/20240318040954/https://www.science.org/action/doSearch?AllField=aging" class="btn btn-outline-primary--on-dark">aging</a> </li> </ul> </div> </div> </div> <a data-toggle="collapse" href="#" data-target=".header-quick-search" role="button" aria-expanded="false" class="header-quick-search__overlay header-overlay" tabindex="-1"></a> </div> </header><div class="header-sidebar"><aside id="header-side-menu" class="collapse sidebar--from-left"><div class="sidebar__content"><div class="header-sidebar__top"> <div class="header-sidebar__top__links pb-4"><div class="d-flex justify-content-center"><a href="/web/20240318040954/https://www.science.org/action/ssostart?redirectUri=/doi/10.1126/sciadv.adh2458" class="text-uppercase btn btn-outline-dark mini-title mr-3 font-weight-bold">Log In</a> </div></div> <div data-widget-def="UX3QuickSearchWidget" data-widget-id="e7029926-2304-4dc3-a2d3-f6c677f7bbc7" class="header-sidebar__top__search pb-4"> <div class="quick-search row no-gutters"><div class="col quick-search__sidebar"><form action="/web/20240318040954/https://www.science.org/action/doSearch" name="defaultQuickSearch" method="get" id="quick-search-from-e7029926-2304-4dc3-a2d3-f6c677f7bbc70" role="search"><fieldset><legend class="sr-only">Quick Search anywhere</legend><div class="input-group option-0 align-items-center animation-underline animation-underline--primary"><label for="AllFielde7029926-2304-4dc3-a2d3-f6c677f7bbc70" class="sr-only">Enter Search Term</label><input type="search" id="AllFielde7029926-2304-4dc3-a2d3-f6c677f7bbc70" name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3" value="" class="quick-search__input form-control autocomplete"/><div class="input-group-append"><button type="submit" title="Search" class="btn quick-search__btn p-0"><i class="icon-search align-middle"></i></button></div></div></fieldset></form></div><div class="quick-search__links"><div class="pb-dropzone" data-pb-dropzone="advancedSearch" title="advancedSearch"></div></div></div> </div> <div class="nav-item font-weight-bolder"> <a href="/web/20240318040954/https://www.science.org/" class="nav-link text-uppercase mini-title">science.org</a> </div> </div><div class="header-sidebar__middle text-uppercase"><ul class="header-sidebar__nav list-unstyled nav flex-column"></ul></div><div class="header-sidebar__bottom"> <ul class="header-sidebar__nav border-top text-uppercase list-unstyled pt-3 mt-1 mb-0"> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="/web/20240318040954/https://www.science.org/custom-publishing" class="nav-link">Custom publishing</a> </li> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="/web/20240318040954/https://www.science.org/topic/article-type/scienceadviser?intcmp=menu-adviserfeed&utm_id=recI11u4srAIiGNLZ" class="nav-link">newsletters</a> </li> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="/web/20240318040954/https://www.science.org/collections" class="nav-link">collections</a> </li> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="/web/20240318040954/https://www.science.org/videos" class="nav-link">videos</a> </li> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="/web/20240318040954/https://www.science.org/podcasts" class="nav-link">podcasts</a> </li> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="/web/20240318040954/https://www.science.org/blogs" class="nav-link">blogs</a> </li> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="/web/20240318040954/https://www.science.org/content/page/visualizations" class="nav-link">visualizations</a> </li> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="/web/20240318040954/https://www.science.org/content/page/prizes-and-awards" class="nav-link">prizes and awards</a> </li> </ul> <ul class="header-sidebar__nav border-top text-uppercase list-unstyled pt-3 mt-1 mb-0"> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="/web/20240318040954/https://www.science.org/content/page/contributing-science-family-journals" class="nav-link">authors & reviewers</a> </li> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="/web/20240318040954/https://www.science.org/content/page/librarian-portal" class="nav-link">librarians</a> </li> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="https://web.archive.org/web/20240318040954/https://advertising.sciencemag.org/" class="nav-link" target="_blank">advertisers</a> </li> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="/web/20240318040954/https://www.science.org/content/page/aboutus" class="nav-link">about</a> </li> <li class="nav-item nav-item--secondary font-weight-bold"> <a href="/web/20240318040954/https://www.science.org/content/page/help" class="nav-link">help</a> </li> </ul> <ul class="header-sidebar__nav header-social-media border-top text-uppercase list-unstyled pt-3 mt-1 mb-0"> <li class="nav-item header-social-media__item"> <a href="https://web.archive.org/web/20240318040954/https://www.facebook.com/ScienceMagazine" title="Facebook" class="nav-link btn" target="_blank"> <i aria-hidden="true" class="icon-facebook"></i> </a> </li> <li class="nav-item header-social-media__item"> <a href="https://web.archive.org/web/20240318040954/https://twitter.com/sciencemagazine" title="Twitter" class="nav-link btn" target="_blank"> <i aria-hidden="true" class="icon-twitter"></i> </a> </li> <li class="nav-item header-social-media__item"> <a href="https://web.archive.org/web/20240318040954/https://www.instagram.com/ScienceMagazine" title="Instagram" class="nav-link btn btn-sm" target="_blank"> <i aria-hidden="true" class="icon-instagram"></i> </a> </li> <li class="nav-item header-social-media__item"> <a href="https://web.archive.org/web/20240318040954/https://www.youtube.com/user/ScienceMag" title="YouTube" class="nav-link btn" target="_blank"> <i aria-hidden="true" class="icon-youtube"></i> </a> </li> <li class="nav-item header-social-media__item"> <a href="/web/20240318040954/https://www.science.org/content/page/email-alerts-and-rss-feeds" title="RSS feeds" class="nav-link btn"> <i aria-hidden="true" class="icon-rss"></i> </a> </li> <li class="nav-item header-social-media__item"> <a href="https://web.archive.org/web/20240318040954/https://mp.weixin.qq.com/s?__biz=MzI3NDY3NzQ2Mg==&mid=100002815&idx=1&sn=2949c025a553ac718b9612a0473b9f60&chksm=6b1120465c66a9508b01eaef1589b15d440e50b189106c8c594de8c6471f696a978de952fb15&mpshare=1&scene=1&srcid=0716JJQ5V4cKbgMMsya2MQ0n&sharer_sharetime=" title="WeChat" class="nav-link btn btn-sm" target="_blank"> <i aria-hidden="true" class="icon-wechat"></i> </a> </li> </ul> <div class="header-sidebar-footer border-top"> <div class="header-sidebar-footer__logo"> <img src="/web/20240318040954im_/https://www.science.org/pb-assets/images/styleguide/logo-1672180580750.svg" alt="AAAS Logo"/> </div> <ul class="header-sidebar-footer__links list-inline"> <li class="list-inline-item header-sidebar-footer__links__item"> <a href="/web/20240318040954/https://www.science.org/content/page/terms-service">Terms of Service</a> </li> <li class="list-inline-item header-sidebar-footer__links__item"> <a href="/web/20240318040954/https://www.science.org/content/page/privacy-policy">Privacy Policy</a> </li> <li class="list-inline-item header-sidebar-footer__links__item"> <a href="/web/20240318040954/https://www.science.org/content/page/accessibility">Accessibility</a> </li> </ul> </div> </div></div></aside><a data-toggle="collapse" href="#header-side-menu" role="button" aria-expanded="false" aria-controls="header-side-menu" class="sidebar__overlay"></a></div><div class="main-header__secondary d-flex main-header__secondary--publication main-header__secondary--sticky position-sticky justify-content-center p-0 "><div class="navbar navbar-expand-sm w-100 py-0"><button type="button" data-toggle="collapse" data-target="#header-side-menu" data-fixed-height="true" aria-controls="#header-side-menu" aria-expanded="false" aria-label="Toggle navigation" class="navbar-toggler btn-animate-bg collapsed"><i class="icon-burger"></i></button><div class="navbar-in d-flex justify-content-start justify-content-sm-between container-fluid m-xl-auto w-100 px-0 px-lg-3 position-relative"> <a class="main-header__secondary__logo" href="/web/20240318040954/https://www.science.org/journal/sciadv"> <img alt="logo" src="/web/20240318040954im_/https://www.science.org/pb-assets/images/logos/sciadv-logo-1620488349693.svg"/> </a> <div id="main-menu" data-parent="Science Advances" class="main-menu align-items-center"> <div class="main-menu__nav d-flex justify-content-center"> <ul class="navbar-nav flex-row"> <li class="nav-item"> <a id="menu-item-0" tabindex="" class="nav-link" href="/web/20240318040954/https://www.science.org/toc/sciadv/current">Current Issue</a> </li> <li class="nav-item"> <a id="first-release-papers" tabindex="" class="nav-link" href="/web/20240318040954/https://www.science.org/toc/sciadv/0/0">First release papers</a> </li> <li class="nav-item"> <a id="menu-item-2" tabindex="" class="nav-link" href="/web/20240318040954/https://www.science.org/loi/sciadv">Archive</a> </li> <li class="nav-item"> <div class="dropdown"> <a id="menu-item-3" href="#" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false" class="nav-link dropdown-toggle">About</a> <div aria-labelledby="menu-item-3" class="dropdown-menu"> <a href="/web/20240318040954/https://www.science.org/content/page/science-advances-mission-and-scope" class="dropdown-item">About Science Advances</a> <a href="/web/20240318040954/https://www.science.org/content/page/science-advances-mission-and-scope" class="dropdown-item">Mission & Scope</a> <a href="/web/20240318040954/https://www.science.org/content/page/science-advances-editorial-board" class="dropdown-item">Editorial Board</a> <a href="/web/20240318040954/https://www.science.org/content/page/science-advances-editorial-working-groups" class="dropdown-item">Editorial Working Groups</a> <a href="/web/20240318040954/https://www.science.org/content/page/science-advances-information-authors" class="dropdown-item">Information for Authors</a> <a href="/web/20240318040954/https://www.science.org/content/page/science-advances-information-reviewers" class="dropdown-item">Information for Reviewers</a> <a href="/web/20240318040954/https://www.science.org/content/page/science-journals-editorial-policies" class="dropdown-item">Editorial Policies</a> <a href="/web/20240318040954/https://www.science.org/content/page/science-advances-licensing-and-charges" class="dropdown-item">Licensing and Charges</a> <a href="/web/20240318040954/https://www.science.org/content/page/journal-metrics-overview" class="dropdown-item">Journal Metrics</a> <a href="/web/20240318040954/https://www.science.org/content/page/science-advances-frequently-asked-questions" class="dropdown-item">Frequently Asked Questions</a> <a href="/web/20240318040954/https://www.science.org/content/page/science-advances-staff" class="dropdown-item">Staff</a> <a href="/web/20240318040954/https://www.science.org/content/page/science-advances-contact-information" class="dropdown-item">Contact Us</a> <a href="/web/20240318040954/https://www.science.org/content/page/email-alerts-and-rss-feeds" class="dropdown-item">TOC Alerts and RSS Feeds</a> </div> </div> </li> </ul> </div> <div class="main-menu__extra justify-content-center"> <ul class="nav d-flex align-items-center h-100"> <li class="nav-item align-items-center pr-0"> <a href="https://web.archive.org/web/20240318040954/https://cts.sciencemag.org/" class="btn py-1 px-3 mini-title btn-outline-secondary">Submit manuscript</a> </li> <li class="nav-item menu-more pr-0"> <div class="dropdown"> <a id="menu-more" href="About" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false" class="nav-link dropdown-toggle">More</a> <ul class="dropdown-menu"></ul> </div> </li> </ul> </div> </div> <a href="/web/20240318040954/https://www.science.org/action/showPreferences?menuTab=Alerts" class="d-none d-xl-flex btn text-primary mini-title header-link p-0 mr-2x">GET OUR E-ALERTS</a> </div></div></div> <div><div class="pb-dropzone" data-pb-dropzone="col-0" title="col-0"></div></div> <main data-widget-def="ux3-layout-widget" data-widget-id="c5dd1bd0-ae50-4645-96bb-545e45bef33a" id="main" data-doi="10.1126/sciadv.adh2458"> <div class="article-container"> <link id="build-style-article" rel="stylesheet" type="text/css" href="/web/20240318040954cs_/https://www.science.org/products/aaas/releasedAssets/css/build-article-4a02f7b259718e9a5a5c.css"/><article xmlns="http://www.w3.org/1999/xhtml" data-design="pill" data-has="right-rail" data-type="research-article" vocab="http://schema.org/" typeof="ScholarlyArticle" lang="en" dir="ltr"><header data-extent="frontmatter"><div class="core-container"><div class="mb-1_5x mt-3"> <nav class="breadcrumbs"><div class="d-none d-sm-flex align-items-center"><a href="https://web.archive.org/web/20240318040954/https://www.science.org/" title="Home" class="crumb text-uppercase prev-crumb">Home</a><i class="icon-arrow-right mx-1"></i><a href="/web/20240318040954/https://www.science.org/journal/sciadv" title="Science Advances" class="crumb text-uppercase prev-crumb">Science Advances</a><i class="icon-arrow-right mx-1"></i><a href="/web/20240318040954/https://www.science.org/toc/sciadv/9/37" title="Vol. 9, No. 37" class="crumb text-uppercase prev-crumb">Vol. 9, No. 37</a><i class="icon-arrow-right mx-1"></i><span class="crumb text-uppercase current-crumb">Earth beyond six of nine planetary boundaries</span></div><div class="d-flex d-sm-none align-items-center"><i class="icon-arrow-left mr-1"></i><a href="/web/20240318040954/https://www.science.org/toc/sciadv/9/37" title="Back To Vol. 9, No. 37" class="crumb text-uppercase current-crumb">Back To Vol. 9, No. 37</a></div></nav> </div><div data-article-access="free" data-article-access-type="open" class="meta-panel"><div class="meta-panel__left-content"><div class="meta-panel__access meta-panel__access--open"><i aria-hidden="true" data-toggle="tooltip" data-original-title="Open access" class="icon-access-open"></i><span class="sr-only">Open access</span></div><div class="meta-panel__type"><span>Research Article</span></div><div class="meta-panel__overline"><span>ENVIRONMENTAL STUDIES</span></div></div><div class="meta-panel__right-content"><div class="meta-panel__share"> <!-- Go to https://www.addtoany.com/buttons/customize/ to customize your tools --><script type="text/javascript" defer="defer" src="https://web.archive.org/web/20240318040954js_/https://static.addtoany.com/menu/page.js"></script><div class="share share--short"><span class="sr-only">Share on</span><ul class="d-flex list-unstyled a2a a2a_kit a2a_default_style mb-0 a2a_kit_size_16 flex-wrap"><li class="a2a_listitem_custom"><a role="link" title="facebook" class="share__link a2a_button_facebook"><i aria-hidden="true" class="at-icon-wrapper icon-share-facebook"></i></a></li><li class="a2a_listitem_custom"><a role="link" title="twitter" class="share__link a2a_button_twitter"><i aria-hidden="true" class="at-icon-wrapper icon-share-twitter"></i></a></li><li class="a2a_listitem_custom"><a role="link" title="linkedin" class="share__link a2a_button_linkedin"><i aria-hidden="true" class="at-icon-wrapper icon-share-linkedin"></i></a></li><li class="a2a_listitem_custom"><a role="link" title="reddit" class="share__link a2a_button_reddit"><i aria-hidden="true" class="at-icon-wrapper icon-share-reddit"></i></a></li><li class="a2a_listitem_custom"><a role="link" title="wechat" class="share__link a2a_button_wechat"><i aria-hidden="true" class="at-icon-wrapper icon-wechat"></i></a></li><li class="a2a_listitem_custom"><a role="link" title="whatsapp" class="share__link a2a_button_whatsapp"><i aria-hidden="true" class="at-icon-wrapper icon-whatsapp2 "></i></a></li><li class="a2a_listitem_custom"><a role="link" title="email" class="share__link a2a_button_email"><i aria-hidden="true" class="at-icon-wrapper icon-share-mail"></i></a></li></ul></div> </div></div></div><h1 property="name">Earth beyond six of nine planetary boundaries</h1><div class="contributors"><span class="authors"><span role="list"><span property="author" typeof="Person" role="listitem"><a href="#con1"><span property="givenName">Katherine</span> <span property="familyName">Richardson</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0003-3785-2787" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0003-3785-2787</a> <a href="/web/20240318040954/https://www.science.org/cdn-cgi/l/email-protection#244f45564d6457514a400a4f510a404f" property="email" aria-label="Email address"><span class="__cf_email__" data-cfemail="c4afa5b6ad84b7b1aaa0eaafb1eaa0af">[email protected]</span></a></span>, <span property="author" typeof="Person" role="listitem"><a href="#con2"><span property="givenName">Will</span> <span property="familyName">Steffen</span></a></span><span data-displayed-on="sm" aria-hidden="true">, <span><span data-action="reveal">[...]</span></span> </span><span data-hidden-on="sm">, <span property="author" typeof="Person" role="listitem"><a href="#con3"><span property="givenName">Wolfgang</span> <span property="familyName">Lucht</span></a></span></span><span data-hidden-on="sm">, <span property="author" typeof="Person" role="listitem"><a href="#con4"><span property="givenName">Jørgen</span> <span property="familyName">Bendtsen</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0003-1393-3072" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0003-1393-3072</a></span></span><span data-displayed-on="md" aria-hidden="true">, <span><span data-action="reveal">[...]</span></span> </span><span data-hidden-on="sm md">, <span property="author" typeof="Person" role="listitem"><a href="#con5"><span property="givenName">Sarah E.</span> <span property="familyName">Cornell</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0003-4367-1296" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0003-4367-1296</a></span></span><span data-hidden-on="sm md">, <span property="author" typeof="Person" role="listitem"><a href="#con6"><span property="givenName">Jonathan F.</span> <span property="familyName">Donges</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-5233-7703" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-5233-7703</a></span></span><span data-hidden-on="sm md">, <span property="author" typeof="Person" role="listitem"><a href="#con7"><span property="givenName">Markus</span> <span property="familyName">Drüke</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-8004-7153" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-8004-7153</a></span></span><span data-hidden-on="sm md">, <span property="author" typeof="Person" role="listitem"><a href="#con8"><span property="givenName">Ingo</span> <span property="familyName">Fetzer</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-7335-5679" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-7335-5679</a></span></span><span data-hidden-on="sm md">, <span property="author" typeof="Person" role="listitem"><a href="#con9"><span property="givenName">Govindasamy</span> <span property="familyName">Bala</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-3079-0600" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-3079-0600</a></span></span><span data-displayed-on="lg" aria-hidden="true">, <span><span data-action="reveal">[...]</span></span> </span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con10"><span property="givenName">Werner</span> <span property="familyName">von Bloh</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-7399-2704" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-7399-2704</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con11"><span property="givenName">Georg</span> <span property="familyName">Feulner</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-9215-5517" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-9215-5517</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con12"><span property="givenName">Stephanie</span> <span property="familyName">Fiedler</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-8898-9949" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-8898-9949</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con13"><span property="givenName">Dieter</span> <span property="familyName">Gerten</span></a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con14"><span property="givenName">Tom</span> <span property="familyName">Gleeson</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-9493-7707" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-9493-7707</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con15"><span property="givenName">Matthias</span> <span property="familyName">Hofmann</span></a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con16"><span property="givenName">Willem</span> <span property="familyName">Huiskamp</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-6615-6348" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-6615-6348</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con17"><span property="givenName">Matti</span> <span property="familyName">Kummu</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-5096-0163" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-5096-0163</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con18"><span property="givenName">Chinchu</span> <span property="familyName">Mohan</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-7611-3392" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-7611-3392</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con19"><span property="givenName">David</span> <span property="familyName">Nogués-Bravo</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-4060-0153" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-4060-0153</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con20"><span property="givenName">Stefan</span> <span property="familyName">Petri</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-4379-4643" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-4379-4643</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con21"><span property="givenName">Miina</span> <span property="familyName">Porkka</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-8285-6122" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-8285-6122</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con22"><span property="givenName">Stefan</span> <span property="familyName">Rahmstorf</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-6786-7723" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-6786-7723</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con23"><span property="givenName">Sibyll</span> <span property="familyName">Schaphoff</span></a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con24"><span property="givenName">Kirsten</span> <span property="familyName">Thonicke</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-5283-4937" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-5283-4937</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con25"><span property="givenName">Arne</span> <span property="familyName">Tobian</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-4793-7226" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-4793-7226</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con26"><span property="givenName">Vili</span> <span property="familyName">Virkki</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-2603-3420" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-2603-3420</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con27"><span property="givenName">Lan</span> <span property="familyName">Wang-Erlandsson</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-7739-5069" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-7739-5069</a></span></span><span data-hidden-on="sm md lg">, <span property="author" typeof="Person" role="listitem"><a href="#con28"><span property="givenName">Lisa</span> <span property="familyName">Weber</span></a></span></span>, and <span property="author" typeof="Person" role="listitem"><a href="#con29"><span property="givenName">Johan</span> <span property="familyName">Rockström</span></a> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-8988-2983" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-8988-2983</a></span><span data-displayed-on="sm" aria-hidden="true"><span><span data-action="reveal" data-style="btn">+26 authors</span></span> </span><span data-displayed-on="md" aria-hidden="true"><span><span data-action="reveal" data-style="btn">+24 authors</span></span> </span><span data-displayed-on="lg" aria-hidden="true"><span><span data-action="reveal" data-style="btn">+19 authors</span></span> </span><span data-displayed-on="none" data-on-display="sm md lg" aria-hidden="true"> <span data-action="hide">fewer</span></span></span></span><a href="#tab-contributors" class="to-authors-affiliations" data-id="article-authors-viewall">Authors Info & Affiliations</a></div><div class="core-self-citation"><div property="isPartOf" typeof="Periodical"><span property="name">Science Advances</span></div><div class="core-date-published"><span property="datePublished">13 Sep 2023</span></div><div class="core-enumeration"><span property="isPartOf" typeof="PublicationVolume">Vol <span property="volumeNumber">9</span></span><span class="delimiter">, </span><span property="isPartOf" typeof="PublicationIssue">Issue <span property="issueNumber">37</span></span></div><div class="doi"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/sciadv.adh2458" property="sameAs">DOI: 10.1126/sciadv.adh2458</a></div></div><div class="info-panel"><div class="info-panel__left-content"><div class="info-panel__metrics info-panel__item"> <div data-widget-def="UX3ContentNavigation" data-widget-id="62303764-eb6d-4f73-bc22-0f15715aa37c" class="d-none"> <nav title="Content Navigation" class="content-navigation"><a href="/web/20240318040954/https://www.science.org/doi/10.1126/sciadv.adg3715" title="Bioaerosols are the dominant source of warm-temperature immersion-mode INPs and drive uncertainties in INP predictability" class="content-navigation__prev"><div aria-hidden="true" class="content-navigation__hint"><div class="content-navigation__hint__content"><h6>PREVIOUS ARTICLE</h6><div>Bioaerosols are the dominant source of warm-temperature immersion-mode INPs and drive uncertainties in INP predictability</div></div></div><i class="icon-arrow-left"></i><span>Previous</span></a><a href="/web/20240318040954/https://www.science.org/doi/10.1126/sciadv.adh2992" title="Widespread aquifer depressurization after a century of intensive groundwater use in USA" class="content-navigation__next"><div aria-hidden="true" class="content-navigation__hint"><div class="content-navigation__hint__content"><h6>NEXT ARTICLE</h6><div>Widespread aquifer depressurization after a century of intensive groundwater use in USA</div></div></div><span>Next</span><i class="icon-arrow-right"></i></a></nav> </div> <div class="toolbar-metric-container data-source" data-source="/pb/widgets/toolBarMetric/getResponse?widgetId=7b37b318-be5c-4fbe-a292-e79af2607ae9&pbContext=%3Bpage%3Astring%3AArticle%2FChapter+View%3Bissue%3Aissue%3Adoi%5C%3A10.1126%2Fsciadv.2023.9.issue-37%3Bctype%3Astring%3AJournal+Content%3Barticle%3Aarticle%3Adoi%5C%3A10.1126%2Fsciadv.adh2458%3Bjournal%3Ajournal%3Asciadv%3Bwebsite%3Awebsite%3Aaaas-site%3BrequestedJournal%3Ajournal%3Asciadv%3Bwgroup%3Astring%3APublication+Websites%3BpageGroup%3Astring%3APublication+Pages%3BsubPage%3Astring%3AFull+Text&doi=10.1126%2Fsciadv.adh2458"></div> </div></div><div class="info-panel__right-content"><div class="info-panel__article_tools info-panel__item"> <div data-permission="" class="article-tools"><a href="/web/20240318040954/https://www.science.org/action/addCitationAlert?doi=10.1126%2Fsciadv.adh2458" target="_blank" title="Notifications" data-toggle="tooltip" class="article-tools__citation btn btn--slim"><i class="icon-bell"></i></a><a href="/web/20240318040954/https://www.science.org/personalize/addFavoritePublication?doi=10.1126%2Fsciadv.adh2458" target="_blank" title="Bookmark" data-toggle="tooltip" class="article-tools__favorite btn btn--slim"><i class="icon-bookmark"></i></a></div> </div><div class="info-panel__citations info-panel__item"><a href="#tab-citations" title="CITE" data-toggle="tooltip" aria-label="CITE" class="btn btn--slim"><i aria-hidden="true" class="icon-citations"></i></a></div><div class="info-panel__formats info-panel__item"><a href="/web/20240318040954/https://www.science.org/doi/reader/10.1126/sciadv.adh2458" title="PDF" data-toggle="tooltip" aria-label="PDF" class="btn btn--slim btn-secondary"><i aria-hidden="true" class="icon-pdf"></i></a></div></div></div></div></header><div data-core-nav="header" data-extent="frontmatter"><ul class="core-nav-wrapper core-container" role="menubar" aria-label="Article navigation"><li role="none"><button data-id="article-toolbar-showhide" aria-controls="article_sections_menu" aria-expanded="false" aria-haspopup="true" aria-label="Toggle section navigation menu" role="menuitem"><i class="icon-sections" aria-hidden="true"></i><span>Contents</span></button><nav id="article_sections_menu" role="menu" aria-label="Contents" data-core-nav="article"><ul role="group"><li role="none"><a role="menuitem" href="#abstract">Abstract</a></li><li role="none"><a role="menuitem" href="#sec-1">INTRODUCTION</a></li><li role="none"><a role="menuitem" href="#sec-2">RESULTS</a></li><li role="none"><a role="menuitem" href="#sec-3">DISCUSSION</a></li><li role="none"><a role="menuitem" href="#sec-4">MATERIALS AND METHODS</a></li><li role="none"><a role="menuitem" href="#acknowledgments">Acknowledgments</a></li><li role="none"><a role="menuitem" href="#supplementary-materials">Supplementary Materials</a></li><li role="none"><a role="menuitem" href="#bibliography">REFERENCES AND NOTES</a></li></ul></nav></li><li role="group" class="collateral-pill"><div id="article_collateral_menu" role="none"><ul data-core-nav="collateral" role="none"><li role="none"><a role="menuitem" href="#core-collateral-info" aria-label="Information & Authors" data-id="article-nav-menubar-info" data-toggle="tooltip" data-placement="left" data-original-title="Information & Authors" aria-disabled="true" disabled="true"><i aria-hidden="true" class="icon-info"></i><span class="sr-only">Information & Authors</span></a></li><li role="none"><a role="menuitem" href="#core-collateral-metrics" aria-label="Metrics & Citations" data-id="article-nav-menubar-metrics" data-toggle="tooltip" data-placement="left" data-original-title="Metrics & Citations" aria-disabled="true" disabled="true"><i aria-hidden="true" class="icon-metrics"></i><span class="sr-only">Metrics & Citations</span></a></li><li role="none"><a role="menuitem" href="#core-collateral-fulltext-options" aria-label="View Options" data-id="article-nav-menubar-metrics" data-toggle="tooltip" data-placement="left" data-original-title="View Options" aria-disabled="true" disabled="true"><i aria-hidden="true" class="icon-eye"></i><span class="sr-only">View Options</span></a></li><li role="none"><a role="menuitem" href="#core-collateral-references" aria-label="References" data-id="article-nav-menubar-references" data-toggle="tooltip" data-placement="left" data-original-title="References" aria-disabled="true" disabled="true"><i aria-hidden="true" class="icon-references"></i><span class="sr-only">References</span></a></li><li role="none"><a role="menuitem" href="#core-collateral-media" aria-label="Media" data-id="article-nav-menubar-media" data-toggle="tooltip" data-placement="left" data-original-title="Media" aria-disabled="true" disabled="true"><i aria-hidden="true" class="icon-figures"></i><span class="sr-only">Media</span></a></li><li role="none"><a role="menuitem" href="#core-collateral-tables" aria-label="Tables" data-id="article-nav-menubar-tables" data-toggle="tooltip" data-placement="left" data-original-title="Tables" aria-disabled="true" disabled="true"><i aria-hidden="true" class="icon-table"></i><span class="sr-only">Tables</span></a></li><li role="none"><a role="menuitem" href="#core-collateral-share" aria-label="Share" data-id="article-nav-menubar-share" data-toggle="tooltip" data-placement="left" data-original-title="Share" aria-disabled="true" disabled="true"><i aria-hidden="true" class="icon-share"></i><span class="sr-only">Share</span></a></li></ul></div></li></ul></div><div id="abstracts" data-extent="frontmatter"><div class="core-container"><section id="abstract" property="abstract" typeof="Text" role="doc-abstract"><h2 property="name">Abstract</h2><div role="paragraph">This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidification is close to being breached, while aerosol loading regionally exceeds the boundary. Stratospheric ozone levels have slightly recovered. The transgression level has increased for all boundaries earlier identified as overstepped. As primary production drives Earth system biosphere functions, human appropriation of net primary production is proposed as a control variable for functional biosphere integrity. This boundary is also transgressed. Earth system modeling of different levels of the transgression of the climate and land system change boundaries illustrates that these anthropogenic impacts on Earth system must be considered in a systemic context.</div></section><div class="alert-signup__dropzone"> </div></div></div><div class="core-container related"> </div><section id="bodymatter" data-extent="bodymatter" property="articleBody" typeof="Text"><div class="core-container"><section id="sec-1" data-type="introduction"><h2>INTRODUCTION</h2><div role="paragraph">The planetary boundaries framework (<a href="#R1" role="doc-biblioref" data-xml-rid="R1"><i>1</i></a>, <a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>) draws upon Earth system science (<a href="#R3" role="doc-biblioref" data-xml-rid="R3"><i>3</i></a>). It identifies nine processes that are critical for maintaining the stability and resilience of Earth system as a whole. All are presently heavily perturbed by human activities. The framework aims to delineate and quantify levels of anthropogenic perturbation that, if respected, would allow Earth to remain in a “Holocene-like” interglacial state. In such a state, global environmental functions and life-support systems remain similar to those experienced over the past ~10,000 years rather than changing into a state without analog in human history. This Holocene period, which began with the end of the last ice age and during which agriculture and modern civilizations evolved, was characterized by relatively stable and warm planetary conditions. Human activities have now brought Earth outside of the Holocene’s window of environmental variability, giving rise to the proposed Anthropocene epoch (<a href="#R4" role="doc-biblioref" data-xml-rid="R4"><i>4</i></a>, <a href="#R5" role="doc-biblioref" data-xml-rid="R5"><i>5</i></a>).</div><div role="paragraph">Planetary-scale environmental forcing by humans continues and individual Earth system components are, to an increasing extent, in disequilibrium in relation to the changing conditions. As a consequence, the post-Holocene Earth is still evolving, and ultimate global environmental conditions remain uncertain. Paleoclimate research, however, documents that Earth has previously experienced largely ice-free conditions during warm periods (<a href="#R6" role="doc-biblioref" data-xml-rid="R6"><i>6</i></a>, <a href="#R7" role="doc-biblioref" data-xml-rid="R7"><i>7</i></a>) with correspondingly different states of the biosphere. It is clearly in humanity’s interest to avoid perturbing Earth system to a degree that risks changing global environmental conditions so markedly. Ice cover is only one indicator of substantial system-wide change in numerous other Earth system dimensions. The planetary boundaries framework delineates the biophysical and biochemical systems and processes known to regulate the state of the planet within ranges that are historically known and scientifically likely to maintain Earth system stability and life-support systems conducive to the human welfare and societal development experienced during the Holocene.</div><div role="paragraph">Currently, anthropogenic perturbations of the global environment are primarily addressed as if they were separate issues, e.g., climate change, biodiversity loss, or pollution. This approach, however, ignores these perturbations’ nonlinear interactions and resulting aggregate effects on the overall state of Earth system. Planetary boundaries bring a scientific understanding of anthropogenic global environmental impacts into a framework that calls for considering the state of Earth system as a whole.</div><div role="paragraph">For >3 billion years, interactions between the geosphere (energy flow and nonliving materials in Earth and atmosphere) and biosphere (all living organisms/ecosystems) have controlled global environmental conditions. Earth system’s state changed in response to forcings generated by external perturbations (e.g., solar energy input and bolide strikes) or internal processes in the geosphere (e.g., plate tectonics and volcanism) or biosphere (e.g., evolution of photosynthesis and rise of vascular plants). These forcings were processed through interactions and feedbacks among processes and systems within Earth system, shaping its often complex overall response. Today, human activities with planetary-scale effects act as additional forcing on Earth system. Thus, the anthroposphere has become an additional functional component of Earth system (<a href="#R3" role="doc-biblioref" data-xml-rid="R3"><i>3</i></a>, <a href="#R8" role="doc-biblioref" data-xml-rid="R8"><i>8</i></a>), capable of altering Earth system state. The planetary boundaries framework formulates limits to the impact of the anthroposphere on Earth system by identifying a scientifically based safe operating space for humanity that can safeguard both Earth’s interglacial state and its resilience.</div><div role="paragraph">The Holocene state of Earth is the benchmark reference in this context, as many of the components comprising the planetary boundary framework were rather stable during this period. This is also the only Earth system state civilizations have historically known. Climate is a manifestation of external forcing, e.g., solar activity, orbital cycles, and interactions among Earth system components, and global mean surface temperature varied by only ±0.5°C (<a href="#R9" role="doc-biblioref" data-xml-rid="R9"><i>9</i></a>) from the Neolithic [~9000 before the present (B.P.)] until the Industrial Revolution. Biomes across Earth have also largely been stable over the past 10,000 years, with preindustrial global terrestrial net primary production (NPP) varying by not >55.9 ± 1.1 billion tonnes (Gt) of C year<sup>−1</sup> (2σ) (see the Supplementary Materials). Bias-corrected data (<a href="#R10" role="doc-biblioref" data-xml-rid="R10"><i>10</i></a>) confirm that preindustrial global precipitation levels were also stable, particularly from the mid-Holocene onward. These data provide strong support for using the Holocene (see the Supplementary Materials) as the planetary boundaries reference state for a stable and resilient planet.</div><div role="paragraph">All of the framework’s individual boundaries therefore adopt preindustrial Holocene conditions as a reference for assessing the magnitude of anthropogenic deviations. Available data and state of knowledge from analytics and modeling of the framework components dictate the methods for derivation and quantification of the individual boundaries and their precautionary guardrails. Despite data constraints, efforts have been made to identify suitable control variables for all boundaries, together with evidence of how much perturbation leads to generation of impacts or altered interactions/feedbacks that can potentially cause irreversible changes to Earth’s life support systems. The focus is always at Earth system rather than regional scale, even when the evidence used to establish boundaries originates from regional studies. In these cases, regional evidence is combined to assess Earth system impacts of cumulative transgressions across multiple regional systems.</div><div role="paragraph">The planetary boundaries framework has attracted considerable scientific and societal attention, inspiring governance strategies and policies at all levels. The framework evolves through updates made in light of recent scientific understanding. Here, we bring together advances from different fields of science to update the framework and the status of its boundaries. Boundaries are, for the first time, proposed for all of the individual components of the framework. Updates of the functional biosphere integrity and aerosol loading boundaries are based on analyses presented here. Recent analyses form the basis for updates of the freshwater change and novel entities boundaries. Last, the importance of considering human impacts on components of the global environment in a system context is illustrated using a modeling exercise exploring how various scenarios of transgression of the land system (representing the biosphere) and climate change boundaries combine to affect Earth system characteristics.</div><section id="sec-1-1"><h3>Framework components</h3><div role="paragraph">Understanding how biosphere, anthroposphere, and geosphere processes interact with one another is a prerequisite for developing reliable projections of possible future Earth system trajectories. A fully process-based understanding of the interactions between these domains is, however, still only partially available. The planetary boundaries framework calls for more deeply integrated modeling of Earth system by bringing together currently available evidence for the relevant processes and their interactions from different disciplines and sources.</div><div role="paragraph">The nine boundaries all represent components of Earth system critically affected by anthropogenic activities and relevant to Earth’s overall state. For each of the boundaries, control variables are chosen to capture the most important anthropogenic influence at the planetary level of the boundary in focus. For example, land system change arises from myriad human activities, ultimately aggregating to alteration of biomes. From a planetary perspective however, during the Holocene, forests were the land biome with the strongest functional coupling to the climate system (<a href="#R11" role="doc-biblioref" data-xml-rid="R11"><i>11</i></a>, <a href="#R12" role="doc-biblioref" data-xml-rid="R12"><i>12</i></a>). Therefore, global reduction in forest area is adopted as the control variable representing all land system change. Similarly, the control variable introduced here for the functional component of the biosphere integrity boundary, human appropriation of NPP (HANPP), focuses on the ability of the biosphere as a whole to provide functional feedbacks in Earth system. Control variables should ideally lend themselves to empirical determination and be computable for use in Earth system projections (e.g., process-based simulation of future change in forest cover) where possible.</div><div role="paragraph">Boundary positions do not demarcate or predict singular threshold shifts in Earth system state. They are placed at a level where the available evidence suggests that further perturbation of the individual process could potentially lead to systemic planetary change by altering and fundamentally reshaping the dynamics and spatiotemporal patterns of geosphere-biosphere interactions and their feedbacks (<a href="#R13" role="doc-biblioref" data-xml-rid="R13"><i>13</i></a>, <a href="#R14" role="doc-biblioref" data-xml-rid="R14"><i>14</i></a>).</div><div role="paragraph">Zone of increasing risk (of Earth system losing Holocene-like characteristics) is now used to assess the status for transgressed boundaries rather than the “zone of uncertainty” (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>) as demarcation of this zone is based on more than what is usually referred to as scientific uncertainty. A large body of recent research [e.g., (<a href="#R15" role="doc-biblioref" data-xml-rid="R15"><i>15</i></a>–<a href="#R17" role="doc-biblioref" data-xml-rid="R17"><i>17</i></a>)] provides strong evidence supporting the conclusion (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>) that the climate change and biosphere integrity boundaries are in a zone of rapidly increasing and systemically linked risks. This strengthens the rationale for using the precautionary principle to set the planetary boundaries at the lower end of the zone of increasing risk. For example, for the climate change planetary boundary, we retain the boundary of 350 parts per million (ppm) CO<sub>2</sub> with the zone of increasing risk ranging from 350 to 450 ppm before reaching high risk. This corresponds approximately to a range of global mean surface temperature rise of 1° to 2°C (assuming mainstream scenarios on non-CO<sub>2</sub> forcing). Precaution places the planetary boundary at the start of increasing risk (350 ppm ≈ 1°C), i.e., slightly below the 1.5°C target identified in the Paris Agreement. The 1.5°C target is one that science increasingly demonstrates is associated with substantial risk of triggering irreversible large change and that crossing tipping points cannot be excluded even at lower temperature increases (<a href="#R18" role="doc-biblioref" data-xml-rid="R18"><i>18</i></a>). In recognition of the buffering resilience of Earth system, most boundaries are nevertheless set at values higher than their observed range through the Holocene up to the Industrial Revolution (for CO<sub>2</sub> ≈ 280 ppm) (see the Supplementary Materials). The stability and characteristic range of variability of interglacial Earth system states in Pleistocene paleoclimate (<a href="#R19" role="doc-biblioref" data-xml-rid="R19"><i>19</i></a>) and Earth system modeling (<a href="#R20" role="doc-biblioref" data-xml-rid="R20"><i>20</i></a>) suggest that Earth system would likely remain in a stable, Holocene-like state if all boundaries were respected despite their being at least temporarily outside the envelope of Holocene variability.</div><div role="paragraph">The distinction between zones of “increasing” and “high” risk cannot be sharply defined. There is accumulating evidence that the current level of boundary transgression has already taken Earth system beyond a “safe” zone. However, we still lack a comprehensive, integrated theory, backed by observations and modeling studies, that can identify when a transition from a rising level of risk to one with very high and dangerous risks of losing a Holocene-like Earth system state may occur. Therefore, the “burning embers” approach introduced by the Intergovernmental Panel on Climate Change (IPCC) to represent the gradual transitions from moderate (yellow) to high (red) to very high (purple) risks is adopted here.</div><div class="figure-wrap" data-specific-use="distribute"><figure id="F1" class="graphic"><img src="/web/20240318040954im_/https://www.science.org/cms/10.1126/sciadv.adh2458/asset/64f1671e-2c90-4811-bf74-7997cd547d1f/assets/images/large/sciadv.adh2458-f1.jpg" height="2637" width="3120" aria-labelledby="F1" loading="lazy"/><figcaption><div class="caption"><span class="heading">Fig. 1</span>. Current status of control variables for all nine planetary boundaries.</div><div class="notes"><div role="doc-footnote">Six of the nine boundaries are transgressed. In addition, ocean acidification is approaching its planetary boundary. The green zone is the safe operating space (below the boundary). Yellow to red represents the zone of increasing risk. Purple indicates the high-risk zone where interglacial Earth system conditions are transgressed with high confidence. Values for control variables are normalized so that the origin represents mean Holocene conditions and the planetary boundary (lower end of zone of increasing risk, dotted circle) lies at the same radius for all boundaries (except for the wedges representing green and blue water, see main text). Wedge lengths are scaled logarithmically. The upper edges of the wedges for the novel entities and the genetic diversity component of the biosphere integrity boundaries are blurred either because the upper end of the zone of increasing risk has not yet been quantitatively defined (novel entities) or because the current value is known only with great uncertainty (loss of genetic diversity). Both, however, are well outside of the safe operating space. Transgression of these boundaries reflects unprecedented human disruption of Earth system but is associated with large scientific uncertainties.</div></div></figcaption></figure></div><div role="paragraph">Throughout Earth’s history, geosphere-biosphere interactions were an internal driver of Earth system state. The climate change planetary boundary is used here as a proxy for the geosphere. Therefore, climate change and biosphere integrity are identified as “core boundaries” (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>) in the framework. The introduction of novel entities is a new anthropogenic driver of Earth system change that, if sufficiently transgressed, could, on its own, alter Earth system state. However, this planetary boundary acts largely through perturbation of the core boundaries, especially biosphere integrity. In contrast to the definition applied earlier (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>) where “naturally occurring elements mobilized by anthropogenic activities” were included, the definition of novel entities is now restricted to include only entities that, in the absence of the anthroposphere, are not present in Earth system.</div><div role="paragraph">Quantifying interactions between boundaries remains a major challenge. However, some progress has been made since the last framework update (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>). Recent studies (<a href="#R13" role="doc-biblioref" data-xml-rid="R13"><i>13</i></a>, <a href="#R14" role="doc-biblioref" data-xml-rid="R14"><i>14</i></a>, <a href="#R21" role="doc-biblioref" data-xml-rid="R21"><i>21</i></a>, <a href="#R22" role="doc-biblioref" data-xml-rid="R22"><i>22</i></a>) have shown that additional or more extensive transgression of one planetary boundary can change risk gradients for other boundaries. For example, there is increasing evidence to suggest that transgressing either the climate change or biosphere integrity planetary boundary can potentially lead to more steeply increasing risk in the other (<a href="#R21" role="doc-biblioref" data-xml-rid="R21"><i>21</i></a>). In the current absence of a comprehensive Earth system model that fully captures interactions between all component spheres, we explore below how various scenarios of transgression of the land system (representing the biosphere) and climate change boundaries combine to control biologically mediated carbon storage at the planetary level.</div></section></section><section id="sec-2" data-type="results"><h2>RESULTS</h2><section id="sec-2-1"><h3>Biosphere integrity</h3><div role="paragraph">Myriad interactions with the geosphere make the biosphere a constitutional component of Earth system and a major factor in regulating its state. The planetary functioning of the biosphere ultimately rests on its genetic diversity, inherited from natural selection not only during its dynamic history of coevolution with the geosphere but also on its functional role in regulating the state of Earth system. Genetic diversity and planetary function, each measured through suitable proxies, are therefore the two dimensions that form the basis of a planetary boundary for biosphere integrity. As applied here, “integrity” does not imply an absence of biosphere change but, rather, change that preserves the overall dynamic and adaptive character of the biosphere.</div><div role="paragraph">Rockström <i>et al.</i> (<a href="#R1" role="doc-biblioref" data-xml-rid="R1"><i>1</i></a>) defined the planetary boundary for change in genetic diversity as the maximum extinction rate compatible with preserving the genetic basis of the biosphere’s ecological complexity. We retain the boundary level of <10 E/MSY (extinctions per million species-years). The extinction rate control variable is challenging to apply in operational contexts, but data and methods for directly assessing the genetic diversity component of biosphere integrity are emerging [(<a href="#R23" role="doc-biblioref" data-xml-rid="R23"><i>23</i></a>) and the Supplementary Materials]. Although the baseline rate of extinctions (and of new species’ evolution) is both highly variable and difficult to quantify with confidence through geological time, the current rate of species extinctions is estimated to be at least tens to hundreds of times higher than the average rate over the past 10 million years and is accelerating (<a href="#R24" role="doc-biblioref" data-xml-rid="R24"><i>24</i></a>). We conservatively set the current value for the extinction rate at >100 E/MSY (<a href="#R24" role="doc-biblioref" data-xml-rid="R24"><i>24</i></a>–<a href="#R26" role="doc-biblioref" data-xml-rid="R26"><i>26</i></a>). Of an estimated 8 million plant and animal species, around 1 million are threatened with extinction (<a href="#R16" role="doc-biblioref" data-xml-rid="R16"><i>16</i></a>), and over 10% of genetic diversity of plants and animals may have been lost over the past 150 years (<a href="#R23" role="doc-biblioref" data-xml-rid="R23"><i>23</i></a>). Thus, the genetic component of the biosphere integrity boundary is markedly exceeded (<a href="#F1">Fig. 1</a> and <a href="#T1">Table 1</a>).</div><div role="paragraph">Previously, Steffen <i>et al.</i> (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>) proposed using the Biodiversity Intactness Index (BII) (<a href="#R27" role="doc-biblioref" data-xml-rid="R27"><i>27</i></a>), an empirically based metric of human impacts on population abundances, as an interim proxy for functional biosphere integrity. It was noted, however, that the link of BII to Earth system functions remains poorly understood and BII cannot be directly linked to the planetary biogeochemical and energy flows relevant for establishing Earth system state. In addition, BII relies on expert elicitation to estimate temporal changes in species abundances/distributions, and this knowledge is not readily available for many regions, including the oceans. Martin <i>et al.</i> (<a href="#R28" role="doc-biblioref" data-xml-rid="R28"><i>28</i></a>) have also recently suggested that BII only partially reflects human impacts on Earth system.</div><div role="paragraph">We therefore now replace this metric with a computable proxy for photosynthetic energy and materials flow into the biosphere (<a href="#R29" role="doc-biblioref" data-xml-rid="R29"><i>29</i></a>), i.e., net primary production (NPP), and define the functional component of the biosphere integrity boundary as a limit to the human appropriation of the biosphere's NPP (HANPP) as a fraction of its Holocene NPP. NPP is fundamental for both ecosystems and human societies as it supports their maintenance, reproduction, differentiation, networking, and growth. Biomes depend on the energy flow associated with NPP to maintain their planetary ecological functions as integral parts of Earth system. NPP-based energy flows into human societies should therefore not substantially compromise the energy flow to the biosphere (<a href="#R30" role="doc-biblioref" data-xml-rid="R30"><i>30</i></a>). The proxy complements the diversity-based dimensions of biosphere integrity, covered by the genetic component, which captures the importance of variability in living organisms for the functioning of ecosystems. The suitability of NPP and HANPP for defining a planetary boundary has previously been discussed by Running (<a href="#R31" role="doc-biblioref" data-xml-rid="R31"><i>31</i></a>) and Haberl <i>et al.</i> (<a href="#R32" role="doc-biblioref" data-xml-rid="R32"><i>32</i></a>).</div><div role="paragraph">We determine the terrestrial biosphere’s Holocene NPP to have been 55.9 Gt of C year<sup>−1</sup> (2σ) and exceedingly stable, varying by not more than ±1.1 Gt of C year<sup>−1</sup> despite regional variations in time (see the Supplementary Materials). Our model analyses suggest that NPP still had a Holocene-like level in 1700 (56.2 Gt of C year<sup>−1</sup> for potential natural vegetation and 54.7 Gt of C year<sup>−1</sup> when land use is taken into account). By 2020, potential natural NPP would have risen to 71.4 Gt of C year<sup>−1</sup> because of carbon fertilization, a disequilibrium response of terrestrial plant physiology to anthropogenically increasing CO<sub>2</sub> concentration in the atmosphere, whereas actual NPP was 65.8 Gt of C year<sup>−1</sup> due to the NPP-reducing effects of global land-use (see the Supplementary Materials).</div><div role="paragraph">HANPP designates both the harvesting and the elimination or alteration (mostly reduction) of potential natural NPP (<a href="#R32" role="doc-biblioref" data-xml-rid="R32"><i>32</i></a>), mainly through agriculture, silviculture, and grazing. Terrestrial HANPP can be estimated both as a fraction of potential natural NPP [15.7% in 1950 and 23.5% in 2020; inferred from (<a href="#R33" role="doc-biblioref" data-xml-rid="R33"><i>33</i></a>) and the Supplementary Materials] and of Holocene mean NPP (30% or 16.8 Gt of C year<sup>−1</sup> in 2020; see the Supplementary Materials). We argue that an NPP-based planetary boundary limiting HANPP should be set in relation to preindustrial Holocene mean NPP and not the current potential natural NPP. This is because the global increase in NPP due to anthropogenic carbon fertilization constitutes a resilience response of Earth system that dampens the magnitude of anthropogenic warming. Hence, the NPP contribution to a carbon sink associated with CO<sub>2</sub> fertilization should be protected and sustained rather than considered as being available for harvesting. Examples of large land areas under human use with declining carbon sinks, some even turning into carbon sources, i.e., due to human overexploitation of biomass, are already being observed, for example, in some Amazonian regions (<a href="#R34" role="doc-biblioref" data-xml-rid="R34"><i>34</i></a>) and northern European forests.</div><div role="paragraph">As NPP is the basis for the energy and materials flow that underpins the biosphere’s functioning (<a href="#R30" role="doc-biblioref" data-xml-rid="R30"><i>30</i></a>), we argue that today’s planetary-scale impact of HANPP is reflected in the observation that major indicators of the state of the biosphere show large and worrisome declines in recent decades (<a href="#R16" role="doc-biblioref" data-xml-rid="R16"><i>16</i></a>). This suggests that current HANPP is well beyond a precautionary planetary boundary aiming to safeguard the functional integrity of the biosphere and likely already into the high-risk zone. We therefore provisionally set the functional component of the biosphere integrity planetary boundary at human appropriation of 10% of preindustrial Holocene mean NPP, shifting into the zone of high risk at 20%. The boundary thus defined was transgressed in the late 19th century, a time of considerable acceleration in land use globally (<a href="#R35" role="doc-biblioref" data-xml-rid="R35"><i>35</i></a>) with strong impacts on species (<a href="#R27" role="doc-biblioref" data-xml-rid="R27"><i>27</i></a>), already leading to early concerns about the effects of this large-scale land transformation.</div><div role="paragraph">Thus, while the climate warming problem became evident in the 1980s, problems arising in functional biosphere integrity due to human land use began a century earlier. Since the 1960s, growth in global population and consumption further accelerated land use, driving the system further into the zone of increasing risk. HANPP has always sustained humanity’s need for food, fiber, and fodder, and this will continue to be the case in the future, as well as for sustainable societies. The NPP required to support future societies must, however, increasingly be generated through additional production of NPP above the Holocene baseline, not including the NPP generated for biology-based carbon sinks. Feeding 10 billion people, for example, is theoretically possible within planetary boundaries but requires a number of far-reaching transformations to improve the impacts of production and regulate demand (<a href="#R36" role="doc-biblioref" data-xml-rid="R36"><i>36</i></a>).</div><div role="paragraph">To develop a deeper foundation for the HANPP-based planetary boundary for functional biosphere integrity, we need an improved understanding of how ecological dynamics generate the functions of the biosphere in Earth system. Analysis of NPP should be spatially explicit and augmented by computable metrics of ecological destabilization due to climate and land use pressures, e.g., a metric of biogeochemical disruption (<a href="#R37" role="doc-biblioref" data-xml-rid="R37"><i>37</i></a>).</div><div role="paragraph">HANPP can also be quantified for marine systems. About two-thirds of the ocean area where HANPP is >10% is found above the shallow shelf areas (<a href="#R38" role="doc-biblioref" data-xml-rid="R38"><i>38</i></a>) where ecosystems are most intensely exploited. Regionally, fish catches exceed thresholds of sustainable exploitation (<a href="#R39" role="doc-biblioref" data-xml-rid="R39"><i>39</i></a>). However, in contrast to land, where most HANPP occurs in the form of plant material, i.e., at the lowest trophic level, HANPP in the ocean tends to take place at higher trophic levels. This means that while HANPP reduces the absolute amount of energy available to higher trophic levels on land, much of the energy fixed through NPP is used in marine ecosystems before HANPP occurs. When the abundance of organisms at the highest trophic levels is reduced, changes in marine ecosystem structure may change energy flow in these ecosystems (<a href="#R40" role="doc-biblioref" data-xml-rid="R40"><i>40</i></a>). Thus, in the marine realm, HANPP likely changes the flows rather than the amount of energy available. More information about the impacts of HANPP in the marine realm is necessary to integrate consideration of the marine systems in the functional biosphere integrity planetary boundary.</div></section><section id="sec-2-2"><h3>Climate change</h3><div role="paragraph">Climate change control variables and boundary levels are retained (<a href="#R1" role="doc-biblioref" data-xml-rid="R1"><i>1</i></a>, <a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>). The most important drivers of anthropogenic impacts on Earth’s energy budget are the emission of greenhouse gases and aerosols, and surface albedo changes (<a href="#R17" role="doc-biblioref" data-xml-rid="R17"><i>17</i></a>). The control variables in the framework are the annual averages of atmospheric CO<sub>2</sub> concentration and the change in radiative forcing. The planetary boundary for atmospheric CO<sub>2</sub> concentration is set at 350 ppm and for radiative forcing at 1 W m<sup>−2</sup>. Currently, the estimated total anthropogenic effective radiative forcing is 2.91 W m<sup>−2</sup> [2022 estimate, relative to 1750 (<a href="#R17" role="doc-biblioref" data-xml-rid="R17"><i>17</i></a>)], and atmospheric CO<sub>2</sub> concentration is 417 ppm [annual mean marine surface value for 2022 (<a href="#R41" role="doc-biblioref" data-xml-rid="R41"><i>41</i></a>)], i.e., further outside the safe operating space on both measures than in the last update (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>). The 350-ppm boundary would lead to a lower level of anthropogenic global warming than the internationally agreed 1.5°C target in the United Nations Paris Climate Agreement but is consistent with recent studies (<a href="#R17" role="doc-biblioref" data-xml-rid="R17"><i>17</i></a>, <a href="#R18" role="doc-biblioref" data-xml-rid="R18"><i>18</i></a>, <a href="#R42" role="doc-biblioref" data-xml-rid="R42"><i>42</i></a>) suggesting the possibility of extreme Earth system impacts even at 1.5<sup>o</sup> warming, with risks increasing already markedly above 1° warming.</div></section><section id="sec-2-3"><h3>Novel entities</h3><div role="paragraph">The definition of this boundary is now restricted to truly novel anthropogenic introductions to Earth system. These include synthetic chemicals and substances (e.g., microplastics, endocrine disruptors, and organic pollutants); anthropogenically mobilized radioactive materials, including nuclear waste and nuclear weapons; and human modification of evolution, genetically modified organisms and other direct human interventions in evolutionary processes. Novel entities serve as geological markers of the Anthropocene (<a href="#R5" role="doc-biblioref" data-xml-rid="R5"><i>5</i></a>). However, their impacts on Earth system as a whole remain largely unstudied. The planetary boundaries framework is only concerned with the stability and resilience of Earth system, i.e., not human or ecosystem health. Thus, it remains a scientific challenge to assess how much loading of novel entities Earth system tolerates before irreversibly shifting into a potentially less habitable state.</div><div role="paragraph">Hundreds of thousands of synthetic chemicals are now produced and released to the environment. For many substances, the potentially large and persistent effects on Earth system processes of their introduction, particularly on functional biosphere integrity, are not well known, and their use is not well regulated. Humanity has repeatedly been surprised by unintended consequences of this release, e.g., with respect to the release of insecticides such as DDT and the effect of chlorofluorocarbons (CFCs) on the ozone layer. For this class of novel entities, then, the only truly safe operating space that can ensure maintained Holocene-like conditions is one where these entities are absent unless their potential impacts with respect to Earth system have been thoroughly evaluated. This would imply that the quantified planetary boundary should be set at zero release of synthetic chemical compounds to the open environment unless they have been certified as harmless and are monitored. That is the target set by the Montreal Protocol with respect to the substances shown to be harmful by contributing to depletion of the ozone layer.</div><div role="paragraph">In their analysis of various strategies for establishing a planetary boundary for novel entities, Persson <i>et al.</i> (<a href="#R43" role="doc-biblioref" data-xml-rid="R43"><i>43</i></a>) identified the share of released chemicals with adequate safety assessment and monitoring as a candidate control variable. We here adopt this metric. The planetary boundary is then set at the release into Earth system of 0% of untested synthetics. When synthetics released to the environment are thoroughly tested, the ensuing risk of damaging effects is lowered. Admittedly, this approach has weaknesses: Data availability is incomplete; safety studies often focus on narrowly defined toxicity and do not capture the “cocktail effects” of chemical mixtures in the environment nor their effects under specific conditions. The percentage of untested synthetics released globally is unknown. However, Persson <i>et al.</i> (<a href="#R43" role="doc-biblioref" data-xml-rid="R43"><i>43</i></a>) report that for the chemicals currently registered under the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation (a small subset of the chemical universe), ~80% of these chemicals had been in use for at least 10 years without yet having undergone a safety assessment. Likewise, few safety studies consider potential Earth system effects. With such an enormous percentage of untested chemicals being released to the environment, a novel entities boundary defined in this manner is clearly breached. Persson <i>et al.</i> (<a href="#R43" role="doc-biblioref" data-xml-rid="R43"><i>43</i></a>) did not identify or quantify a singular planetary boundary for novel entities but, nevertheless, also concluded that the safe operating space is currently overstepped.</div></section><section id="sec-2-4"><h3>Stratospheric ozone depletion</h3><div role="paragraph">Stratospheric ozone depletion is a special case related to the anthropogenic release of novel entities where gaseous halocarbon compounds from industry and other human activities released into the atmosphere lead to long-lasting depletion of Earth’s ozone layer. The boundary for the safe operating space is set at 276 Dobson units (DU), i.e., allowing a <5% reduction from the preindustrial level of 290 DU, assessed by latitude (<a href="#R1" role="doc-biblioref" data-xml-rid="R1"><i>1</i></a>). Following the ratification of the Montreal Protocol in 1987, the trend and global extent of ozone depletion have recovered slightly (<a href="#R44" role="doc-biblioref" data-xml-rid="R44"><i>44</i></a>, <a href="#R45" role="doc-biblioref" data-xml-rid="R45"><i>45</i></a>). The current (2020) global estimate is 284 DU (see the Supplementary Materials). Thus, the human perturbation of the stratospheric ozone depletion has decreased and is now within the safe operating space. The boundary for ozone depletion is currently only transgressed over the Antarctic and southern high latitudes and only in the 3-month Austral spring (<a href="#R45" role="doc-biblioref" data-xml-rid="R45"><i>45</i></a>).</div></section><section id="sec-2-5"><h3>Freshwater change</h3><div role="paragraph">To comprehensively reflect anthropogenic modifications of Earth system functions of freshwater, this boundary is revised to consider changes across the entire water cycle over land (<a href="#R46" role="doc-biblioref" data-xml-rid="R46"><i>46</i></a>–<a href="#R48" role="doc-biblioref" data-xml-rid="R48"><i>48</i></a>). We here use streamflow as a proxy to represent blue water (surface and groundwater) and root-zone soil moisture to represent green water (plant-available water) (<a href="#R46" role="doc-biblioref" data-xml-rid="R46"><i>46</i></a>–<a href="#R48" role="doc-biblioref" data-xml-rid="R48"><i>48</i></a>). Control variables are defined as the percentage of annual global ice-free land area with streamflow/root-zone soil moisture deviations from preindustrial variability (<a href="#R46" role="doc-biblioref" data-xml-rid="R46"><i>46</i></a>, <a href="#R48" role="doc-biblioref" data-xml-rid="R48"><i>48</i></a>). The new green water component directly accounts for hydrological regulation of terrestrial ecosystems, climate, and biogeochemical processes (<a href="#R48" role="doc-biblioref" data-xml-rid="R48"><i>48</i></a>), whereas the blue water component accounts for river regulation and aquatic ecosystem integrity (<a href="#R46" role="doc-biblioref" data-xml-rid="R46"><i>46</i></a>). Moreover, this boundary now captures Earth system impacts of both water increases and decreases on a monthly scale and includes their spatial patterns (see the Supplementary Materials).</div><div role="paragraph">The control variables describe deviations from the preindustrial (here, 1661–1860) state, first determined at the 30 arc-min grid cell scale and further aggregated to a global annual value. For both blue and green water control variables, boundaries are set at the 95th percentile of preindustrial variability, i.e., variability of the percentage of global land area with deviations [~10% for blue and ~11% for green water; (<a href="#R46" role="doc-biblioref" data-xml-rid="R46"><i>46</i></a>) and the Supplementary Materials]. We assume that preindustrial conditions are representative of longer-term Holocene conditions and that notable deviation from this state puts freshwater’s Earth system functions at risk. Pending comprehensive assessment of impacts of different transgression levels of the blue and green water boundaries (e.g., reduced carbon sequestration capacity, climate regulation, and biodiversity loss; see the Supplementary Materials), the boundary settings are preliminary and highly precautionary. Currently, ~18% (blue water) and ~16% (green water) of the global land area experience wet or dry freshwater deviations (<a href="#R46" role="doc-biblioref" data-xml-rid="R46"><i>46</i></a>). Thus, in contrast to the earlier planetary boundary assessments (<a href="#R1" role="doc-biblioref" data-xml-rid="R1"><i>1</i></a>, <a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>) where only blue water removal was considered, this new approach indicates substantial transgression of the freshwater change boundary. Transgressions of both the blue and green water boundaries occurred a century ago, in 1905 and 1929, respectively (<a href="#R46" role="doc-biblioref" data-xml-rid="R46"><i>46</i></a>). Thus, with the revised definition of the control variables, fresh water would have been considered transgressed already at the time of the previous planetary boundary assessments. The previous global-scale control variable would still indicate freshwater use to remain in the safe zone, even with newer data sources than those used in (<a href="#R1" role="doc-biblioref" data-xml-rid="R1"><i>1</i></a>, <a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>). Recent estimates of global blue water consumption totals ~1700 km<sup>3</sup> year<sup>−1</sup> (<a href="#R49" role="doc-biblioref" data-xml-rid="R49"><i>49</i></a>), i.e., far below the previous boundary set at 4000 km<sup>3</sup> year<sup>−1</sup>.</div></section><section id="sec-2-6"><h3>Atmospheric aerosol loading</h3><div role="paragraph">Aerosols have multiple physical, biogeochemical, and biological effects in Earth system, motivating their inclusion as a planetary boundary (see the Supplementary Materials). Anthropogenic aerosol loading has increased (<a href="#R50" role="doc-biblioref" data-xml-rid="R50"><i>50</i></a>). Changes since the preindustrial for natural aerosols (e.g., desert dust, soot from wildfires) are difficult to assess because of model differences in the sign of trends (<a href="#R51" role="doc-biblioref" data-xml-rid="R51"><i>51</i></a>), but observational evidence suggests a global doubling of dust deposition since 1750 (<a href="#R52" role="doc-biblioref" data-xml-rid="R52"><i>52</i></a>). At present, the Sahara is the world’s largest dust source region [e.g., (<a href="#R53" role="doc-biblioref" data-xml-rid="R53"><i>53</i></a>)], but earlier in the Holocene, it was a vegetated landscape with many lakes and wetlands (14,500 to 5000 B.P.). Changes in monsoon rainfalls, involving vegetation-dust-climate feedbacks, are thought to have terminated the “green Sahara,” leading to major displacements of human settlements across parts of Africa and Asia (<a href="#R54" role="doc-biblioref" data-xml-rid="R54"><i>54</i></a>).</div><div role="paragraph">Quantification of the aerosol loading planetary boundary is hampered by their multiple natural and human-caused sources, differences in chemical composition, seasonality and atmospheric lifetimes, and the consequently very large spatial and temporal heterogeneity in distribution and climatic and ecological impacts of aerosols. Nevertheless, aerosol optical depth (AOD) provides a generic control variable for aerosol loading. AOD is an integrated measure of the overall reduction in sunlight reaching Earth's surface caused by all absorption and scattering in the vertical air column. On the basis of the evidence of the impacts of large AOD on regional precipitation over southern Asia, Steffen <i>et al.</i> (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>) set a provisional regional planetary boundary of AOD = 0.25 (0.25 to 0.5) on the basis that higher AOD values in monsoon regions likely lead to significantly lower rainfall, ultimately affecting biosphere integrity. The annual mean AOD in southern Asia is currently about 0.3 to 0.35 (<a href="#R55" role="doc-biblioref" data-xml-rid="R55"><i>55</i></a>, <a href="#R56" role="doc-biblioref" data-xml-rid="R56"><i>56</i></a>). The current value for the East China region is 0.4 (<a href="#R55" role="doc-biblioref" data-xml-rid="R55"><i>55</i></a>). Thus, aerosol loading in these regions has likely exceeded the regionally defined boundary, but with high uncertainty. Data and assessments of aerosol impacts on climate and ecosystems are lacking to determine whether this regionally defined boundary is applicable elsewhere. Global mean AOD at present is 0.14 (<a href="#R57" role="doc-biblioref" data-xml-rid="R57"><i>57</i></a>), with much higher levels in some regions and with very strong gradients from land to open ocean (<a href="#R56" role="doc-biblioref" data-xml-rid="R56"><i>56</i></a>).</div><div role="paragraph">In addition to the direct effects of AOD on regional climate and precipitation, asymmetries in AOD between northern and southern hemispheres can affect multiple monsoon systems, as seen for the West African monsoon (<a href="#R58" role="doc-biblioref" data-xml-rid="R58"><i>58</i></a>) and Indian monsoon (<a href="#R59" role="doc-biblioref" data-xml-rid="R59"><i>59</i></a>, <a href="#R60" role="doc-biblioref" data-xml-rid="R60"><i>60</i></a>). The interhemispheric difference in AOD affects regional monsoon rainfall by shifting the location of the Intertropical Convergence Zone (<a href="#R61" role="doc-biblioref" data-xml-rid="R61"><i>61</i></a>). Large asymmetries in the temperature of northern and southern hemispheres arise from differences in natural and anthropogenic aerosol emissions, land cover, and other climate forcers (<a href="#R58" role="doc-biblioref" data-xml-rid="R58"><i>58</i></a>, <a href="#R59" role="doc-biblioref" data-xml-rid="R59"><i>59</i></a>, <a href="#R62" role="doc-biblioref" data-xml-rid="R62"><i>62</i></a>, <a href="#R63" role="doc-biblioref" data-xml-rid="R63"><i>63</i></a>). The asymmetric radiative forcing resulting from aerosol effects leads to a relative cooling of the northern hemisphere and a southward shift in tropical precipitation (<a href="#R64" role="doc-biblioref" data-xml-rid="R64"><i>64</i></a>). The interhemispheric AOD difference and its impact on tropical precipitation and water availability are sensitive to the particle size and latitudinal and altitudinal distribution of aerosols (<a href="#R65" role="doc-biblioref" data-xml-rid="R65"><i>65</i></a>). Studies of aerosol-climate interactions following volcanic eruptions (<a href="#R66" role="doc-biblioref" data-xml-rid="R66"><i>66</i></a>) indicate that monsoon precipitation in the northern hemisphere is weakened when northern hemisphere AOD is higher and the interhemispheric AOD difference is greater and is enhanced when more aerosols are emitted in the southern hemisphere (smaller interhemispheric AOD difference). This understanding is broadly consistent with the decrease in tropical mean precipitation after major volcanic eruptions in observations and global climate models (<a href="#R67" role="doc-biblioref" data-xml-rid="R67"><i>67</i></a>). The IPCC AR6 has assessed that observed decreases in global land monsoon precipitation from the 1950s to the 1980s are partly attributed to human-caused northern hemisphere aerosol emissions, thus relatively larger interhemispheric difference (<a href="#R17" role="doc-biblioref" data-xml-rid="R17"><i>17</i></a>). In addition to volcanic aerosols, monsoon dynamics and the associated regional rainfalls also respond to changes in anthropogenic aerosols (see the Supplementary Materials).</div><div role="paragraph">We therefore propose the annual mean interhemispheric difference in AOD as a globally defined control variable for aerosol loading. The present-day interhemispheric difference is ~0.076 ± 0.006 (mean ± SD), based on 12 observational estimates, reaching ~0.1 in the boreal spring and summers, due to the seasonal increase in dust storms that dominate in the northern hemisphere (<a href="#R55" role="doc-biblioref" data-xml-rid="R55"><i>55</i></a>). The preindustrial annual mean value is estimated as ~0.03, based on multimodel analyses (<a href="#R68" role="doc-biblioref" data-xml-rid="R68"><i>68</i></a>), indicating an increase in interhemispheric AOD difference by ~0.04 in the industrial era. Present-day interhemispheric AOD difference is consistent with Coupled Model Intercomparison Project 6 (CMIP6) emission inventories that show more anthropogenic aerosols in the northern hemisphere, with future projections suggesting a decrease in the asymmetry (<a href="#R69" role="doc-biblioref" data-xml-rid="R69"><i>69</i></a>).</div><div role="paragraph">We assign a planetary boundary value of 0.1 for the mean annual interhemispheric difference in AOD, with high uncertainty about the zone of increasing risks, 0.1 to 0.25. In setting this boundary, we note that the impacts of aerosol loading on tropical monsoon systems are already seen today, and the impact is not only restricted to rainfall but also affects regional climate more broadly. Aerosol-cloud interaction might exacerbate effects of AOD asymmetry. The contribution of aerosol-cloud interactions to the hemispheric asymmetry of reflected shortwave radiation is unclear. Take for instance the current range of anthropogenic aerosol effective radiative forcing for present day that has been reported to be −1.6 to −0.6 W m<sup>−2</sup> in the global mean for the 16 to 84% confidence interval, with aerosol-cloud interactions as a major source for uncertainty (<a href="#R51" role="doc-biblioref" data-xml-rid="R51"><i>51</i></a>). Other large-scale effects of aerosols, such as air quality impacts on land and marine ecosystems, are also already evident (<a href="#R17" role="doc-biblioref" data-xml-rid="R17"><i>17</i></a>, <a href="#R70" role="doc-biblioref" data-xml-rid="R70"><i>70</i></a>). Biogenic aerosols have not been considered, despite their role in feedbacks in Earth system. A much better systemic and quantitative understanding of the hydroclimatic, ecological, and biogeochemical effects of asymmetric aerosol forcing is needed to refine the aerosol loading boundary.</div></section><section id="sec-2-7"><h3>Ocean acidification</h3><div role="paragraph">The control variable used is the carbonate ion concentration in surface seawater (specifically, Ω<sub>arag</sub>, the average global surface ocean saturation state with respect to aragonite). The original boundary quantification [≥80% of the preindustrial averaged global Ω<sub>arag</sub> of 3.44 (<a href="#R1" role="doc-biblioref" data-xml-rid="R1"><i>1</i></a>)] is retained. A recent estimate sets the current Ω<sub>arag</sub> at ~2.8 (<a href="#R71" role="doc-biblioref" data-xml-rid="R71"><i>71</i></a>) (see the Supplementary Materials), approximately 81% of the preindustrial value. Thus, anthropogenic ocean acidification currently lies at the margin of the safe operating space, and the trend is worsening as anthropogenic CO<sub>2</sub> emission continues to rise.</div></section><section id="sec-2-8"><h3>Land system change</h3><div role="paragraph">This boundary focuses on the three major forest biomes that globally play the largest role in driving biogeophysical processes (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>), i.e. tropical, temperate, and boreal. The control variable remains the same: forest cover remaining compared to the potential area of forest in the Holocene (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>). The boundary positions remain at 85%/50%/85% for boreal/temperate/tropical forests (cf. <a href="#T1">Table 1</a> and the Supplementary Materials). On the basis of 2019 land-cover classification maps derived from satellite observations (<a href="#R72" role="doc-biblioref" data-xml-rid="R72"><i>72</i></a>), the current state of the regional biomes is similar to that in 2015 although, for most regions, the amount of deforestation has increased since 2015 (see the Supplementary Materials). Land-use conversion and fires are causing rapid change in forest area (<a href="#R73" role="doc-biblioref" data-xml-rid="R73"><i>73</i></a>, <a href="#R74" role="doc-biblioref" data-xml-rid="R74"><i>74</i></a>), and deforestation of the Amazon tropical forest has increased such that it has now transgressed the planetary boundary (<a href="#T1">Table 1</a>). Changes in the methodology and technology used to estimate forest cover since 2015 may be influencing the biome-level differences reported here compared to the last update (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>). Nevertheless, there is little doubt that the global forest area continues to decrease (<a href="#R74" role="doc-biblioref" data-xml-rid="R74"><i>74</i></a>).</div><div class="figure-wrap"><figure id="T1" class="table"><div class="table-wrap"><table><thead><tr data-xml-valign="top"><th data-xml-align="left" scope="col">Earth system process</th><th scope="col">Control variable(s)</th><th scope="col">Planetary boundary</th><th scope="col">Preindustrial Holocene base value</th><th scope="col">Upper end of zone of increasing risk</th><th scope="col">Current value of control variable</th></tr></thead><tbody><tr data-xml-align="center"><th data-xml-align="left" rowspan="2" scope="row"><b>Climate change</b></th><td>Atmospheric CO<sub>2</sub> concentration (ppm CO<sub>2</sub>)</td><td>350 ppm CO<sub>2</sub></td><td>280 ppm CO<sub>2</sub></td><td>450 ppm CO<sub>2</sub></td><td>417 ppm CO<sub>2</sub> (<a href="#R41" role="doc-biblioref" data-xml-rid="R41"><i>41</i></a>)</td></tr><tr data-xml-align="center"><td>Total anthropogenic radiative forcing at top-of-atmosphere (W m<sup>−2</sup>)</td><td>+1.0 W m<sup>−2</sup></td><td>0 W m<sup>−2</sup></td><td>+1.5 W m<sup>−2</sup></td><td>+2.91 W m<sup>−2</sup> (<a href="#R41" role="doc-biblioref" data-xml-rid="R41"><i>41</i></a>)</td></tr><tr data-xml-align="center"><th data-xml-align="left" rowspan="2" scope="row"><b>Change in biosphere integrity</b></th><td>Genetic diversity: E/MSY</td><td><10 E/MSY but with an aspirational goal of ca. 1 E/MSY (assumed background rate of extinction loss)</td><td>1 E/MSY</td><td>100 E/MSY</td><td>>100 E/MSY (<a href="#R24" role="doc-biblioref" data-xml-rid="R24"><i>24</i></a>–<a href="#R26" role="doc-biblioref" data-xml-rid="R26"><i>26</i></a>)</td></tr><tr data-xml-align="center"><td>Functional integrity: measured as energy available to ecosystems (NPP) (% HANPP)</td><td>HANPP (in billion tonnes of C year<sup>−</sup><sup>1</sup>) <10% of preindustrial Holocene NPP, i.e., >90% remaining for supporting biosphere function</td><td>1.9% (2σ variability of preindustrial Holocene century-mean NPP)</td><td>20% HANPP</td><td>30% HANPP (see the Supplementary Materials)</td></tr><tr data-xml-align="center"><th data-xml-align="left" scope="row"><b>Stratospheric ozone depletion</b></th><td>Stratospheric O<sub>3</sub> concentration, (global average) (DU)</td><td><5% reduction from preindustrial level assessed by latitude (~276 DU)</td><td>290 DU</td><td>261 DU</td><td>284.6 DU (<a href="#R96" role="doc-biblioref" data-xml-rid="R96"><i>96</i></a>)</td></tr><tr data-xml-align="center"><th data-xml-align="left" scope="row"><b>Ocean acidification</b></th><td>Carbonate ion concentration, average global surface ocean saturation state with respect to aragonite (Ω<sub>arag</sub>)</td><td>≥80% Ω<sub>arag</sub> of mean preindustrial aragonite saturation state of surface ocean, including natural diel and seasonal variability</td><td>3.44 Ω<sub>arag</sub></td><td>2.75 Ω<sub>arag</sub></td><td>2.8 Ω<sub>arag</sub> (<a href="#R71" role="doc-biblioref" data-xml-rid="R71"><i>71</i></a>)</td></tr><tr data-xml-align="center"><th data-xml-align="left" rowspan="2" scope="row"><b>Biogeochemical flows: P and N cycles</b></th><td>Phosphate <i>global:</i> P flow from freshwater systems into the ocean; <i>regional</i>: P flow from fertilizers to erodible soils (Tg of P year<sup>−1</sup>)</td><td>Phosphate <i>global:</i> 11 Tg of P year<sup>−1</sup>; <i>regional:</i> 6.2 Tg of P year<sup>−1</sup> mined and applied to erodible (agricultural) soils. <sup></sup> Boundary is a global average, but regional distribution is critical for impacts.</td><td>0 Tg of P year<sup>−1</sup></td><td><i>Global</i>: 100 Tg of P year<sup>−1</sup>; <i>regional</i>: 11.2 Tg of P year<sup>−1</sup></td><td><i>Global</i>: 22.6 Tg of P year<sup>−1</sup> (<a href="#R75" role="doc-biblioref" data-xml-rid="R75"><i>75</i></a>); <i>regional</i>: 17.5 Tg of P year<sup>−1</sup> (<a href="#R76" role="doc-biblioref" data-xml-rid="R76"><i>76</i></a>)</td></tr><tr data-xml-align="center"><td>Nitrogen <i>global:</i> industrial and intentional fixation of N (Tg of N year<sup>−1</sup>)</td><td>Nitrogen <i>global:</i> 62 Tg of N year<sup>−1</sup>. Boundary is a global average<sup></sup>. Anthropogenic biological N fixation on agriculture areas highly uncertain but estimates in range of ~30 to 70 Tg of N year<sup>−1</sup>. Boundary acts as a global “valve” limiting introduction of new reactive N to Earth system, but regional distribution of fertilizer N is critical for impacts.</td><td>0 Tg of N year<sup>−1</sup></td><td>82 Tg of N year<sup>−1</sup></td><td>190 Tg of N year<sup>−1</sup> (<a href="#R84" role="doc-biblioref" data-xml-rid="R84"><i>84</i></a>)</td></tr><tr data-xml-align="center"><th data-xml-align="left" scope="row"><b>Land system change</b></th><td><i>Global</i>: area of forested land as the percentage of original forest cover; <i>biome</i>: area of forested land as the percentage of potential forest (% area remaining)</td><td><i>Global: 75%</i> values are a weighted average of the three individual biome boundaries; <i>biomes</i>: tropical, 85%; temperate, 50%; boreal: 85%</td><td>100%</td><td><i>Global:</i> 54%; <i>biomes</i>: tropical, 60%; temperate, 30%; boreal: 60%</td><td><i>Global</i>: 60% [(<a href="#R72" role="doc-biblioref" data-xml-rid="R72"><i>72</i></a>, <a href="#R97" role="doc-biblioref" data-xml-rid="R97"><i>97</i></a>) and see the Supplementary Materials]; <i>tropical</i>: Americas, 83.9%; Africa, 54.3%; Asia, 37.5%; <i>temperate</i>: Americas, 51.2%; Europe, 34.2%; Asia, 37.9%; <i>boreal</i>: Americas, 56.6%; Eurasia: 70.3%</td></tr><tr data-xml-align="center"><th data-xml-align="left" rowspan="2" scope="row"><b>Freshwater change</b></th><td>Blue water: human induced disturbance of blue water flow</td><td>Upper limit (95th percentile) of global land area with deviations greater than during preindustrial, Blue water: 10.2%</td><td>9.4% (median of preindustrial conditions)</td><td>50% (provisional)</td><td>18.2% (<a href="#R46" role="doc-biblioref" data-xml-rid="R46"><i>46</i></a>)</td></tr><tr data-xml-align="center"><td>Green water: human induced disturbance of water available to plants (% land area with deviations from preindustrial variability)</td><td>Green water: 11.1%</td><td>9.8% (median of preindustrial conditions)</td><td>50% (provisional)</td><td>15.8% (<a href="#R46" role="doc-biblioref" data-xml-rid="R46"><i>46</i></a>)</td></tr><tr data-xml-align="center"><th data-xml-align="left" scope="row"><b>Atmospheric aerosol loading</b></th><td>Interhemispheric difference in AOD</td><td>0.1 (mean annual interhemispheric difference)</td><td>0.03</td><td>0.25</td><td>0.076 (<a href="#R55" role="doc-biblioref" data-xml-rid="R55"><i>55</i></a>, <a href="#R57" role="doc-biblioref" data-xml-rid="R57"><i>57</i></a>, <a href="#R68" role="doc-biblioref" data-xml-rid="R68"><i>68</i></a>)</td></tr><tr data-xml-align="center"><th data-xml-align="left" scope="row"><b>Novel entities</b></th><td>Percentage of synthetic chemicals released to the environment without adequate safety testing</td><td>0</td><td>0</td><td>NA</td><td>Transgressed</td></tr></tbody></table></div><figcaption><span class="heading">Table 1</span>. Current status for the planetary boundaries.</figcaption></figure></div></section><section id="sec-2-9"><h3>Biogeochemical flows</h3><div role="paragraph">Biogeochemical flows reflect anthropogenic perturbation of global element cycles. Currently, the framework considers nitrogen (N) and phosphorus (P) as these two elements constitute fundamental building blocks of life, and their global cycles have been markedly altered through agriculture and industry. Anthropogenic impacts on global carbon cycling are equally fundamental but are addressed in the climate and biosphere integrity boundaries. Other elements could come into focus under this boundary as an understanding of human perturbation of element cycles advances. For both N and P, the anthropogenic release of reactive forms to land and oceans is of interest, as altered nutrient flows and element ratios have profound effects on ecosystem composition and long-term Earth system effects. Some of today’s changes will only be seen on evolutionary time scales, while others are already affecting climate and biosphere integrity.</div><div role="paragraph">For P, we retain the regional-level and global boundaries proposed by Steffen <i>et al.</i> (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>). The global boundary for P is a sustained flow of 11 Tg of P year<sup>−1</sup> from fresh water to the ocean, to avoid large-scale anoxia. We have not found newer studies quantifying P flows in fresh water to the sea since that used for the 2015 framework update, i.e., an estimated 22 Tg of P year<sup>−1</sup> (<a href="#R75" role="doc-biblioref" data-xml-rid="R75"><i>75</i></a>). The regional level boundary is set at a flow of 6.2 Tg of P year<sup>−1</sup> from fertilizers to erodible soils, to avert widespread eutrophication of freshwater ecosystems. The current rate of application of P in fertilizers to croplands is 17.5 Tg of P year<sup>−1</sup> (<a href="#R76" role="doc-biblioref" data-xml-rid="R76"><i>76</i></a>) although P use is rising and much higher estimates of up to 32.5 Tg of P year<sup>−1</sup> have been reported in other studies (<a href="#R77" role="doc-biblioref" data-xml-rid="R77"><i>77</i></a>–<a href="#R79" role="doc-biblioref" data-xml-rid="R79"><i>79</i></a>). Thus, both the global and regional boundaries for P are exceeded. The planetary boundary for N is the application rate of intentionally fixed N to the agricultural system of 62 Tg of N year<sup>−1</sup> [unchanged from (<a href="#R2" role="doc-biblioref" data-xml-rid="R2"><i>2</i></a>)]. Currently, the application of industrially fixed N fertilizer is 112 Tg of N year<sup>−1</sup> (<a href="#R80" role="doc-biblioref" data-xml-rid="R80"><i>80</i></a>). Quantification of anthropogenic biological N fixation in connection with agriculture is highly uncertain, but the most recent estimates are in the range of ~30 to 70 Tg of N year<sup>−1</sup> (<a href="#R81" role="doc-biblioref" data-xml-rid="R81"><i>81</i></a>–<a href="#R83" role="doc-biblioref" data-xml-rid="R83"><i>83</i></a>). According to Food and Agriculture Organization (<a href="#R84" role="doc-biblioref" data-xml-rid="R84"><i>84</i></a>), the total introduction of anthropogenically fixed N applied to the agricultural system is ~190 Tg year<sup>−1</sup> so this boundary is also globally transgressed.</div></section></section><section id="sec-3" data-type="discussion"><h2>DISCUSSION</h2><div role="paragraph">Six planetary boundaries are found currently to be transgressed (<a href="#F1">Fig. 1</a> and <a href="#T1">Table 1</a>). For all of the boundaries previously identified as transgressed [climate change, biosphere integrity (genetic diversity), land system change, and biogeochemical flows (N and P)], the degree of transgression has increased since 2015. We have introduced HANPP as a control variable for the functional component of biosphere integrity and argue that this boundary is also transgressed. Drawing on the considerable recent scientific progress made in refining the safe operating space for water, control variables for both green and blue water components are now included in the freshwater change planetary boundary. The boundary is transgressed for both components. Global boundaries for aerosol loading and novel entities are proposed. The novel entities boundary is transgressed. The global aerosol loading boundary is not transgressed although regional transgressions are noted.</div><section id="sec-3-1"><h3>Earth system effects of differing scenarios of transgression of land system change and climate boundaries</h3><div role="paragraph">To illustrate the importance of considering the multiple anthropogenic impacts on the global environment in a systemic context rather than individually, we examine how varying degrees of transgression of the climate and land system change boundaries combine to influence two codeterminants of Earth system state: temperature and terrestrial carbon storage.</div><div role="paragraph">For climate change, the Potsdam Earth Model (POEM) [(<a href="#R85" role="doc-biblioref" data-xml-rid="R85"><i>85</i></a>) and the Supplementary Materials] is forced by increased atmospheric carbon dioxide levels (350, 450, and 550 ppm), and land system change is forced with land-use patterns representing different extents of tropical, temperate, and boreal forest cover (see the Supplementary Materials). As some biological processes take centuries to approach a steady state, we investigate changes in both the short (1988–2100) and the long term (2100–2770). This also enables us to examine the veracity of the placement of these planetary boundaries and their zones of increasing risk in terms of critical Earth system responses.</div><div role="paragraph">According to these simulations, anthropogenic activities brought both climate and land system change outside of their safe operating space around 1988. Had Earth system remained forced by 1988 conditions (350 ppm and 85%/50%/85% of tropical/temperate/boreal forest cover remaining), the simulations show that temperature over the global land surface would not have increased by more than an additional 0.6°C in the subsequent 800 years (and not >1.3°C compared to the preindustrial period). Only a small (cumulative 25 Gt of C) terrestrial carbon source would have developed by 2100 and a cumulative source of not >68 Gt of C after 800 years. Thus, the exercise suggests that essentially stable planetary conditions would have been maintained had human impacts on these two boundaries remained at their 1988 levels, i.e., marginally within the safe operating space.</div><div role="paragraph">Both of these planetary boundaries have, however, since been transgressed into a zone of increasing risk of systemic disruption. If climate and land system change can be halted at 450 ppm and forest cover retained at 60%/30%/60% of boreal/temperate/tropical natural cover, then the simulation indicates a mean temperature rise over land of 1.4°C by 2100 (in addition to 0.7°C between preindustrial time and 1988) and 1.9°C after 800 years as vegetation evolves in a warmer climate and associated carbon fertilization (<a href="#F2">Fig. 2</a>).</div><div class="figure-wrap" data-specific-use="distribute"><figure id="F2" class="graphic"><img src="/web/20240318040954im_/https://www.science.org/cms/10.1126/sciadv.adh2458/asset/d1568166-f4d7-4109-8d03-008175c7e936/assets/images/large/sciadv.adh2458-f2.jpg" height="1491" width="3000" aria-labelledby="F2" loading="lazy"/><figcaption><div class="caption"><span class="heading">Fig. 2</span>. Impact of the combined effect of land system change and climate change boundary states on trajectories of terrestrial carbon stocks and global land temperature.</div><div class="notes"><div role="doc-footnote">Results are based on idealized Earth system model experiments with varying planetary boundary status, ranging from maintaining the planetary boundary (85%/50%/85% boreal/temperate/tropical forest remaining, 350-ppm atmospheric CO<sub>2</sub>, green), the upper end of the zone of increasing risk (60%/30%/60%, 450 ppm, orange), and beyond the zone of increasing risk (40%/20%/40%, 550 ppm, red). Open circles represent the short-term changes (1988–2100) of the system, while colored circles the long-term changes (2100–2770). Their colors denote the state of the land system change boundary, while the climate change boundary is shown on the <i>y</i> axis. The locations of the circles on the <i>x</i> axis represent the changes in the land carbon stocks, and the associated land temperature changes are given next to each circle, both compared to the year 1988. Transgressing the climate change boundary (<i>y</i> axis) is mostly connected to an increase in temperature, while the transgression of land system change leads to a loss of terrestrial carbon stocks (source) of 100 to 200 Gt of C.</div></div></figcaption></figure></div><div role="paragraph">Carbon fertilization of vegetation growth counters the negative impacts of climate warming on the global average carbon sinks, leading to only moderate cumulative loss in terrestrial carbon due to additional deforestation. If, however, deforestation had been maintained at the level of the planetary boundary rather than having been allowed to rise in the zone of increasing risk, then the land biosphere would have developed a cumulative carbon sink rather than a source, contributing to stabilizing Earth’s conditions. In contrast, if deforestation is allowed to breach into the high-risk zone, then simulations show a substantial additional carbon leakage to the atmosphere both over the short and long term (132 and 211 Pg of C), despite strong CO<sub>2</sub> fertilization of vegetation growth in the model (<a href="#F2">Fig. 2</a>).</div><div role="paragraph">The situation is even more extreme if atmospheric CO<sub>2</sub> concentration rises above the risk zone (550 ppm; <a href="#F2">Fig. 2</a>) and deforestation continues. Not only is the temperature on land about 2.7°C warmer than in 1988 (3.4°C warmer than preindustrial), but also around 145 Gt of C would be lost long-term from terrestrial vegetation and soils. Note that these findings reflect optimistic modeling assumptions on carbon fertilization. Many of the ecological factors not sufficiently represented in current biogeochemical models could lead to even less desirable consequences of leaving the safe operating space. These simulations illustrate clearly that human impacts on climate and forest cover must be considered in a systemic context. They furthermore support the placement of the planetary boundaries for climate and land system change at the lower end of the zone of increasing risk.</div></section><section id="sec-3-2"><h3>Influence of climate change on biologically mediated C sinks in the ocean</h3><div role="paragraph">Approximately 450 Gt of C is bound up in terrestrial biota, primarily in plants (<a href="#R86" role="doc-biblioref" data-xml-rid="R86"><i>86</i></a>), while only ~6 Gt of C is found in ocean biota (<a href="#R87" role="doc-biblioref" data-xml-rid="R87"><i>87</i></a>). Biologically mediated marine carbon sinks are composed of particulate organic carbon (POC) that can potentially sink below the permanent thermocline (biological pump) and dissolved organic C. Via microbial breakdown of POC and dissolved organic C, CO<sub>2</sub> is released. When this release influences partial pressure of CO<sub>2</sub> in surface waters, it tends to reduce oceanic carbon uptake from the atmosphere. Microbial respiration is highly sensitive to temperature and, in a warmer ocean, an increased release of CO<sub>2</sub> in surface waters is predicted (<a href="#R88" role="doc-biblioref" data-xml-rid="R88"><i>88</i></a>). The biologically mediated carbon sink in the ocean most exposed to climate change is the amount of carbon fixed by photosynthesis (NPP), i.e., POC, in the surface ocean that is ultimately transported into the ocean interior via the biological pump. When this occurs, the resulting carbon drawdown reduces partial pressure of CO<sub>2</sub> in the surface layer and tends to increase the atmosphere-to-ocean CO<sub>2</sub> flux.</div><div role="paragraph">These biological processes are implicitly and, in some cases, explicitly included in the CMIP6 models informing the IPCC. However, as these models configure biologically mediated carbon flows differently, there is considerable variability in their results. Models used by the IPCC do not even agree on the direction of change in NPP in response to climate change (<a href="#R89" role="doc-biblioref" data-xml-rid="R89"><i>89</i></a>). Our model runs (see the Supplementary Materials) suggest no significant change in globally averaged ocean NPP under the different climate forcing conditions and only a modest decrease in exported material out of the surface layer [new production (ΔNP); <a href="#T2">Table 2</a>]. Using empirical relationships (<a href="#R90" role="doc-biblioref" data-xml-rid="R90"><i>90</i></a>, <a href="#R91" role="doc-biblioref" data-xml-rid="R91"><i>91</i></a>) describing the transfer of carbon to the ocean interior and derived from the contemporary ocean to estimate biological pump sensitivity to future temperature increases indicates a similar weakening of the pump in the upper ocean (<a href="#T2">Table 2</a> and the Supplementary Materials). That these two independent methods indicate similar decreases in the export of POC from the surface layer lends confidence both in the direction and magnitude of climate impacts on this biologically mediated global carbon sink.</div><div class="figure-wrap"><figure id="T2" class="table"><div class="table-wrap"><table><thead><tr data-xml-valign="top"><th data-xml-align="left" scope="col">Scenario</th><th scope="col">ΔSST</th><th scope="col">ΔNP</th><th scope="col"></th><th scope="col">ΔF<sub>500m</sub></th><th scope="col"></th><th scope="col">ΔΩ</th><th scope="col">ΔDIC<sub>0–1000m</sub></th></tr><tr data-xml-valign="top"><th data-xml-align="left" scope="col">(ppm)</th><th scope="col">(°C)</th><th scope="col">Model (%)</th><th scope="col">Empirical (%)</th><th scope="col">Model (%)</th><th scope="col">Empirical (%)</th><th scope="col">(−)</th><th scope="col">(Gt of C)</th></tr></thead><tbody><tr data-xml-align="center"><th data-xml-align="left" scope="row"><b>350</b></th><td>0.3</td><td>2.0</td><td>2.5</td><td>1.9</td><td>1.8</td><td>0.0</td><td>38</td></tr><tr data-xml-align="center"><th data-xml-align="left" scope="row"><b>450</b></th><td>1.0</td><td>0.0</td><td>1.4</td><td>0.0</td><td>−3.5</td><td>−0.4</td><td>172</td></tr><tr data-xml-align="center"><th data-xml-align="left" scope="row"><b>550</b></th><td>1.7</td><td>−2.5</td><td>−1.0</td><td>−3.1</td><td>−9.4</td><td>−0.7</td><td>273</td></tr></tbody></table></div><figcaption><span class="heading">Table 2</span>. Global averaged change in three scenarios from the initial state (1988–2018): change in sea surface temperature (ΔSST), new production (ΔNP), and biogenic particulate flux below 500 m depth (Δ<i>F</i><sub>500m</sub>) including model and empirically derived values, surface saturation state of aragonite (ΔΩ), and the DIC inventory between the surface and 1000 m depth (ΔDIC<sub>0–1000m</sub>).</figcaption></figure></div><div role="paragraph">The analysis shows that DIC (dissolved inorganic carbon; including CO<sub>2</sub>) accumulates over time in the ocean as a whole, particularly in the upper ocean (<1000 m; <a href="#T2">Table 2</a>). Changes in the biologically driven accumulation rates are relatively small compared to the change in the total DIC inventory that is mainly driven by the solubility pump, i.e., the tendency of increased oceanic uptake when atmospheric partial pressure of CO<sub>2</sub> rises. The organic matter flux below the 500-m-depth horizon (Δ<i>F</i><sub>500m</sub>) varies between 3 and 9% between the model and empirically derived fluxes in the 550 ppm scenario with the model-derived sensitivity being lowest. This illustrates the current uncertainty in quantifying climate-driven feedbacks on the biological pump. The implied accumulation of DIC in the surface ocean will tend to decrease the uptake of atmospheric CO<sub>2</sub>, thus counteracting global actions for stabilizing or even reducing atmospheric CO<sub>2</sub> concentrations. The ocean response to reduced greenhouse gases will be complex and occur on different time scales, e.g., the characteristic response time simulated for the total carbon pool in the upper 1000 m is ~150 years (550 ppm; see the Supplementary Materials). However, the natural ocean carbon sink will gradually decrease on millennial time scales.</div><div role="paragraph">The reduction of sinking organic material will affect the mesopelagic ecosystem (i.e., the subsurface ecosystem between 200 and 1000 m in depth, one of the largest biomes on Earth and one that hosts numerous transient grazers, including some whales). The flux of organic material via sinking represents the energy source for organisms in this biome. A reduction of up to ~10% of energy flux would potentially have enormous consequences for this biome and, thereby, its biosphere integrity. Recent paleontological reconstructions (<a href="#R92" role="doc-biblioref" data-xml-rid="R92"><i>92</i></a>) provide evidence that these decreases in carbon flux to the mesopelagic may have occurred in relation to past climate changes.</div><div role="paragraph">Acidification due to increased CO<sub>2</sub> reduces the saturation state of aragonite (Ω). It tends to hinder the biological formation of calcium carbonate, an essential component for shell and reef-forming organisms. The relatively short equilibration time of the surface ocean with atmospheric CO<sub>2</sub> implies a response time of Ω to increased CO<sub>2</sub> of only a few decades, comparable to the current acidification rate (see the Supplementary Materials). The current rate is probably a hundred times faster than at any time during the last hundreds of millennia (<a href="#R93" role="doc-biblioref" data-xml-rid="R93"><i>93</i></a>), confirming the tied relations to transgression of the climate change boundary, leading to the rising risk of weakening ocean biosphere integrity, and worsening the aragonite saturation state of the ocean acidification boundary.</div></section><section id="sec-3-3"><h3>A systemic framework for addressing global anthropogenic impacts on Earth system</h3><div role="paragraph">The scientific updates and analyses presented here confirm that humanity is today placing unprecedented pressure on Earth system. Perhaps most worrying in terms of maintaining Earth system in a Holocene-like interglacial state is that all the biosphere-related planetary boundary processes providing the resilience (capacity to dampen disturbance) of Earth system are at or close to a high-risk level of transgression. In a recent study (<a href="#R18" role="doc-biblioref" data-xml-rid="R18"><i>18</i></a>), it was shown that several regional climate tipping points, relevant for stabilizing the global system, have already been or are close to being transgressed, thus weakening global resilience capacity. This implies low/falling resilience precisely when planetary resilience is needed more than ever to cope with increasing anthropogenic disturbances. There is an urgent need for more powerful scientific and policy tools for analyzing the whole of the integrated Earth system with reliability and regularity and guiding political processes to prevent altering the state of Earth system beyond levels tolerable for today’s societies. In addition to more consistent collection and collation of relevant global environmental data, this will require the development of Earth system models that more completely capture geosphere-biosphere-anthroposphere interactions than is the case today. The known interdependence of planetary boundaries is confirmed by Earth system science understanding (<a href="#R14" role="doc-biblioref" data-xml-rid="R14"><i>14</i></a>, <a href="#R22" role="doc-biblioref" data-xml-rid="R22"><i>22</i></a>) of the planet as an integrated, partially self-regulating, system. To better understand the risk to this system and the critical boundaries that humankind should consider in its economic and social activities, Earth system analysis now has to continue advancing a planetary boundaries framework. In addition, it must substantially increase the ecological realism of simulation and analyses of the biosphere as an adaptive core entity of Earth system. These initiatives are underway but have to be further developed into a coherent process of integrated Earth system analysis across the physical, chemical, and biological domains not focused just on climate.</div><div role="paragraph">Successfully addressing anthropogenic climate change will require consideration of internal biosphere-geosphere interactions within Earth system. Our model results demonstrate that one of the most powerful means that humanity has at its disposal to combat climate change is respecting the land system change boundary. Bringing total global forest cover back to the levels of the late 20th century would provide a substantial cumulative sink for atmospheric CO<sub>2</sub> in 2100. This reforestation seems unlikely, however, given the current focus on biomass as a replacement for fossil fuels and the creation of negative CO<sub>2</sub> emissions via bioenergy with carbon capture and storage. Both activities are already serving to increase pressure on Earth’s remaining forest area. Nevertheless, our study indicates that failure to respect the land system change planetary boundary can potentially jeopardize efforts to achieve the global climate goals adopted in the Paris Agreement.</div><div role="paragraph">Meanwhile, this update of the planetary boundaries framework may serve as a renewed wake-up call to humankind that Earth is in danger of leaving its Holocene-like state. It may also contribute to guiding the substantial human opportunities for sustainable development on our planet. Scientific insight into planetary boundaries does not limit, but stimulates, humankind to innovation toward a future in which Earth system stability is fundamentally preserved and safeguarded.</div></section></section><section id="sec-4" data-type="materials methods"><h2>MATERIALS AND METHODS</h2><div role="paragraph">To quantify the aerosol boundary, we consider cases where a natural pulse of sulfate aerosol emissions from volcanic eruptions in the northern hemisphere led to subsequent rainfall deficits in the Sahel. The eruption of El Chichón led to a peak interhemispheric AOD difference of 0.07 and that of Katmai to an AOD difference of 0.08 (<a href="#R55" role="doc-biblioref" data-xml-rid="R55"><i>55</i></a>). We also consider a model study of intentional sulfate injections into the stratosphere. This study is based on stratospheric aerosols, which have no direct interaction with clouds and vegetation. However, it does indicate that an interhemispheric sulfate AOD difference of ~0.2 would decrease tropical monsoon precipitation in the northern hemisphere by ~10% and India’s mean precipitation by >20% (<a href="#R59" role="doc-biblioref" data-xml-rid="R59"><i>59</i></a>). Together, these studies suggest that a raised interhemispheric AOD difference caused by persistent and widely distributed aerosol emissions could lead to major reductions in precipitation in the tropics.</div><div role="paragraph">To examine differing scenarios of transgression of land system and climate change boundaries, we use the POEM [(<a href="#R85" role="doc-biblioref" data-xml-rid="R85"><i>85</i></a>) and the Supplementary Materials], which links models of atmospheric and ocean circulation with models of the marine (BLING) (<a href="#R94" role="doc-biblioref" data-xml-rid="R94"><i>94</i></a>) and terrestrial biosphere (LPJmL5) [(<a href="#R95" role="doc-biblioref" data-xml-rid="R95"><i>95</i></a>) and the Supplementary Materials]. We study scenarios where each of these two planetary boundary dimensions are either fixed at the value of the boundary, a value in the zone of increasing risk, or a value in the high-risk zone. Once the respective scenario condition is attained, the associated level of scenario forcing remains constant, while the long-term implications under these fixed conditions evolve. Correspondingly, vegetation dynamics (e.g., biome distributions) and related carbon pools and fluxes develop according to biophysical climate interactions under the given forcing conditions, while biogeochemical feedbacks on the atmosphere are not considered because of the respective boundary or transgression forcing remaining fixed.</div></section><section id="acknowledgments" role="doc-acknowledgments"><h2>Acknowledgments</h2><div role="paragraph">This paper is dedicated to our friend, colleague, and co-author, W.S., who passed away. He was deeply involved in developing this paper. Few have made a greater contribution to describing a pathway for humanity’s development in the Anthropocene than W.S. We are grateful for support from K. Noone (aerosols), B. Sakschewski (POEM), and M. Martin (comments). J. Lokrantz (Azote) and D. Biermann (PIK) produced the figures.</div><div role="paragraph"><b>Funding:</b> This work was supported by the European Research Council (Project Earth Resilience in the Anthropocene, ERC-2016-ADG 743080); European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 819202); German Federal Ministry for Education and Research (BMBF) through the “PIK Change” framework (grant no. 01LS2001A), and Carlsberg Foundation (Queen Margrethe’s and Vigdís Finnbogadóttir´s Interdisciplinary Research Centre on Ocean, Climate, and Society, CF20-0071). POEM development and application were supported by the Volkswagen Foundation (POEM-PBSim—A Simulator for Earth’s planetary boundaries, AZ 98046) and work on the biosphere functional integrity boundary by the Global Challenges Foundation.</div><div role="paragraph"><b>Author contributions:</b> K.R., W.S., J.R., and W.L. led the study by conceiving and coordinating the analyses. K.R. led the writing process. J.B., S.E.C., J.F.D., M.D., and I.F. (alphabetical order) collected and collated data, synthesized literature, supported the analyses, prepared the tables and figures, and provided logistical support. The remaining authors (alphabetical order) contributed to the POEM modeling and/or to new analysis of individual boundaries: G.B. (aerosols), W.v.B. (POEM), G.F. (POEM), S.F. (aerosols), D.G. (fresh water), T.G. (fresh water), M.H. (POEM), W.H. (POEM), M.K. (fresh water), C.M. (fresh water), D.N.-B. (biosphere integrity), S.P. (POEM), M.P. (fresh water), S.R. (POEM), S.S. (POEM and functional biosphere integrity), A.T. (land system change), K.T. (POEM), V.V. (fresh water), L.W.-E. (fresh water), and L.W. (aerosols).</div><div role="paragraph"><b>Competing interests:</b> The authors declare that they have no competing interests.</div><div role="paragraph"><b>Data and materials availability:</b> All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. In addition, the POEM modelling data can be found at <a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5281/zenodo.8032156">https://doi.org/10.5281/zenodo.8032156</a>.</div></section></div></section><section id="backmatter" data-extent="backmatter"><div class="core-container"><section id="supplementary-materials" class="core-supplementary-materials"><h2>Supplementary Materials</h2><section id="sec-5-1"><h3>This PDF file includes:</h3><div class="core-supplementary-material"><div class="core-description"><div>Supplementary Information</div><div>Figs. S1 to S9</div><div>Tables S1 to S3</div><div>References</div></div><div class="core-link"><ul><li><a href="/web/20240318040954/https://www.science.org/doi/suppl/10.1126/sciadv.adh2458/suppl_file/sciadv.adh2458_sm.pdf" download="sciadv.adh2458_sm.pdf">Download</a></li><li>2.77 MB</li></ul></div></div></section></section><section id="bibliography" role="doc-bibliography"><h2>REFERENCES AND NOTES</h2><div role="list"><div role="listitem" data-has="label"><div class="label">1</div><div id="R1" class="citations"><div class="citation"><div class="citation-content">J. Rockström, W. Steffen, K. Noone, Å. Persson, S. Chapin, E. F. Lambin, T. M. Lenton, M. Scheffer, C. Folke, J. Schellnhuber, B. Nykvist, C. A. DeWit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P. K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W. Corell, V. J. Fabry, J. Hansen, D. Liverman, K. Richardson, P. Crutzen, J. Foley, A safe operating space for humanity. <em>Nature</em> <b>461</b>, 472–475 (2009).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/461472a" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/19779433" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000270082900020" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=A+safe+operating+space+for+humanity&author=J.+Rockstr%C3%B6m&author=W.+Steffen&author=K.+Noone&author=%C3%85.+Persson&author=S.+Chapin&author=E.+F.+Lambin&author=T.+M.+Lenton&author=M.+Scheffer&author=C.+Folke&author=J.+Schellnhuber&author=B.+Nykvist&author=C.+A.+DeWit&publication_year=2009&journal=Nature&pages=472-475&doi=10.1038%2F461472a&pmid=19779433" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">2</div><div id="R2" class="citations"><div class="citation"><div class="citation-content">W. Steffen, K. Richardson, J. Rockström, S. E. Cornell, I. Fetzer, E. M. Bennett, R. Biggs, S. R. Carpenter, W. de Vries, C. A. de Wit, C. Folke, D. Gerten, J. Heinke, G. M. Mace, L. M. Persson, V. Ramanathan, B. Reyers, S. Sörlin, Planetary boundaries: Guiding human development on a changing planet. <em>Science</em> <b>347</b>, 1259855 (2015).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/science.1259855" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/25592418" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000349221300039" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Planetary+boundaries%3A+Guiding+human+development+on+a+changing+planet&author=W.+Steffen&author=K.+Richardson&author=J.+Rockstr%C3%B6m&author=S.+E.+Cornell&author=I.+Fetzer&author=E.+M.+Bennett&author=R.+Biggs&author=S.+R.+Carpenter&author=W.+de+Vries&author=C.+A.+de+Wit&author=C.+Folke&author=D.+Gerten&publication_year=2015&journal=Science&pages=1259855&doi=10.1126%2Fscience.1259855&pmid=25592418" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">3</div><div id="R3" class="citations"><div class="citation"><div class="citation-content">W. Steffen, K. Richardson, J. Rockström, H. Schellnhuber, O. P. Dube, S. Dutreil, T. M. Lenton, J. Lubchenco, The emergence and evolution of Earth system science. <em>Nat. Rev. Earth Environ.</em> <b>1</b>, 54–63 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s43017-019-0005-6" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+emergence+and+evolution+of+Earth+system+science&author=W.+Steffen&author=K.+Richardson&author=J.+Rockstr%C3%B6m&author=H.+Schellnhuber&author=O.+P.+Dube&author=S.+Dutreil&author=T.+M.+Lenton&author=J.+Lubchenco&publication_year=2020&journal=Nat.+Rev.+Earth+Environ.&pages=54-63&doi=10.1038%2Fs43017-019-0005-6" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">4</div><div id="R4" class="citations"><div class="citation"><div class="citation-content">J. Zalasiewicz, C. N. Waters, C. Summerhayes, A. P. Wolfe, A. D. Barnosky, A. Cearreta, P. Crutzen, E. C. Ellis, J. J. Fairchild, A. Gałuszka, P. Haff, I. Hajdas, M. J. Head, J. A. I. do Sul, C. Jeandel, R. Leinfelder, J. R. McNeill, C. Neal, E. Odada, N. Oreskes, W. Steffen, J. P. M. Syvitski, M. Wagreich, M. Williams, The working group on the ‘Anthropocene’: Summary of evidence and recommendations. <em>Anthropocene</em> <b>19</b>, 55–60 (2017).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.ancene.2017.09.001" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000416453900006" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+working+group+on+the+%E2%80%98Anthropocene%E2%80%99%3A+Summary+of+evidence+and+recommendations&author=J.+Zalasiewicz&author=C.+N.+Waters&author=C.+Summerhayes&author=A.+P.+Wolfe&author=A.+D.+Barnosky&author=A.+Cearreta&author=P.+Crutzen&author=E.+C.+Ellis&author=J.+J.+Fairchild&author=A.+Ga%C5%82uszka&author=P.+Haff&author=I.+Hajdas&publication_year=2017&journal=Anthropocene&pages=55-60&doi=10.1016%2Fj.ancene.2017.09.001" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">5</div><div id="R5" class="citations"><div class="citation"><div class="citation-content">C. N. Waters, J. Zalasiewicz, C. Summerhayes, A. D. Barnosky, C. Poirier, A. Gałuszka, A. Cearreta, M. Edgeworth, E. C. Ellis, M. Ellis, C. Jeandel, R. Leinfelder, J. R. McNeill, D. D. Richter, W. Steffen, J. Syvitski, D. Vidas, M. Wagreich, M. Williams, A. Zhisheng, J. Grinevald, E. Odada, N. Oreskes, A. P. Wolfe, The Anthropocene is functionally and stratigraphically distinct from the Holocene. <em>Science</em> <b>351</b>, eaad2622 (2016).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/science.aad2622" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000367806500029" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+Anthropocene+is+functionally+and+stratigraphically+distinct+from+the+Holocene&author=C.+N.+Waters&author=J.+Zalasiewicz&author=C.+Summerhayes&author=A.+D.+Barnosky&author=C.+Poirier&author=A.+Ga%C5%82uszka&author=A.+Cearreta&author=M.+Edgeworth&author=E.+C.+Ellis&author=M.+Ellis&author=C.+Jeandel&author=R.+Leinfelder&publication_year=2016&journal=Science&pages=eaad2622&doi=10.1126%2Fscience.aad2622" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">6</div><div id="R6" class="citations"><div class="citation"><div class="citation-content">W. F. Ruddiman, <i>Earth’s Climate: Past and Future</i> (Third edition, W.H. Freeman and Co., 2014).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=W.%C2%A0F.%C2%A0Ruddiman%2C+Earth%E2%80%99s+Climate%3A+Past+and+Future+%28Third+edition%2C+W.H.+Freeman+and+Co.%2C+2014%29." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">7</div><div id="R7" class="citations"><div class="citation"><div class="citation-content">C. P. Summerhayes, <i>Paleoclimatology: From Snowball Earth to the Anthropocene</i> (Wiley-Blackwell, 2020).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=C.%C2%A0P.%C2%A0Summerhayes%2C+Paleoclimatology%3A+From+Snowball+Earth+to+the+Anthropocene+%28Wiley-Blackwell%2C+2020%29." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">8</div><div id="R8" class="citations"><div class="citation"><div class="citation-content">H.-J. Schellnhuber, Discourse: Earth system analysis—The scope of the challenge, in <i>Earth System Analysis: Integrating Science for Sustainability</i>. H.-J. Schellnhuber, V. Wenzel, Eds. (Springer, Heidelberg, 1998), pp. 3–195.</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=H.-J.+Schellnhuber%2C+Discourse%3A+Earth+system+analysis%E2%80%94The+scope+of+the+challenge%2C+in+Earth+System+Analysis%3A+Integrating+Science+for+Sustainability.+H.-J.+Schellnhuber%2C+V.%C2%A0Wenzel%2C+Eds.+%28Springer%2C+Heidelberg%2C+1998%29%2C+pp.%C2%A03%E2%80%93195." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">9</div><div id="R9" class="citations"><div class="citation"><div class="citation-content">M. B. Osman, J. E. Tierney, J. Zhu, R. Tardif, G. J. Hakim, J. King, C. J. Poulsen, Globally resolved surface temperatures since the Last Glacial Maximum. <em>Nature</em> <b>599</b>, 239–244 (2021).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41586-021-03984-4" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/34759364" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000718023100001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Globally+resolved+surface+temperatures+since+the+Last+Glacial+Maximum&author=M.+B.+Osman&author=J.+E.+Tierney&author=J.+Zhu&author=R.+Tardif&author=G.+J.+Hakim&author=J.+King&author=C.+J.+Poulsen&publication_year=2021&journal=Nature&pages=239-244&doi=10.1038%2Fs41586-021-03984-4&pmid=34759364" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">10</div><div id="R10" class="citations"><div class="citation"><div class="citation-content">R. M. Beyer, M. Krapp, A. Manica, High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. <em>Sci. Data.</em> <b>7</b>, 236 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41597-020-0552-1" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/32665576" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=High-resolution+terrestrial+climate%2C+bioclimate+and+vegetation+for+the+last+120%2C000+years&author=R.+M.+Beyer&author=M.+Krapp&author=A.+Manica&publication_year=2020&journal=Sci.+Data.&pages=236&doi=10.1038%2Fs41597-020-0552-1&pmid=32665576" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">11</div><div id="R11" class="citations"><div class="citation"><div class="citation-content">P. K. Snyder, C. Delire, J. A. Foley, Evaluating the influence of different vegetation biomes on the global climate. <em>Clim. Dyn.</em> <b>23</b>, 279–302 (2004).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1007/s00382-004-0430-0" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000224274500004" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Evaluating+the+influence+of+different+vegetation+biomes+on+the+global+climate&author=P.+K.+Snyder&author=C.+Delire&author=J.+A.+Foley&publication_year=2004&journal=Clim.+Dyn.&pages=279-302&doi=10.1007%2Fs00382-004-0430-0" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">12</div><div id="R12" class="citations"><div class="citation"><div class="citation-content">P. C. West, G. T. Narisma, C. C. Barford, C. J. Kucharik, J. A. Foley, An alternative approach for quantifying climate regulation by ecosystems. <em>Front. Ecol. Environ.</em> <b>9</b>, 126–133 (2010).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1890/090015" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000288058100018" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=An+alternative+approach+for+quantifying+climate+regulation+by+ecosystems&author=P.+C.+West&author=G.+T.+Narisma&author=C.+C.+Barford&author=C.+J.+Kucharik&author=J.+A.+Foley&publication_year=2010&journal=Front.+Ecol.+Environ.&pages=126-133&doi=10.1890%2F090015" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">13</div><div id="R13" class="citations"><div class="citation"><div class="citation-content">S. J. Lade, W. Steffen, W. de Vries, S. R. Carpenter, J. F. Donges, D. Gerten, H. Hoff, T. Newbold, K. Richardson, J. Rockström, Human impacts on planetary boundaries amplified by Earth system interactions. <em>Nat. Sustain.</em> <b>3</b>, 119–128 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41893-019-0454-4" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Human+impacts+on+planetary+boundaries+amplified+by+Earth+system+interactions&author=S.+J.+Lade&author=W.+Steffen&author=W.+de+Vries&author=S.+R.+Carpenter&author=J.+F.+Donges&author=D.+Gerten&author=H.+Hoff&author=T.+Newbold&author=K.+Richardson&author=J.+Rockstr%C3%B6m&publication_year=2020&journal=Nat.+Sustain.&pages=119-128&doi=10.1038%2Fs41893-019-0454-4" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">14</div><div id="R14" class="citations"><div class="citation"><div class="citation-content">A. Chrysafi, V. Virkki, M. Jalava, V. Sandström, J. Piipponen, M. Porkka, S. Lade, K. La Mere, L. Wang-Erlandsson, L. Scherer, L. Andersen, E. Bennett, K. Brauman, G. Cooper, A. De Palma, P. Döll, A. Downing, T. DuBois, I. Fetzer, E. Fulton, D. Gerten, H. Jaafar, J. Jaegermeyr, F. Jaramillo, M. Jung, H. Kahiluoto, A. Mackay, L. Lassaletta, D. Mason-D’Croz, M. Mekonnen, K. Nash, A. Pastor, N. Ramankutty, B. Ridoutt, S. Siebert, B. Simmons, A. Staal, Z. Sun, A. Tobian, A. Usubiaga-Liaño, R. van der Ent, A. van Soesbergen, P. Verburg, Y. Wada, S. Zipper, M. Kummu, Quantifying Earth system interactions for sustainable food production: An expert elicitation. <em>Nat. Sustain.</em> <b>5</b>, 830–842 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41893-022-00940-6" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Quantifying+Earth+system+interactions+for+sustainable+food+production%3A+An+expert+elicitation&author=A.+Chrysafi&author=V.+Virkki&author=M.+Jalava&author=V.+Sandstr%C3%B6m&author=J.+Piipponen&author=M.+Porkka&author=S.+Lade&author=K.+La+Mere&author=L.+Wang-Erlandsson&author=L.+Scherer&author=L.+Andersen&author=E.+Bennett&publication_year=2022&journal=Nat.+Sustain.&pages=830-842&doi=10.1038%2Fs41893-022-00940-6" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">15</div><div id="R15" class="citations"><div class="citation"><div class="citation-content">Intergovernmental Panel on Climate Change, <i>Climate Change 2022: Impacts, Adaptation, and Vulnerability</i>, H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama, Eds. (Cambridge Univ. Press, 2022).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=Intergovernmental+Panel+on+Climate+Change%2C+Climate+Change+2022%3A+Impacts%2C+Adaptation%2C+and+Vulnerability%2C+H.-O.+P%C3%B6rtner%2C+D.%C2%A0C.%C2%A0Roberts%2C+M.%C2%A0Tignor%2C+E.%C2%A0S.%C2%A0Poloczanska%2C+K.%C2%A0Mintenbeck%2C+A.%C2%A0Alegr%C3%ADa%2C+M.%C2%A0Craig%2C+S.%C2%A0Langsdorf%2C+S.%C2%A0L%C3%B6schke%2C+V.%C2%A0M%C3%B6ller%2C+A.%C2%A0Okem%2C+B.%C2%A0Rama%2C+Eds.+%28Cambridge+Univ.+Press%2C+2022%29." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">16</div><div id="R16" class="citations"><div class="citation"><div class="citation-content">E. S. Brondizio, J. Settele, S. Díaz, H. T. Ngo, <i>Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services</i> (IPBES, 2019).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=E.%C2%A0S.%C2%A0Brondizio%2C+J.%C2%A0Settele%2C+S.%C2%A0D%C3%ADaz%2C+H.%C2%A0T.%C2%A0Ngo%2C+Global+Assessment+Report+on+Biodiversity+and+Ecosystem+Services+of+the+Intergovernmental+Science-Policy+Platform+on+Biodiversity+and+Ecosystem+Services+%28IPBES%2C+2019%29." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">17</div><div id="R17" class="citations"><div class="citation"><div class="citation-content">Intergovernmental Panel on Climate Change, <i>Climate Change 2021: The Physical Science Basis</i> (Cambridge University Press, 2021).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=Intergovernmental+Panel+on+Climate+Change%2C+Climate+Change+2021%3A+The+Physical+Science+Basis+%28Cambridge+University+Press%2C+2021%29." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">18</div><div id="R18" class="citations"><div class="citation"><div class="citation-content">D. A. McKay, A. Staal, J. Abrams, R. Winkelmann, B. Sakschewski, S. Loriani, I. Fetzer, S. E. Cornell, J. Rockström, T. M. Lenton, Exceeding 1.5°C global warming could trigger multiple climate tipping points. <em>Science</em> <b>377</b>, eabn7950 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/science.abn7950" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/36074831" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000887933400003" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Exceeding+1.5%C2%B0C+global+warming+could+trigger+multiple+climate+tipping+points&author=D.+A.+McKay&author=A.+Staal&author=J.+Abrams&author=R.+Winkelmann&author=B.+Sakschewski&author=S.+Loriani&author=I.+Fetzer&author=S.+E.+Cornell&author=J.+Rockstr%C3%B6m&author=T.+M.+Lenton&publication_year=2022&journal=Science&pages=eabn7950&doi=10.1126%2Fscience.abn7950&pmid=36074831" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">19</div><div id="R19" class="citations"><div class="citation"><div class="citation-content">Past Interglacials Working Group of PAGES, Interglacials of the last 800,000 years. <em>Rev. Geophys.</em> <b>54</b>, 162–219 (2016).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1002/2015RG000482" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000374690300005" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Interglacials+of+the+last+800%2C000+years&author=Past+Interglacials+Working+Group+of+PAGES&publication_year=2016&journal=Rev.+Geophys.&pages=162-219&doi=10.1002%2F2015RG000482" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">20</div><div id="R20" class="citations"><div class="citation"><div class="citation-content">C. Ragon, V. Lembo, V. Lucarini, C. Vérard, J. Kasparian, M. Brunetti, Robustness of competing climatic states. <em>J. Clim.</em> <b>35</b>, 2769–2784 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1175/JCLI-D-21-0148.1" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000808530600008" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Robustness+of+competing+climatic+states&author=C.+Ragon&author=V.+Lembo&author=V.+Lucarini&author=C.+V%C3%A9rard&author=J.+Kasparian&author=M.+Brunetti&publication_year=2022&journal=J.+Clim.&pages=2769-2784&doi=10.1175%2FJCLI-D-21-0148.1" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">21</div><div id="R21" class="citations"><div class="citation"><div class="citation-content">J. M. Anderies, S. R. Carpenter, W. Steffen, J. Rockström, The topology of non-linear global carbon dynamics: From tipping points to planetary boundaries. <em>Environ. Res. Lett.</em> <b>8</b>, 044048 (2013).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1088/1748-9326/8/4/044048" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000329604900055" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+topology+of+non-linear+global+carbon+dynamics%3A+From+tipping+points+to+planetary+boundaries&author=J.+M.+Anderies&author=S.+R.+Carpenter&author=W.+Steffen&author=J.+Rockstr%C3%B6m&publication_year=2013&journal=Environ.+Res.+Lett.&pages=044048&doi=10.1088%2F1748-9326%2F8%2F4%2F044048" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">22</div><div id="R22" class="citations"><div class="citation"><div class="citation-content">S. J. Lade, J. Norberg, J. Anderies, C. Beer, S. Cornell, J. Donges, I. Fetzer, T. Gasser, K. Richardson, J. Rockström, W. Steffen, Potential feedbacks between loss of biosphere integrity and climate change. <em>Glob. Sust.</em> <b>2</b>, 1–15 (2019).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Potential+feedbacks+between+loss+of+biosphere+integrity+and+climate+change&author=S.+J.+Lade&author=J.+Norberg&author=J.+Anderies&author=C.+Beer&author=S.+Cornell&author=J.+Donges&author=I.+Fetzer&author=T.+Gasser&author=K.+Richardson&author=J.+Rockstr%C3%B6m&author=W.+Steffen&publication_year=2019&journal=Glob.+Sust.&pages=1-15" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">23</div><div id="R23" class="citations"><div class="citation"><div class="citation-content">M. Exposito-Alonso, T. R. Booker, L. Czech, T. Fukami, L. Gillespie, S. Hateley, C. C. Kyriazis, P. L. M. Lang, L. Leventhal, D. Nogues-Bravo, V. Pagowski, M. Ruffley, J. P. Spence, S. E. Toro Arana, C. L. Weiß, E. Zess, Genetic diversity loss in the Anthropocene. <em>Science</em> <b>377</b>, 1431–1435 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/science.abn5642" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/36137047" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000887934300038" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Genetic+diversity+loss+in+the+Anthropocene&author=M.+Exposito-Alonso&author=T.+R.+Booker&author=L.+Czech&author=T.+Fukami&author=L.+Gillespie&author=S.+Hateley&author=C.+C.+Kyriazis&author=P.%C2%A0L.%C2%A0M.+Lang&author=L.+Leventhal&author=D.+Nogues-Bravo&author=V.+Pagowski&author=M.+Ruffley&publication_year=2022&journal=Science&pages=1431-1435&doi=10.1126%2Fscience.abn5642&pmid=36137047" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">24</div><div id="R24" class="citations"><div class="citation"><div class="citation-content">H. Ceballos, P. R. Ehrlich, A. D. Barnosky, A. García, R. M. Pringle, T. M. Palmer, Accelerated modern human–induced species losses: Entering the sixth mass extinction. <em>Sci. Adv.</em> <b>1</b>, e1400253 (2015).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/sciadv.1400253" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/26601195" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Accelerated+modern+human%E2%80%93induced+species+losses%3A+Entering+the+sixth+mass+extinction&author=H.+Ceballos&author=P.+R.+Ehrlich&author=A.+D.+Barnosky&author=A.+Garc%C3%ADa&author=R.+M.+Pringle&author=T.+M.+Palmer&publication_year=2015&journal=Sci.+Adv.&pages=e1400253&doi=10.1126%2Fsciadv.1400253&pmid=26601195" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">25</div><div id="R25" class="citations"><div class="citation"><div class="citation-content">M. D. A. Rounsevell, M. Harfoot, P. A. Harrison, T. Newbold, R. D. Gregory, G. M. Mace, A biodiversity target based on species extinctions. <em>Science</em> <b>368</b>, 1193–1195 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/science.aba6592" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/32527821" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000544031400020" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=A+biodiversity+target+based+on+species+extinctions&author=M.%C2%A0D.%C2%A0A.+Rounsevell&author=M.+Harfoot&author=P.+A.+Harrison&author=T.+Newbold&author=R.+D.+Gregory&author=G.+M.+Mace&publication_year=2020&journal=Science&pages=1193-1195&doi=10.1126%2Fscience.aba6592&pmid=32527821" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">26</div><div id="R26" class="citations"><div class="citation"><div class="citation-content">R. H. Cowie, P. Bouchet, B. Fontaine, The sixth mass extinction: Fact, fiction or speculation? <em>Biol. Rev.</em> <b>97</b>, 640–663 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1111/brv.12816" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/35014169" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000740866100001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+sixth+mass+extinction%3A+Fact%2C+fiction+or+speculation%3F&author=R.+H.+Cowie&author=P.+Bouchet&author=B.+Fontaine&publication_year=2022&journal=Biol.+Rev.&pages=640-663&doi=10.1111%2Fbrv.12816&pmid=35014169" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">27</div><div id="R27" class="citations"><div class="citation"><div class="citation-content">R. J. Scholes, R. Biggs, A Biodiversity Intactness Index. <em>Nature</em> <b>434</b>, 45–49 (2005).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/nature03289" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/15744293" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000227334600037" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=A+Biodiversity+Intactness+Index&author=R.+J.+Scholes&author=R.+Biggs&publication_year=2005&journal=Nature&pages=45-49&doi=10.1038%2Fnature03289&pmid=15744293" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">28</div><div id="R28" class="citations"><div class="citation"><div class="citation-content">P. A. Martin, R. E. Green, A. Balmford, The Biodiversity Intactness Index may underestimate losses. <em>Nat. Evol.</em> <b>3</b>, 862–863 (2019).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41559-019-0895-1" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/31061478" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+Biodiversity+Intactness+Index+may+underestimate+losses&author=P.+A.+Martin&author=R.+E.+Green&author=A.+Balmford&publication_year=2019&journal=Nat.+Evol.&pages=862-863&doi=10.1038%2Fs41559-019-0895-1&pmid=31061478" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">29</div><div id="R29" class="citations"><div class="citation"><div class="citation-content">S. E. Jorgensen, Y. M. Svirezhev, <i>Towards a Thermodynamic Theory for Ecological Systems</i> (Elsevier, 2004).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=S.%C2%A0E.%C2%A0Jorgensen%2C+Y.%C2%A0M.%C2%A0Svirezhev%2C+Towards+a+Thermodynamic+Theory+for+Ecological+Systems+%28Elsevier%2C+2004%29." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">30</div><div id="R30" class="citations"><div class="citation"><div class="citation-content">A. Kleidon, Sustaining the terrestrial biosphere in the anthropocene: A thermodynamic Earth system perspective. <em>Ecol. Economy Soc. INSEE J.</em> <b>6</b>, 53–80 (2023).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.37773/ees.v6i1.915" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Sustaining+the+terrestrial+biosphere+in+the+anthropocene%3A+A+thermodynamic+Earth+system+perspective&author=A.+Kleidon&publication_year=2023&journal=Ecol.+Economy+Soc.+INSEE+J.&pages=53-80&doi=10.37773%2Fees.v6i1.915" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">31</div><div id="R31" class="citations"><div class="citation"><div class="citation-content">S. W. Running, A measurable planetary boundary for the biosphere. <em>Science</em> <b>337</b>, 1458–1459 (2012).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/science.1227620" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/22997311" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000308912900025" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=A+measurable+planetary+boundary+for+the+biosphere&author=S.+W.+Running&publication_year=2012&journal=Science&pages=1458-1459&doi=10.1126%2Fscience.1227620&pmid=22997311" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">32</div><div id="R32" class="citations"><div class="citation"><div class="citation-content">H. Haberl, K. H. Erb, F. Krausmann, Human appropriation of net primary production: Patterns, trends, and planetary boundaries. <em>Annu. Rev. Environ. Res.</em> <b>39</b>, 363–391 (2014).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1146/annurev-environ-121912-094620" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000348446900014" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Human+appropriation+of+net+primary+production%3A+Patterns%2C+trends%2C+and+planetary+boundaries&author=H.+Haberl&author=K.+H.+Erb&author=F.+Krausmann&publication_year=2014&journal=Annu.+Rev.+Environ.+Res.&pages=363-391&doi=10.1146%2Fannurev-environ-121912-094620" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">33</div><div id="R33" class="citations"><div class="citation"><div class="citation-content">F. Krausmann, K. H. Erb, S. Gingrich, H. Haberl, A. Bondeau, V. Gaube, C. Lauka, C. Plutzar, T. D. Searchinger, Global human appropriation of net primary production doubled in the 20th century. <em>Proc. Natl. Acad. Sci. U.S.A.</em> <b>110</b>, 10324–10329 (2013).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1073/pnas.1211349110" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/23733940" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000321500200066" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Global+human+appropriation+of+net+primary+production+doubled+in+the+20th+century&author=F.+Krausmann&author=K.+H.+Erb&author=S.+Gingrich&author=H.+Haberl&author=A.+Bondeau&author=V.+Gaube&author=C.+Lauka&author=C.+Plutzar&author=T.+D.+Searchinger&publication_year=2013&journal=Proc.+Natl.+Acad.+Sci.+U.S.A.&pages=10324-10329&doi=10.1073%2Fpnas.1211349110&pmid=23733940" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">34</div><div id="R34" class="citations"><div class="citation"><div class="citation-content">L. V. Gatti, L. S. Basso, J. B. Miller, M. Gloor, L. G. Dominigues, H. L. G. Cassol, G. Tejada, L. E. O. C. Aragao, C. Nobre, W. Peters, L. Marani, E. Arai, A. H. Sanches, S. M. Correa, L. Anderson, C. Von Randow, C. S. C. Correia, S. P. Crispim, R. A. L. Neves, Amazonia as a carbon source linked to deforestation and climate change. <em>Nature</em> <b>595</b>, 388–393 (2021).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41586-021-03629-6" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/34262208" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000673506800026" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Amazonia+as+a+carbon+source+linked+to+deforestation+and+climate+change&author=L.+V.+Gatti&author=L.+S.+Basso&author=J.+B.+Miller&author=M.+Gloor&author=L.+G.+Dominigues&author=H.%C2%A0L.%C2%A0G.+Cassol&author=G.+Tejada&author=L.%C2%A0E.%C2%A0O.+C.+Aragao&author=C.+Nobre&author=W.+Peters&author=L.+Marani&author=E.+Arai&publication_year=2021&journal=Nature&pages=388-393&doi=10.1038%2Fs41586-021-03629-6&pmid=34262208" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">35</div><div id="R35" class="citations"><div class="citation"><div class="citation-content">K. Goldewijk, A. Beusen, J. Doelman, E. Stehfest, Anthropogenic land use estimates for the Holocene – HYDE 3.2. <em>Earth Syst. Sci. Data</em> <b>9</b>, 927–953 (2017).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/essd-9-927-2017" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000416845900001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Anthropogenic+land+use+estimates+for+the+Holocene+%E2%80%93+HYDE+3.2&author=K.+Goldewijk&author=A.+Beusen&author=J.+Doelman&author=E.+Stehfest&publication_year=2017&journal=Earth+Syst.+Sci.+Data&pages=927-953&doi=10.5194%2Fessd-9-927-2017" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">36</div><div id="R36" class="citations"><div class="citation"><div class="citation-content">D. Gerten, V. Heck, J. Jägermeyr, B. L. Bodirsky, I. Fetzer, M. Jalava, M. Kummu, W. Lucht, J. Rockström, S. Schaphoff, H. J. Schellnhuber, Feeding ten billion people is possible within four terrestrial planetary boundaries. <em>Nat. Sust.</em> <b>3</b>, 200–208 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41893-019-0465-1" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Feeding+ten+billion+people+is+possible+within+four+terrestrial+planetary+boundaries&author=D.+Gerten&author=V.+Heck&author=J.+J%C3%A4germeyr&author=B.+L.+Bodirsky&author=I.+Fetzer&author=M.+Jalava&author=M.+Kummu&author=W.+Lucht&author=J.+Rockstr%C3%B6m&author=S.+Schaphoff&author=H.+J.+Schellnhuber&publication_year=2020&journal=Nat.+Sust.&pages=200-208&doi=10.1038%2Fs41893-019-0465-1" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">37</div><div id="R37" class="citations"><div class="citation"><div class="citation-content">S. Ostberg, W. Lucht, S. Schaphoff, D. Gerten, Critical impacts of global warming on land ecosystems. <em>Earth Syst. Dyn.</em> <b>4</b>, 347–357 (2013).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/esd-4-347-2013" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000328767200011" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Critical+impacts+of+global+warming+on+land+ecosystems&author=S.+Ostberg&author=W.+Lucht&author=S.+Schaphoff&author=D.+Gerten&publication_year=2013&journal=Earth+Syst.+Dyn.&pages=347-357&doi=10.5194%2Fesd-4-347-2013" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">38</div><div id="R38" class="citations"><div class="citation"><div class="citation-content">W. Schwartz, E. Sala, S. Tracey, R. Watson, D. Pauly, The spatial expansion and ecological footprint of fisheries (1950 to present). <em>PLOS ONE</em> <b>5</b>, e15143 (2010).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1371/journal.pone.0015143" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/21151994" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000284868000026" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+spatial+expansion+and+ecological+footprint+of+fisheries+%281950+to+present%29&author=W.+Schwartz&author=E.+Sala&author=S.+Tracey&author=R.+Watson&author=D.+Pauly&publication_year=2010&journal=PLOS+ONE&pages=e15143&doi=10.1371%2Fjournal.pone.0015143&pmid=21151994" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">39</div><div id="R39" class="citations"><div class="citation"><div class="citation-content">J. S. Link, R. A. Watson, Global ecosystem overfishing: Clear delineation within real limits to production. <em>Sci. Adv.</em> <b>5</b>, eaav047 (2019).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/sciadv.aav0474" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Global+ecosystem+overfishing%3A+Clear+delineation+within+real+limits+to+production&author=J.+S.+Link&author=R.+A.+Watson&publication_year=2019&journal=Sci.+Adv.&pages=eaav047&doi=10.1126%2Fsciadv.aav0474" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">40</div><div id="R40" class="citations"><div class="citation"><div class="citation-content">B. Planque, J.-M. Fromentin, P. Cury, K. F. Drinkwater, S. Jennings, R. I. Perry, S. Kifani, How does fishing alter marine populations and ecosystems sensitivity to climate? <em>J. Mar. Sys.</em> <b>79</b>, 403–417 (2010).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.jmarsys.2008.12.018" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000273052800016" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=How+does+fishing+alter+marine+populations+and+ecosystems+sensitivity+to+climate%3F&author=B.+Planque&author=J.-M.+Fromentin&author=P.+Cury&author=K.+F.+Drinkwater&author=S.+Jennings&author=R.+I.+Perry&author=S.+Kifani&publication_year=2010&journal=J.+Mar.+Sys.&pages=403-417&doi=10.1016%2Fj.jmarsys.2008.12.018" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">41</div><div id="R41" class="citations"><div class="citation"><div class="citation-content">P. M. Forster, C. J. Smith, T. Walsh, W. F. Lamb, M. D. Palmer, K. von Schuckmann, B. Trewin, M. Allen, R. Andrew, A. Birt, A. Borger, T. Boyer, J. A. Broersma, L. Cheng, F. Dentener, P. Friedlingstein, N. Gillett, J. M. Gutiérrez, J. Gütschow, M. Hauser, B. Hall, M. Ishii, S. Jenkins, R. Lamboll, X. Lan, J.-Y. Lee, C. Morice, C. Kadow, J. Kennedy, R. Killick, J. Minx, V. Naik, G. Peters, A. Pirani, J. Pongratz, A. Ribes, J. Rogelj, D. Rosen, C.-F. Schleussner, S. Seneviratne, S. Szopa, P. Thorne, R. Rohde, M. Rojas Corradi, D. Schumacher, R. Vose, K. Zickfeld, X. Zhang, V. Masson-Delmotte, P. Zhai, Indicators of Global Climate Change 2022: Annual update of large-scale indicators of the state of the climate system and the human influence. <em>Earth Syst. Sci. Data</em> <b>15</b>, 2295–2327 (2023).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/essd-15-2295-2023" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=001010986700001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Indicators+of+Global+Climate+Change+2022%3A+Annual+update+of+large-scale+indicators+of+the+state+of+the+climate+system+and+the+human+influence&author=P.+M.+Forster&author=C.+J.+Smith&author=T.+Walsh&author=W.+F.+Lamb&author=M.+D.+Palmer&author=K.+von+Schuckmann&author=B.+Trewin&author=M.+Allen&author=R.+Andrew&author=A.+Birt&author=A.+Borger&author=T.+Boyer&publication_year=2023&journal=Earth+Syst.+Sci.+Data&pages=2295-2327&doi=10.5194%2Fessd-15-2295-2023" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">42</div><div id="R42" class="citations"><div class="citation"><div class="citation-content">H. Schellnhuber, S. Rahmstorf, R. Winkelmann, Why the right climate target was agreed in Paris. <em>Nat. Clim. Change</em> <b>6</b>, 649–653 (2016).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/nclimate3013" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Why+the+right+climate+target+was+agreed+in+Paris&author=H.+Schellnhuber&author=S.+Rahmstorf&author=R.+Winkelmann&publication_year=2016&journal=Nat.+Clim.+Change&pages=649-653&doi=10.1038%2Fnclimate3013" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">43</div><div id="R43" class="citations"><div class="citation"><div class="citation-content">L. Persson, B. Almroth, C. Collins, S. Cornell, C. de Wit, M. Diamond, P. Fantke, M. Hassellöv, M. MacLeod, M. Ryberg, P. Jørgensen, P. Villarrubia-Gómez, Z. Wang, M. Zwicky Hauschild, Outside the safe operating space of the planetary boundary for novel entities. <em>Environ. Sci. Tech.</em> <b>56</b>, 1510–1521 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1021/acs.est.1c04158" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/35038861" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000797926700006" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Outside+the+safe+operating+space+of+the+planetary+boundary+for+novel+entities&author=L.+Persson&author=B.+Almroth&author=C.+Collins&author=S.+Cornell&author=C.+de+Wit&author=M.+Diamond&author=P.+Fantke&author=M.+Hassell%C3%B6v&author=M.+MacLeod&author=M.+Ryberg&author=P.+J%C3%B8rgensen&author=P.+Villarrubia-G%C3%B3mez&publication_year=2022&journal=Environ.+Sci.+Tech.&pages=1510-1521&doi=10.1021%2Facs.est.1c04158&pmid=35038861" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">44</div><div id="R44" class="citations"><div class="citation"><div class="citation-content">P. J. Nair, L. Froidevaux, J. Kuttippurath, J. M. Zawodny, J. M. Russell III, W. Steinbrecht, H. Claude, T. Leblanc, J. A. E. van Gijsel, B. Johnson, D. P. J. Swart, A. Thomas, R. Querel, R. Wang, J. Anderson, Subtropical and midlatitude ozone trends in the stratosphere: Implications for recovery. <em>J. Geophys. Res. Atmos.</em> <b>120</b>, 7247–7257 (2015).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1002/2014JD022371" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Subtropical+and+midlatitude+ozone+trends+in+the+stratosphere%3A+Implications+for+recovery&author=P.+J.+Nair&author=L.+Froidevaux&author=J.+Kuttippurath&author=J.+M.+Zawodny&author=J.+M.+Russell&author=W.+Steinbrecht&author=H.+Claude&author=T.+Leblanc&author=J.%C2%A0A.%C2%A0E.+van+Gijsel&author=B.+Johnson&author=D.%C2%A0P.%C2%A0J.+Swart&author=A.+Thomas&publication_year=2015&journal=J.+Geophys.+Res.+Atmos.&pages=7247-7257&doi=10.1002%2F2014JD022371" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">45</div><div id="R45" class="citations"><div class="citation"><div class="citation-content">A. Pazmiño, S. Godin-Beekmann, A. Hauchecorne, C. Claud, S. Khaykin, F. Goutail, E. Wolfram, J. Salvador, E. Quel, Multiple symptoms of total ozone recovery inside the Antarctic vortex during austral spring. <em>Atmospheric Chem. Phys.</em> <b>18</b>, 7557–7572 (2018).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/acp-18-7557-2018" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000433557700002" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Multiple+symptoms+of+total+ozone+recovery+inside+the+Antarctic+vortex+during+austral+spring&author=A.+Pazmi%C3%B1o&author=S.+Godin-Beekmann&author=A.+Hauchecorne&author=C.+Claud&author=S.+Khaykin&author=F.+Goutail&author=E.+Wolfram&author=J.+Salvador&author=E.+Quel&publication_year=2018&journal=Atmospheric+Chem.+Phys.&pages=7557-7572&doi=10.5194%2Facp-18-7557-2018" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">46</div><div id="R46" class="citations"><div class="citation"><div class="citation-content">M. Porkka, V. Virkki, L. Wang-Erlandsson, D. Gerten, T. Gleeson, C. Mohan, I. Fetzer, F. Jaramillo, A. Staal, S. te Wierik, A. Tobian, R. van der Ent, P. Döll, M. Flörke, S. N. Gosling, N. Hanasaki, Y. Satoh, H. M. Schmied, N. Wanders, J. Rockström, M. Kummu, Global water cycle shifts far beyond pre-industrial conditions – Planetary boundary for freshwater change transgressed (2023); <a href="https://web.archive.org/web/20240318040954/https://eartharxiv.org/repository/view/3438/">https://eartharxiv.org/repository/view/3438/</a>.</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=M.+Porkka%2C+V.%C2%A0Virkki%2C+L.%C2%A0Wang-Erlandsson%2C+D.%C2%A0Gerten%2C+T.%C2%A0Gleeson%2C+C.%C2%A0Mohan%2C+I.%C2%A0Fetzer%2C+F.%C2%A0Jaramillo%2C+A.%C2%A0Staal%2C+S.%C2%A0te+Wierik%2C+A.%C2%A0Tobian%2C+R.%C2%A0van+der+Ent%2C+P.%C2%A0D%C3%B6ll%2C+M.%C2%A0Fl%C3%B6rke%2C+S.%C2%A0N.%C2%A0Gosling%2C+N.%C2%A0Hanasaki%2C+Y.%C2%A0Satoh%2C+H.%C2%A0M.%C2%A0Schmied%2C+N.%C2%A0Wanders%2C+J.%C2%A0Rockstr%C3%B6m%2C+M.%C2%A0Kummu%2C+Global+water+cycle+shifts+far+beyond+pre-industrial+conditions+%E2%80%93+Planetary+boundary+for+freshwater+change+transgressed+%282023%29%3B+https%3A%2F%2Feartharxiv.org%2Frepository%2Fview%2F3438%2F." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">47</div><div id="R47" class="citations"><div class="citation"><div class="citation-content">T. Gleeson, L. Wang-Erlandsson, S. C. Zipper, M. Porkka, F. Jaramillo, D. Gerten, I. Fetzer, S. E. Cornell, L. Piemontese, L. J. Gordon, J. Rockström, T. Oki, M. Sivapalan, Y. Wada, K. A. Brauman, M. Flörke, M. F. P. Bierkens, B. Lehner, P. Keys, M. Kummu, T. Wagener, S. Dadson, T. J. Troy, W. Steffen, M. Falkenmark, J. S. Famiglietti, The water planetary boundary: Interrogation and revision. <em>One Earth.</em> <b>2</b>, 223–234 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.oneear.2020.02.009" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+water+planetary+boundary%3A+Interrogation+and+revision&author=T.+Gleeson&author=L.+Wang-Erlandsson&author=S.+C.+Zipper&author=M.+Porkka&author=F.+Jaramillo&author=D.+Gerten&author=I.+Fetzer&author=S.+E.+Cornell&author=L.+Piemontese&author=L.+J.+Gordon&author=J.+Rockstr%C3%B6m&author=T.+Oki&publication_year=2020&journal=One+Earth.&pages=223-234&doi=10.1016%2Fj.oneear.2020.02.009" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">48</div><div id="R48" class="citations"><div class="citation"><div class="citation-content">L. Wang-Erlandsson, A. Tobian, R. J. van der Ent, I. Fetzer, S. te Wierik, M. Porkka, A. Staal, F. Jaramillo, H. Dahlmann, C. Singh, P. Greve, D. Gerten, P. W. Keys, T. Gleeson, S. E. Cornell, W. Steffen, X. Bai, J. Rockström, A planetary boundary for green water. <em>Nat. Rev. Earth Environ.</em> <b>3</b>, 380–392 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s43017-022-00287-8" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=A+planetary+boundary+for+green+water&author=L.+Wang-Erlandsson&author=A.+Tobian&author=R.+J.+van+der+Ent&author=I.+Fetzer&author=S.+te+Wierik&author=M.+Porkka&author=A.+Staal&author=F.+Jaramillo&author=H.+Dahlmann&author=C.+Singh&author=P.+Greve&author=D.+Gerten&publication_year=2022&journal=Nat.+Rev.+Earth+Environ.&pages=380-392&doi=10.1038%2Fs43017-022-00287-8" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">49</div><div id="R49" class="citations"><div class="citation"><div class="citation-content">Y. Qin, N. D. Mueller, S. Siebert, R. B. Jackson, A. A. Kouchak, J. B. Zimmerman, D. Tong, C. Hong, S. J. Davis, Flexibility and intensity of global water use. <em>Nat. Sustain.</em> <b>2</b>, 515–523 (2019).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41893-019-0294-2" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Flexibility+and+intensity+of+global+water+use&author=Y.+Qin&author=N.+D.+Mueller&author=S.+Siebert&author=R.+B.+Jackson&author=A.+A.+Kouchak&author=J.+B.+Zimmerman&author=D.+Tong&author=C.+Hong&author=S.+J.+Davis&publication_year=2019&journal=Nat.+Sustain.&pages=515-523&doi=10.1038%2Fs41893-019-0294-2" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">50</div><div id="R50" class="citations"><div class="citation"><div class="citation-content">K. S. Carslaw, H. Gordon, D. S. Hamilton, J. S. Johnson, L. A. Regayre, M. Yoshioka, K. J. Pringle, Aerosols in the pre-industrial atmosphere. <em>Curr. Clim. Chang. Rep.</em> <b>3</b>, 1–15 (2017).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1007/s40641-017-0061-2" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/32226722" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Aerosols+in+the+pre-industrial+atmosphere&author=K.+S.+Carslaw&author=H.+Gordon&author=D.+S.+Hamilton&author=J.+S.+Johnson&author=L.+A.+Regayre&author=M.+Yoshioka&author=K.+J.+Pringle&publication_year=2017&journal=Curr.+Clim.+Chang.+Rep.&pages=1-15&doi=10.1007%2Fs40641-017-0061-2&pmid=32226722" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">51</div><div id="R51" class="citations"><div class="citation"><div class="citation-content">N. Bellouin, J. Quaas, E. Gryspeerdt, S. Kinne, P. Stier, D. Watson-Parris, O. Boucher, K. S. Carslaw, M. Christensen, A.-L. Daniau, J.-L. Dufresne, G. Feingold, S. Fiedler, P. Forster, A. Gettelman, J. M. Haywood, U. Lohmann, F. Malavelle, T. Mauritsen, D. T. McCoy, G. Myhre, J. Mülmenstädt, D. Neubauer, A. Possner, M. Rugenstein, Y. Sato, M. Schulz, S. E. Schwartz, O. Sourdeval, T. Storelvmo, V. Toll, D. Winker, B. Stevens, Bounding global aerosol radiative forcing of climate change. <em>Rev. Geophys.</em> <b>58</b>, e2019RG000660 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1029/2019RG000660" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/32734279" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000522944200002" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Bounding+global+aerosol+radiative+forcing+of+climate+change&author=N.+Bellouin&author=J.+Quaas&author=E.+Gryspeerdt&author=S.+Kinne&author=P.+Stier&author=D.+Watson-Parris&author=O.+Boucher&author=K.+S.+Carslaw&author=M.+Christensen&author=A.-L.+Daniau&author=J.-L.+Dufresne&author=G.+Feingold&publication_year=2020&journal=Rev.+Geophys.&pages=e2019RG000660&doi=10.1029%2F2019RG000660&pmid=32734279" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">52</div><div id="R52" class="citations"><div class="citation"><div class="citation-content">J. Hooper, S. K. Marx, A global doubling of dust emissions during the Anthropocene? <em>Glob. Planet. Change</em> <b>169</b>, 70–91 (2018).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.gloplacha.2018.07.003" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000445310200006" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=A+global+doubling+of+dust+emissions+during+the+Anthropocene%3F&author=J.+Hooper&author=S.+K.+Marx&publication_year=2018&journal=Glob.+Planet.+Change&pages=70-91&doi=10.1016%2Fj.gloplacha.2018.07.003" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">53</div><div id="R53" class="citations"><div class="citation"><div class="citation-content">P. Kinppertz, M. C. Todd, Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications for modeling. <em>Rev. Geophys.</em> <b>50</b>, RG1007 (2012).</div><div class="external-links"><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000300827700001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Mineral+dust+aerosols+over+the+Sahara%3A+Meteorological+controls+on+emission+and+transport+and+implications+for+modeling&author=P.+Kinppertz&author=M.+C.+Todd&publication_year=2012&journal=Rev.+Geophys.&pages=RG1007" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">54</div><div id="R54" class="citations"><div class="citation"><div class="citation-content">M. L. Griffiths, K. R. Johnson, F. S. R. Pausata, J. C. White, G. M. Henderson, C. T. Wood, H. Yang, V. Ersek, C. Conrad, N. Sekhon, End of Green Sahara amplified mid- to late Holocene megadroughts in mainland Southeast Asia. <em>Nat. Commun.</em> <b>11</b>, 4204 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41467-020-17927-6" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/32826905" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=End+of+Green+Sahara+amplified+mid-+to+late+Holocene+megadroughts+in+mainland+Southeast+Asia&author=M.+L.+Griffiths&author=K.+R.+Johnson&author=F.%C2%A0S.%C2%A0R.+Pausata&author=J.+C.+White&author=G.+M.+Henderson&author=C.+T.+Wood&author=H.+Yang&author=V.+Ersek&author=C.+Conrad&author=N.+Sekhon&publication_year=2020&journal=Nat.+Commun.&pages=4204&doi=10.1038%2Fs41467-020-17927-6&pmid=32826905" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">55</div><div id="R55" class="citations"><div class="citation"><div class="citation-content">M. Chin, T. Diehl, Q. Tan, J. M. Prospero, R. A. Kahn, L. A. Remer, H. Yu, A. M. Sayer, H. Bian, I. V. Geogdzhayev, B. N. Holben, S. G. Howell, B. J. Huebert, N. C. Hsu, D. Kim, T. L. Kucsera, R. C. Levy, M. I. Mishchenko, X. Pan, P. K. Quinn, G. L. Schuster, D. G. Streets, S. A. Strode, O. Torres, X.-P. Zhao, Multi-decadal aerosol variations from 1980 to 2009: A perspective from observations and a global model. <em>Atmos. Chem. Phys.</em> <b>14</b>, 3657–3690 (2014).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/acp-14-3657-2014" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000334608400028" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Multi-decadal+aerosol+variations+from+1980+to+2009%3A+A+perspective+from+observations+and+a+global+model&author=M.+Chin&author=T.+Diehl&author=Q.+Tan&author=J.+M.+Prospero&author=R.+A.+Kahn&author=L.+A.+Remer&author=H.+Yu&author=A.+M.+Sayer&author=H.+Bian&author=I.+V.+Geogdzhayev&author=B.+N.+Holben&author=S.+G.+Howell&publication_year=2014&journal=Atmos.+Chem.+Phys.&pages=3657-3690&doi=10.5194%2Facp-14-3657-2014" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">56</div><div id="R56" class="citations"><div class="citation"><div class="citation-content">L. Sogacheva, T. Popp, A. M. Sayer, O. Dubovik, M. J. Garay, A. Heckel, N. C. Hsu, H. Jethva, R. A. Kahn, P. Kolmonen, M. Kosmale, G. de Leeuw, R. C. Levy, P. Litvinov, A. Lyapustin, P. North, O. Torres, Merging regional and global AOD records from 15 available satellite products. <em>Atmos. Chem. Phys.</em> <b>20</b>, 2031–2056 (2019).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/acp-20-2031-2020" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000516751800001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Merging+regional+and+global+AOD+records+from+15+available+satellite+products&author=L.+Sogacheva&author=T.+Popp&author=A.+M.+Sayer&author=O.+Dubovik&author=M.+J.+Garay&author=A.+Heckel&author=N.+C.+Hsu&author=H.+Jethva&author=R.+A.+Kahn&author=P.+Kolmonen&author=M.+Kosmale&author=G.+de+Leeuw&publication_year=2019&journal=Atmos.+Chem.+Phys.&pages=2031-2056&doi=10.5194%2Facp-20-2031-2020" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">57</div><div id="R57" class="citations"><div class="citation"><div class="citation-content">A. Vogel, G. Alessa, R. Scheele, L. Weber, O. Dubovik, P. North, S. Fiedler, Uncertainty in aerosol optical depth from modern aerosol-climate models, reanalyses, and satellite products. <em>J. Geophys. Res. Atmos.</em> <b>127</b>, e2021JD035483 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1029/2021JD035483" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Uncertainty+in+aerosol+optical+depth+from+modern+aerosol-climate+models%2C+reanalyses%2C+and+satellite+products&author=A.+Vogel&author=G.+Alessa&author=R.+Scheele&author=L.+Weber&author=O.+Dubovik&author=P.+North&author=S.+Fiedler&publication_year=2022&journal=J.+Geophys.+Res.+Atmos.&pages=e2021JD035483&doi=10.1029%2F2021JD035483" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">58</div><div id="R58" class="citations"><div class="citation"><div class="citation-content">J. Haywood, A. Jones, N. Bellouin, D. Stephenson, Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. <em>Nat. Clim. Change.</em> <b>3</b>, 660–665 (2013).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/nclimate1857" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Asymmetric+forcing+from+stratospheric+aerosols+impacts+Sahelian+rainfall&author=J.+Haywood&author=A.+Jones&author=N.+Bellouin&author=D.+Stephenson&publication_year=2013&journal=Nat.+Clim.+Change.&pages=660-665&doi=10.1038%2Fnclimate1857" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">59</div><div id="R59" class="citations"><div class="citation"><div class="citation-content">K. S. Krishnamohan, G. Bala, Sensitivity of tropical monsoon precipitation to the latitude of stratospheric aerosol injections. <em>Clim. Dyn.</em> <b>59</b>, 151–168 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1007/s00382-021-06121-z" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000739309000001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Sensitivity+of+tropical+monsoon+precipitation+to+the+latitude+of+stratospheric+aerosol+injections&author=K.+S.+Krishnamohan&author=G.+Bala&publication_year=2022&journal=Clim.+Dyn.&pages=151-168&doi=10.1007%2Fs00382-021-06121-z" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">60</div><div id="R60" class="citations"><div class="citation"><div class="citation-content">S. Roose, G. Bala, K. S. Krishnamohan, L. Cao, K. Caldeira, Quantification of tropical monsoon precipitation changes in terms of interhemispheric differences in stratospheric sulfate aerosol optical depth. <em>Clim. Dyn.</em> <b>2023</b>, 1–16 (2023).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Quantification+of+tropical+monsoon+precipitation+changes+in+terms+of+interhemispheric+differences+in+stratospheric+sulfate+aerosol+optical+depth&author=S.+Roose&author=G.+Bala&author=K.+S.+Krishnamohan&author=L.+Cao&author=K.+Caldeira&publication_year=2023&journal=Clim.+Dyn.&pages=1-16" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">61</div><div id="R61" class="citations"><div class="citation"><div class="citation-content">A. Donohoe, J. Marshall, D. Ferreira, D. Mcgee, The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the last glacial maximum. <em>J. Clim.</em> <b>26</b>, 3597–3618 (2013).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1175/JCLI-D-12-00467.1" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000319739300007" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+relationship+between+ITCZ+location+and+cross-equatorial+atmospheric+heat+transport%3A+From+the+seasonal+cycle+to+the+last+glacial+maximum&author=A.+Donohoe&author=J.+Marshall&author=D.+Ferreira&author=D.+Mcgee&publication_year=2013&journal=J.+Clim.&pages=3597-3618&doi=10.1175%2FJCLI-D-12-00467.1" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">62</div><div id="R62" class="citations"><div class="citation"><div class="citation-content">M. C. MacCracken, H.-J. Shin, K. Caldeira, G. A. Ban-Weiss, Climate response to imposed solar radiation reductions in high latitudes. <em>Earth Syst. Dyn.</em> <b>4</b>, 301–315 (2013).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/esd-4-301-2013" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000328767200008" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Climate+response+to+imposed+solar+radiation+reductions+in+high+latitudes&author=M.+C.+MacCracken&author=H.-J.+Shin&author=K.+Caldeira&author=G.+A.+Ban-Weiss&publication_year=2013&journal=Earth+Syst.+Dyn.&pages=301-315&doi=10.5194%2Fesd-4-301-2013" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">63</div><div id="R63" class="citations"><div class="citation"><div class="citation-content">N. Devaraju, G. Bala, A. Modak, Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. <em>Proc. Natl. Acad. Sci. U.S.A.</em> <b>112</b>, 3257–3262 (2015).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1073/pnas.1423439112" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/25733889" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000351060000048" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Effects+of+large-scale+deforestation+on+precipitation+in+the+monsoon+regions%3A+Remote+versus+local+effects&author=N.+Devaraju&author=G.+Bala&author=A.+Modak&publication_year=2015&journal=Proc.+Natl.+Acad.+Sci.+U.S.A.&pages=3257-3262&doi=10.1073%2Fpnas.1423439112&pmid=25733889" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">64</div><div id="R64" class="citations"><div class="citation"><div class="citation-content">I. B. Ocko, V. Ramaswamy, Y. Ming, Contrasting climate responses to the scattering and absorbing features of anthropogenic aerosol forcings. <em>J. Clim.</em> <b>27</b>, 5329–5345 (2014).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1175/JCLI-D-13-00401.1" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000339135200007" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Contrasting+climate+responses+to+the+scattering+and+absorbing+features+of+anthropogenic+aerosol+forcings&author=I.+B.+Ocko&author=V.+Ramaswamy&author=Y.+Ming&publication_year=2014&journal=J.+Clim.&pages=5329-5345&doi=10.1175%2FJCLI-D-13-00401.1" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">65</div><div id="R65" class="citations"><div class="citation"><div class="citation-content">M. Zhao, L. Cao, G. Bala, L. Duan, Climate response to latitudinal and altitudinal distribution of stratospheric sulfate aerosols. <em>J. Geophys. Res. Atmos.</em> <b>126</b>, e2021JD035379 (2021).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1029/2021JD035379" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Climate+response+to+latitudinal+and+altitudinal+distribution+of+stratospheric+sulfate+aerosols&author=M.+Zhao&author=L.+Cao&author=G.+Bala&author=L.+Duan&publication_year=2021&journal=J.+Geophys.+Res.+Atmos.&pages=e2021JD035379&doi=10.1029%2F2021JD035379" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">66</div><div id="R66" class="citations"><div class="citation"><div class="citation-content">J. T. Fasullo, B. L. Otto-Bliesner, S. Stevenson, The influence of volcanic aerosol meridional structure on monsoon responses over the last millennium. <em>Geophys. Res. Lett.</em> <b>46</b>, 12350–12359 (2019).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1029/2019GL084377" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000494625100001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+influence+of+volcanic+aerosol+meridional+structure+on+monsoon+responses+over+the+last+millennium&author=J.+T.+Fasullo&author=B.+L.+Otto-Bliesner&author=S.+Stevenson&publication_year=2019&journal=Geophys.+Res.+Lett.&pages=12350-12359&doi=10.1029%2F2019GL084377" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">67</div><div id="R67" class="citations"><div class="citation"><div class="citation-content">S. Fiedler, T. Crueger, R. D’Agostino, K. Peters, T. Becker, D. Leutwyler, L. Paccini, J. Burdanowitz, S. Buehler, A. Uribe, T. Dauhut, D. Dommenget, K. Fraedrich, L. Jungandreas, N. Maher, A. Naumann, M. Rugenstein, M. Sakradzija, H. Schmidt, F. Sielmann, C. Stephan, C. Timmreck, X. Zhu, B. Stevens, Simulated tropical precipitation assessed across three major phases of the Coupled Model Intercomparison Project (CMIP). <em>Mon. Weather Rev.</em> <b>148</b>, 3653–3680 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1175/MWR-D-19-0404.1" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000589828500006" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Simulated+tropical+precipitation+assessed+across+three+major+phases+of+the+Coupled+Model+Intercomparison+Project+%28CMIP%29&author=S.+Fiedler&author=T.+Crueger&author=R.+D%E2%80%99Agostino&author=K.+Peters&author=T.+Becker&author=D.+Leutwyler&author=L.+Paccini&author=J.+Burdanowitz&author=S.+Buehler&author=A.+Uribe&author=T.+Dauhut&author=D.+Dommenget&publication_year=2020&journal=Mon.+Weather+Rev.&pages=3653-3680&doi=10.1175%2FMWR-D-19-0404.1" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">68</div><div id="R68" class="citations"><div class="citation"><div class="citation-content">P. Zanis, D. Akritidis, A. K. Georgoulias, R. J. Allen, S. E. Bauer, O. Boucher, J. Cole, B. Johnson, M. Deushi, M. Michou, J. Mulcahy, P. Nabat, D. Olivié, N. Oshima, A. Sima, M. Schulz, T. Takemura, K. Tsigaridis, Fast responses on pre-industrial climate from present-day aerosols in a CMIP6 multi-model study. <em>Atmos. Chem. Phys.</em> <b>20</b>, 8381–8404 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/acp-20-8381-2020" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000551526700004" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Fast+responses+on+pre-industrial+climate+from+present-day+aerosols+in+a+CMIP6+multi-model+study&author=P.+Zanis&author=D.+Akritidis&author=A.+K.+Georgoulias&author=R.+J.+Allen&author=S.+E.+Bauer&author=O.+Boucher&author=J.+Cole&author=B.+Johnson&author=M.+Deushi&author=M.+Michou&author=J.+Mulcahy&author=P.+Nabat&publication_year=2020&journal=Atmos.+Chem.+Phys.&pages=8381-8404&doi=10.5194%2Facp-20-8381-2020" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">69</div><div id="R69" class="citations"><div class="citation"><div class="citation-content">S. Fiedler, B. Stevens, M. Gidden, S. J. Smith, K. Riahi, D. van Vuuren, First forcing estimates from the future CMIP6 scenarios of anthropogenic aerosol optical properties and an associated Twomey effect. <em>Geosci. Model Dev.</em> <b>12</b>, 989–1007 (2019).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/gmd-12-989-2019" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000461937300001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=First+forcing+estimates+from+the+future+CMIP6+scenarios+of+anthropogenic+aerosol+optical+properties+and+an+associated+Twomey+effect&author=S.+Fiedler&author=B.+Stevens&author=M.+Gidden&author=S.+J.+Smith&author=K.+Riahi&author=D.+van+Vuuren&publication_year=2019&journal=Geosci.+Model+Dev.&pages=989-1007&doi=10.5194%2Fgmd-12-989-2019" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">70</div><div id="R70" class="citations"><div class="citation"><div class="citation-content">N. M. Mahowald, R. Scanza, J. Brahney, C. L. Goodale, P. G. Hess, J. K. Moore, J. Neff, Aerosol deposition impacts on land and ocean carbon cycles. <em>Curr. Clim. Change Rep.</em> <b>3</b>, 16–31 (2017).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1007/s40641-017-0056-z" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Aerosol+deposition+impacts+on+land+and+ocean+carbon+cycles&author=N.+M.+Mahowald&author=R.+Scanza&author=J.+Brahney&author=C.+L.+Goodale&author=P.+G.+Hess&author=J.+K.+Moore&author=J.+Neff&publication_year=2017&journal=Curr.+Clim.+Change+Rep.&pages=16-31&doi=10.1007%2Fs40641-017-0056-z" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">71</div><div id="R71" class="citations"><div class="citation"><div class="citation-content">L. Jiang, R. A. Feely, B. R. Carter, D. J. Greeley, D. K. Gledhill, K. M. Arzayus, Climatological distribution of aragonite saturation state in the global oceans. <em>Glob. Biogeochem. Cycles.</em> <b>29</b>, 1656–1673 (2015).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1002/2015GB005198" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000364876500006" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Climatological+distribution+of+aragonite+saturation+state+in+the+global+oceans&author=L.+Jiang&author=R.+A.+Feely&author=B.+R.+Carter&author=D.+J.+Greeley&author=D.+K.+Gledhill&author=K.+M.+Arzayus&publication_year=2015&journal=Glob.+Biogeochem.+Cycles.&pages=1656-1673&doi=10.1002%2F2015GB005198" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">72</div><div id="R72" class="citations"><div class="citation"><div class="citation-content">EU Copernicus Climate Change Service, “Land cover classification gridded maps from 1992 to present derived from satellite observations”, ICDR Land Cover 2016–2020.</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=EU+Copernicus+Climate+Change+Service%2C+%E2%80%9CLand+cover+classification+gridded+maps+from+1992+to+present+derived+from+satellite+observations%E2%80%9D%2C+ICDR+Land+Cover+2016%E2%80%932020." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">73</div><div id="R73" class="citations"><div class="citation"><div class="citation-content">Food and Agricultural Organization of the United Nations, (FAO), United Nations’ Environmental Program, (UNEP), “The State of the World’s Forests 2020. Forests, biodiversity and people” (Publication 978-92-5-132419-6, 2020);.</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.4060/ca8642en" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?doi=10.4060%2Fca8642en" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">74</div><div id="R74" class="citations"><div class="citation"><div class="citation-content">Food and Agricultural Organization of the United Nations, (FOA), “Global Forest Resources Assessment 2020: Main report” (Publication 978-92-5-132974-0, 2020);.</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.4060/ca9825en" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?doi=10.4060%2Fca9825en" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">75</div><div id="R75" class="citations"><div class="citation"><div class="citation-content">S. R. Carpenter, E. M. Bennett, Reconsideration of the planetary boundary for phosphorus. <em>Environ. Res. Lett.</em> <b>6</b>, 014009 (2011).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1088/1748-9326/6/1/014009" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000289263600010" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Reconsideration+of+the+planetary+boundary+for+phosphorus&author=S.+R.+Carpenter&author=E.+M.+Bennett&publication_year=2011&journal=Environ.+Res.+Lett.&pages=014009&doi=10.1088%2F1748-9326%2F6%2F1%2F014009" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">76</div><div id="R76" class="citations"><div class="citation"><div class="citation-content">C. Liu, H. Tian, Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. <em>Earth Syst. Sci. Data</em> <b>9</b>, 181–192 (2017).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/essd-9-181-2017" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000395412000001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Global+nitrogen+and+phosphorus+fertilizer+use+for+agriculture+production+in+the+past+half+century%3A+Shifted+hot+spots+and+nutrient+imbalance&author=C.+Liu&author=H.+Tian&publication_year=2017&journal=Earth+Syst.+Sci.+Data&pages=181-192&doi=10.5194%2Fessd-9-181-2017" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">77</div><div id="R77" class="citations"><div class="citation"><div class="citation-content">W. J. Brownlie, M. A. Sutton, K. V. Heal, D. S. Reay, B. M. Spears (eds.), <i>Our Phosphorus Future</i> (U.K. Centre for Ecology & Hydrology, 2022).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=W.%C2%A0J.%C2%A0Brownlie%2C+M.%C2%A0A.%C2%A0Sutton%2C+K.%C2%A0V.%C2%A0Heal%2C+D.%C2%A0S.%C2%A0Reay%2C+B.%C2%A0M.%C2%A0Spears+%28eds.%29%2C+Our+Phosphorus+Future+%28U.K.+Centre+for+Ecology+%26+Hydrology%2C+2022%29." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">78</div><div id="R78" class="citations"><div class="citation"><div class="citation-content">T. Zou, X. Zhang, E. Davidson, Improving phosphorus use efficiency in cropland to address phosphorus challenges by 2050. <em>Earth Space Sci. Open Archive</em>, (2020).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Improving+phosphorus+use+efficiency+in+cropland+to+address+phosphorus+challenges+by+2050&author=T.+Zou&author=X.+Zhang&author=E.+Davidson&publication_year=2020" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">79</div><div id="R79" class="citations"><div class="citation"><div class="citation-content">D. Cordell, S. White, Life’s bottleneck: Sustaining the World’s phosphorus for a food secure future. <em>Annu. Rev. Environ. Res.</em> <b>39</b>, 161–188 (2014).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1146/annurev-environ-010213-113300" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000348446900007" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Life%E2%80%99s+bottleneck%3A+Sustaining+the+World%E2%80%99s+phosphorus+for+a+food+secure+future&author=D.+Cordell&author=S.+White&publication_year=2014&journal=Annu.+Rev.+Environ.+Res.&pages=161-188&doi=10.1146%2Fannurev-environ-010213-113300" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">80</div><div id="R80" class="citations"><div class="citation"><div class="citation-content">Food and Agriculture Organisation of the United Nations (FAO), “World fertilizer trends and outlook to 2022 – Summary Report, Rome” (2019); <a href="https://web.archive.org/web/20240318040954/http://www.fao.org/3/ca6746en/ca6746en.pdf">www.fao.org/3/ca6746en/ca6746en.pdf</a>)</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=Food+and+Agriculture+Organisation+of+the+United+Nations+%28FAO%29%2C+%E2%80%9CWorld+fertilizer+trends+and+outlook+to+2022+%E2%80%93+Summary+Report%2C+Rome%E2%80%9D+%282019%29%3B+www.fao.org%2F3%2Fca6746en%2Fca6746en.pdf%29" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">81</div><div id="R81" class="citations"><div class="citation"><div class="citation-content">M. A. Adams, N. Buchmann, J. Sprent, T. N. Buckley, T. L. Turnbull, Crops, nitrogen, water: Are legumes friend, foe, or misunderstood ally? <em>Trends Plant. Sci.</em> <b>23</b>, 539–550 (2018).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.tplants.2018.02.009" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/29559299" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000433084700011" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Crops%2C+nitrogen%2C+water%3A+Are+legumes+friend%2C+foe%2C+or+misunderstood+ally%3F&author=M.+A.+Adams&author=N.+Buchmann&author=J.+Sprent&author=T.+N.+Buckley&author=T.+L.+Turnbull&publication_year=2018&journal=Trends+Plant.+Sci.&pages=539-550&doi=10.1016%2Fj.tplants.2018.02.009&pmid=29559299" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">82</div><div id="R82" class="citations"><div class="citation"><div class="citation-content">P. M. Vitousek, D. N. L. Menge, S. C. Reed, C. C. Cleveland, Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. <em>Philos. Trans. R. Soc. Lond. B. Biol. Sci.</em> <b>368</b>, 1621 (2013).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1098/rstb.2013.0119" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000319502100004" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Biological+nitrogen+fixation%3A+Rates%2C+patterns+and+ecological+controls+in+terrestrial+ecosystems&author=P.+M.+Vitousek&author=D.%C2%A0N.%C2%A0L.+Menge&author=S.+C.+Reed&author=C.+C.+Cleveland&publication_year=2013&journal=Philos.+Trans.+R.%C2%A0Soc.+Lond.+B.%C2%A0Biol.+Sci.&pages=1621&doi=10.1098%2Frstb.2013.0119" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">83</div><div id="R83" class="citations"><div class="citation"><div class="citation-content">M. V. B. Figueiredo, A. E. S. Mergulhão, J. K. Sobral, M. A. L. Junio, A. S. F. Araújo, Biological nitrogen fixation: Importance, associated diversity, and estimates, in <i>Plant Microbe Symbiosis: Fundamentals and Advances</i> (Springer, 2013), pp. 267–289.</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=M.%C2%A0V.%C2%A0B.+Figueiredo%2C+A.%C2%A0E.%C2%A0S.+Mergulh%C3%A3o%2C+J.%C2%A0K.%C2%A0Sobral%2C+M.%C2%A0A.%C2%A0L.+Junio%2C+A.%C2%A0S.%C2%A0F.+Ara%C3%BAjo%2C+Biological+nitrogen+fixation%3A+Importance%2C+associated+diversity%2C+and+estimates%2C+in+Plant+Microbe+Symbiosis%3A+Fundamentals+and+Advances+%28Springer%2C+2013%29%2C+pp.%C2%A0267%E2%80%93289." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">84</div><div id="R84" class="citations"><div class="citation"><div class="citation-content">FAO, “FAOSTAT—FAO database for food and agriculture” (2022); <a href="https://web.archive.org/web/20240318040954/http://www.fao.org/faostat/">www.fao.org/faostat/</a> (accessed 4.19.22)</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=FAO%2C+%E2%80%9CFAOSTAT%E2%80%94FAO+database+for+food+and+agriculture%E2%80%9D+%282022%29%3B+www.fao.org%2Ffaostat%2F+%28accessed+4.19.22%29" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">85</div><div id="R85" class="citations"><div class="citation"><div class="citation-content">M. Drüke, W. von Bloh, S. Petri, B. Sakschewski, S. Schaphoff, M. Forkel, W. Huiskamp, G. Feulner, K. Thonicke, CM2Mc-LPJmL v1.0: Biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model. <em>Geosci. Model. Dev.</em> <b>14</b>, 4117–4141 (2021).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/gmd-14-4117-2021" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000670561700001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=CM2Mc-LPJmL+v1.0%3A+Biophysical+coupling+of+a+process-based+dynamic+vegetation+model+with+managed+land+to+a+general+circulation+model&author=M.+Dr%C3%BCke&author=W.+von+Bloh&author=S.+Petri&author=B.+Sakschewski&author=S.+Schaphoff&author=M.+Forkel&author=W.+Huiskamp&author=G.+Feulner&author=K.+Thonicke&publication_year=2021&journal=Geosci.+Model.+Dev.&pages=4117-4141&doi=10.5194%2Fgmd-14-4117-2021" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">86</div><div id="R86" class="citations"><div class="citation"><div class="citation-content">K.-H. Erb, T. Kastner, C. Plutzar, A. L. S. Bais, N. Carvalhais, T. Fetzel, S. Gingrich, H. Haberl, C. Lauk, M. Niedertscheider, J. Pongratz, M. Thurner, S. Luyssaert, Unexpectedly large impact of forest management and grazing on global vegetation biomass. <em>Nature</em> <b>553</b>, 73–76 (2017).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/nature25138" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/29258288" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000419769300032" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Unexpectedly+large+impact+of+forest+management+and+grazing+on+global+vegetation+biomass&author=K.-H.+Erb&author=T.+Kastner&author=C.+Plutzar&author=A.%C2%A0L.%C2%A0S.+Bais&author=N.+Carvalhais&author=T.+Fetzel&author=S.+Gingrich&author=H.+Haberl&author=C.+Lauk&author=M.+Niedertscheider&author=J.+Pongratz&author=M.+Thurner&publication_year=2017&journal=Nature&pages=73-76&doi=10.1038%2Fnature25138&pmid=29258288" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">87</div><div id="R87" class="citations"><div class="citation"><div class="citation-content">Y. M. Bar-On, R. Phillips, R. Milo, The biomass distribution on Earth. <em>Proc. Natl. Acad. Sci. U.S.A.</em> <b>115</b>, 6506–6511 (2018).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1073/pnas.1711842115" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/29784790" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000435585200062" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+biomass+distribution+on+Earth&author=Y.+M.+Bar-On&author=R.+Phillips&author=R.+Milo&publication_year=2018&journal=Proc.+Natl.+Acad.+Sci.+U.S.A.&pages=6506-6511&doi=10.1073%2Fpnas.1711842115&pmid=29784790" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">88</div><div id="R88" class="citations"><div class="citation"><div class="citation-content">K. Matsuomoto, T. Hashioka, Y. Yamanaka, Effect of temperature-dependent organic carbon decay on atmospheric pCO<sub>2</sub>. <em>J. Geophys. Res.</em> <b>112</b>, G02007 (2007).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1029/2006JG000187" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000245952300001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Effect+of+temperature-dependent+organic+carbon+decay+on+atmospheric+pCO2&author=K.+Matsuomoto&author=T.+Hashioka&author=Y.+Yamanaka&publication_year=2007&journal=J.+Geophys.+Res.&pages=G02007&doi=10.1029%2F2006JG000187" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">89</div><div id="R89" class="citations"><div class="citation"><div class="citation-content">L. Kwiatkowski, O. Torres, L. Bopp, O. Aumont, M. Chamberlain, J. R. Christian, J. P. Dunne, M. Gehlen, T. Ilyina, J. G. John, A. Lenton, H. Li, N. S. Lovenduski, J. C. Orr, J. Palmieri, Y. Santana-Falcón, J. Schwinger, R. Séférian, C. A. Stock, A. Tagliabue, Y. Takano, J. Tjiputra, K. Toyama, H. Tsujino, M. Watanabe, A. Yamamoto, A. Yool, T. Ziehn, Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. <em>Biogeosci</em> <b>17</b>, 3439–3470 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/bg-17-3439-2020" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000547860200003" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Twenty-first+century+ocean+warming%2C+acidification%2C+deoxygenation%2C+and+upper-ocean+nutrient+and+primary+production+decline+from+CMIP6+model+projections&author=L.+Kwiatkowski&author=O.+Torres&author=L.+Bopp&author=O.+Aumont&author=M.+Chamberlain&author=J.+R.+Christian&author=J.+P.+Dunne&author=M.+Gehlen&author=T.+Ilyina&author=J.+G.+John&author=A.+Lenton&author=H.+Li&publication_year=2020&journal=Biogeosci&pages=3439-3470&doi=10.5194%2Fbg-17-3439-2020" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">90</div><div id="R90" class="citations"><div class="citation"><div class="citation-content">E. A. Laws, E. D’Sa, P. Naik, Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production. <em>Limnol. Oceanogr. Meth.</em> <b>9</b>, 593–601 (2011).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.4319/lom.2011.9.593" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000300378300005" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Simple+equations+to+estimate+ratios+of+new+or+export+production+to+total+production+from+satellite-derived+estimates+of+sea+surface+temperature+and+primary+production&author=E.+A.+Laws&author=E.+D%E2%80%99Sa&author=P.+Naik&publication_year=2011&journal=Limnol.+Oceanogr.+Meth.&pages=593-601&doi=10.4319%2Flom.2011.9.593" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">91</div><div id="R91" class="citations"><div class="citation"><div class="citation-content">C. M. Marsay, R. J. Sanders, S. A. Henson, K. Pabortsava, E. P. Achterberg, R. S. Lampitt, Attenuation of sinking POC flux in the mesopelagic. <em>Proc. Natl. Acad. Sci. U.S.A.</em> <b>112</b>, 1089–1094 (2015).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1073/pnas.1415311112" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/25561526" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000348417000044" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Attenuation+of+sinking+POC+flux+in+the+mesopelagic&author=C.+M.+Marsay&author=R.+J.+Sanders&author=S.+A.+Henson&author=K.+Pabortsava&author=E.+P.+Achterberg&author=R.+S.+Lampitt&publication_year=2015&journal=Proc.+Natl.+Acad.+Sci.+U.S.A.&pages=1089-1094&doi=10.1073%2Fpnas.1415311112&pmid=25561526" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">92</div><div id="R92" class="citations"><div class="citation"><div class="citation-content">K. A. Chrichton, J. D. Wilson, A. Ridgewell, F. Boscob-Galazzo, E. H. John, B. S. Wade, P. N. Pearson, What the geological past can tell us about the future of the ocean’s twilight zone. <em>Nat. Commun.</em> <b>14</b>, 2376 (2023).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41467-023-37781-6" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/37105972" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=What+the+geological+past+can+tell+us+about+the+future+of+the+ocean%E2%80%99s+twilight+zone&author=K.+A.+Chrichton&author=J.+D.+Wilson&author=A.+Ridgewell&author=F.+Boscob-Galazzo&author=E.+H.+John&author=B.+S.+Wade&author=P.+N.+Pearson&publication_year=2023&journal=Nat.+Commun.&pages=2376&doi=10.1038%2Fs41467-023-37781-6&pmid=37105972" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">93</div><div id="R93" class="citations"><div class="citation"><div class="citation-content">The Royal Society, “Ocean acidification due to increasing atmospheric carbon dioxide” (Publication 0 85403 617 2, Policy Doc. 12/05, R. Soc., 2005).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=The+Royal+Society%2C+%E2%80%9COcean+acidification+due+to+increasing+atmospheric+carbon+dioxide%E2%80%9D+%28Publication+0+85403+617+2%2C+Policy+Doc.+12%2F05%2C+R.%C2%A0Soc.%2C+2005%29." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">94</div><div id="R94" class="citations"><div class="citation"><div class="citation-content">E. D. Galbraith, J. P. Dunne, A. Gnanadesikan, R. D. Slater, J. L. Sarmiento, C. O. Dufour, G. F. de Souza, D. Bianchi, M. Claret, K. B. Rodgers, S. S. Marvasti, Complex functionality with minimal computation: Promise and pitfalls of reduced-tracer ocean biogeochemistry models. <em>J. Adv. Model Earth Syst.</em> <b>7</b>, 2012–2028 (2015).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1002/2015MS000463" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000368739800027" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Complex+functionality+with+minimal+computation%3A+Promise+and+pitfalls+of+reduced-tracer+ocean+biogeochemistry+models&author=E.+D.+Galbraith&author=J.+P.+Dunne&author=A.+Gnanadesikan&author=R.+D.+Slater&author=J.+L.+Sarmiento&author=C.+O.+Dufour&author=G.+F.+de+Souza&author=D.+Bianchi&author=M.+Claret&author=K.+B.+Rodgers&author=S.+S.+Marvasti&publication_year=2015&journal=J.+Adv.+Model+Earth+Syst.&pages=2012-2028&doi=10.1002%2F2015MS000463" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">95</div><div id="R95" class="citations"><div class="citation"><div class="citation-content">S. Schaphoff, M. Forkel, C. Müller, J. Knauer, W. von Bloh, D. Gerten, J. Jägermeyr, W. Lucht, A. Rammig, K. Thonicke, K. Waha, LPJmL4 – A dynamic global vegetation model with managed land – Part 2: Model evaluation. <em>Geosci. Model Dev.</em> <b>11</b>, 1377–1403 (2018b).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/gmd-11-1377-2018" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000429909400002" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=LPJmL4+%E2%80%93+A+dynamic+global+vegetation+model+with+managed+land+%E2%80%93+Part+2%3A+Model+evaluation&author=S.+Schaphoff&author=M.+Forkel&author=C.+M%C3%BCller&author=J.+Knauer&author=W.+von+Bloh&author=D.+Gerten&author=J.+J%C3%A4germeyr&author=W.+Lucht&author=A.+Rammig&author=K.+Thonicke&author=K.+Waha&publication_year=2018b&journal=Geosci.+Model+Dev.&pages=1377-1403&doi=10.5194%2Fgmd-11-1377-2018" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">96</div><div id="R96" class="citations"><div class="citation"><div class="citation-content">NASA Earth Observation, “AURA Ozone data”; <a href="https://web.archive.org/web/20240318040954/https://neo.gsfc.nasa.gov/archive/geotiff.float/AURA_OZONE_M/">https://neo.gsfc.nasa.gov/archive/geotiff.float/AURA_OZONE_M/</a>.</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=NASA+Earth+Observation%2C+%E2%80%9CAURA+Ozone+data%E2%80%9D%3B+https%3A%2F%2Fneo.gsfc.nasa.gov%2Farchive%2Fgeotiff.float%2FAURA_OZONE_M%2F." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">97</div><div id="R97" class="citations"><div class="citation"><div class="citation-content">N. Ramankutty, J. A. Foley, Characterizing patterns of global land use: An analysis of global croplands data. <em>Glob. Biogeochem. Cycles.</em> <b>12</b>, 667–685 (1998).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1029/98GB02512" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000077533900010" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Characterizing+patterns+of+global+land+use%3A+An+analysis+of+global+croplands+data&author=N.+Ramankutty&author=J.+A.+Foley&publication_year=1998&journal=Glob.+Biogeochem.+Cycles.&pages=667-685&doi=10.1029%2F98GB02512" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">98</div><div id="R98" class="citations"><div class="citation"><div class="citation-content">C. W. Snyder, M. D. Mastrandrea, S. H. Schneider, The complex dynamics of the climate system: Constraints on our knowledge, policy implications and the necessity of systems thinking. <em>Philos. Complex Syst.</em> <b>10</b>, 467–505 (2011).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/B978-0-444-52076-0.50017-1" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+complex+dynamics+of+the+climate+system%3A+Constraints+on+our+knowledge%2C+policy+implications+and+the+necessity+of+systems+thinking&author=C.+W.+Snyder&author=M.+D.+Mastrandrea&author=S.+H.+Schneider&publication_year=2011&journal=Philos.+Complex+Syst.&pages=467-505&doi=10.1016%2FB978-0-444-52076-0.50017-1" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">99</div><div id="R99" class="citations"><div class="citation"><div class="citation-content">M. Willeit, A. Ganopolski, R. Calov, V. Brovkin, Mid-Pleistocene transition in glacial cycles explained by declining CO<sub>2</sub> and regolith removal. <em>Sci. Adv.</em> <b>5</b>, eaav7337 (2019).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/sciadv.aav7337" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/30949580" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Mid-Pleistocene+transition+in+glacial+cycles+explained+by+declining+CO2+and+regolith+removal&author=M.+Willeit&author=A.+Ganopolski&author=R.+Calov&author=V.+Brovkin&publication_year=2019&journal=Sci.+Adv.&pages=eaav7337&doi=10.1126%2Fsciadv.aav7337&pmid=30949580" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">100</div><div id="R100" class="citations"><div class="citation"><div class="citation-content">J. Zheng, J. L. Payne, A. Wagner, Cryptic genetic variation accelerates evolution by opening access to diverse adaptive peaks. <em>Science</em> <b>365</b>, 347–353 (2019).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/science.aax1837" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/31346060" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000477703100034" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Cryptic+genetic+variation+accelerates+evolution+by+opening+access+to+diverse+adaptive+peaks&author=J.+Zheng&author=J.+L.+Payne&author=A.+Wagner&publication_year=2019&journal=Science&pages=347-353&doi=10.1126%2Fscience.aax1837&pmid=31346060" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">101</div><div id="R101" class="citations"><div class="citation"><div class="citation-content">M. C. Bitter, L. Kapsenberg, J.-P. Gattuso, C. A. Pfister, Standing genetic variation fuels rapid adaptation to ocean acidification. <em>Nat. Commun.</em> <b>10</b>, 5821 (2019).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41467-019-13767-1" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/31862880" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Standing+genetic+variation+fuels+rapid+adaptation+to+ocean+acidification&author=M.+C.+Bitter&author=L.+Kapsenberg&author=J.-P.+Gattuso&author=C.+A.+Pfister&publication_year=2019&journal=Nat.+Commun.&pages=5821&doi=10.1038%2Fs41467-019-13767-1&pmid=31862880" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">102</div><div id="R102" class="citations"><div class="citation"><div class="citation-content">T. H. Oliver, M. S. Heard, N. J. Isaac, D. B. Roy, D. Procter, F. Eigenbrod, R. Freckleton, A. Hector, C. D. L. Orme, O. L. Petchey, V. Proença, Biodiversity and resilience of ecosystem functions. <em>Trends Ecol. Evol.</em> <b>30</b>, 673–684 (2015).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.tree.2015.08.009" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/26437633" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000364891600008" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Biodiversity+and+resilience+of+ecosystem+functions&author=T.+H.+Oliver&author=M.+S.+Heard&author=N.+J.+Isaac&author=D.+B.+Roy&author=D.+Procter&author=F.+Eigenbrod&author=R.+Freckleton&author=A.+Hector&author=C.%C2%A0D.%C2%A0L.+Orme&author=O.+L.+Petchey&author=V.+Proen%C3%A7a&publication_year=2015&journal=Trends+Ecol.+Evol.&pages=673-684&doi=10.1016%2Fj.tree.2015.08.009&pmid=26437633" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">103</div><div id="R103" class="citations"><div class="citation"><div class="citation-content">A. A. Hoffmann, C. M. Sgrò, T. N. Kristensen, Revisiting adaptive potential, population size, and conservation. <em>Trends Ecol. Evol.</em> <b>32</b>, 506–517 (2017).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.tree.2017.03.012" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/28476215" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000403237400004" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Revisiting+adaptive+potential%2C+population+size%2C+and+conservation&author=A.+A.+Hoffmann&author=C.+M.+Sgr%C3%B2&author=T.+N.+Kristensen&publication_year=2017&journal=Trends+Ecol.+Evol.&pages=506-517&doi=10.1016%2Fj.tree.2017.03.012&pmid=28476215" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">104</div><div id="R104" class="citations"><div class="citation"><div class="citation-content">A. Miraldo, S. Li, M. K. Borregaard, A. Flórez-Rodríguez, S. Gopalakrishnan, M. Rizvanovic, Z. Wang, C. Rahbek, K. A. Marske, D. Nogués-Bravo, An anthropocene map of genetic diversity. <em>Science</em> <b>353</b>, 1532–1535 (2016).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/science.aaf4381" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/27708102" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000387678700044" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=An+anthropocene+map+of+genetic+diversity&author=A.+Miraldo&author=S.+Li&author=M.+K.+Borregaard&author=A.+Fl%C3%B3rez-Rodr%C3%ADguez&author=S.+Gopalakrishnan&author=M.+Rizvanovic&author=Z.+Wang&author=C.+Rahbek&author=K.+A.+Marske&author=D.+Nogu%C3%A9s-Bravo&publication_year=2016&journal=Science&pages=1532-1535&doi=10.1126%2Fscience.aaf4381&pmid=27708102" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">105</div><div id="R105" class="citations"><div class="citation"><div class="citation-content">S. Blanchet, J. G. Prunier, H. De Kort, Time to go bigger: Emerging patterns in macrogenetics. <em>Trends Genet.</em> <b>33</b>, 579–580 (2017).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.tig.2017.06.007" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/28720482" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000407883600001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Time+to+go+bigger%3A+Emerging+patterns+in+macrogenetics&author=S.+Blanchet&author=J.+G.+Prunier&author=H.+De+Kort&publication_year=2017&journal=Trends+Genet.&pages=579-580&doi=10.1016%2Fj.tig.2017.06.007&pmid=28720482" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">106</div><div id="R106" class="citations"><div class="citation"><div class="citation-content">S. Theodoridis, D. A. Fordham, S. C. Brown, S. Li, C. Rahbek, D. Nogues-Bravo, Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. <em>Nat. Commun.</em> <b>11</b>, 2557 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41467-020-16449-5" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/32444801" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Evolutionary+history+and+past+climate+change+shape+the+distribution+of+genetic+diversity+in+terrestrial+mammals&author=S.+Theodoridis&author=D.+A.+Fordham&author=S.+C.+Brown&author=S.+Li&author=C.+Rahbek&author=D.+Nogues-Bravo&publication_year=2020&journal=Nat.+Commun.&pages=2557&doi=10.1038%2Fs41467-020-16449-5&pmid=32444801" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">107</div><div id="R107" class="citations"><div class="citation"><div class="citation-content">D. M. Leigh, C. B. van Rees, K. L. Millette, M. F. Breed, C. Schmidt, L. D. Bertola, B. K. Hand, M. E. Hunter, E. L. Jensen, F. Kershaw, L. Liggins, G. Luikart, S. Manel, J. Mergeay, J. M. Miller, G. Segelbacher, S. Hoban, I. Paz-Vinas, Opportunities and challenges of macrogenetic studies. <em>Nat. Rev. Genet.</em> <b>22</b>, 791–807 (2021).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41576-021-00394-0" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/34408318" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000686111600001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Opportunities+and+challenges+of+macrogenetic+studies&author=D.+M.+Leigh&author=C.+B.+van+Rees&author=K.+L.+Millette&author=M.+F.+Breed&author=C.+Schmidt&author=L.+D.+Bertola&author=B.+K.+Hand&author=M.+E.+Hunter&author=E.+L.+Jensen&author=F.+Kershaw&author=L.+Liggins&author=G.+Luikart&publication_year=2021&journal=Nat.+Rev.+Genet.&pages=791-807&doi=10.1038%2Fs41576-021-00394-0&pmid=34408318" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">108</div><div id="R108" class="citations"><div class="citation"><div class="citation-content">S. Theodoridis, C. Rahbek, D. Nogués-Bravo, Exposure of mammal genetic diversity to mid-21<sup>st</sup> century global change. <em>Ecography</em> <b>44</b>, 817–831 (2021).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1111/ecog.05588" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000629315400001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Exposure+of+mammal+genetic+diversity+to+mid-21st+century+global+change&author=S.+Theodoridis&author=C.+Rahbek&author=D.+Nogu%C3%A9s-Bravo&publication_year=2021&journal=Ecography&pages=817-831&doi=10.1111%2Fecog.05588" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">109</div><div id="R109" class="citations"><div class="citation"><div class="citation-content">S. Hoban, M. Brufordb, J. D’Urban Jackson, M. Lopes-Fernandes, M. Heuertz, P. A. Hohenlohe, I. Paz-Vinas, P. Sjögren-Gulve, G. Segelbacher, C. Vernesi, S. Aitken, L. D. Bertola, P. Bloomer, M. Breed, H. Rodríguez-Correa, W. C. Funk, C. E. Grueber, M. E. Hunter, L. Laikre, Genetic diversity targets and indicators in the CBD post-2020 global biodiversity framework must be improved. <em>Biol. Conserv.</em> <b>248</b>, 108654 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.biocon.2020.108654" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000556843900025" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Genetic+diversity+targets+and+indicators+in+the+CBD+post-2020+global+biodiversity+framework+must+be+improved&author=S.+Hoban&author=M.+Brufordb&author=J.+D%E2%80%99Urban+Jackson&author=M.+Lopes-Fernandes&author=M.+Heuertz&author=P.+A.+Hohenlohe&author=I.+Paz-Vinas&author=P.+Sj%C3%B6gren-Gulve&author=G.+Segelbacher&author=C.+Vernesi&author=S.+Aitken&author=L.+D.+Bertola&publication_year=2020&journal=Biol.+Conserv.&pages=108654&doi=10.1016%2Fj.biocon.2020.108654" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">110</div><div id="R110" class="citations"><div class="citation"><div class="citation-content">A. Ganopolski, V. Brovkin, Simulation of climate, ice sheets and CO<sub>2</sub> evolution during the last four glacial cycles with an Earth system model of intermediate complexity. <em>Clim.</em> <b>13</b>, 1695–1716 (2017).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Simulation+of+climate%2C+ice+sheets+and+CO2+evolution+during+the+last+four+glacial+cycles+with+an+Earth+system+model+of+intermediate+complexity&author=A.+Ganopolski&author=V.+Brovkin&publication_year=2017&journal=Clim.&pages=1695-1716" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">111</div><div id="R111" class="citations"><div class="citation"><div class="citation-content">S. Schaphoff, W. Bloh, A. Rammig, K. Thonicke, H. Biemans, M. Forkel, D. Gerten, J. Heinke, J. Jägermeyr, J. Knauer, F. Langerwisch, W. Lucht, C. Müller, S. Rolinski, K. Waha, LPJmL4–a dynamic global vegetation model with managed land – Part 1: Model description. <em>Geosci. Model Dev.</em> <b>11</b>, 1343–1375 (2018).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/gmd-11-1343-2018" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000429909400001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=LPJmL4%E2%80%93a+dynamic+global+vegetation+model+with+managed+land+%E2%80%93+Part+1%3A+Model+description&author=S.+Schaphoff&author=W.+Bloh&author=A.+Rammig&author=K.+Thonicke&author=H.+Biemans&author=M.+Forkel&author=D.+Gerten&author=J.+Heinke&author=J.+J%C3%A4germeyr&author=J.+Knauer&author=F.+Langerwisch&author=W.+Lucht&publication_year=2018&journal=Geosci.+Model+Dev.&pages=1343-1375&doi=10.5194%2Fgmd-11-1343-2018" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">112</div><div id="R112" class="citations"><div class="citation"><div class="citation-content">I. C. Harris, P. D. Jones, “CRU TS3.23: Climatic Research Unit (CRU) Time-Series (TS) Version 3.23 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901- Dec. 2014)” (CEDA Archive, 2015); <a href="https://web.archive.org/web/20240318040954/https://catalogue.ceda.ac.uk/uuid/5dca9487dc614711a3a933e44a933ad3">https://catalogue.ceda.ac.uk/uuid/5dca9487dc614711a3a933e44a933ad3</a></div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=I.%C2%A0C.%C2%A0Harris%2C+P.%C2%A0D.%C2%A0Jones%2C+%E2%80%9CCRU+TS3.23%3A+Climatic+Research+Unit+%28CRU%29+Time-Series+%28TS%29+Version+3.23+of+High+Resolution+Gridded+Data+of+Month-by-month+Variation+in+Climate+%28Jan.+1901-+Dec.+2014%29%E2%80%9D+%28CEDA+Archive%2C+2015%29%3B+https%3A%2F%2Fcatalogue.ceda.ac.uk%2Fuuid%2F5dca9487dc614711a3a933e44a933ad3" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">113</div><div id="R113" class="citations"><div class="citation"><div class="citation-content">I. Harris, P. Jones, T. Osborn, D. Lister, Updated high-resolution grids of monthly climatic observations – The CRU TS3.10 dataset. <em>Int. J. Climatol.</em> <b>34</b>, 623–642 (2014).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1002/joc.3711" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000332092900008" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Updated+high-resolution+grids+of+monthly+climatic+observations+%E2%80%93+The+CRU+TS3.10+dataset&author=I.+Harris&author=P.+Jones&author=T.+Osborn&author=D.+Lister&publication_year=2014&journal=Int.+J.%C2%A0Climatol.&pages=623-642&doi=10.1002%2Fjoc.3711" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">114</div><div id="R114" class="citations"><div class="citation"><div class="citation-content">D. Kaufman, N. McKay, C. Routson, M. Erb, C. Dätwyler, P. S. Sommer, O. Heiri, B. Davis, Holocene global mean surface temperature, a multi-method reconstruction approach. <em>Sci. Data</em> <b>7</b>, 201 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41597-020-0530-7" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/32606396" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Holocene+global+mean+surface+temperature%2C+a+multi-method+reconstruction+approach&author=D.+Kaufman&author=N.+McKay&author=C.+Routson&author=M.+Erb&author=C.+D%C3%A4twyler&author=P.+S.+Sommer&author=O.+Heiri&author=B.+Davis&publication_year=2020&journal=Sci.+Data&pages=201&doi=10.1038%2Fs41597-020-0530-7&pmid=32606396" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">115</div><div id="R115" class="citations"><div class="citation"><div class="citation-content">H. Haberl, K. H. Erb, F. Krausmann, V. Gaube, A. Bondeau, C. Plutzar, S. Gingrich, W. Lucht, M. Fischer-Kowalski, Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. <em>Proc. Natl. Acad. Sci. U.S.A.</em> <b>104</b>, 12942–12947 (2007).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1073/pnas.0704243104" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/17616580" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000248603900063" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Quantifying+and+mapping+the+human+appropriation+of+net+primary+production+in+Earth%E2%80%99s+terrestrial+ecosystems&author=H.+Haberl&author=K.+H.+Erb&author=F.+Krausmann&author=V.+Gaube&author=A.+Bondeau&author=C.+Plutzar&author=S.+Gingrich&author=W.+Lucht&author=M.+Fischer-Kowalski&publication_year=2007&journal=Proc.+Natl.+Acad.+Sci.+U.S.A.&pages=12942-12947&doi=10.1073%2Fpnas.0704243104&pmid=17616580" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">116</div><div id="R116" class="citations"><div class="citation"><div class="citation-content">D. Lawrence, K. Vandecar, Effects of tropical deforestation on climate and agriculture. <em>Nat. Clim. Change</em> <b>5</b>, 27–36 (2015).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/nclimate2430" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Effects+of+tropical+deforestation+on+climate+and+agriculture&author=D.+Lawrence&author=K.+Vandecar&publication_year=2015&journal=Nat.+Clim.+Change&pages=27-36&doi=10.1038%2Fnclimate2430" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">117</div><div id="R117" class="citations"><div class="citation"><div class="citation-content">P. W. Keys, L. Wang-Erlandsson, L. J. Gordon, Revealing invisible water: Moisture recycling as an ecosystem service. <em>PLOS ONE</em> <b>11</b>, e0151993 (2016).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1371/journal.pone.0151993" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/26998832" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000372694700091" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Revealing+invisible+water%3A+Moisture+recycling+as+an+ecosystem+service&author=P.+W.+Keys&author=L.+Wang-Erlandsson&author=L.+J.+Gordon&publication_year=2016&journal=PLOS+ONE&pages=e0151993&doi=10.1371%2Fjournal.pone.0151993&pmid=26998832" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">118</div><div id="R118" class="citations"><div class="citation"><div class="citation-content">L. Wang-Erlandsson, I. Fetzer, P. W. Keys, R. J. van der Ent, H. H. G. Savenije, L. J. Gordon, Remote land use impacts on river flows through atmospheric teleconnections. <em>Hydrol. Earth Syst. Sci.</em> <b>22</b>, 4311–4328 (2018).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/hess-22-4311-2018" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000441664500002" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Remote+land+use+impacts+on+river+flows+through+atmospheric+teleconnections&author=L.+Wang-Erlandsson&author=I.+Fetzer&author=P.+W.+Keys&author=R.+J.+van+der+Ent&author=H.%C2%A0H.%C2%A0G.+Savenije&author=L.+J.+Gordon&publication_year=2018&journal=Hydrol.+Earth+Syst.+Sci.&pages=4311-4328&doi=10.5194%2Fhess-22-4311-2018" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">119</div><div id="R119" class="citations"><div class="citation"><div class="citation-content">D. Gerten, H. Hoff, J. Rockström, J. Jägermeyr, M. Kummu, A. V. Pastor, Towards a revised planetary boundary for consumptive freshwater use: Role of environmental flow requirements. <em>Curr. Opin. Environ. Sustain.</em> <b>5</b>, 551–558 (2013).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.cosust.2013.11.001" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000331149400003" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Towards+a+revised+planetary+boundary+for+consumptive+freshwater+use%3A+Role+of+environmental+flow+requirements&author=D.+Gerten&author=H.+Hoff&author=J.+Rockstr%C3%B6m&author=J.+J%C3%A4germeyr&author=M.+Kummu&author=A.+V.+Pastor&publication_year=2013&journal=Curr.+Opin.+Environ.+Sustain.&pages=551-558&doi=10.1016%2Fj.cosust.2013.11.001" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">120</div><div id="R120" class="citations"><div class="citation"><div class="citation-content">J. Liu, C. Zang, S. Tian, J. Liu, H. Yang, S. Jia, L. You, B. Liu, M. Zhang, Water conservancy projects in China: Achievements, challenges and way forward. <em>Glob. Environ. Change</em> <b>23</b>, 633–643 (2013).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.gloenvcha.2013.02.002" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000319486400006" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Water+conservancy+projects+in+China%3A+Achievements%2C+challenges+and+way+forward&author=J.+Liu&author=C.+Zang&author=S.+Tian&author=J.+Liu&author=H.+Yang&author=S.+Jia&author=L.+You&author=B.+Liu&author=M.+Zhang&publication_year=2013&journal=Glob.+Environ.+Change&pages=633-643&doi=10.1016%2Fj.gloenvcha.2013.02.002" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">121</div><div id="R121" class="citations"><div class="citation"><div class="citation-content">J. Sillmann, C. W. Stjern, G. Myhre, B. H. Samset, Ø. Hodnebrog, T. Andrews, O. Boucher, G. Faluvegi, P. Forster, M. R. Kasoar, V. V. Kharin, A. Kirkevåg, J.-F. Lamarque, D. J. L. Olivié, T. B. Richardson, D. Shindell, T. Takemura, A. Voulgarakis, F. W. Zwiers, Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. <em>Nat. Clim. Atmospheric Sci.</em> <b>2</b>, 1–7 (2019).</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Extreme+wet+and+dry+conditions+affected+differently+by+greenhouse+gases+and+aerosols&author=J.+Sillmann&author=C.+W.+Stjern&author=G.+Myhre&author=B.+H.+Samset&author=%C3%98.+Hodnebrog&author=T.+Andrews&author=O.+Boucher&author=G.+Faluvegi&author=P.+Forster&author=M.+R.+Kasoar&author=V.+V.+Kharin&author=A.+Kirkev%C3%A5g&publication_year=2019&journal=Nat.+Clim.+Atmospheric+Sci.&pages=1-7" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">122</div><div id="R122" class="citations"><div class="citation"><div class="citation-content">N. L. Poff, J. D. Olden, D. M. Merritt, D. M. Pepin, Homogenization of regional river dynamics by dams and global biodiversity implications. <em>Proc. Natl. Acad. Sci. U.S.A.</em> <b>104</b>, 5732–5737 (2007).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1073/pnas.0609812104" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/17360379" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000245657600008" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Homogenization+of+regional+river+dynamics+by+dams+and+global+biodiversity+implications&author=N.+L.+Poff&author=J.+D.+Olden&author=D.+M.+Merritt&author=D.+M.+Pepin&publication_year=2007&journal=Proc.+Natl.+Acad.+Sci.+U.S.A.&pages=5732-5737&doi=10.1073%2Fpnas.0609812104&pmid=17360379" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">123</div><div id="R123" class="citations"><div class="citation"><div class="citation-content">A. Staal, O. A. Tuinenburg, J. H. C. Bosmans, M. Holmgren, E. H. van Nes, M. Scheffer, D. C. Zemp, S. C. Dekker, Forest-rainfall cascades buffer against drought across the Amazon. <em>Nat. Clim. Change</em> <b>8</b>, 539–543 (2018).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41558-018-0177-y" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Forest-rainfall+cascades+buffer+against+drought+across+the+Amazon&author=A.+Staal&author=O.+A.+Tuinenburg&author=J.%C2%A0H.%C2%A0C.+Bosmans&author=M.+Holmgren&author=E.+H.+van+Nes&author=M.+Scheffer&author=D.+C.+Zemp&author=S.+C.+Dekker&publication_year=2018&journal=Nat.+Clim.+Change&pages=539-543&doi=10.1038%2Fs41558-018-0177-y" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">124</div><div id="R124" class="citations"><div class="citation"><div class="citation-content">A. Günther, A. Barthelmes, V. Huth, H. Joosten, G. Jurasinski, F. Koebsch, J. Couwenberg, Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. <em>Nat. Commun.</em> <b>11</b>, 1644 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41467-020-15499-z" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/32242055" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Prompt+rewetting+of+drained+peatlands+reduces+climate+warming+despite+methane+emissions&author=A.+G%C3%BCnther&author=A.+Barthelmes&author=V.+Huth&author=H.+Joosten&author=G.+Jurasinski&author=F.+Koebsch&author=J.+Couwenberg&publication_year=2020&journal=Nat.+Commun.&pages=1644&doi=10.1038%2Fs41467-020-15499-z&pmid=32242055" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">125</div><div id="R125" class="citations"><div class="citation"><div class="citation-content">T. Maavara, Q. Chen, K. Van Meter, L. E. Brown, J. Zhang, J. Ni, C. Zarfl, River dam impacts on biogeochemical cycling. <em>Nat. Rev. Earth Environ.</em> <b>1</b>, 103–116 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s43017-019-0019-0" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=River+dam+impacts+on+biogeochemical+cycling&author=T.+Maavara&author=Q.+Chen&author=K.+Van+Meter&author=L.+E.+Brown&author=J.+Zhang&author=J.+Ni&author=C.+Zarfl&publication_year=2020&journal=Nat.+Rev.+Earth+Environ.&pages=103-116&doi=10.1038%2Fs43017-019-0019-0" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">126</div><div id="R126" class="citations"><div class="citation"><div class="citation-content">N. Boers, N. Marwan, H. M. J. Barbosa, J. Kurths, A deforestation-induced tipping point for the south American monsoon system. <em>Sci. Rep.</em> <b>7</b>, 41489 (2017).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/srep41489" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/28120928" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=A+deforestation-induced+tipping+point+for+the+south+American+monsoon+system&author=N.+Boers&author=N.+Marwan&author=H.%C2%A0M.%C2%A0J.+Barbosa&author=J.+Kurths&publication_year=2017&journal=Sci.+Rep.&pages=41489&doi=10.1038%2Fsrep41489&pmid=28120928" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">127</div><div id="R127" class="citations"><div class="citation"><div class="citation-content">K. Frieler, S. Lange, F. Piontek, C. P. O. Reyer, J. Schewe, L. Warszawski, F. Zhao, L. Chini, S. Denvil, K. Emanuel, T. Geiger, K. Halladay, G. Hurtt, M. Mengel, D. Murakami, S. Ostberg, A. Popp, R. Riva, M. Stevanovic, T. Suzuki, J. Volkholz, E. Burke, P. Ciais, K. Ebi, T. D. Eddy, J. Elliott, E. Galbraith, S. N. Gosling, F. Hattermann, T. Hickler, J. Hinkel, C. Hof, V. Huber, J. Jägermeyr, V. Krysanova, R. Marcé, H. Müller Schmied, I. Mouratiadou, D. Pierson, D. P. Tittensor, R. Vautard, M. van Vliet, M. F. Biber, R. A. Betts, B. L. Bodirsky, D. Deryng, S. Frolking, C. D. Jones, H. K. Lotze, H. Lotze-Campen, R. Sahajpal, K. Thonicke, H. Tian, Y. Yamagata, Assessing the impacts of 1.5 °C global warming – Simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). <em>Geosci. Model Dev.</em> <b>10</b>, 4321–4345 (2017).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/gmd-10-4321-2017" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000416560600001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Assessing+the+impacts+of+1.5+%C2%B0C+global+warming+%E2%80%93+Simulation+protocol+of+the+Inter-Sectoral+Impact+Model+Intercomparison+Project+%28ISIMIP2b%29&author=K.+Frieler&author=S.+Lange&author=F.+Piontek&author=C.%C2%A0P.%C2%A0O.+Reyer&author=J.+Schewe&author=L.+Warszawski&author=F.+Zhao&author=L.+Chini&author=S.+Denvil&author=K.+Emanuel&author=T.+Geiger&author=K.+Halladay&publication_year=2017&journal=Geosci.+Model+Dev.&pages=4321-4345&doi=10.5194%2Fgmd-10-4321-2017" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">128</div><div id="R128" class="citations"><div class="citation"><div class="citation-content">S. Siebert, M. Kummu, M. Porkka, P. Döll, N. Ramankutty, B. R. Scanlon, A global data set of the extent of irrigated land from 1900 to 2005. <em>Hydrol. Earth Syst. Sci.</em> <b>19</b>, 1521–1545 (2015).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/hess-19-1521-2015" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000352160600027" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=A+global+data+set+of+the+extent+of+irrigated+land+from+1900+to+2005&author=S.+Siebert&author=M.+Kummu&author=M.+Porkka&author=P.+D%C3%B6ll&author=N.+Ramankutty&author=B.+R.+Scanlon&publication_year=2015&journal=Hydrol.+Earth+Syst.+Sci.&pages=1521-1545&doi=10.5194%2Fhess-19-1521-2015" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">129</div><div id="R129" class="citations"><div class="citation"><div class="citation-content">Y. Wada, M. F. P. Bierkens, Sustainability of global water use: Past reconstruction and future projections. <em>Environ. Res. Lett.</em> <b>9</b>, 104003 (2014).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1088/1748-9326/9/10/104003" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000344964000006" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Sustainability+of+global+water+use%3A+Past+reconstruction+and+future+projections&author=Y.+Wada&author=M.%C2%A0F.%C2%A0P.+Bierkens&publication_year=2014&journal=Environ.+Res.+Lett.&pages=104003&doi=10.1088%2F1748-9326%2F9%2F10%2F104003" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">130</div><div id="R130" class="citations"><div class="citation"><div class="citation-content">C. Zarfl, A. E. Lumsdon, J. Berlekamp, L. Tydecks, K. Tockner, A global boom in hydropower dam construction. <em>Aquat. Sci.</em> <b>77</b>, 161–170 (2015).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1007/s00027-014-0377-0" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000347149700014" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=A+global+boom+in+hydropower+dam+construction&author=C.+Zarfl&author=A.+E.+Lumsdon&author=J.+Berlekamp&author=L.+Tydecks&author=K.+Tockner&publication_year=2015&journal=Aquat.+Sci.&pages=161-170&doi=10.1007%2Fs00027-014-0377-0" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">131</div><div id="R131" class="citations"><div class="citation"><div class="citation-content">R. J. Keenan, G. A. Reams, F. Achard, J. V. de Freitas, A. Grainger, E. Lindquist, Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. <em>For. Ecol. Manag.</em> <b>352</b>, 9–20 (2015).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.foreco.2015.06.014" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000361777200003" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Dynamics+of+global+forest+area%3A+Results+from+the+FAO+Global+Forest+Resources+Assessment+2015&author=R.+J.+Keenan&author=G.+A.+Reams&author=F.+Achard&author=J.+V.+de+Freitas&author=A.+Grainger&author=E.+Lindquist&journal=For.+Ecol.+Manag.&pages=9-20&doi=10.1016%2Fj.foreco.2015.06.014" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">132</div><div id="R132" class="citations"><div class="citation"><div class="citation-content">A. Barnosky, E. Hadly, J. Bascompte, E. L. Berlow, J. H. Brown, M. Fortelius, W. M. Getz, J. Harte, A. Hastings, P. A. Marquet, N. D. Martinez, A. Mooers, P. Roopnarine, G. Vermij, J. W. Williams, R. Gillespie, J. Kitzes, C. Marshall, N. Matzke, D. P. Mindell, E. Revilla, A. B. Smith, Approaching a state shift in Earth’s biosphere. <em>Nature</em> <b>486</b>, 52–58 (2012).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/nature11018" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/22678279" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000304854000026" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Approaching+a+state+shift+in+Earth%E2%80%99s+biosphere&author=A.+Barnosky&author=E.+Hadly&author=J.+Bascompte&author=E.+L.+Berlow&author=J.+H.+Brown&author=M.+Fortelius&author=W.+M.+Getz&author=J.+Harte&author=A.+Hastings&author=P.+A.+Marquet&author=N.+D.+Martinez&author=A.+Mooers&publication_year=2012&journal=Nature&pages=52-58&doi=10.1038%2Fnature11018&pmid=22678279" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">133</div><div id="R133" class="citations"><div class="citation"><div class="citation-content">H. J. Fowler, G. Lenderink, A. F. Prein, S. Westra, R. P. Allan, N. Ban, R. Barbero, P. Berg, S. Blenkinsop, H. X. Do, S. Guerreiro, J. O. Haerter, E. J. Kendon, E. Lewis, C. Schaer, A. Sharma, G. Villarini, C. Wasko, X. Zhang, Anthropogenic intensification of short-duration rainfall extremes. <em>Nat. Rev. Earth Environ.</em> <b>2</b>, 107–122 (2021).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s43017-020-00128-6" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Anthropogenic+intensification+of+short-duration+rainfall+extremes&author=H.+J.+Fowler&author=G.+Lenderink&author=A.+F.+Prein&author=S.+Westra&author=R.+P.+Allan&author=N.+Ban&author=R.+Barbero&author=P.+Berg&author=S.+Blenkinsop&author=H.+X.+Do&author=S.+Guerreiro&author=J.+O.+Haerter&publication_year=2021&journal=Nat.+Rev.+Earth+Environ.&pages=107-122&doi=10.1038%2Fs43017-020-00128-6" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">134</div><div id="R134" class="citations"><div class="citation"><div class="citation-content">L. Gudmundsson, J. Boulange, H. X. Do, S. N. Gosling, M. G. Grillakis, A. G. Koutroulis, M. Leonard, J. Liu, N. M. Schmied, L. Papadimitriou, Y. Pokhrel, S. I. Seneviratne, Y. Satoh, W. Thiery, S. Westra, X. Zhang, F. Zhao, Globally observed trends in mean and extreme river flow attributed to climate change. <em>Science</em> <b>371</b>, 1159–1162 (2021).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/science.aba3996" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/33707264" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000630096400035" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Globally+observed+trends+in+mean+and+extreme+river+flow+attributed+to+climate+change&author=L.+Gudmundsson&author=J.+Boulange&author=H.+X.+Do&author=S.+N.+Gosling&author=M.+G.+Grillakis&author=A.+G.+Koutroulis&author=M.+Leonard&author=J.+Liu&author=N.+M.+Schmied&author=L.+Papadimitriou&author=Y.+Pokhrel&author=S.+I.+Seneviratne&publication_year=2021&journal=Science&pages=1159-1162&doi=10.1126%2Fscience.aba3996&pmid=33707264" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">135</div><div id="R135" class="citations"><div class="citation"><div class="citation-content">J. Spinoni, G. Naumann, H. Carrao, P. Barbosa, J. Vogt, World drought frequency, duration, and severity for 1951–2010. <em>Int. J. Climatol.</em> <b>34</b>, 2792–2804 (2014).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1002/joc.3875" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000337667100019" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=World+drought+frequency%2C+duration%2C+and+severity+for+1951%E2%80%932010&author=J.+Spinoni&author=G.+Naumann&author=H.+Carrao&author=P.+Barbosa&author=J.+Vogt&publication_year=2014&journal=Int.+J.%C2%A0Climatol.&pages=2792-2804&doi=10.1002%2Fjoc.3875" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">136</div><div id="R136" class="citations"><div class="citation"><div class="citation-content">T. G. Huntington, Evidence for intensification of the global water cycle: Review and synthesis. <em>J. Hydrol.</em> <b>319</b>, 83–95 (2006).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.jhydrol.2005.07.003" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000235670000006" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Evidence+for+intensification+of+the+global+water+cycle%3A+Review+and+synthesis&author=T.+G.+Huntington&publication_year=2006&journal=J.+Hydrol.&pages=83-95&doi=10.1016%2Fj.jhydrol.2005.07.003" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">137</div><div id="R137" class="citations"><div class="citation"><div class="citation-content">J. Jägermeyr, A. Pastor, H. Biemans, D. Gerten, Reconciling irrigated food production with environmental flows for sustainable development goals implementation. <em>Nat. Commun.</em> <b>8</b>, 15900 (2017).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/ncomms15900" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/28722026" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Reconciling+irrigated+food+production+with+environmental+flows+for+sustainable+development+goals+implementation&author=J.+J%C3%A4germeyr&author=A.+Pastor&author=H.+Biemans&author=D.+Gerten&publication_year=2017&journal=Nat.+Commun.&pages=15900&doi=10.1038%2Fncomms15900&pmid=28722026" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">138</div><div id="R138" class="citations"><div class="citation"><div class="citation-content">A. V. Pastor, F. Ludwig, H. Biemans, H. Hoff, P. Kabat, Accounting for environmental flow requirements in global water assessments. <em>Hydrol. Earth Syst. Sci.</em> <b>18</b>, 5041–5059 (2014).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/hess-18-5041-2014" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000347313600008" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Accounting+for+environmental+flow+requirements+in+global+water+assessments&author=A.+V.+Pastor&author=F.+Ludwig&author=H.+Biemans&author=H.+Hoff&author=P.+Kabat&publication_year=2014&journal=Hydrol.+Earth+Syst.+Sci.&pages=5041-5059&doi=10.5194%2Fhess-18-5041-2014" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">139</div><div id="R139" class="citations"><div class="citation"><div class="citation-content">V. Virkki, E. Alanärä, M. Porkka, L. Ahopelto, T. Gleeson, C. Mohan, L. Wang-Erlandsson, M. Flörke, D. Gerten, S. N. Gosling, N. Hanasaki, H. Müller Schmied, N. Wanders, M. Kummu, Globally widespread and increasing violations of environmental flow envelopes. <em>Hydrol. Earth Syst. Sci.</em> <b>26</b>, 3315–3336 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/hess-26-3315-2022" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000819427200001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Globally+widespread+and+increasing+violations+of+environmental+flow+envelopes&author=V.+Virkki&author=E.+Alan%C3%A4r%C3%A4&author=M.+Porkka&author=L.+Ahopelto&author=T.+Gleeson&author=C.+Mohan&author=L.+Wang-Erlandsson&author=M.+Fl%C3%B6rke&author=D.+Gerten&author=S.+N.+Gosling&author=N.+Hanasaki&author=H.+M%C3%BCller+Schmied&publication_year=2022&journal=Hydrol.+Earth+Syst.+Sci.&pages=3315-3336&doi=10.5194%2Fhess-26-3315-2022" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">140</div><div id="R140" class="citations"><div class="citation"><div class="citation-content">P. Greve, B. Orlowsky, B. Mueller, J. Sheffield, M. Reichstein, S. I. Seneviratne, Global assessment of trends in wetting and drying over land. <em>Nat. Geosci.</em> <b>7</b>, 716–721 (2014).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/ngeo2247" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Global+assessment+of+trends+in+wetting+and+drying+over+land&author=P.+Greve&author=B.+Orlowsky&author=B.+Mueller&author=J.+Sheffield&author=M.+Reichstein&author=S.+I.+Seneviratne&publication_year=2014&journal=Nat.+Geosci.&pages=716-721&doi=10.1038%2Fngeo2247" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">141</div><div id="R141" class="citations"><div class="citation"><div class="citation-content">P. Micklin, The aral sea disaster. <em>Annu. Rev. Earth Planet. Sci.</em> <b>35</b>, 47–72 (2018).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1146/annurev.earth.35.031306.140120" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+aral+sea+disaster&author=P.+Micklin&publication_year=2018&journal=Annu.+Rev.+Earth+Planet.+Sci.&pages=47-72&doi=10.1146%2Fannurev.earth.35.031306.140120" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">142</div><div id="R142" class="citations"><div class="citation"><div class="citation-content">W. M. Hammond, A. P. Williams, J. T. Abatzoglou, H. D. Adams, T. Klein, R. López, C. Sáenz-Romero, H. Hartmann, D. D. Breshears, C. D. Allen, Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. <em>Nat. Commun.</em> <b>13</b>, 1761 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41467-022-29289-2" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/35383157" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Global+field+observations+of+tree+die-off+reveal+hotter-drought+fingerprint+for+Earth%E2%80%99s+forests&author=W.+M.+Hammond&author=A.+P.+Williams&author=J.+T.+Abatzoglou&author=H.+D.+Adams&author=T.+Klein&author=R.+L%C3%B3pez&author=C.+S%C3%A1enz-Romero&author=H.+Hartmann&author=D.+D.+Breshears&author=C.+D.+Allen&publication_year=2022&journal=Nat.+Commun.&pages=1761&doi=10.1038%2Fs41467-022-29289-2&pmid=35383157" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">143</div><div id="R143" class="citations"><div class="citation"><div class="citation-content">R. S. Cottrell, K. L. Nash, B. S. Halpern, T. A. Remenyi, S. P. Corney, A. Fleming, E. A. Fulton, S. Hornborg, A. Johne, R. A. Watson, J. L. Blanchard, Food production shocks across land and sea. <em>Nat. Sustain.</em> <b>2</b>, 130–137 (2019).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41893-018-0210-1" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Food+production+shocks+across+land+and+sea&author=R.+S.+Cottrell&author=K.+L.+Nash&author=B.+S.+Halpern&author=T.+A.+Remenyi&author=S.+P.+Corney&author=A.+Fleming&author=E.+A.+Fulton&author=S.+Hornborg&author=A.+Johne&author=R.+A.+Watson&author=J.+L.+Blanchard&publication_year=2019&journal=Nat.+Sustain.&pages=130-137&doi=10.1038%2Fs41893-018-0210-1" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">144</div><div id="R144" class="citations"><div class="citation"><div class="citation-content">J. Schöngart, F. Wittmann, A. Faria de Resende, C. Assahira, G. de Sousa Lobo, J. R. D. Neves, M. da Rocha, G. B. Mori, A. C. Quaresma, L. O. Demarchi, B. W. Albuquerque, Y. O. Feitosa, G. da Silva Costa, G. V. Feitoza, F. M. Durgante, A. Lopes, S. E. Trumbore, T. S. F. Silva, H. ter Steege, A. L. Val, W. J. Junk, M. T. F. Piedade, The shadow of the Balbina dam: A synthesis of over 35 years of downstream impacts on floodplain forests in Central Amazonia. <em>Aquat. Conserv. Mar. Freshw. Ecosyst.</em> <b>31</b>, 1117–1135 (2021).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1002/aqc.3526" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000618088200001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+shadow+of+the+Balbina+dam%3A+A+synthesis+of+over+35+years+of+downstream+impacts+on+floodplain+forests+in+Central+Amazonia&author=J.+Sch%C3%B6ngart&author=F.+Wittmann&author=A.+Faria+de+Resende&author=C.+Assahira&author=G.+de+Sousa+Lobo&author=J.%C2%A0R.%C2%A0D.+Neves&author=M.+da+Rocha&author=G.+B.+Mori&author=A.+C.+Quaresma&author=L.+O.+Demarchi&author=B.+W.+Albuquerque&author=Y.+O.+Feitosa&publication_year=2021&journal=Aquat.+Conserv.+Mar.+Freshw.+Ecosyst.&pages=1117-1135&doi=10.1002%2Faqc.3526" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">145</div><div id="R145" class="citations"><div class="citation"><div class="citation-content">B. R. Deemer, J. A. Harrison, S. Li, J. J. Beaulieu, T. DelSontro, N. Barros, J. F. Bezerra-Neto, S. M. Powers, M. A. dos Santos, J. A. Vonk, Greenhouse gas emissions from reservoir water surfaces: A new global synthesis. <em>BioScience</em> <b>66</b>, 949–964 (2016).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1093/biosci/biw117" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/32801383" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000387463900007" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Greenhouse+gas+emissions+from+reservoir+water+surfaces%3A+A+new+global+synthesis&author=B.+R.+Deemer&author=J.+A.+Harrison&author=S.+Li&author=J.+J.+Beaulieu&author=T.+DelSontro&author=N.+Barros&author=J.+F.+Bezerra-Neto&author=S.+M.+Powers&author=M.+A.+dos+Santos&author=J.+A.+Vonk&publication_year=2016&journal=BioScience&pages=949-964&doi=10.1093%2Fbiosci%2Fbiw117&pmid=32801383" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">146</div><div id="R146" class="citations"><div class="citation"><div class="citation-content">A. Clarke, V. Kapustin, Hemispheric aerosol vertical profiles: Anthropogenic impacts on optical depth and cloud nuclei. <em>Science</em> <b>329</b>, 1488–1492 (2010).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/science.1188838" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/20847262" target="_blank">PubMed</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000281869000032" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Hemispheric+aerosol+vertical+profiles%3A+Anthropogenic+impacts+on+optical+depth+and+cloud+nuclei&author=A.+Clarke&author=V.+Kapustin&publication_year=2010&journal=Science&pages=1488-1492&doi=10.1126%2Fscience.1188838&pmid=20847262" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">147</div><div id="R147" class="citations"><div class="citation"><div class="citation-content">P.-A. Monerie, L. J. Wilcox, A. G. Turner, Effects of anthropogenic aerosol and greenhouse gas emissions on northern hemisphere monsoon precipitation: Mechanisms and uncertainty. <em>J. Clim.</em> <b>35</b>, 2305–2326 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1175/JCLI-D-21-0412.1" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000808524500001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Effects+of+anthropogenic+aerosol+and+greenhouse+gas+emissions+on+northern+hemisphere+monsoon+precipitation%3A+Mechanisms+and+uncertainty&author=P.-A.+Monerie&author=L.+J.+Wilcox&author=A.+G.+Turner&publication_year=2022&journal=J.+Clim.&pages=2305-2326&doi=10.1175%2FJCLI-D-21-0412.1" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">148</div><div id="R148" class="citations"><div class="citation"><div class="citation-content">J. Cao, H. Wang, B. Wang, H. Zhao, C. Wang, X. Zhu, Higher sensitivity of northern hemisphere monsoon to anthropogenic aerosol than greenhouse gases. <em>Geophys. Res. Lett.</em> <b>49</b>, e2022GL100270 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1029/2022GL100270" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000871981000001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Higher+sensitivity+of+northern+hemisphere+monsoon+to+anthropogenic+aerosol+than+greenhouse+gases&author=J.+Cao&author=H.+Wang&author=B.+Wang&author=H.+Zhao&author=C.+Wang&author=X.+Zhu&publication_year=2022&journal=Geophys.+Res.+Lett.&pages=e2022GL100270&doi=10.1029%2F2022GL100270" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">149</div><div id="R149" class="citations"><div class="citation"><div class="citation-content">B. Zhuang, Y. Gao, Y. Hu, H. Chen, T. Wang, S. Li, M. Li, M. Xie, Interaction between different mixing aerosol direct effects and East Asian summer monsoon. <em>Clim. Dyn.</em> <b>61</b>, 1157–1176 (2022).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1007/s00382-022-06617-2" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000899039900001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Interaction+between+different+mixing+aerosol+direct+effects+and+East+Asian+summer+monsoon&author=B.+Zhuang&author=Y.+Gao&author=Y.+Hu&author=H.+Chen&author=T.+Wang&author=S.+Li&author=M.+Li&author=M.+Xie&publication_year=2022&journal=Clim.+Dyn.&pages=1157-1176&doi=10.1007%2Fs00382-022-06617-2" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">150</div><div id="R150" class="citations"><div class="citation"><div class="citation-content">D. M. Westervelt, Y. You, X. Li, M. Ting, D. E. Lee, Y. Ming, Relative importance of greenhouse gases, sulfate, organic carbon, and black carbon aerosol for south asian monsoon rainfall changes. <em>Geophys. Res. Lett.</em> <b>47</b>, e2020GL088363 (2020).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1029/2020GL088363" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000551465400051" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Relative+importance+of+greenhouse+gases%2C+sulfate%2C+organic+carbon%2C+and+black+carbon+aerosol+for+south+asian+monsoon+rainfall+changes&author=D.+M.+Westervelt&author=Y.+You&author=X.+Li&author=M.+Ting&author=D.+E.+Lee&author=Y.+Ming&publication_year=2020&journal=Geophys.+Res.+Lett.&pages=e2020GL088363&doi=10.1029%2F2020GL088363" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">151</div><div id="R151" class="citations"><div class="citation"><div class="citation-content">E. D. Galbraith, E. Y. Kwon, A. Gnanadesikan, K. B. Rodgers, S. M. Griffies, D. Bianchi, J. L. Sarmiento, J. P. Dunne, J. Simeon, R. D. Slater, A. T. Wittenberg, I. M. Held, Climate variability and radiocarbon in the CM2Mc Earth system model. <em>J. Clim.</em> <b>24</b>, 4230–4254 (2011).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1175/2011JCLI3919.1" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000294490600003" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Climate+variability+and+radiocarbon+in+the+CM2Mc+Earth+system+model&author=E.+D.+Galbraith&author=E.+Y.+Kwon&author=A.+Gnanadesikan&author=K.+B.+Rodgers&author=S.+M.+Griffies&author=D.+Bianchi&author=J.+L.+Sarmiento&author=J.+P.+Dunne&author=J.+Simeon&author=R.+D.+Slater&author=A.+T.+Wittenberg&author=I.+M.+Held&publication_year=2011&journal=J.+Clim.&pages=4230-4254&doi=10.1175%2F2011JCLI3919.1" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">152</div><div id="R152" class="citations"><div class="citation"><div class="citation-content">W. von Bloh, S. Schaphoff, C. Müller, S. Rolinski, K. Waha, S. Zaehle, Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). <em>Geosci. Model Dev.</em> <b>11</b>, 2789–2812 (2018).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/gmd-11-2789-2018" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000438399200001" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Implementing+the+nitrogen+cycle+into+the+dynamic+global+vegetation%2C+hydrology%2C+and+crop+growth+model+LPJmL+%28version+5.0%29&author=W.+von+Bloh&author=S.+Schaphoff&author=C.+M%C3%BCller&author=S.+Rolinski&author=K.+Waha&author=S.+Zaehle&publication_year=2018&journal=Geosci.+Model+Dev.&pages=2789-2812&doi=10.5194%2Fgmd-11-2789-2018" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">153</div><div id="R153" class="citations"><div class="citation"><div class="citation-content">P. C. D. Milly, A. B. Shmakin, Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. <em>J. Hydrometeorol.</em> <b>3</b>, 283–299 (2002).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1175/1525-7541(2002)003%3C0283:GMOLWA%3E2.0.CO;2" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000175738900004" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Global+modeling+of+land+water+and+energy+balances.+Part+I%3A+The+land+dynamics+%28LaD%29+model&author=P.%C2%A0C.%C2%A0D.+Milly&author=A.+B.+Shmakin&publication_year=2002&journal=J.+Hydrometeorol.&pages=283-299&doi=10.1175%2F1525-7541%282002%29003%253C0283%3AGMOLWA%253E2.0.CO%3B2" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">154</div><div id="R154" class="citations"><div class="citation"><div class="citation-content">J. L. Anderson, V. Balaji, A. J. Broccoli, W. F. Cooke, T. L. Delworth, K. W. Dixon, L. J. Donner, K. A. Dunne, S. M. Freidenreich, S. T. Garner, R. G. Gudgel, C. T. Gordon, I. M. Held, R. S. Hemler, L. W. Horowitz, S. A. Klein, T. R. Knutson, P. J. Kushner, A. R. Langenhost, N. C. Lau, Z. Liang, S. L. Malyshev, P. C. D. Milly, M. J. Nath, J. J. Ploshay, V. Ramaswamy, M. D. Schwarzkopf, E. Shevliakova, J. J. Sirutis, B. J. Soden, W. F. Stern, L. A. Thompson, R. J. Wilson, A. T. Wittenberg, B. L. Wyman, The new GFDL global atmosphere and land model AM2-LM2: Evaluationvwith prescribed SST simulations. <em>J. Clim.</em> <b>17</b>, 4641–4673 (2004).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1175/JCLI-3223.1" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000226084900005" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+new+GFDL+global+atmosphere+and+land+model+AM2-LM2%3A+Evaluationvwith+prescribed+SST+simulations&author=J.+L.+Anderson&author=V.+Balaji&author=A.+J.+Broccoli&author=W.+F.+Cooke&author=T.+L.+Delworth&author=K.+W.+Dixon&author=L.+J.+Donner&author=K.+A.+Dunne&author=S.+M.+Freidenreich&author=S.+T.+Garner&author=R.+G.+Gudgel&author=C.+T.+Gordon&publication_year=2004&journal=J.+Clim.&pages=4641-4673&doi=10.1175%2FJCLI-3223.1" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">155</div><div id="R155" class="citations"><div class="citation"><div class="citation-content">S. Sitch, B. Smith, I. C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J. O. Kaplan, S. Levis, W. Lucht, M. T. Sykes, K. Thonicke, S. Venevsky, Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. <em>Glob. Change Biol.</em> <b>9</b>, 161–185 (2003).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1046/j.1365-2486.2003.00569.x" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000180852800005" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Evaluation+of+ecosystem+dynamics%2C+plant+geography+and+terrestrial+carbon+cycling+in+the+LPJ+dynamic+global+vegetation+model&author=S.+Sitch&author=B.+Smith&author=I.+C.+Prentice&author=A.+Arneth&author=A.+Bondeau&author=W.+Cramer&author=J.+O.+Kaplan&author=S.+Levis&author=W.+Lucht&author=M.+T.+Sykes&author=K.+Thonicke&author=S.+Venevsky&publication_year=2003&journal=Glob.+Change+Biol.&pages=161-185&doi=10.1046%2Fj.1365-2486.2003.00569.x" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">156</div><div id="R156" class="citations"><div class="citation"><div class="citation-content">D. Gerten, S. Schaphoff, U. Haberlandt, W. Lucht, S. Sitch, Terrestrial vegetation and large-scale water balance. Hydrological evaluation of a dynamic global vegetation model. <em>J. Hydrol.</em> <b>286</b>, 249–270 (2004).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.jhydrol.2003.09.029" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000188887100017" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Terrestrial+vegetation+and+large-scale+water+balance.+Hydrological+evaluation+of+a+dynamic+global+vegetation+model&author=D.+Gerten&author=S.+Schaphoff&author=U.+Haberlandt&author=W.+Lucht&author=S.+Sitch&publication_year=2004&journal=J.+Hydrol.&pages=249-270&doi=10.1016%2Fj.jhydrol.2003.09.029" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">157</div><div id="R157" class="citations"><div class="citation"><div class="citation-content">A. Bondeau, P. Smith, S. Zaehle, S. Schaphoff, W. Lucht, W. Cramer, D. Gerten, H. Lotze-Campen, C. Müller, M. Reichstein, B. Smith, Modelling the role of agriculture for the 20th century global terrestrial carbon balance. <em>Glob. Change Biol.</em> <b>13</b>, 1–28 (2007).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1111/j.1365-2486.2006.01305.x" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000245052800010" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Modelling+the+role+of+agriculture+for+the+20th+century+global+terrestrial+carbon+balance&author=A.+Bondeau&author=P.+Smith&author=S.+Zaehle&author=S.+Schaphoff&author=W.+Lucht&author=W.+Cramer&author=D.+Gerten&author=H.+Lotze-Campen&author=C.+M%C3%BCller&author=M.+Reichstein&author=B.+Smith&publication_year=2007&journal=Glob.+Change+Biol.&pages=1-28&doi=10.1111%2Fj.1365-2486.2006.01305.x" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">158</div><div id="R158" class="citations"><div class="citation"><div class="citation-content">K. Thonicke, A. Spessa, I. C. Prentice, S. P. Harrison, L. Dong, C. Carmona-Moreno, The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: Results from a process-based model. <em>Biogeosci.</em> <b>7</b>, 1991–2011 (2010).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/bg-7-1991-2010" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000279390700012" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=The+influence+of+vegetation%2C+fire+spread+and+fire+behaviour+on+biomass+burning+and+trace+gas+emissions%3A+Results+from+a+process-based+model&author=K.+Thonicke&author=A.+Spessa&author=I.+C.+Prentice&author=S.+P.+Harrison&author=L.+Dong&author=C.+Carmona-Moreno&publication_year=2010&journal=Biogeosci.&pages=1991-2011&doi=10.5194%2Fbg-7-1991-2010" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">159</div><div id="R159" class="citations"><div class="citation"><div class="citation-content">M. Drüke, M. Forkel, W. von Bloh, B. Sakschewski, M. Cardoso, M. Bustamante, J. Kurths, K. Thonicke, Improving the LPJmL4-SPITFIRE vegetation-fire model for South America using satellite data. <em>Geosci. Model. Dev.</em> <b>12</b>, 5029–2054 (2019).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/gmd-12-5029-2019" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000500961400002" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Improving+the+LPJmL4-SPITFIRE+vegetation-fire+model+for+South+America+using+satellite+data&author=M.+Dr%C3%BCke&author=M.+Forkel&author=W.+von+Bloh&author=B.+Sakschewski&author=M.+Cardoso&author=M.+Bustamante&author=J.+Kurths&author=K.+Thonicke&publication_year=2019&journal=Geosci.+Model.+Dev.&pages=5029-2054&doi=10.5194%2Fgmd-12-5029-2019" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">160</div><div id="R160" class="citations"><div class="citation"><div class="citation-content">M. Forkel, N. Carvalhais, S. Schaphoff, W. von Bloh, M. Migliavacca, M. Thurner, K. Thonicke, Identifying environmental controls on vegetation greeness phenology through model-data integration. <em>Biogeosci.</em> <b>11</b>, 7025–7050 (2014).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5194/bg-11-7025-2014" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000346357100035" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Identifying+environmental+controls+on+vegetation+greeness+phenology+through+model-data+integration&author=M.+Forkel&author=N.+Carvalhais&author=S.+Schaphoff&author=W.+von+Bloh&author=M.+Migliavacca&author=M.+Thurner&author=K.+Thonicke&publication_year=2014&journal=Biogeosci.&pages=7025-7050&doi=10.5194%2Fbg-11-7025-2014" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">161</div><div id="R161" class="citations"><div class="citation"><div class="citation-content">M. Forkel, M. Drüke, M. Thurner, W. Dorigo, S. Schaphoff, K. Thonicke, W. von Bloh, N. Carvalhais, Constraining modelled global vegetation dynamics and carbon turnover using multiple satellite observations. <em>Sci. Rep.</em> <b>9</b>, 18757 (2019).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/s41598-019-55187-7" target="_blank">Crossref</a></div><div class="core-xlink-pubmed"><a href="https://web.archive.org/web/20240318040954/https://www.ncbi.nlm.nih.gov/pubmed/31822728" target="_blank">PubMed</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Constraining+modelled+global+vegetation+dynamics+and+carbon+turnover+using+multiple+satellite+observations&author=M.+Forkel&author=M.+Dr%C3%BCke&author=M.+Thurner&author=W.+Dorigo&author=S.+Schaphoff&author=K.+Thonicke&author=W.+von+Bloh&author=N.+Carvalhais&publication_year=2019&journal=Sci.+Rep.&pages=18757&doi=10.1038%2Fs41598-019-55187-7&pmid=31822728" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">162</div><div id="R162" class="citations"><div class="citation"><div class="citation-content">S. Fader, C. Rost, A. Müller, D. Bondeau, Gerten, virtual water content of temperate cereals and maize: Present and potential future patterns. <em>J. Hydrol.</em> <b>384</b>, 218–231 (2010).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.jhydrol.2009.12.011" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000277893300005" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Gerten%2C+virtual+water+content+of+temperate+cereals+and+maize%3A+Present+and+potential+future+patterns&author=S.+Fader&author=C.+Rost&author=A.+M%C3%BCller&author=D.+Bondeau&publication_year=2010&journal=J.+Hydrol.&pages=218-231&doi=10.1016%2Fj.jhydrol.2009.12.011" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">163</div><div id="R163" class="citations"><div class="citation"><div class="citation-content">V. Kattsov, R. Federation, C. Reason, S. Africa, A. A. Uk, T. A. Uk, J. Baehr, A. B. Uk, J. Catto, J. S. Canada, A. S. Uk, <i>Evaluation of climate models (AR5), Climate Change 2013 - The Physical Science Basis</i> (Cambridge University Press, 2013), pp. 741–866.</div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar?q=V.+Kattsov%2C+R.%C2%A0Federation%2C+C.%C2%A0Reason%2C+S.%C2%A0Africa%2C+A.%C2%A0A.%C2%A0Uk%2C+T.%C2%A0A.%C2%A0Uk%2C+J.%C2%A0Baehr%2C+A.%C2%A0B.%C2%A0Uk%2C+J.%C2%A0Catto%2C+J.%C2%A0S.%C2%A0Canada%2C+A.%C2%A0S.%C2%A0Uk%2C+Evaluation+of+climate+models+%28AR5%29%2C+Climate+Change+2013+-+The+Physical+Science+Basis+%28Cambridge+University+Press%2C+2013%29%2C+pp.%C2%A0741%E2%80%93866." target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">164</div><div id="R164" class="citations"><div class="citation"><div class="citation-content">M. Santoro, O. Cartus, S. Mermoz, A. Bouvet, T. Le Toan, N. Carvalhais, D. Rozendaal, M. Herold, V. Avitabile, S. Quegan, J. Carreiras, Y. Rauste, H. Balzter, C. C. Schmullius, F. M. Seifert, A detailed portrait of the forest aboveground biomass pool for the year 2010 obtained from multiple remote sensing observations. <em>Geophys. Res. Abstr.</em> <b>20</b>, EGU2018-18932 (2018). <a href="https://web.archive.org/web/20240318040954/https://meetingorganizer.copernicus.org/EGU2018/EGU2018-18932.pdf">https://meetingorganizer.copernicus.org/EGU2018/EGU2018-18932.pdf</a></div><div class="external-links"><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=A+detailed+portrait+of+the+forest+aboveground+biomass+pool+for+the+year+2010+obtained+from+multiple+remote+sensing+observations&author=M.+Santoro&author=O.+Cartus&author=S.+Mermoz&author=A.+Bouvet&author=T.+Le+Toan&author=N.+Carvalhais&author=D.+Rozendaal&author=M.+Herold&author=V.+Avitabile&author=S.+Quegan&author=J.+Carreiras&author=Y.+Rauste&publication_year=2018&pages=EGU2018-18932" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">165</div><div id="R165" class="citations"><div class="citation"><div class="citation-content">P. Gkatsopoulos, A methodology for calculating cooling from vegetation evapotranspiration for use in urban space microclimate simulations. <em>Proc. Environ. Sci.</em> <b>38</b>, 477–484 (2017).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1016/j.proenv.2017.03.139" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=A+methodology+for+calculating+cooling+from+vegetation+evapotranspiration+for+use+in+urban+space+microclimate+simulations&author=P.+Gkatsopoulos&publication_year=2017&journal=Proc.+Environ.+Sci.&pages=477-484&doi=10.1016%2Fj.proenv.2017.03.139" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">166</div><div id="R166" class="citations"><div class="citation"><div class="citation-content">N. Unger, Human land-use-driven reduction of forest volatiles cools global climate. <em>Nat. Clim. Change</em> <b>4</b>, 907–910 (2014).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1038/nclimate2347" target="_blank">Crossref</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Human+land-use-driven+reduction+of+forest+volatiles+cools+global+climate&author=N.+Unger&publication_year=2014&journal=Nat.+Clim.+Change&pages=907-910&doi=10.1038%2Fnclimate2347" target="_blank">Google Scholar</a></div></div></div></div></div><div role="listitem" data-has="label"><div class="label">167</div><div id="R167" class="citations"><div class="citation"><div class="citation-content">W. A. Hoffmann, R. B. Jackson, Vegetation-climate feedbacks in the conversion of tropical savanna to grassland. <em>J. Clim.</em> <b>13</b>, 1593–1602 (2000).</div><div class="external-links"><div class="core-xlink-crossref"><a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1175/1520-0442(2000)013%3C1593:VCFITC%3E2.0.CO;2" target="_blank">Crossref</a></div><div class="core-xlink-isi"><a href="https://web.archive.org/web/20240318040954/https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&DestApp=WOS_CPL&UsrCustomerID=5e3815c904498985e796fc91436abd9a&SrcAuth=atyponcel&SrcApp=literatum&DestLinkType=FullRecord&KeyUT=000086905200010" target="_blank">ISI</a></div><div class="core-xlink-google-scholar"><a href="https://web.archive.org/web/20240318040954/https://scholar.google.com/scholar_lookup?title=Vegetation-climate+feedbacks+in+the+conversion+of+tropical+savanna+to+grassland&author=W.+A.+Hoffmann&author=R.+B.+Jackson&publication_year=2000&journal=J.+Clim.&pages=1593-1602&doi=10.1175%2F1520-0442%282000%29013%253C1593%3AVCFITC%253E2.0.CO%3B2" target="_blank">Google Scholar</a></div></div></div></div></div></div></section><section id="elettersSection" class="eletters-wrapper"><div id="eletterModal" data-backdrop="static" data-keyboard="false" tabindex="-1" aria-labelledby="eletterModalLabel" aria-hidden="true" class="modal fade"><div class="modal-dialog modal-lg"><div class="modal-content"><div class="modal-header border-bottom-0 mb-1_5x"><h3 id="eletterModalLabel" class="modal-title h4 title font-weight-bold">Submit a Response to This Article</h3><button type="button" data-dismiss="modal" aria-label="Close" class="close"><span aria-hidden="true">×</span></button></div><form id="eletterForm" action="/web/20240318040954/https://www.science.org/action/submitComment" method="POST"><input type="hidden" name="doi" value="10.1126/sciadv.adh2458"/><div class="modal-body"><div class="compose-wrapper mb-2x"><h5 class="text-deep-gray text-md letter-spacing-default mb-1x">Compose eLetter</h5><div class="form-group"><label for="eletterTitle">Title:</label><input type="text" id="eletterTitle" name="title" placeholder="eg. Re. this article..." required="required" class="form-control"/><div class="invalid-feedback">Title is required</div></div><div class="form-group"><label for="eletterComment">Contents:</label><textarea id="eletterComment" rows="8" name="comment" class="form-control tinyMCEInput"></textarea></div></div><div class="contribs-wrapper mb-2x"><h5 class="text-deep-gray text-md letter-spacing-default mb-1x">Contributors</h5><div class="contribs-forms-wrapper"><div id="#contribForm[INDEX]" class="eletter-contrib-form bg-very-light-gray pt-1_5x px-1x"><div class="d-none justify-content-end eletter-contrib-form__remove-wrapper"><button class="eletter-contrib-form__remove btn btn-with-icon--outline-secondary btn-with-icon--sm border-darker-gray mb-1"><span class="text-uppercase text-xxs">remove contributor</span><i class="icon-close"></i></button></div><div class="form-group"><label for="contribFirstName[INDEX]">First name:</label><input type="text" id="contribFirstName[INDEX]" name="firstName" placeholder="eg. John" class="form-control eletter-contrib-form__input"/></div><div class="form-group"><label for="contribLastName[INDEX]">Last name:</label><input type="text" id="contribLastName[INDEX]" name="lastName" placeholder="eg. Doe" class="form-control eletter-contrib-form__input"/></div><div class="form-group"><label for="contribEmail[INDEX]">Email:</label><input type="email" id="contribEmail[INDEX]" name="email" placeholder="eg. example@gmail.com" class="form-control eletter-contrib-form__input"/></div><div class="form-group"><label for="contribRole[INDEX]">Role/occupation:</label><input type="text" id="contribRole[INDEX]" name="role" placeholder="eg. Orthopedic Surgeon" class="form-control eletter-contrib-form__input"/></div><div class="form-group pb-1_5x"><label for="contribAffiliation[INDEX]">affiliation:</label><input type="text" id="contribAffiliation[INDEX]" name="affiliation" placeholder="eg. Royal Free Hospital" class="form-control eletter-contrib-form__input"/></div></div></div><div class="d-flex justify-content-end"><button id="eletterAddContrib" type="button" class="btn btn-outline-primary text-xs px-2_5x py-2 font-weight-500">add another contributor</button></div></div><div class="statement-wrapper mb-2x"><h5 class="text-deep-gray text-md letter-spacing-default mb-1x">Statement of Competing Interests</h5><div class="form-group mb-1x"><div class="d-flex"><label class="text-uppercase mr-1x">Competing interests?</label><div><div class="custom-control custom-radio mb-2"><input id="statementRadioYes" name="competingInterests" type="radio" value="yes" checked="checked" class="custom-control-input"/><label for="statementRadioYes" class="custom-control-label">YES</label></div><div class="custom-control custom-radio"><input id="statementRadioNo" name="competingInterests" type="radio" value="no" class="custom-control-input"/><label for="statementRadioNo" class="custom-control-label">NO</label></div></div></div></div><div class="form-group disclosures-textarea-group"><label for="eletterDisclosures">Please describe the competing interests</label><textarea id="eletterDisclosures" rows="8" name="disclosures" required="required" tabindex="-1" class="form-control tinyMCEInput"></textarea></div></div><div class="captcha-wrapper mb-2x"> <div class="g-recaptcha " data-sitekey="6Lc4HR8TAAAAAPFSxfchztMruqn2dTwPIQ9vaX9b" data-expired-callback="eletterCaptchaExpired" data-callback="eletterCaptchaFilled"></div> </div></div><div class="modal-footer border-gray"><button type="button" data-dismiss="modal" class="btn btn-outline-secondary btn-outline-secondary--text-darker-gray text-xs text-xs px-2_5x py-2 font-weight-500">CANCEL</button><button id="eletterFormSubmit" type="submit" class="btn btn-primary text-xs px-2_5x py-2 font-weight-500">SUBMIT</button></div></form></div></div></div> <div class="eletters mt-1_5x mb-1x mb-sm-1_5x"> <div class="d-flex mb-1_5x"> <h2 class="mr-1 h4 font-weight-bold d-flex flex-row-reverse"><span class="eletters__count">(0)</span><span>eLetters</span></h2> </div> <p class="mb-1x">eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our <a href="/web/20240318040954/https://www.science.org/content/page/terms-service" class="text-primary">Terms of Service</a> before submitting an eLetter.</p> <a id="eletterModalToggler" href="/web/20240318040954/https://www.science.org/action/ssostart?redirectUri=/doi/full/10.1126/sciadv.adh2458" class="btn btn-outline-primary mb-1_5x text-xs py-2 font-weight-500">Log In to Submit a Response</a> <p class="eletters__no-comments d-none">No eLetters have been published for this article yet.</p> <div class="eletters__comments hide-show-more items-collapse fade d-none"> <div id="itemsCollapseItems" class="items-collapse__items w-100 collapse"> <div class="pl-2x"> <div data-settings="{}" class="related-do"> <div class="related-do__items"> <div data-settings="{"id":"9f823898-55df-4579-b069-24bc305ae1ef","doi":"10.1126/sciadv.adh2458","hitsLength":1,"startPage":0,"pageSize":20,"doType":"comment","doTemplate":"full"}" class="related-do related-do--ajax-pagination"><div class="related-do__items"> </div><div class="related-do__spinner justify-content-center align-items-center"><div role="status" class="spinner-border text-gray"><span class="sr-only">Loading...</span></div></div></div> </div> </div> </div> </div> <div class="items-collapse__truncation justify-content-center"> <a href="#itemsCollapseItems" data-label-more="SHOW ALL eLETTERS" data-label-less="HIDE ALL eLETTERS" data-toggle="collapse" role="button" aria-expanded="false" aria-controls="itemsCollapseItems" class="btn btn-outline-dark btn-sm collapsed text-no-transform"></a> </div> </div> </div> <div id="trendmd-suggestions"></div> </section></div></section><div class="core-collateral"><div id="core-collateral-info" role="tabpanel"><header><h2><i class="icon-info" aria-hidden="true"></i>Information & Authors</h2></header><section id="tab-information" aria-labelledby="information" role="tabpanel"><h3>Information</h3><section class="core-self-citation"><h4>Published In</h4><div class="core-journal-presentation"> <div class="cover-image flat d-flex justify-content-center flex-column"><div data-is-viewable="true" class="cover-image__image"><img src="/web/20240318040954im_/https://www.science.org/cms/asset/a4358ee9-15a9-416b-91b2-7ccf6e564ae0/sciadv.2023.9.issue-37.largecover.jpg" alt="" loading="lazy"/></div></div> <div class="core-journal-description"><div property="isPartOf" typeof="Periodical"><span property="name">Science Advances</span></div><div class="core-enumeration"><span property="isPartOf" typeof="PublicationVolume">Volume <span property="volumeNumber">9</span></span> | <span property="isPartOf" typeof="PublicationIssue">Issue <span property="issueNumber">37</span></span><br/><span property="datePublished">September 2023</span></div></div></div></section><section class="core-copyright"><h4>Copyright</h4><div role="paragraph">Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).</div><div role="paragraph"><a href="https://web.archive.org/web/20240318040954/https://creativecommons.org/licenses/by-nc/4.0/">https://creativecommons.org/licenses/by-nc/4.0/</a></div><div role="paragraph">This is an open-access article distributed under the terms of the <a href="https://web.archive.org/web/20240318040954/https://creativecommons.org/licenses/by-nc/4.0/">Creative Commons Attribution-NonCommercial license</a>, which permits use, distribution, and reproduction in any medium, so long as the resultant use is <b>not</b> for commercial advantage and provided the original work is properly cited.</div></section><section class="core-versions"><h4>Article versions</h4><div class="core-crossmark-badge"><a data-target="crossmark" href="#" title="Check for updates on crossmark" data-doi="10.1126/sciadv.adh2458" data-id="article-info-crossmark" class="crossmark__link"><svg xmlns="http://www.w3.org/2000/svg" fill="none" viewbox="0 0 290 58" height="32px"><path fill="url(#horizontal_crossmark)" stroke="#948F8F" stroke-miterlimit="10" stroke-width=".75" d="M287 1H3a2 2 0 0 0-2 2v52a2 2 0 0 0 2 2h284a2 2 0 0 0 2-2V3a2 2 0 0 0-2-2Z"></path><path fill="#535353" d="M80.3 23.58a6.395 6.395 0 0 0-.55-1.43 3.92 3.92 0 0 0-2.19-1.86 5.099 5.099 0 0 0-1.71-.29 5 5 0 0 0-2.46.58 4.831 4.831 0 0 0-1.69 1.54 6.921 6.921 0 0 0-1 2.19 10.16 10.16 0 0 0 0 5 6.921 6.921 0 0 0 1 2.19 4.83 4.83 0 0 0 1.69 1.5 5 5 0 0 0 2.46.58 4.44 4.44 0 0 0 1.85-.36 4.12 4.12 0 0 0 1.38-1c.39-.436.695-.942.9-1.49A7.094 7.094 0 0 0 80.4 29h3a8.46 8.46 0 0 1-.69 2.92 7.179 7.179 0 0 1-1.59 2.29 7 7 0 0 1-2.35 1.49 8.14 8.14 0 0 1-3 .52 8.43 8.43 0 0 1-3.59-.74 7.88 7.88 0 0 1-2.69-2 9.001 9.001 0 0 1-1.69-3 11.41 11.41 0 0 1 0-7.23 9.001 9.001 0 0 1 1.69-3 8.001 8.001 0 0 1 2.69-2 8.3 8.3 0 0 1 3.59-.75 9.44 9.44 0 0 1 2.83.41c.866.242 1.68.642 2.4 1.18A6.229 6.229 0 0 1 82.65 21a6.66 6.66 0 0 1 .78 2.58H80.3ZM85.9 17.9h2.85v6.63h.05a4.15 4.15 0 0 1 1.56-1.46 4.61 4.61 0 0 1 2.31-.59 4.83 4.83 0 0 1 3.33 1.1 4.21 4.21 0 0 1 1.22 3.3v8.88H94.4v-8.13a3.51 3.51 0 0 0-.65-2.21 2.36 2.36 0 0 0-1.87-.69 3.1 3.1 0 0 0-1.3.26 2.821 2.821 0 0 0-1 .73A3.41 3.41 0 0 0 89 26.8a3.88 3.88 0 0 0-.23 1.33v7.63H85.9V17.9ZM102.47 30c-.002.491.069.98.21 1.45.131.448.348.866.64 1.23a3.08 3.08 0 0 0 1.08.84 3.543 3.543 0 0 0 1.55.31 3.431 3.431 0 0 0 2-.54c.541-.402.94-.966 1.14-1.61h2.7A5.349 5.349 0 0 1 109.7 35a5.715 5.715 0 0 1-1.74.85 7 7 0 0 1-2 .29 6.848 6.848 0 0 1-2.7-.5 5.577 5.577 0 0 1-2-1.4A5.953 5.953 0 0 1 100 32a8.748 8.748 0 0 1-.41-2.75 7.768 7.768 0 0 1 .44-2.61 6.67 6.67 0 0 1 1.25-2.17 5.863 5.863 0 0 1 4.56-2 5.79 5.79 0 0 1 2.74.64c.783.41 1.466.986 2 1.69a6.824 6.824 0 0 1 1.16 2.41c.264.905.352 1.852.26 2.79h-9.53Zm6.65-1.87a4.605 4.605 0 0 0-.29-1.3c-.148-.4-.368-.77-.65-1.09a3.22 3.22 0 0 0-1-.75 3 3 0 0 0-1.31-.29 3.431 3.431 0 0 0-1.36.26 3.108 3.108 0 0 0-1 .73 3.594 3.594 0 0 0-.7 1.09 3.798 3.798 0 0 0-.29 1.35h6.65-.05ZM122.88 27.15a2.666 2.666 0 0 0-1-1.81 3.14 3.14 0 0 0-2-.61c-.4.005-.798.07-1.18.19-.435.136-.83.376-1.15.7a3.92 3.92 0 0 0-.87 1.43 6.783 6.783 0 0 0-.35 2.39c.002.539.065 1.076.19 1.6.113.509.316.993.6 1.43.273.41.635.752 1.06 1a3 3 0 0 0 1.58.39 2.872 2.872 0 0 0 2.06-.77 3.596 3.596 0 0 0 1-2.18h2.85a6.26 6.26 0 0 1-1.91 3.86 5.83 5.83 0 0 1-4 1.34 6.61 6.61 0 0 1-2.69-.51 5.695 5.695 0 0 1-2-1.4 6.001 6.001 0 0 1-1.21-2.11 8.279 8.279 0 0 1-.41-2.65 8.987 8.987 0 0 1 .4-2.72 6.237 6.237 0 0 1 1.2-2.21 5.614 5.614 0 0 1 2-1.47 6.7 6.7 0 0 1 2.79-.54 7.801 7.801 0 0 1 2.14.29 5.634 5.634 0 0 1 1.8.86c.529.386.969.88 1.29 1.45a5 5 0 0 1 .6 2.07h-2.85l.06-.02ZM128.13 17.9H131V28l5.15-5.22h3.5l-5 4.75 5.42 8.17h-3.47l-4-6.27-1.6 1.7v4.63h-2.85V17.9h-.02ZM147.15 22.83h2.13v-1.08a5.505 5.505 0 0 1 .3-2c.161-.456.436-.862.8-1.18.33-.273.721-.462 1.14-.55.44-.094.89-.141 1.34-.14a8.158 8.158 0 0 1 2 .18v2.24a4.113 4.113 0 0 0-.59-.11 6.343 6.343 0 0 0-.74 0 1.74 1.74 0 0 0-1 .27 1.204 1.204 0 0 0-.41 1.08v1.33h2.42V25h-2.42v10.8h-2.85V25h-2.12v-2.17ZM162.23 36.1a6.999 6.999 0 0 1-2.76-.51 5.877 5.877 0 0 1-2-1.41 5.998 5.998 0 0 1-1.33-2.18 8.775 8.775 0 0 1 0-5.48 6.008 6.008 0 0 1 1.27-2.15 5.894 5.894 0 0 1 2-1.41A7.71 7.71 0 0 1 165 23a5.894 5.894 0 0 1 2 1.41 6.003 6.003 0 0 1 1.28 2.15c.585 1.78.585 3.7 0 5.48a5.99 5.99 0 0 1-3.28 3.54 7.002 7.002 0 0 1-2.77.52Zm0-2.25a3.268 3.268 0 0 0 1.65-.4c.447-.262.83-.621 1.12-1.05.304-.444.528-.938.66-1.46a6.581 6.581 0 0 0 0-3.31 4.416 4.416 0 0 0-.66-1.46 3.526 3.526 0 0 0-1.15-1 3.6 3.6 0 0 0-3.3 0 3.526 3.526 0 0 0-1.15 1 4.414 4.414 0 0 0-.66 1.46 6.558 6.558 0 0 0 0 3.31c.132.522.356 1.016.66 1.46a3.47 3.47 0 0 0 1.15 1.05 3.26 3.26 0 0 0 1.68.4ZM171.13 22.83h2.67v2.5c.097-.362.264-.701.49-1 .251-.341.547-.647.88-.91a4.404 4.404 0 0 1 1.14-.66 3.41 3.41 0 0 1 1.28-.25c.23-.013.46-.013.69 0h.39v2.79l-.61-.09a5.173 5.173 0 0 0-.61 0 3.278 3.278 0 0 0-1.36.29 3.131 3.131 0 0 0-1.11.85 4.171 4.171 0 0 0-.75 1.39 6 6 0 0 0-.28 1.9v6.15h-2.85V22.83h.03ZM198.22 35.75h-2.8V34a3.907 3.907 0 0 1-1.56 1.56 4.25 4.25 0 0 1-2.11.59 4.742 4.742 0 0 1-3.75-1.31 5.537 5.537 0 0 1-1.12-3.84v-8.2h2.85v7.92a3.503 3.503 0 0 0 .65 2.4 2.38 2.38 0 0 0 1.83.7 3.599 3.599 0 0 0 1.5-.27 2.66 2.66 0 0 0 1-.74c.259-.326.444-.705.54-1.11a5.79 5.79 0 0 0 .16-1.4v-7.5h2.85v12.95h-.04ZM201.3 22.83h2.7v1.75a3.523 3.523 0 0 1 1.72-1.58 5.568 5.568 0 0 1 2.33-.49 6.17 6.17 0 0 1 2.66.54 5.246 5.246 0 0 1 1.89 1.47c.515.65.899 1.394 1.13 2.19.257.87.385 1.773.38 2.68.001.851-.114 1.7-.34 2.52a6.568 6.568 0 0 1-1 2.16 5.002 5.002 0 0 1-4.21 2.06c-.419 0-.837-.036-1.25-.11a5.39 5.39 0 0 1-1.2-.36A4.737 4.737 0 0 1 205 35a3.567 3.567 0 0 1-.81-.91v6.45h-2.89V22.83Zm10 6.47c0-.574-.078-1.146-.23-1.7a4.606 4.606 0 0 0-.67-1.46 3.475 3.475 0 0 0-1.12-1 3.06 3.06 0 0 0-1.55-.39A3.141 3.141 0 0 0 205 26a5.518 5.518 0 0 0-1 3.3c-.004.611.077 1.22.24 1.81.138.523.38 1.012.71 1.44a3.55 3.55 0 0 0 1.14 1 3.242 3.242 0 0 0 1.54.35 3.18 3.18 0 0 0 1.65-.4c.438-.25.817-.59 1.11-1 .299-.44.513-.931.63-1.45a7.38 7.38 0 0 0 .23-1.75h.05ZM228.67 35.75H226V34a3.38 3.38 0 0 1-1.67 1.61 5.668 5.668 0 0 1-2.33.49 6.17 6.17 0 0 1-2.66-.54 5.307 5.307 0 0 1-1.89-1.46 6.254 6.254 0 0 1-1.12-2.19 9.48 9.48 0 0 1-.37-2.71 8.67 8.67 0 0 1 .47-3 6.058 6.058 0 0 1 1.26-2.1 4.89 4.89 0 0 1 1.8-1.21 5.738 5.738 0 0 1 2.06-.39c.412 0 .824.037 1.23.11.413.073.815.194 1.2.36.38.166.736.381 1.06.64.32.255.594.562.81.91V17.9h2.85v17.85h-.03Zm-10-6.33c-.001.55.069 1.098.21 1.63.13.511.35.996.65 1.43.288.414.668.757 1.11 1a3.241 3.241 0 0 0 1.6.38 3.199 3.199 0 0 0 1.64-.4 3.398 3.398 0 0 0 1.13-1.05c.297-.447.517-.94.65-1.46.14-.542.211-1.1.21-1.66a5.227 5.227 0 0 0-1-3.35 3.175 3.175 0 0 0-2.61-1.2 3.23 3.23 0 0 0-1.69.41 3.478 3.478 0 0 0-1.12 1.07 4.494 4.494 0 0 0-.62 1.5 7.871 7.871 0 0 0-.11 1.7h-.05ZM242.6 32.88c-.018.258.03.516.14.75a.577.577 0 0 0 .54.23h.3c.135-.002.269-.019.4-.05v2l-.39.11-.49.08-.5.08h-.42a2.75 2.75 0 0 1-1.45-.35 1.731 1.731 0 0 1-.75-1.23 4.998 4.998 0 0 1-2.09 1.2 8.224 8.224 0 0 1-2.39.38 5.861 5.861 0 0 1-1.67-.24 4.394 4.394 0 0 1-1.41-.7 3.35 3.35 0 0 1-1-1.18 3.624 3.624 0 0 1-.36-1.66 3.84 3.84 0 0 1 .44-2 3.246 3.246 0 0 1 1.15-1.17 5.195 5.195 0 0 1 1.6-.61c.593-.127 1.19-.223 1.79-.29a14.77 14.77 0 0 1 1.47-.21 6.896 6.896 0 0 0 1.24-.21c.318-.077.611-.236.85-.46a1.286 1.286 0 0 0 .31-.94 1.458 1.458 0 0 0-.26-.9A1.759 1.759 0 0 0 239 25a2.807 2.807 0 0 0-.86-.25 6.941 6.941 0 0 0-.9-.06 3.58 3.58 0 0 0-2 .5 2 2 0 0 0-.87 1.55h-2.85c.021-.73.227-1.442.6-2.07.338-.54.797-.996 1.34-1.33a5.475 5.475 0 0 1 1.84-.7c.692-.134 1.395-.2 2.1-.2.632 0 1.262.067 1.88.2a5.337 5.337 0 0 1 1.66.65 3.6 3.6 0 0 1 1.19 1.16c.314.525.47 1.129.45 1.74v6.65l.02.04Zm-2.85-3.6a3.45 3.45 0 0 1-1.6.51c-.667.06-1.3.147-1.9.26a6.137 6.137 0 0 0-.87.21 2.64 2.64 0 0 0-.75.38c-.22.164-.395.38-.51.63a2.129 2.129 0 0 0-.19.94c-.011.29.085.575.27.8.182.215.407.388.66.51.269.128.555.216.85.26.277.05.558.076.84.08a4.63 4.63 0 0 0 1-.12 3.418 3.418 0 0 0 1-.43 2.73 2.73 0 0 0 .81-.76 1.93 1.93 0 0 0 .32-1.14v-2.14l.07.01ZM244.37 22.83h2.15V19h2.85v3.88h2.58V25h-2.58v6.9a7.064 7.064 0 0 0 0 .77c.016.194.074.381.17.55a.84.84 0 0 0 .41.34 2 2 0 0 0 .75.11h.6c.203-.01.404-.04.6-.09v2.2l-.93.1a8.403 8.403 0 0 1-.92 0 6.33 6.33 0 0 1-1.81-.21 2.421 2.421 0 0 1-1.08-.62 2.15 2.15 0 0 1-.52-1 7.791 7.791 0 0 1-.16-1.42V25h-2.15v-2.17h.04ZM256.22 30c-.002.491.069.98.21 1.45.131.448.348.866.64 1.23a3.08 3.08 0 0 0 1.08.84 3.543 3.543 0 0 0 1.55.31 3.431 3.431 0 0 0 2-.54c.541-.402.94-.966 1.14-1.61h2.7a5.352 5.352 0 0 1-2.1 3.26 5.715 5.715 0 0 1-1.74.85 7 7 0 0 1-2 .29 6.848 6.848 0 0 1-2.7-.5 5.577 5.577 0 0 1-2-1.4 5.947 5.947 0 0 1-1.21-2.18 8.754 8.754 0 0 1-.41-2.75 7.758 7.758 0 0 1 .44-2.61 6.67 6.67 0 0 1 1.25-2.17 5.863 5.863 0 0 1 4.56-2 5.79 5.79 0 0 1 2.74.64c.783.41 1.466.986 2 1.69a6.824 6.824 0 0 1 1.16 2.41c.243.916.308 1.87.19 2.81h-9.5V30Zm6.65-1.87a4.605 4.605 0 0 0-.29-1.3c-.148-.4-.368-.77-.65-1.09a3.22 3.22 0 0 0-1-.75 3 3 0 0 0-1.31-.29 3.431 3.431 0 0 0-1.36.26 3.108 3.108 0 0 0-1 .73 3.575 3.575 0 0 0-.7 1.09 3.798 3.798 0 0 0-.29 1.35h6.65-.05ZM270 31.6a2.154 2.154 0 0 0 .95 1.75c.607.35 1.3.524 2 .5.304-.002.608-.022.91-.06a3.943 3.943 0 0 0 1-.24c.286-.105.54-.28.74-.51a1.23 1.23 0 0 0 .26-.89 1.261 1.261 0 0 0-.4-.9 2.779 2.779 0 0 0-1-.56 9.315 9.315 0 0 0-1.34-.36l-1.5-.33a14.219 14.219 0 0 1-1.54-.42 4.937 4.937 0 0 1-1.33-.68 3.12 3.12 0 0 1-.94-1.09 3.472 3.472 0 0 1-.35-1.64 2.94 2.94 0 0 1 .51-1.76 3.913 3.913 0 0 1 1.3-1.15 5.66 5.66 0 0 1 1.75-.61 10.316 10.316 0 0 1 1.84-.17 8.418 8.418 0 0 1 1.91.21 5.19 5.19 0 0 1 1.65.69c.496.318.916.741 1.23 1.24.341.559.55 1.188.61 1.84h-3a1.783 1.783 0 0 0-.94-1.37 3.892 3.892 0 0 0-1.69-.35 6.093 6.093 0 0 0-.71 0 3.327 3.327 0 0 0-.78.19 1.642 1.642 0 0 0-.61.4 1 1 0 0 0-.25.69 1.093 1.093 0 0 0 .36.85c.294.245.634.428 1 .54.437.153.885.274 1.34.36l1.55.33a20.9 20.9 0 0 1 1.53.42c.479.157.931.386 1.34.68.41.277.751.643 1 1.07.255.494.379 1.045.36 1.6a3.48 3.48 0 0 1-.52 2 4.15 4.15 0 0 1-1.36 1.3 6.19 6.19 0 0 1-1.86.73 9.435 9.435 0 0 1-2 .23 8.823 8.823 0 0 1-2.26-.27 5.265 5.265 0 0 1-1.8-.84 4 4 0 0 1-1.2-1.4 4.445 4.445 0 0 1-.46-2h2.7v-.02Z"></path><path fill="#C72914" d="m21.94 38.74 18.12-12.08v-14.5H21.94v26.58Z"></path><path fill="#EF3340" d="M40.06 38.74 21.94 26.66v-14.5h18.12v26.58Z"></path><path fill="#3EB1C8" d="M31 9a20 20 0 1 0 0 40 20 20 0 0 0 0-40Zm0 35.1a15.1 15.1 0 1 1 0-30.2 15.1 15.1 0 0 1 0 30.2Z"></path><path fill="#FFC72C" d="M42.09 39.23A15.09 15.09 0 0 1 17 23.38l-4.2-2.64a20 20 0 0 0 33.49 21.14l-4.2-2.65Z"></path><defs><lineargradient id="horizontal_crossmark" x1="145" x2="145" y1="7.33" y2="56.82" gradientunits="userSpaceOnUse"><stop stop-color="#fff"></stop><stop offset="1" stop-color="#c4c4c4"></stop></lineargradient></defs></svg></a></div></section><section class="core-history"><h4>Submission history</h4><div><b class="core-label">Received</b>: 19 February 2023</div><div><b class="core-label">Accepted</b>: 12 July 2023</div></section><section class="core-permissions"><h4>Permissions</h4><div>See the <a href="/web/20240318040954/https://www.science.org/content/page/reprints-and-permissions">Reprints and Permissions page</a> for information about permissions for this article.</div></section><section class="core-acknowledgments"><h4>Acknowledgments</h4><div role="paragraph">This paper is dedicated to our friend, colleague, and co-author, W.S., who passed away. He was deeply involved in developing this paper. Few have made a greater contribution to describing a pathway for humanity’s development in the Anthropocene than W.S. We are grateful for support from K. Noone (aerosols), B. Sakschewski (POEM), and M. Martin (comments). J. Lokrantz (Azote) and D. Biermann (PIK) produced the figures.</div><div role="paragraph"><b>Funding:</b> This work was supported by the European Research Council (Project Earth Resilience in the Anthropocene, ERC-2016-ADG 743080); European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 819202); German Federal Ministry for Education and Research (BMBF) through the “PIK Change” framework (grant no. 01LS2001A), and Carlsberg Foundation (Queen Margrethe’s and Vigdís Finnbogadóttir´s Interdisciplinary Research Centre on Ocean, Climate, and Society, CF20-0071). POEM development and application were supported by the Volkswagen Foundation (POEM-PBSim—A Simulator for Earth’s planetary boundaries, AZ 98046) and work on the biosphere functional integrity boundary by the Global Challenges Foundation.</div><div role="paragraph"><b>Author contributions:</b> K.R., W.S., J.R., and W.L. led the study by conceiving and coordinating the analyses. K.R. led the writing process. J.B., S.E.C., J.F.D., M.D., and I.F. (alphabetical order) collected and collated data, synthesized literature, supported the analyses, prepared the tables and figures, and provided logistical support. The remaining authors (alphabetical order) contributed to the POEM modeling and/or to new analysis of individual boundaries: G.B. (aerosols), W.v.B. (POEM), G.F. (POEM), S.F. (aerosols), D.G. (fresh water), T.G. (fresh water), M.H. (POEM), W.H. (POEM), M.K. (fresh water), C.M. (fresh water), D.N.-B. (biosphere integrity), S.P. (POEM), M.P. (fresh water), S.R. (POEM), S.S. (POEM and functional biosphere integrity), A.T. (land system change), K.T. (POEM), V.V. (fresh water), L.W.-E. (fresh water), and L.W. (aerosols).</div><div role="paragraph"><b>Competing interests:</b> The authors declare that they have no competing interests.</div><div role="paragraph"><b>Data and materials availability:</b> All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. In addition, the POEM modelling data can be found at <a href="https://web.archive.org/web/20240318040954/https://doi.org/10.5281/zenodo.8032156">https://doi.org/10.5281/zenodo.8032156</a>.</div></section></section><section id="tab-contributors" aria-labelledby="contributors" role="tabpanel"><h3>Authors</h3><section class="core-authors"><h4>Affiliations</h4><div id="con1" property="author" typeof="Person"><div class="heading"><span property="givenName">Katherine</span> <span property="familyName">Richardson</span><sup class="xref"><a href="#cor1" role="doc-noteref">*</a></sup> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0003-3785-2787" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0003-3785-2787</a> <a href="/web/20240318040954/https://www.science.org/cdn-cgi/l/email-protection#a1cac0d3c8e1d2d4cfc58fcad48fc5ca" property="email" aria-label="Email address"><span class="__cf_email__" data-cfemail="1873796a71586b6d767c36736d367c73">[email protected]</span></a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Richardson/Katherine">View all articles by this author</a></div></div></div><div id="con2" property="author" typeof="Person"><div class="heading"><span property="givenName">Will</span> <span property="familyName">Steffen</span><sup class="xref"><a href="#afn1" role="doc-noteref">†</a></sup></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Australian National University, Canberra, Australia.</span></div></div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Steffen/Will">View all articles by this author</a></div></div></div><div id="con3" property="author" typeof="Person"><div class="heading"><span property="givenName">Wolfgang</span> <span property="familyName">Lucht</span></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div><div property="affiliation" typeof="Organization"><span property="name">Department of Geography, Humboldt-Universität zu Berlin, Berlin, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Lucht/Wolfgang">View all articles by this author</a></div></div></div><div id="con4" property="author" typeof="Person"><div class="heading"><span property="givenName">Jørgen</span> <span property="familyName">Bendtsen</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0003-1393-3072" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0003-1393-3072</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Conceptualization, Formal analysis, Investigation, Resources, Software, Validation, Visualization, Writing - original draft, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Bendtsen/J%C3%B8rgen">View all articles by this author</a></div></div></div><div id="con5" property="author" typeof="Person"><div class="heading"><span property="givenName">Sarah E.</span> <span property="familyName">Cornell</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0003-4367-1296" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0003-4367-1296</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Conceptualization, Data curation, Funding acquisition, Methodology, Writing - original draft, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Cornell/Sarah+E">View all articles by this author</a></div></div></div><div id="con6" property="author" typeof="Person"><div class="heading"><span property="givenName">Jonathan F.</span> <span property="familyName">Donges</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-5233-7703" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-5233-7703</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div><div property="affiliation" typeof="Organization"><span property="name">Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Formal analysis, Investigation, Methodology, Visualization, Writing - original draft, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Donges/Jonathan+F">View all articles by this author</a></div></div></div><div id="con7" property="author" typeof="Person"><div class="heading"><span property="givenName">Markus</span> <span property="familyName">Drüke</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-8004-7153" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-8004-7153</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Formal analysis, Investigation, Methodology, Resources, Software, Validation, and Visualization.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Dr%C3%BCke/Markus">View all articles by this author</a></div></div></div><div id="con8" property="author" typeof="Person"><div class="heading"><span property="givenName">Ingo</span> <span property="familyName">Fetzer</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-7335-5679" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-7335-5679</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.</span></div><div property="affiliation" typeof="Organization"><span property="name">Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Conceptualization, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing - original draft, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Fetzer/Ingo">View all articles by this author</a></div></div></div><div id="con9" property="author" typeof="Person"><div class="heading"><span property="givenName">Govindasamy</span> <span property="familyName">Bala</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-3079-0600" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-3079-0600</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, Karnataka – 560012, India.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Investigation, Resources, and Writing - original draft.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Bala/Govindasamy">View all articles by this author</a></div></div></div><div id="con10" property="author" typeof="Person"><div class="heading"><span property="givenName">Werner</span> <span property="familyName">von Bloh</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-7399-2704" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-7399-2704</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Data curation, Methodology, Software, and Validation.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/von+Bloh/Werner">View all articles by this author</a></div></div></div><div id="con11" property="author" typeof="Person"><div class="heading"><span property="givenName">Georg</span> <span property="familyName">Feulner</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-9215-5517" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-9215-5517</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Methodology, Project administration, and Supervision.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Feulner/Georg">View all articles by this author</a></div></div></div><div id="con12" property="author" typeof="Person"><div class="heading"><span property="givenName">Stephanie</span> <span property="familyName">Fiedler</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-8898-9949" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-8898-9949</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">GEOMAR Helmholtz Centre for Ocean Research Kiel and Faculty for Mathematics and Natural Sciences, Christian-Albrechts-University Kiel, Kiel, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Investigation and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Fiedler/Stephanie">View all articles by this author</a></div></div></div><div id="con13" property="author" typeof="Person"><div class="heading"><span property="givenName">Dieter</span> <span property="familyName">Gerten</span></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div><div property="affiliation" typeof="Organization"><span property="name">Department of Geography, Humboldt-Universität zu Berlin, Berlin, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Investigation and Methodology.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Gerten/Dieter">View all articles by this author</a></div></div></div><div id="con14" property="author" typeof="Person"><div class="heading"><span property="givenName">Tom</span> <span property="familyName">Gleeson</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-9493-7707" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-9493-7707</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Department of Civil Engineering, University of Victoria, Victoria, British Columbia, Canada.</span></div><div property="affiliation" typeof="Organization"><span property="name">School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Methodology and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Gleeson/Tom">View all articles by this author</a></div></div></div><div id="con15" property="author" typeof="Person"><div class="heading"><span property="givenName">Matthias</span> <span property="familyName">Hofmann</span></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Formal analysis, Software, and Validation.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Hofmann/Matthias">View all articles by this author</a></div></div></div><div id="con16" property="author" typeof="Person"><div class="heading"><span property="givenName">Willem</span> <span property="familyName">Huiskamp</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-6615-6348" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-6615-6348</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Methodology and Software.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Huiskamp/Willem">View all articles by this author</a></div></div></div><div id="con17" property="author" typeof="Person"><div class="heading"><span property="givenName">Matti</span> <span property="familyName">Kummu</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-5096-0163" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-5096-0163</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Water and Development Research Group, Aalto University, Espoo, Finland.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Formal analysis, Funding acquisition, Investigation, Methodology, Software, Supervision, Validation, Visualization, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Kummu/Matti">View all articles by this author</a></div></div></div><div id="con18" property="author" typeof="Person"><div class="heading"><span property="givenName">Chinchu</span> <span property="familyName">Mohan</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-7611-3392" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-7611-3392</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">GEOMAR Helmholtz Centre for Ocean Research Kiel and Faculty for Mathematics and Natural Sciences, Christian-Albrechts-University Kiel, Kiel, Germany.</span></div><div property="affiliation" typeof="Organization"><span property="name">Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.</span></div><div property="affiliation" typeof="Organization"><span property="name">Waterplan (YC S21), San Francisco, CA, USA.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Mohan/Chinchu">View all articles by this author</a></div></div></div><div id="con19" property="author" typeof="Person"><div class="heading"><span property="givenName">David</span> <span property="familyName">Nogués-Bravo</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-4060-0153" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-4060-0153</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark.</span></div></div><div class="core-credits"><span class="heading">Role</span>: Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Nogu%C3%A9s-Bravo/David">View all articles by this author</a></div></div></div><div id="con20" property="author" typeof="Person"><div class="heading"><span property="givenName">Stefan</span> <span property="familyName">Petri</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-4379-4643" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-4379-4643</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Data curation, Formal analysis, Investigation, Methodology, Software, Validation, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Petri/Stefan">View all articles by this author</a></div></div></div><div id="con21" property="author" typeof="Person"><div class="heading"><span property="givenName">Miina</span> <span property="familyName">Porkka</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-8285-6122" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-8285-6122</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Water and Development Research Group, Aalto University, Espoo, Finland.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Investigation, Methodology, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Porkka/Miina">View all articles by this author</a></div></div></div><div id="con22" property="author" typeof="Person"><div class="heading"><span property="givenName">Stefan</span> <span property="familyName">Rahmstorf</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-6786-7723" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-6786-7723</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div><div property="affiliation" typeof="Organization"><span property="name">Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Conceptualization, Supervision, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Rahmstorf/Stefan">View all articles by this author</a></div></div></div><div id="con23" property="author" typeof="Person"><div class="heading"><span property="givenName">Sibyll</span> <span property="familyName">Schaphoff</span></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Data curation, Formal analysis, Investigation, Methodology, Resources, Software, Validation, Visualization, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Schaphoff/Sibyll">View all articles by this author</a></div></div></div><div id="con24" property="author" typeof="Person"><div class="heading"><span property="givenName">Kirsten</span> <span property="familyName">Thonicke</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-5283-4937" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-5283-4937</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Methodology, Project administration, Validation, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Thonicke/Kirsten">View all articles by this author</a></div></div></div><div id="con25" property="author" typeof="Person"><div class="heading"><span property="givenName">Arne</span> <span property="familyName">Tobian</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-4793-7226" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-4793-7226</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div><div property="affiliation" typeof="Organization"><span property="name">Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Methodology, Resources, and Software.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Tobian/Arne">View all articles by this author</a></div></div></div><div id="con26" property="author" typeof="Person"><div class="heading"><span property="givenName">Vili</span> <span property="familyName">Virkki</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-2603-3420" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-2603-3420</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Water and Development Research Group, Aalto University, Espoo, Finland.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Formal analysis, Investigation, Methodology, Software, Validation, Visualization, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Virkki/Vili">View all articles by this author</a></div></div></div><div id="con27" property="author" typeof="Person"><div class="heading"><span property="givenName">Lan</span> <span property="familyName">Wang-Erlandsson</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0002-7739-5069" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0002-7739-5069</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div><div property="affiliation" typeof="Organization"><span property="name">Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.</span></div><div property="affiliation" typeof="Organization"><span property="name">Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Methodology, Writing - original draft, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Wang-Erlandsson/Lan">View all articles by this author</a></div></div></div><div id="con28" property="author" typeof="Person"><div class="heading"><span property="givenName">Lisa</span> <span property="familyName">Weber</span></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">GEOMAR Helmholtz Centre for Ocean Research Kiel and Faculty for Mathematics and Natural Sciences, Christian-Albrechts-University Kiel, Kiel, Germany.</span></div></div><div class="core-credits"><span class="heading">Role</span>: Formal analysis.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Weber/Lisa">View all articles by this author</a></div></div></div><div id="con29" property="author" typeof="Person"><div class="heading"><span property="givenName">Johan</span> <span property="familyName">Rockström</span> <a class="orcid-id" href="https://web.archive.org/web/20240318040954/https://orcid.org/0000-0001-8988-2983" property="identifier" aria-label="ORCID identifier" target="_blank">https://orcid.org/0000-0001-8988-2983</a></div><div class="content"><div class="affiliations"><div property="affiliation" typeof="Organization"><span property="name">Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.</span></div><div property="affiliation" typeof="Organization"><span property="name">Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.</span></div><div property="affiliation" typeof="Organization"><span property="name">Institute for Environmental Science and Geography, University of Potsdam, Potsdam, Germany.</span></div></div><div class="core-credits"><span class="heading">Roles</span>: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.</div><div class="core-author-link"><a href="/web/20240318040954/https://www.science.org/authored-by/Rockstr%C3%B6m/Johan">View all articles by this author</a></div></div></div></section><section class="core-authors-notes"><h4>Notes</h4><div role="doc-footnote" data-has="label"><div class="label">*</div><div id="cor1" role="paragraph">Corresponding author. Email: <a href="/web/20240318040954/https://www.science.org/cdn-cgi/l/email-protection#bbd0dac9d2fbc8ced5df95d0ce95dfd0"><span class="__cf_email__" data-cfemail="2d464c5f446d5e584349034658034946">[email protected]</span></a></div></div><div role="doc-footnote" data-has="label"><div class="label">†</div><div id="afn1" role="paragraph">Deceased.</div></div></section></section></div><div id="core-collateral-metrics" role="tabpanel"><header><h2><i class="icon-metrics" aria-hidden="true"></i>Metrics & Citations</h2></header><section id="tab-metrics-inner" aria-labelledby="metrics-inner" role="tabpanel"><h3>Metrics</h3><section> <h4 class=""> Article Usage </h4> <div class="sidebar-metric-container data-source" data-source="/pb/widgets/fullSideBarMetric/getResponse?widgetId=92466116-7ac4-46b6-9de4-96b888b4cf23&pbContext=%3Bpage%3Astring%3AArticle%2FChapter+View%3Bissue%3Aissue%3Adoi%5C%3A10.1126%2Fsciadv.2023.9.issue-37%3Bctype%3Astring%3AJournal+Content%3Barticle%3Aarticle%3Adoi%5C%3A10.1126%2Fsciadv.adh2458%3Bjournal%3Ajournal%3Asciadv%3Bwebsite%3Awebsite%3Aaaas-site%3BrequestedJournal%3Ajournal%3Asciadv%3Bwgroup%3Astring%3APublication+Websites%3BpageGroup%3Astring%3APublication+Pages%3BsubPage%3Astring%3AFull+Text&doi=10.1126%2Fsciadv.adh2458"></div> <div class="sidebar-metrics"> <p class="metrics-sub-title mt-3"><b>Note:</b> The article usage is presented with a three- to four-day delay and will update daily once available. Due to this delay, usage data will not appear immediately following publication.</p> <p class="metrics-sub-title mt-3">Citation information is sourced from <a href="https://web.archive.org/web/20240318040954/https://www.crossref.org/services/cited-by/" class="external-link" target="_blank" rel="nofollow noopener" title="Follow link">Crossref Cited-by</a> service.</p> </div> </section><section> <h4 class=""> Altmetrics </h4> <div data-badge-details="right" data-badge-type="medium-donut" data-doi="10.1126/sciadv.adh2458" data-hide-no-mentions="true" data-link-target="_blank" class="altmetric-embed" data-template="scienceadvances"></div> <script data-cfasync="false" src="/web/20240318040954js_/https://www.science.org/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script async type="text/javascript" src="https://web.archive.org/web/20240318040954js_/https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script> </section></section><section id="tab-citations" aria-labelledby="citations" role="tabpanel"><h3>Citations</h3><section> <h4 class=""> Cite as </h4> <div class="article_info mb-2x"><div class="d-inline"><ul class="list-inline d-inline" title="list of authors"> <li class="list-inline-item"><span class="hlFld-ContribAuthor">Katherine Richardson <em>et al.</em></span></li> </ul> <span class="ml-n1">,</span></div><span class="ml-1">Earth beyond six of nine planetary boundaries.</span><span class="ml-1"><i>Sci. Adv.</i></span><span class="ml-1"><b>9</b>,</span><span class="ml-1">eadh2458</span><span class="ml-1">(2023).</span><span class="ml-1">DOI:<a href="https://web.archive.org/web/20240318040954/https://doi.org/10.1126/sciadv.adh2458" class="ml-1">10.1126/sciadv.adh2458</a></span></div> <div class="pill__item"> <h4 class="">Export citation</h4> <p>Select the format you want to export the citation of this publication.</p> <form action="/web/20240318040954/https://www.science.org/action/downloadCitation" name="frmCitmgr" class="citation-form" method="post" target="_self"><input type="hidden" name="doi" value="10.1126/sciadv.adh2458"><input type="hidden" name="downloadFileName" value="csp_9_"><input type="hidden" name="include" value="abs"> <fieldset class="format-select"> <div class="select-container"> <select id="slct_format" name="format" class="js__slcInclude" style=" padding: 7px; color: #595959; border: 1px solid #7f7f7f; "> <option value="" selected="selected">Please select one from the list</option> <option value="ris">RIS (ProCite, Reference Manager)</option> <option value="endnote">EndNote</option> <option value="bibtex">BibTex</option> <option value="medlars">Medlars</option> <option value="refworks">RefWorks</option> </select> </div> <label class="label-direct" for="direct"> <input id="direct" type="checkbox" name="direct" value="" checked="checked" style=" margin-top: 5px; margin-right: 7px; "> <span class="round-check"><span class="check"></span></span> Direct import </label> </fieldset> <footer class="form-footer"> <input onclick="onCitMgrSubmit()" class="btn btn-outline-dark btn-sm collapsed text-no-transform" type="submit" name="submit" value="EXPORT CITATION"> </footer> </form> </div> </section><section> <div class="sidebar-metrics"> <p class="metrics-sub-title mt-3">Citation information is sourced from <a href="https://web.archive.org/web/20240318040954/https://www.crossref.org/services/cited-by/" class="external-link" target="_blank" rel="nofollow noopener" title="Follow link">Crossref Cited-by</a> service.</p> </div> </section></section></div><div id="core-collateral-fulltext-options" role="tabpanel"><header><h2><i class="icon-eye" aria-hidden="true"></i>View Options</h2></header><div tabindex="0" class="section--wrapper"><h3>View options</h3><section class="format--pdf"><h4> <abbr title="Portable Document Format">PDF</abbr> format</h4><p>Download this article as a PDF file</p><a href="/web/20240318040954/https://www.science.org/doi/pdf/10.1126/sciadv.adh2458?download=true" data-toggle="tooltip" class="btn btn--pdf btn-secondary"><i aria-hidden="true" class="icon-pdf"></i><span>Download PDF</span></a></section></div><!-- Its needed to duplicate this for PB check Collateral.js as well--><div tabindex="-1" class="section--wrapper"><h3>Check Access</h3><section> <div class="pill__item pill__item--border-bottom"><h4>Log in to view the full text</h4> <!-- <p><a type="button" class="btn btn-primary btn-sm mt-3" href="/action/showLogin?redirectUri="><span>AAAS ID LOGIN</span></a></p>--> <p><a type="button" class="btn btn-primary btn-sm mt-3" href="/web/20240318040954/https://www.science.org/action/ssostart?redirectUri="><span>AAAS ID LOGIN</span></a></p> <p>AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.</p> <ul class="list-unstyled"> <li class="mb-2"><a href="https://web.archive.org/web/20240318040954/http://www.aaas.org/join/?CTC=SMAAJN">Become a AAAS Member</a></li> <li class="mb-2"><a href="https://web.archive.org/web/20240318040954/https://account.aaas.org/Identity/Lookup">Activate your AAAS ID</a></li> <li class="mb-2"><a href="/web/20240318040954/https://www.science.org/content/page/purchase-journal-access">Purchase Access to Other Journals in the Science Family</a></li> <li><a href="/web/20240318040954/https://www.science.org/content/page/access-and-subscriptions">Account Help</a></li> </ul> <div class="d-flex justify-content-between border py-3"> <div class="px-3 flex-fill"><strong>Log in via OpenAthens.</strong> <div class="mt-3"><a class="btn btn-outline-secondary" href="/web/20240318040954/https://www.science.org/action/ssostart?idp=https%3A%2F%2Fidp.eduserv.org.uk%2Fopenathens&redirectUri="><span>via OpenAthens</span></a></div> </div> <div class="px-3 flex-fill border-left"><strong>Log in via Shibboleth.</strong> <div class="mt-3"><a class="btn btn-outline-secondary" href="/web/20240318040954/https://www.science.org/action/ssostart?redirectUri="><span>via Shibboleth</span></a></div> </div> </div> </div> <div class="pill__item pill__item--border-bottom"><h4>More options</h4><p><a href="/web/20240318040954/https://www.science.org/action/addToCart?offer=ppv&format=ONLINE&doi=10.1126/sciadv.adh2458" class="animation-icon-shift d-flex align-items-center"><span class="text-uppercase">Purchase access to this article</span><i aria-hidden="true" class="icon-arrow-right ml-1 text-xl"></i></a></p><p class="mb-1_5x">Download and print this article within 24 hours for your personal scholarly, research, and educational use.</p></div> <!-- div class="pill__item"><h5>Restore Content Access</h5><p><a href="/action/showRestoreContentAccess">Restore content access for purchases made as a guest</a></p></div --> </section><section></section></div></div><div id="core-collateral-media" role="tabpanel"><header><h2><i class="icon-figures" aria-hidden="true"></i>Media</h2></header><section id="tab-figures" aria-labelledby="figures" role="tabpanel"><h3>Figures</h3></section><section id="tab-other" aria-labelledby="other" role="tabpanel"><h3>Multimedia</h3></section></div><div id="core-collateral-tables" role="tabpanel"><header><h2><i class="icon-table" aria-hidden="true"></i>Tables</h2></header><!-- There is no content. --></div><div id="core-collateral-share" role="tabpanel"><header><h2><i class="icon-share" aria-hidden="true"></i>Share</h2></header><h3>Share</h3><div class="section--wrapper"><section><h4>Share article link</h4><div id="share-self"><p data-id="article-share-self-link" class="share-self__source"></p><button data-id="article-share-access" class="share-self__action btn btn--inverse"><i aria-hidden="true" class="icon-copy"></i><span>Copy Link</span></button><div class="share-self__status"><p class="share-self__success"><i aria-hidden="true" class="icon-check_circle"></i><span>Copied!</span></p><p class="share-self__failed"><i aria-hidden="true" class="icon-x_btnclose"></i><span>Copying failed.</span></p></div></div></section><section><h4>Share on social media</h4><div class="share-buttons a2a a2a_kit"><a href="#" aria-label="Share on Facebook" data-id="article-share-facebook" rel="nofollow noopener" role="link" target="_blank" title="Share on Facebook" class="btn btn--inverse a2a_button_facebook"><i aria-hidden="true" class="icon-facebook-branded"></i><span>Facebook</span></a><a href="#" aria-label="Share on Twitter" data-id="article-share-twitter" rel="nofollow noopener" role="link" target="_blank" title="Share on Twitter" class="btn btn--inverse a2a_button_twitter"><i aria-hidden="true" class="icon-twitter-branded"></i><span>Twitter</span></a><a href="#" aria-label="Share on Linkedin" data-id="article-share-linkedin" rel="nofollow noopener" role="link" target="_blank" title="Share on Linkedin" class="btn btn--inverse a2a_button_linkedin"><i aria-hidden="true" class="icon-linkedin-branded"></i><span>Linkedin</span></a><a href="#" aria-label="Share on Reddit" data-id="article-share-reddit" rel="nofollow noopener" role="link" target="_blank" title="Share on Reddit" class="btn btn--inverse a2a_button_reddit"><i aria-hidden="true" class="icon-reddit-branded"></i><span>Reddit</span></a><a href="#" aria-label="Share on WeChat" data-id="article-share-wechat" rel="nofollow noopener" role="link" target="_blank" title="Share on WeChat" class="btn btn--inverse a2a_button_wechat"><i aria-hidden="true" class="icon-wechat-branded"></i><span>WeChat</span></a><a href="#" aria-label="Share on WhatsApp" rel="nofollow noopener" role="link" target="_blank" title="Share on WhatsApp" class="btn btn--inverse a2a_button_whatsapp"><i aria-hidden="true" class="icon-whatsapp"></i><span>WhatsApp</span></a><a href="#" aria-label="Share on email" data-id="article-share-email" rel="nofollow noopener" role="link" target="_blank" title="Share on email" class="btn btn--inverse a2a_button_email"><i aria-hidden="true" class="icon-mail-full"></i><span>email</span></a></div></section></div></div></div><aside data-core-aside="right-rail"><section><div class="current-issue-aside"><h4 class="h4 main-title-2--decorated"> Current Issue </h4><div class="current-issue-aside__content"><div class="current-issue-aside__cover"> <div class="cover-image flat d-flex justify-content-center flex-column"><div data-is-viewable="true" class="cover-image__image"><a href="/web/20240318040954/https://www.science.org/toc/sciadv/10/11" title="View Science Advances current issue" class="d-block"><img src="/web/20240318040954im_/https://www.science.org/cdn-cgi/image/width=400/cms/asset/b9d7857e-9ab8-4269-99b1-bdb431cc14f5/sciadv.2024.10.issue-11.largecover.jpg" alt="Science Advances cover image"></a></div></div> </div><div class="current-issue-aside__multisearch pt-0 pt-md-3 pt-xl-0 pl-0 pl-md-3 pl-xl-0"> <div class="multi-search"><div><article class="card-do"><div class="card-content"><div class="card-header"><h3 class="card__title"><a href="/web/20240318040954/https://www.science.org/doi/10.1126/sciadv.adh1330" title="Lanthanide transport in angstrom-scale MoS<sub>2</sub>-based two-dimensional channels" class="text-reset animation-underline">Lanthanide transport in angstrom-scale MoS<sub>2</sub>-based two-dimensional channels</a></h3><ul class="card-meta align-middle pl-0"><li class="card-contribs text-uppercase comma-separated mb-0" data-visible-items-sm="2" data-visible-items-md="4" data-visible-items="9" data-truncate-less="less" data-truncate-more="authors" data-truncate-dots="true"><span>By</span><ul class="list-inline comma-separated d-inline" title="list of authors"> <li class="list-inline-item"><span class="hlFld-ContribAuthor">Mingzhan Wang</span></li> <li class="list-inline-item"><span class="hlFld-ContribAuthor">Qinsi Xiong</span></li> <li class="list-inline-item"><span><em>et al.</em></span></li> </ul> </li></ul></div></div></article><article class="card-do"><div class="card-content"><div class="card-header"><h3 class="card__title"><a href="/web/20240318040954/https://www.science.org/doi/10.1126/sciadv.adh4435" title="Increased genomic instability and reshaping of tissue microenvironment underlie oncogenic properties of <i>Arid1a</i> mutations" class="text-reset animation-underline">Increased genomic instability and reshaping of tissue microenvironment underlie oncogenic properties of <i>Arid1a</i> mutations</a></h3><ul class="card-meta align-middle pl-0"><li class="card-contribs text-uppercase comma-separated mb-0" data-visible-items-sm="2" data-visible-items-md="4" data-visible-items="9" data-truncate-less="less" data-truncate-more="authors" data-truncate-dots="true"><span>By</span><ul class="list-inline comma-separated d-inline" title="list of authors"> <li class="list-inline-item"><span class="hlFld-ContribAuthor">Alessandro D’Ambrosio</span></li> <li class="list-inline-item"><span class="hlFld-ContribAuthor">Davide Bressan</span></li> <li class="list-inline-item"><span><em>et al.</em></span></li> </ul> </li></ul></div></div></article><article class="card-do"><div class="card-content"><div class="card-header"><h3 class="card__title"><a href="/web/20240318040954/https://www.science.org/doi/10.1126/sciadv.adh9547" title="CKLF instigates a “cold” microenvironment to promote MYCN-mediated tumor aggressiveness" class="text-reset animation-underline">CKLF instigates a “cold” microenvironment to promote MYCN-mediated tumor aggressiveness</a></h3><ul class="card-meta align-middle pl-0"><li class="card-contribs text-uppercase comma-separated mb-0" data-visible-items-sm="2" data-visible-items-md="4" data-visible-items="9" data-truncate-less="less" data-truncate-more="authors" data-truncate-dots="true"><span>By</span><ul class="list-inline comma-separated d-inline" title="list of authors"> <li class="list-inline-item"><span class="hlFld-ContribAuthor">Xiaodan Qin</span></li> <li class="list-inline-item"><span class="hlFld-ContribAuthor">Andrew Lam</span></li> <li class="list-inline-item"><span><em>et al.</em></span></li> </ul> </li></ul></div></div></article></div><div class="d-flex justify-content-end btn--more__wrapper"><a href="/web/20240318040954/https://www.science.org/toc/sciadv/current" class="btn btn--more animation-icon-shift text-uppercase font-weight-bold"><span>Table of Contents</span><span aria-hidden="true" class="icon-arrow-right"></span></a></div></div> </div></div></div></section><div class="aside-ads"> <div data-widget-def="literatumAd" data-widget-id="d9c37dd2-7a6d-4012-aeb1-014af2d32163" class="text-center"> </div> <div class="mt-2x"> <div class="mb-2x mb-xl-3x"> <div class="d-flex flex-column align-items-center align-items-xl-start"> <h3 class="h6 mb-2 text-primary">Sign up for ScienceAdviser</h3> <p class="text-sm letter-spacing-default text-center text-xl-left mb-1x">Subscribe to <cite>Science</cite>Adviser to get the latest news, commentary, and research, free to your inbox daily.</p> <a href="/web/20240318040954/https://www.science.org/content/page/scienceadviser?intcmp=rrail-adviser&utm_id=recFUzjFNRznSEEDd" class="btn btn-outline-primary btn--connect pl-1x"> <span class="text-xxs">Subscribe</span> <i aria-hidden="true" class="h4 icon-arrow-right ml-1"></i> </a> </div> </div> </div> </div><section> <h4 class="main-title-2--decorated h4">LATEST NEWS</h4> <div class="mt-4"> <div class="multi-search"><div class="multi-search--news-article-aside"> <article class="card-do card-do--news-feature border-bottom border-light-gray card-do--news-article-aside pb-3 mb-3"> <div class="card-content"> <div class="card-meta text-uppercase"> <span class="card-meta__category"><a href="/web/20240318040954/https://www.science.org/news/scienceinsider" class="text-decoration-none"><span>ScienceInsider</span></a></span><time class="border-left">15 Mar 2024</time> </div> <div class="card-header mb-2"> <a href="/web/20240318040954/https://www.science.org/content/article/lab-leak-proponents-rutgers-accused-defaming-and-intimidating-covid-19-origin" title="‘Lab-leak’ proponents at Rutgers accused of defaming and intimidating COVID-19 origin researchers" class="text-reset animation-underline"> ‘Lab-leak’ proponents at Rutgers accused of defaming and intimidating COVID-19 origin researchers </a> </div> </div> </article> <article class="card-do card-do--news-feature border-bottom border-light-gray card-do--news-article-aside pb-3 mb-3"> <div class="card-content"> <div class="card-meta text-uppercase"> <span class="card-meta__category"><a href="/web/20240318040954/https://www.science.org/news/scienceinsider" class="text-decoration-none"><span>ScienceInsider</span></a></span><time class="border-left">15 Mar 2024</time> </div> <div class="card-header mb-2"> <a href="/web/20240318040954/https://www.science.org/content/article/treaty-prepare-world-next-pandemic-hangs-balance" title="A treaty to prepare the world for the next pandemic hangs in the balance" class="text-reset animation-underline"> A treaty to prepare the world for the next pandemic hangs in the balance </a> </div> </div> </article> <article class="card-do card-do--news-feature border-bottom border-light-gray card-do--news-article-aside pb-3 mb-3"> <div class="card-content"> <div class="card-meta text-uppercase"> <span class="card-meta__category"><a href="/web/20240318040954/https://www.science.org/news/scienceinsider" class="text-decoration-none"><span>ScienceInsider</span></a></span><time class="border-left">15 Mar 2024</time> </div> <div class="card-header mb-2"> <a href="/web/20240318040954/https://www.science.org/content/article/department-energy-s-science-chief-announces-her-unexpected-departure" title="Department of Energy’s science chief announces her unexpected departure" class="text-reset animation-underline"> Department of Energy’s science chief announces her unexpected departure </a> </div> </div> </article> <article class="card-do card-do--news-feature border-bottom border-light-gray card-do--news-article-aside pb-3 mb-3"> <div class="card-content"> <div class="card-meta text-uppercase"> <span class="card-meta__category"><a href="/web/20240318040954/https://www.science.org/news/scienceinsider" class="text-decoration-none"><span>ScienceInsider</span></a></span><time class="border-left">15 Mar 2024</time> </div> <div class="card-header mb-2"> <a href="/web/20240318040954/https://www.science.org/content/article/honesty-researcher-committed-research-misconduct-according-newly-unsealed-harvard" title="Honesty researcher committed research misconduct, according to newly unsealed Harvard report" class="text-reset animation-underline"> Honesty researcher committed research misconduct, according to newly unsealed Harvard report </a> </div> </div> </article> <article class="card-do card-do--news-feature border-bottom border-light-gray card-do--news-article-aside pb-3 mb-3"> <div class="card-content"> <div class="card-meta text-uppercase"> <span class="card-meta__category"><a href="/web/20240318040954/https://www.science.org/news/all-news" class="text-decoration-none"><span>News</span></a></span><time class="border-left">15 Mar 2024</time> </div> <div class="card-header mb-2"> <a href="/web/20240318040954/https://www.science.org/content/article/canine-peer-review-stolen-toxins-and-more-stories-you-might-have-missed-week" title="Canine peer review, stolen toxins, and more stories you might have missed this week" class="text-reset animation-underline"> Canine peer review, stolen toxins, and more stories you might have missed this week </a> </div> </div> </article> <article class="card-do card-do--news-feature border-bottom border-light-gray card-do--news-article-aside pb-3 mb-3"> <div class="card-content"> <div class="card-meta text-uppercase"> <span class="card-meta__category"><a href="/web/20240318040954/https://www.science.org/news/all-news" class="text-decoration-none"><span>News</span></a></span><time class="border-left">15 Mar 2024</time> </div> <div class="card-header mb-2"> <a href="/web/20240318040954/https://www.science.org/content/article/watch-out-colorful-bird-raises-nest-cannibals" title="Watch out! This colorful bird raises a nest of cannibals" class="text-reset animation-underline"> Watch out! This colorful bird raises a nest of cannibals </a> </div> </div> </article> </div></div> </div></section><div class="aside-ads"> <div data-widget-def="literatumAd" data-widget-id="66ba5b6d-db27-46b8-845b-17b7688f490c" class="text-center"> </div> </div><section class="mt-0"> <section class="mt-0"><div class="hawkeye-side-position-node"></div></section> </section><section> <div class="show-recommended related-content pop-notification pop-after-passed" data-visible-after="40%" aria-hidden="true"><div data-ajaxurl="/pb/widgets/ux3/ux3-showRecommend?widgetId=27347c61-1b50-4caf-8265-62a1c7d5e9df&doi=10.1126%2Fsciadv.adh2458&pbContext=%3Bpage%3Astring%3AArticle%2FChapter+View%3Bissue%3Aissue%3Adoi%5C%3A10.1126%2Fsciadv.2023.9.issue-37%3Bctype%3Astring%3AJournal+Content%3Barticle%3Aarticle%3Adoi%5C%3A10.1126%2Fsciadv.adh2458%3Bjournal%3Ajournal%3Asciadv%3Bwebsite%3Awebsite%3Aaaas-site%3BrequestedJournal%3Ajournal%3Asciadv%3Bwgroup%3Astring%3APublication+Websites%3BpageGroup%3Astring%3APublication+Pages%3BsubPage%3Astring%3AFull+Text&wlm=lsu95d6v" class="show-recommended-placeholder"></div></div> </section><div class="aside-ads sticky-ads"> <div data-widget-def="literatumAd" data-widget-id="5c8e486e-29f1-446a-a3ca-103184a6ac90" class="text-center"> </div> </div></aside></article><div data-extent="article-wrapper"><div class="core-container"></div><div class="after-credits"><div class="core-container"><a href="/web/20240318040954/https://www.science.org/doi/full/10.1126/sciadv.adh2458"><span>View full text</span></a><span class="spacer">|</span><a href="/web/20240318040954/https://www.science.org/doi/pdf/10.1126/sciadv.adh2458"><span>Download PDF</span></a></div></div></div><script id="contribution-meta" type="application/json">{ "doi": "10.1126/sciadv.adh2458" } </script><script id="book-title" type="application/json">{ "bookTitle": "" } </script><div role="navigation" aria-label="Sticky Navigation" class="st-header"><div class="st-header__content"><div class="st-header__item st-header__menu"></div><div class="st-header__current st-header__item"><div class="st-header__label">Now Reading:</div><div class="st-header__title"></div></div><div class="st-header__share st-header__item"><div title="SHARE" data-toggle="tooltip" class="share-dropblock dropdown"><a id="sticky-header-dropBlock" href="#" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false" class="dropdown-toggle"><span class="sr-only">SHARE</span><i aria-hidden="true" class="icon-share"></i></a><div aria-labelledby="sticky-header-dropBlock" class="dropdown-menu"><ul class="rlist--inline a2a a2a_kit"><li><a href="#" aria-label="Share on Facebook" data-id="article-share-facebook" rel="nofollow noopener" role="link" target="_blank" title="Share on Facebook" class="btn btn--facebook a2a_button_facebook"><i aria-hidden="true" class="icon-share-facebook"></i></a></li><li><a href="#" aria-label="Share on Twitter" data-id="article-share-twitter" rel="nofollow noopener" role="link" target="_blank" title="Share on Twitter" class="btn btn--twitter a2a_button_twitter"><i aria-hidden="true" class="icon-share-twitter"></i></a></li><li><a href="#" aria-label="Share on Linkedin" data-id="article-share-linkedin" rel="nofollow noopener" role="link" target="_blank" title="Share on Linkedin" class="btn btn--linkedin a2a_button_linkedin"><i aria-hidden="true" class="icon-share-linkedin"></i></a></li><li><a href="#" aria-label="Share on Reddit" data-id="article-share-reddit" rel="nofollow noopener" role="link" target="_blank" title="Share on Reddit" class="btn btn--reddit a2a_button_reddit"><i aria-hidden="true" class="icon-share-reddit"></i></a></li><li><a href="#" aria-label="Share on WeChat" data-id="article-share-wechat" rel="nofollow noopener" role="link" target="_blank" title="Share on WeChat" class="btn btn--wechat a2a_button_wechat"><i aria-hidden="true" class="icon-wechat"></i></a></li><li><a href="#" aria-label="Share on WhatsApp" rel="nofollow noopener" role="link" target="_blank" title="Share on WhatsApp" class="btn a2a_button_whatsapp"><i aria-hidden="true" class="icon-whatsapp"></i></a></li><li><a href="#" aria-label="Share on email" data-id="article-share-email" rel="nofollow noopener" role="link" target="_blank" title="Share on email" class="btn btn--email a2a_button_email"><i aria-hidden="true" class="icon-mail-full"></i></a></li></ul></div></div></div><div class="st-header__alerts st-header__item"></div><div class="st-header__favorite st-header__item"></div><div class="st-header__formats st-header__item"></div><div class="st-header__nav st-header__item"><div role="menu" class="content-navigation"><a href="/web/20240318040954/https://www.science.org/doi/10.1126/sciadv.adg3715" role="menuitem" aria-label="Previous article" class="content-navigation__prev"><div aria-hidden="true" class="content-navigation__hint"><div class="content-navigation__hint__content"><h6>PREVIOUS ARTICLE</h6><div>Bioaerosols are the dominant source of warm-temperature immersion-mode INPs and drive uncertainties in INP predictability</div></div></div><i aria-hidden="true" class="icon-arrow-left"></i><span>Previous</span></a><a href="/web/20240318040954/https://www.science.org/doi/10.1126/sciadv.adh2992" role="menuitem" aria-label="Next article" class="content-navigation__next"><div aria-hidden="true" class="content-navigation__hint"><div class="content-navigation__hint__content"><h6>NEXT ARTICLE</h6><div>Widespread aquifer depressurization after a century of intensive groundwater use in USA</div></div></div><span>Next</span><i aria-hidden="true" class="icon-arrow-right"></i></a></div></div></div></div><template id="figure_nav_template"><a href="#" class="open-in-viewer btn btn-dark figure-pop-btn"><i aria-hidden="true" class="icon-extlink-smooth"></i><span>Open in viewer</span></a></template><template id="fv_panel_template" data-sharesocial="Share on social media" data-download="Download figure"><div class="fv__panel js--hidden"><div class="fv__panel__header"><a href="#" title="Close panel" class="fv__panel__close"><i aria-hidden="true" class="icon-close"></i></a></div><div class="fv__panel__text"><div class="fv__panel__contentTitle"></div><div class="fv__panel__contentText"></div></div></div></template> <template id="fv_directory_template" data-overlay="View figure"><div class="fv__directory"><div class="fv__header"><nav class="tab__nav"></nav><a href="#" title="Close figure viewer" class="fv__close"><i aria-hidden="true" class="icon-close"></i></a></div><div class="fv__content tab__content"></div></div></template><template id="fv_directory_tabItem_template" data-figures="Figures" data-others="Others" data-tables="Tables"><button role="tab" data-toggle="tab" class="tab__nav__item"></button></template> <template id="fv_lightbox_template" data-sr-back="Go to figure location within the article" data-sr-closealt="Close" data-sr-download="Toggle download panel" data-sr-download-pptx="Download PPT" data-sr-info="Toggle information panel" data-sr-panel="Close panel" data-sr-share="Toggle share panel" data-sr-zoom="Zoom" data-text-close="Back to article" data-text-nav-figures="All figures" data-text-nav-others="All others" data-text-nav-tables="All tables" data-text-viewall="View all material" data-title-back="Back to article" data-title-closealt="Close" data-title-download="Download" data-title-download-pptx="Download PPT" data-title-info="Info" data-title-share="Share" data-title-zoom="Zoom"></template> <template id="fv_toolbar_template"><div class="fv__toolbar__info"><p class="fv__toolbar__contentText"></p><strong class="fv__toolbar__contentTitle uppercase"></strong></div></template><template id="toCitationLink" data-citation="REFERENCE" data-footnote="FOOTNOTE"><div class="to-citation__wrapper"><a class="to-citation"><i aria-hidden="true" class="icon-return"></i><span>GO TO</span></a></div></template><template id="toCitationButton" data-citation="REFERENCE" data-footnote="FOOTNOTE"><div class="to-citation__wrapper"><button class="to-citation"><i aria-hidden="true" class="icon-return"></i><span>GO TO</span></button></div></template><template id="toCitationAccordion" data-collapse-citation="HIDE REFERENCES" data-expand-citation="SEE ALL REFERENCES" data-collapse-footnote="HIDE FOOTNOTES" data-expand-footnote="SEE ALL FOOTNOTES"><div class="to-citation__wrapper"><button aria-controls="aria-controls" aria-expanded="false" aria-haspopup="true" aria-label="Toggle citations menu" class="to-citation__toggle"><i aria-hidden="true" class="icon-plus"></i><span data-expand-title="data-expand-title" data-collapsed-title="data-collapsed-title" class="accordion__toggle__title"></span></button><div role="menu" aria-label="links" class="to-citation__accordion no-separator"><ul></ul></div></div></template><template id="toCitationAccordionItem"><li><a class="to-citation"><i aria-hidden="true" class="icon-return"></i><span></span></a></li></template><template id="citations_truncate_template"><div class="citations-truncation"><button data-label-expand="Show all references" data-label-collapse="Show fewer" class="btn btn--inverse"><span>Show all references</span></button></div></template><template id="collateral_texts_template" data-references="References" data-figure="GO TO FIGURE" data-media="GO TO MEDIA" data-more="More" data-original="GO TO ORIGINAL" data-table="GO TO TABLE" data-inviewer="OPEN IN VIEWER" data-allinviewer="Open all in viewer"><svg height="24px" viewbox="0 0 24 24"><ellipse cx="13.735" cy="7.5" rx="5.282" ry="5.25" fill="#F9A342"></ellipse> <ellipse cx="7.59" cy="12.536" rx="4.528" ry="4.5" fill="#3B86C6"></ellipse><ellipse cx="15.244" cy="18" rx="3.773" ry="3.75" fill="#456799"></ellipse></svg><span>Request permissions</span></template><template id="collapsible_authors_template"><button aria-expanded="false" data-expandable="all" data-label-expand="Expand All" data-label-collapse="Collapse All" class="collateral-contributors-control"><span>Expand All</span></button></template> <template id="collapsible_tables_collapse_template"><div class="collapsible-figure-btn__wrapper expanded"><button aria-expanded="true" class="btn collapsible-figure-btn btn--inverse"><span>Collapse</span><i aria-hidden="true" class="icon-arrow-up"></i></button></div></template> <template id="collapsible_tables_expand_template"><div class="collapsible-figure-btn__wrapper collapsed"><button aria-expanded="false" class="btn collapsible-figure-btn btn--inverse"><span>Expand for more</span><i aria-hidden="true" class="icon-arrow-down"></i></button></div></template><template id="authorsAffiliationsLink"><a href="#tab-contributors" class="to-authors-affiliations">Authors Info & Affiliations</a></template><template id="products_truncate_template"><div class="product-truncation"><button data-label-expand="SHOW ALL BOOKS" data-label-collapse="Show fewer" class="btn btn--inverse"><span>SHOW ALL BOOKS</span></button></div></template> </div> </main> <footer class="footer"> <section class="footer__middle"> <div class="footer__slider"> <div data-slider-vport="screen-xl" class="slideshow--multiple-items-inview px-0 freemode-slider viewport-slider container-fluid justify-content-lg-start text-xl px-xl-0 center-slider"> <div class="slideshow"> <a href="#afterSlideshow-j3n" class="sr-only sr-only-focusable">Skip slideshow</a> <div data-loop="true" data-items="auto" data-slideby="1" data-autoheight="false" data-responsive="" data-speed="2000" data-autoplay="false" data-animation="slide" data-indicators="false" data-arrow="false" data-controls="false" data-stagepadding="0" data-label="Slideshow" class="swiper-container" data-pause-slide="Pause slideshow" data-play-slide="Play slideshow" data-go-to-slide="Go to slide:" data-next-slide="Go to next slide" data-prev-slide="Go to previous slide"> <div class="swiper-wrapper"> <div class="swiper-slide"> <a href="/web/20240318040954/https://www.science.org/journal/science" title="Science Journal Logo" class="footer__slider__link"> <svg width="117" height="33" viewbox="0 0 117 33" fill="none" xmlns="http://www.w3.org/2000/svg"> <g clip-path="url(#clip0)"> <path d="M3.04529 30.2166L1.70536 32.3009H0.243623L0 21.8181H0.974492C2.67985 26.5384 5.2988 31.0748 10.4149 31.0748C14.0692 31.0748 15.8964 28.8066 15.8964 25.435C15.8964 22.7377 14.5565 20.6534 11.8766 19.4886C9.62311 18.5078 7.97866 17.8948 5.66424 16.7913C2.61895 15.3813 0.791775 12.8679 0.791775 8.94456C0.791775 4.22426 4.44612 0.668701 9.31858 0.668701C11.4503 0.668701 14.0692 1.58824 15.531 2.8143L16.81 0.791307H18.2717L18.5154 10.9062H17.5409C15.8355 6.00203 13.8256 2.07866 8.4659 2.07866C7.30869 2.07866 4.32431 3.12081 4.32431 6.61506C4.32431 9.31238 5.48152 10.9062 7.97866 12.3775C9.98855 13.6036 12.0593 14.094 13.8256 15.0135C17.1754 16.73 19.6117 18.5078 19.6117 23.1055C19.6117 28.5614 15.5919 32.4235 10.1104 32.4235C6.76054 32.4235 4.32431 31.32 3.04529 30.2166Z" fill="#959595"></path> <path d="M20.7686 21.6342C20.7686 16.1169 24.2402 11.0288 29.7826 11.0288C33.9242 11.0288 35.995 13.4809 35.995 16.2395C35.995 17.7108 35.1423 18.7529 33.7415 18.7529C32.9497 18.7529 31.3662 18.2625 31.3662 16.5461C31.3662 14.6457 31.9143 14.6457 31.9143 13.7874C31.6707 12.5001 31.0616 12.1936 29.7217 12.1936C27.3464 12.1936 25.0929 14.5844 25.0929 21.3277C25.0929 26.7223 27.0419 30.4618 30.4526 30.4618C33.1933 30.4618 34.8378 29.0518 36.1168 26.4771L36.9695 27.0901C35.5078 30.0326 32.6452 32.4234 29.4781 32.4234C23.692 32.3621 20.7686 27.8257 20.7686 21.6342Z" fill="#959595"></path> <path d="M37.5182 30.9523C38.2491 30.891 38.7973 30.8297 39.3454 30.6458C40.0763 30.4006 40.4417 29.5424 40.4417 28.6228V15.8106C40.3808 14.891 40.0154 14.0941 39.3454 13.6037C38.8582 13.2358 37.64 12.8067 36.9092 12.7454V11.8872L44.0961 11.3968L44.3397 11.7033V28.3776C44.3397 29.2971 44.7051 30.0941 45.436 30.4619C46.045 30.7684 46.7759 30.9523 47.2632 31.0136V31.9332H37.5182V30.9523ZM39.4063 3.24351C39.4063 1.71094 40.5635 0.423584 42.0253 0.423584C43.6697 0.423584 44.766 1.64964 44.766 3.0596C44.7051 4.59217 43.6088 5.94082 42.0253 5.94082C40.5635 5.94082 39.4063 4.71477 39.4063 3.24351Z" fill="#959595"></path> <path d="M47.0195 21.5731C47.0195 16.2398 50.1866 11.0903 55.5463 11.0903C61.0888 11.0903 63.1596 15.1363 63.1596 19.6727V20.0405H51.3438V20.5309C51.3438 26.2934 52.9883 30.4007 57.1299 30.4007C60.1143 30.4007 61.2106 29.1746 62.6723 26.416L63.4641 26.9677C62.0633 30.1555 59.3225 32.3624 55.9727 32.3624C49.8821 32.3624 47.0195 27.4581 47.0195 21.5731ZM58.9571 18.9984C58.9571 15.8106 58.348 12.1325 55.5463 12.1325C53.171 12.1325 51.4048 14.8911 51.3438 19.121L58.9571 18.9984Z" fill="#959595"></path> <path d="M63.464 30.9522C64.1948 30.8909 64.743 30.8296 65.2911 30.6457C66.022 30.4005 66.3874 29.6035 66.3874 28.6227V15.8104C66.3265 14.8909 65.9611 13.91 65.2911 13.4196C64.8648 13.0518 63.9512 12.7453 63.2812 12.684V11.8257L70.0418 11.3353L70.3463 11.6418V14.707H70.4072C71.9299 13.0518 73.4525 11.0288 76.8023 11.0288C80.4567 11.0288 82.223 13.8487 82.223 18.0786V28.3775C82.223 29.3583 82.5275 30.0326 83.2584 30.4005C83.8065 30.6457 84.3547 30.8296 85.0855 30.8909V31.8104H75.3406V30.8909C76.0106 30.8296 76.6805 30.7683 77.1678 30.5844C77.8986 30.3392 78.2032 29.5422 78.2032 28.5614V18.0173C78.2032 14.9522 76.7414 13.297 75.0361 13.297C72.2953 13.297 70.7118 15.1974 70.3463 16.1782V28.3775C70.3463 29.3583 70.7118 30.0326 71.3817 30.4005C71.9299 30.707 72.5998 30.8909 73.2089 30.9522V31.8717H63.5249V30.9522H63.464Z" fill="#959595"></path> <path d="M84.2939 21.6342C84.2939 16.1169 87.7656 11.0288 93.308 11.0288C97.4496 11.0288 99.5204 13.4809 99.5204 16.2395C99.5204 17.7108 98.6677 18.7529 97.2669 18.7529C96.4751 18.7529 94.8916 18.2625 94.8916 16.5461C94.8916 14.6457 95.4397 14.6457 95.4397 13.7874C95.1961 12.5001 94.587 12.1936 93.2471 12.1936C90.8718 12.1936 88.6183 14.5844 88.6183 21.3277C88.6183 26.7223 90.5672 30.4618 93.978 30.4618C96.7187 30.4618 98.3632 29.0518 99.6422 26.4771L100.495 27.0901C99.0331 30.0326 96.1706 32.4234 93.0035 32.4234C87.1565 32.3621 84.2939 27.8257 84.2939 21.6342Z" fill="#959595"></path> <path d="M100.556 21.5731C100.556 16.2398 103.723 11.0903 109.082 11.0903C114.625 11.0903 116.696 15.1363 116.696 19.6727V20.0405H104.88V20.5309C104.88 26.2934 106.524 30.4007 110.666 30.4007C113.65 30.4007 114.747 29.1746 116.208 26.416L117 26.9677C115.599 30.1555 112.859 32.3624 109.509 32.3624C103.418 32.3624 100.556 27.4581 100.556 21.5731ZM112.493 18.9984C112.493 15.8106 111.884 12.1325 109.082 12.1325C106.707 12.1325 104.941 14.8911 104.88 19.121L112.493 18.9984Z" fill="#959595"></path> </g> <defs> <clippath id="clip0"> <rect width="117" height="32" fill="white" transform="translate(0 0.423584)"></rect> </clippath> </defs> </svg> </a> </div> <div class="swiper-slide"> <a href="/web/20240318040954/https://www.science.org/journal/sciadv" title="Science Advances Journal Logo" class="footer__slider__link"> <svg width="144" height="37" viewbox="0 0 144 37" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M10.4556 36.3562V35.4925C9.13834 35.414 6.25699 34.7858 6.25699 33.4507C6.25699 32.901 6.42162 32.1157 6.66858 31.3306C6.99785 30.1525 7.40946 28.896 8.15051 27.0899H16.9596L19.1824 33.2152C19.2649 33.5291 19.3472 33.8434 19.3472 34.0789C19.3472 35.0213 16.9596 35.4924 15.7246 35.5711V36.4349H27.4977V35.5711C26.8389 35.5711 25.604 35.2568 25.0277 34.8644C24.1221 34.3146 23.8751 33.7648 23.5458 32.9795C22.1462 29.3672 18.6884 19.6295 14.9014 9.65628H13.1724C10.4556 17.0381 7.40945 25.2051 4.77505 31.8016C4.19864 33.1367 3.54009 34.236 2.6344 34.7858C1.97584 35.1784 0.740878 35.4925 0 35.4925V36.3564L10.4556 36.3562ZM8.5621 25.7548L12.5138 15.1533L16.4656 25.7548H8.5621ZM33.8368 36.8276C36.1421 36.8276 37.871 35.3354 38.6942 34.4716H38.8588V36.1207L39.1059 36.3564L45.6099 35.9636V35.2568C44.9512 35.2568 43.7987 35.0999 43.3869 34.7858C42.8107 34.393 42.5637 33.6863 42.4814 32.901V7.85002L42.2344 7.6145L34.7425 8.00731V8.71403C35.7305 8.79243 37.2948 9.10652 37.9533 9.57772C38.5295 9.97053 38.8588 10.9912 38.9413 11.7766V19.394C38.5297 19.2369 36.8007 18.373 34.5779 18.373C30.2967 18.373 26.4274 22.0639 26.4274 27.3254C26.2627 33.2152 29.6382 36.8276 33.8368 36.8276ZM35.2364 35.1784C31.6963 35.1784 30.379 31.6445 30.379 27.7966C30.379 22.5351 32.2726 19.3154 34.9071 19.3154C37.2947 19.3154 38.4472 21.2001 38.8588 22.5351V33.4507C37.871 34.4716 36.883 35.1784 35.2364 35.1784ZM52.8547 36.5919H54.2543C54.7482 34.8642 55.2423 33.6863 55.7362 32.4298C57.3005 28.3464 58.5355 25.2836 60.0995 21.8284C60.5936 20.6505 62.2402 19.7866 62.8987 19.7082V19.0013H55.9832V19.7866C56.5594 19.8652 58.7824 20.4148 58.7824 21.2001C58.7824 21.5143 58.7001 21.9854 58.6178 22.2996C57.3003 25.9904 56.3125 28.6605 54.9952 31.9587C53.4309 28.0323 51.6197 23.4775 50.9612 21.5929C50.7965 21.1217 50.7142 20.8074 50.7142 20.8074C50.7142 20.1793 52.0315 20.0221 52.8547 20.0221V19.1583H44.2926V19.9437C45.3628 20.1007 46.5977 20.729 47.0918 21.8284C49.4793 27.875 50.3025 29.7598 52.8547 36.5919ZM66.6858 36.8276C68.8264 36.8276 70.8023 35.8066 72.1196 34.1575H72.2019C72.7781 35.9637 73.8483 36.749 75.5773 36.749C77.8825 36.749 79.3644 35.3356 79.6114 31.8016H78.7058C78.6235 33.2936 78.4589 34.7858 77.3885 34.7858C76.3182 34.7858 75.6596 33.5293 75.6596 32.8226C75.6596 31.5661 75.8243 27.5611 75.8243 24.1843C75.8243 19.0799 73.0251 18.4516 69.3204 18.4516C66.4388 18.4516 63.228 20.2578 63.228 22.5351C63.228 23.6347 63.7221 24.5769 64.9571 24.5769C66.2742 24.5769 67.3445 23.8702 67.3445 22.8492C67.3445 21.9854 67.0152 21.1217 67.0152 20.5719C67.3445 20.1791 67.8384 19.2369 69.0734 19.2369C72.0373 19.2369 72.1196 22.4566 72.1196 23.1633V25.2836C70.5553 26.226 68.0854 26.8542 65.9449 27.7181C64.1337 28.4248 62.4048 29.5243 62.4048 32.6655C62.4048 35.1784 64.1335 36.8276 66.6858 36.8276ZM68.6618 35.0213C67.1799 35.0213 66.2742 34.0005 66.2742 32.1157C66.2742 28.6605 68.6618 27.6395 72.2019 26.383L72.0372 33.1367C71.1315 34.3146 70.5553 35.0213 68.6618 35.0213Z" fill="#959595"></path> <path d="M79.4017 36.2676H88.2797V35.468C87.7042 35.468 87.0466 35.3079 86.5533 34.9881C85.9779 34.6682 85.6492 34.1082 85.6492 33.2284V22.5105C85.9779 21.6307 87.4576 19.951 90.0059 19.951C91.5678 19.951 92.8831 21.3908 92.8831 24.1102V33.3884C92.8831 34.2682 92.6363 34.908 91.8966 35.1479C91.4856 35.308 90.8279 35.388 90.1702 35.388V36.1878H99.1303V35.388C98.4728 35.388 97.9796 35.2279 97.4041 34.9879C96.7465 34.6682 96.4999 34.1082 96.4999 33.2285V24.1902C96.4999 20.431 94.9381 17.9515 91.5678 17.9515C88.4441 17.9515 87.1288 19.7111 85.6492 21.1509V18.5114L85.4026 18.2715L79.1552 18.6714V19.3912C79.8129 19.3912 80.6348 19.7111 81.0458 20.031C81.6213 20.4311 81.9501 21.3108 82.0323 22.1106V33.3882C82.0323 34.2682 81.7035 34.908 81.0458 35.1479C80.5527 35.308 80.0595 35.388 79.4019 35.388L79.4017 36.2676ZM108.173 36.7477C111.132 36.7477 113.68 34.6682 115.078 32.1086L114.256 31.5487C113.105 33.7883 111.543 35.0681 109.077 35.0681C105.953 35.0681 104.145 31.7887 104.145 26.9896C104.145 21.0709 106.282 18.9913 108.419 18.9913C109.652 18.9913 110.228 19.2312 110.474 20.431C110.474 21.1508 109.981 21.2308 109.981 22.8306C109.981 24.3502 111.461 24.8302 112.118 24.8302C113.434 24.8302 114.173 23.9503 114.173 22.6706C114.173 20.2711 112.2 18.1115 108.419 18.1115C103.323 18.1115 100.117 22.5906 100.117 27.3895C100.199 32.7484 102.83 36.7477 108.173 36.7477ZM123.462 36.7477C126.586 36.7477 129.052 34.748 130.367 32.0288L129.627 31.5487C128.23 33.9482 127.244 35.0681 124.531 35.0681C120.75 35.0681 119.188 31.4687 119.188 26.4298V26.0297H130.038V25.71C130.038 21.7109 128.148 18.1915 123.051 18.1915C118.119 18.1915 115.16 22.6706 115.16 27.3895C115.242 32.4285 117.873 36.7477 123.462 36.7477ZM119.188 25.0701C119.27 21.3908 120.914 18.9115 123.051 18.9115C125.6 18.9115 126.175 22.1106 126.175 24.99L119.188 25.0701ZM137.519 36.8276C140.971 36.8276 143.931 34.748 143.931 31.2288C143.931 28.0295 141.793 26.5098 138.834 25.39C135.957 24.3502 134.724 23.7903 134.724 21.7107C134.724 20.3511 135.628 18.9113 137.601 18.9113C140.067 18.9113 141.958 21.1509 142.287 23.3904H143.109L142.862 17.9516H141.711L141.465 18.9912C140.56 18.3514 139.081 17.9516 137.601 17.9516C134.231 17.9516 131.847 20.2711 131.847 23.1505C131.847 26.5098 134.642 27.9495 136.944 28.7493C139.574 29.6291 141.136 30.509 141.136 32.4287C141.136 34.3481 140.149 35.7879 137.765 35.7879C134.888 35.7879 132.669 32.1887 132.258 30.2689H131.436L131.6 36.3478H132.833L133.162 35.1479C133.738 35.8677 135.793 36.8276 137.519 36.8276Z" fill="#959595"></path> <path d="M52.7778 12.6894C55.1216 12.6894 56.8356 11.2213 56.8356 9.1469C56.8356 7.39154 55.7862 6.68946 54.352 6.05117C53.5824 5.7001 52.7078 5.5086 51.8333 5.02988C50.7488 4.45545 50.2591 3.88102 50.2591 2.8278C50.2591 1.48737 51.5185 1.07244 52.0432 1.07244C54.352 1.07244 55.1915 2.57244 55.8912 4.48738H56.311L56.206 0.593721H55.5764L55.0166 1.35972C54.387 0.912866 53.2676 0.529932 52.3931 0.529932C50.3292 0.529932 48.755 1.87037 48.755 3.68945C48.755 5.18946 49.5246 6.14689 50.8189 6.68946C51.7984 7.10439 52.498 7.32775 53.4425 7.71075C54.5969 8.15761 55.1566 8.9554 55.1566 9.97669C55.1566 11.2533 54.387 12.115 52.8128 12.115C50.644 12.115 49.5246 10.3916 48.79 8.57247H48.3701L48.4751 12.5618H49.1047L49.6994 11.7639C50.3291 12.2426 51.3435 12.6894 52.7778 12.6894ZM60.9634 12.6576C62.3277 12.6576 63.5171 11.7639 64.1817 10.615L63.7969 10.3916C63.2373 11.3809 62.5376 11.9235 61.3833 11.9235C59.914 11.9235 59.1095 10.4873 59.1095 8.4129C59.1095 5.82775 60.0889 4.93417 61.1034 4.93417C61.6981 4.93417 61.943 5.06181 62.0479 5.54053C62.0479 5.85967 61.838 5.8916 61.838 6.59374C61.838 7.26396 62.5027 7.4554 62.8525 7.4554C63.4472 7.4554 63.7969 7.07246 63.7969 6.49796C63.7969 5.44481 62.8874 4.51924 61.1384 4.51924C58.7596 4.51924 57.2904 6.46603 57.2904 8.57247C57.2554 10.9341 58.4798 12.6576 60.9634 12.6576ZM66.2457 2.15758C66.9103 2.15758 67.4001 1.64694 67.4001 1.04058C67.4001 0.498004 66.9453 0.0192871 66.2457 0.0192871C65.616 0.0192871 65.1262 0.529932 65.1262 1.10437C65.1262 1.6788 65.616 2.15758 66.2457 2.15758ZM64.3217 12.466L68.4845 12.4661V12.115C68.2746 12.0831 67.9947 12.0192 67.7149 11.9235C67.4001 11.7958 67.2601 11.5086 67.2601 11.1256V4.74267L67.1552 4.61502L64.0768 4.80652V5.12567C64.3916 5.15753 64.9164 5.3171 65.0913 5.44481C65.3712 5.63625 65.5111 5.95546 65.5461 6.30646V11.2213C65.5461 11.5724 65.4061 11.8916 65.0913 11.9873C64.8814 12.0511 64.6366 12.0831 64.3217 12.1149V12.466ZM71.9826 12.6576C73.4169 12.6576 74.5713 11.7958 75.2009 10.5831L74.8511 10.3916C74.2214 11.4448 73.7317 11.9235 72.4724 11.9235C70.7233 11.9235 69.9887 10.3597 69.9887 8.15761V7.96604H75.061V7.80647C75.061 6.05117 74.1864 4.51924 71.8077 4.51924C69.499 4.51924 68.1697 6.49796 68.1697 8.54054C68.1697 10.7746 69.394 12.6576 71.9826 12.6576ZM69.9887 7.58311C70.0237 5.98738 70.7583 4.90224 71.7727 4.90224C72.9622 4.90224 73.242 6.30646 73.242 7.51925L69.9887 7.58311Z" fill="#959595"></path> <path d="M75.1117 12.6805H79.2523V12.3276C79.0066 12.2955 78.6908 12.2313 78.4803 12.1351C78.1996 12.0067 78.0592 11.75 78.0592 11.365V6.68054C78.2347 6.29557 78.9014 5.55758 80.0594 5.55758C80.7611 5.55758 81.4279 6.19927 81.4279 7.38643V11.4612C81.4279 11.8462 81.2875 12.135 80.9717 12.2312C80.7612 12.2954 80.4804 12.3275 80.1997 12.3596V12.7126H84.3403V12.3596C84.0245 12.3275 83.7789 12.2633 83.5683 12.1671C83.2525 12.0388 83.1472 11.7821 83.1472 11.3971V7.41853C83.1472 5.7822 82.4104 4.69127 80.8313 4.69127C79.3927 4.69127 78.761 5.46136 78.0943 6.10305H78.0242V4.94805L77.8838 4.81973L75.0065 5.01218V5.33303C75.3222 5.36513 75.6731 5.46142 75.8836 5.62178C76.1644 5.8143 76.3047 6.16724 76.3398 6.52025V11.4613C76.3398 11.8463 76.1995 12.1351 75.8837 12.2313C75.6731 12.2955 75.4275 12.3276 75.1117 12.3597V12.6805ZM87.5685 12.873C88.937 12.873 90.1301 11.9746 90.7968 10.8196L90.4109 10.595C89.8493 11.5896 89.1476 12.1351 87.9896 12.1351C86.5159 12.1351 85.7088 10.6913 85.7088 8.60575C85.7088 6.00682 86.6913 5.10848 87.7089 5.10848C88.3055 5.10848 88.5511 5.2368 88.6563 5.71807C88.6563 6.03892 88.4458 6.07102 88.4458 6.7769C88.4458 7.45069 89.1125 7.64315 89.4634 7.64315C90.0599 7.64315 90.4109 7.25817 90.4109 6.68061C90.4109 5.62184 89.4985 4.69134 87.744 4.69134C85.3579 4.69134 83.8841 6.64851 83.8841 8.76618C83.849 11.1404 85.0772 12.873 87.5685 12.873ZM94.6918 12.873C96.1305 12.873 97.2884 12.0067 97.92 10.7875L97.5692 10.595C96.9375 11.6538 96.4463 12.1351 95.183 12.1351C93.4286 12.1351 92.6917 10.5629 92.6917 8.3491V8.15652H97.7797V7.99609C97.7797 6.23144 96.9025 4.69134 94.5163 4.69134C92.2005 4.69134 90.867 6.68061 90.867 8.73408C90.867 10.98 92.0951 12.873 94.6918 12.873ZM92.6916 7.77154C92.7268 6.16731 93.4636 5.07638 94.4812 5.07638C95.6743 5.07638 95.955 6.48809 95.955 7.70734L92.6916 7.77154Z" fill="#959595"></path> </svg> </a> </div> <div class="swiper-slide"> <a href="/web/20240318040954/https://www.science.org/journal/sciimmunol" title="Science Immunology Journal Logo" class="footer__slider__link"> <svg width="140" height="38" viewbox="0 0 140 38" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M30.9605 2.02616C30.9605 1.42723 31.4287 0.923584 32.0072 0.923584C32.6545 0.923584 33.0952 1.40001 33.0952 1.9581C33.0952 2.57064 32.6407 3.10151 32.0072 3.10151C31.4287 3.0879 30.9605 2.59786 30.9605 2.02616ZM30.203 12.875C30.4784 12.8613 30.7126 12.8205 30.9191 12.7524C31.2221 12.6436 31.3599 12.3169 31.3599 11.9629V6.94011C31.3185 6.57258 31.1808 6.2595 30.9191 6.06893C30.7263 5.93281 30.2305 5.75586 29.9551 5.74225V5.41556L32.8197 5.22499L32.9299 5.3475V11.8677C32.9299 12.2352 33.0814 12.5347 33.3706 12.6708C33.6185 12.7933 33.894 12.8613 34.0868 12.875V13.2289H30.203V12.875ZM38.7693 8.19241C38.7693 6.92649 38.5214 5.49723 37.4059 5.49723C36.4556 5.49723 35.767 6.58619 35.7257 8.23325L38.7693 8.19241ZM34.0179 9.1997C34.0179 7.10345 35.2712 5.08887 37.4334 5.08887C39.637 5.08887 40.4633 6.66786 40.4633 8.45104V8.61439H35.7394V8.80496C35.7394 11.0646 36.4005 12.6708 38.0532 12.6708C39.2376 12.6708 39.6783 12.1807 40.2705 11.119L40.5873 11.3232C40.0226 12.5619 38.9484 13.4467 37.5987 13.4467C35.1472 13.433 34.0179 11.5138 34.0179 9.1997Z" fill="#959595"></path> <path d="M40.4866 12.8133C40.7616 12.7999 40.9954 12.7594 41.2016 12.692C41.5042 12.5842 41.6417 12.2878 41.6417 11.9105V6.93793C41.6004 6.57409 41.4629 6.21025 41.2016 6.02159C41.0229 5.88683 40.6791 5.76555 40.404 5.7386V5.41518L43.0993 5.22652L43.2231 5.34781V6.52019H43.2368C43.8419 5.87336 44.4469 5.10524 45.7808 5.10524C47.2522 5.10524 47.926 6.19677 47.926 7.8408V11.8431C47.926 12.2204 48.0498 12.4899 48.3248 12.6247C48.5586 12.7325 48.7648 12.7999 49.0536 12.8133V13.1637H45.1758V12.8133C45.437 12.7999 45.7121 12.7594 45.9046 12.692C46.2071 12.5842 46.3171 12.2878 46.3171 11.9105V7.80038C46.3171 6.60104 45.7258 5.96769 45.0657 5.96769C43.9656 5.96769 43.3606 6.69537 43.1956 7.09964V11.8296C43.1956 12.2069 43.3331 12.4764 43.5944 12.6112C43.8006 12.7325 44.0894 12.7999 44.3232 12.8133V13.1637H40.4591V12.8133H40.4866ZM48.7786 9.21532C48.7786 7.08617 50.1537 5.10524 52.3814 5.10524C54.0178 5.10524 54.8567 6.06202 54.8567 7.11312C54.8567 7.6791 54.5266 8.08337 53.9628 8.08337C53.6466 8.08337 53.014 7.89471 53.014 7.22092C53.014 6.49324 53.2203 6.47976 53.2203 6.14287C53.1378 5.64427 52.8902 5.52299 52.3402 5.52299C51.3913 5.52299 50.4838 6.43934 50.4838 9.05362C50.4838 11.1558 51.2538 12.6112 52.6152 12.6112C53.7016 12.6112 54.3616 12.0722 54.8704 11.075L55.2142 11.3175C54.6229 12.463 53.509 13.3793 52.2302 13.3793C49.9337 13.3658 48.7786 11.6005 48.7786 9.21532ZM60.0134 8.1777C60.0134 6.92446 59.7659 5.50951 58.652 5.50951C57.7032 5.50951 57.0156 6.58757 56.9744 8.21812L60.0134 8.1777ZM55.2555 9.1749C55.2555 7.09964 56.5068 5.10524 58.6658 5.10524C60.866 5.10524 61.6911 6.66842 61.6911 8.43373V8.59544H56.9744V8.7841C56.9744 11.0211 57.6344 12.6112 59.2846 12.6112C60.4672 12.6112 60.9072 12.1261 61.4986 11.075L61.8148 11.2771C61.251 12.5034 60.1784 13.3793 58.8308 13.3793C56.3968 13.3658 55.2555 11.4658 55.2555 9.1749Z" fill="#959595"></path> <path d="M19.3072 13.3953C21.5083 13.3953 23.1317 11.9012 23.1317 9.78217C23.1317 7.98919 22.1412 7.29644 20.8067 6.63086C20.0913 6.2777 19.2521 6.07395 18.4542 5.61212C17.4499 5.04162 16.9822 4.43038 16.9822 3.37089C16.9822 2.01256 18.1791 1.60507 18.6606 1.60507C20.8205 1.60507 21.6184 3.1128 22.2925 5.08237H22.6777L22.5951 1.14324H22.0036L21.4946 1.93106C20.9168 1.45565 19.8574 1.10249 19.0183 1.10249C17.0785 1.10249 15.6065 2.47439 15.6065 4.32171C15.6065 5.82945 16.3493 6.80744 17.56 7.36436C18.4817 7.78544 19.1283 8.02993 20.0363 8.41027C21.1094 8.85851 21.6596 9.65992 21.6596 10.7194C21.6596 12.0234 20.9443 12.9063 19.4585 12.9063C17.4224 12.9063 16.3631 11.1541 15.6752 9.30676H15.29L15.4001 13.3681H15.9779L16.5282 12.5667C16.9822 12.9606 17.9452 13.3953 19.3072 13.3953ZM26.9975 13.3817C28.2769 13.3817 29.405 12.4581 30.0103 11.3171L29.6526 11.0726C29.1436 12.0777 28.4695 12.6211 27.3827 12.6211C26.0069 12.6211 25.2365 11.1677 25.2365 9.06226C25.2365 6.4407 26.1583 5.51704 27.1075 5.51704C27.6578 5.51704 27.9054 5.63929 27.988 6.14187C27.988 6.46786 27.7816 6.49503 27.7816 7.21494C27.7816 7.8941 28.4145 8.08427 28.7309 8.08427C29.2949 8.08427 29.6251 7.69035 29.6251 7.10628C29.6251 6.04678 28.7859 5.09596 27.1213 5.09596C24.8926 5.09596 23.4894 7.07911 23.4894 9.21168C23.4894 11.6023 24.6587 13.3817 26.9975 13.3817Z" fill="#959595"></path> <path d="M0.930664 31.657C1.41053 31.6292 2.56784 31.5736 2.93479 31.407C3.55579 31.1014 3.78159 30.6291 3.78159 29.9346V14.8225C3.78159 14.1281 3.61224 13.6836 2.93479 13.3502C2.45493 13.1002 1.46698 12.878 0.930664 12.8502V11.739H9.48349V12.8502C9.00363 12.878 8.01567 13.0169 7.47936 13.1836C6.80191 13.4336 6.63254 13.9614 6.63254 14.6559V29.768C6.63254 30.4625 6.85836 30.9347 7.47936 31.2403C7.84631 31.4347 8.9754 31.6292 9.48349 31.657V32.7126H0.930664V31.657ZM10.1045 31.7959C10.5561 31.7681 10.9231 31.7403 11.2618 31.6292C11.7699 31.4625 11.9957 30.9903 11.9957 30.2958V21.573C11.9957 20.9618 11.6852 20.434 11.2618 20.1284C10.9231 19.934 10.3867 19.7118 9.90689 19.684V18.7673L14.1974 18.4061L14.395 18.6006V20.7118H14.4797C15.4959 19.6006 16.4556 18.1839 18.742 18.1839C20.4074 18.1839 21.5929 19.2951 22.101 20.7952C23.1454 19.6284 24.1898 18.1839 26.448 18.1839C28.932 18.1839 29.9199 20.2118 29.9199 23.0453V30.1569C29.9199 30.7958 30.1175 31.2403 30.5974 31.4903C30.9643 31.657 31.3878 31.7681 31.8676 31.7959V32.7404H25.6294V31.7959C26.081 31.7681 26.3633 31.7681 26.7585 31.6292C27.2666 31.4625 27.4642 30.9903 27.4642 30.2958V23.0731C27.4642 21.0174 26.5045 19.9618 25.3471 19.9618C23.4277 19.9618 22.4115 21.6285 22.1857 22.2119V30.1569C22.1857 30.7958 22.4115 31.2403 22.8914 31.4903C23.2301 31.6292 23.5971 31.7681 24.0769 31.7959V32.7404H17.9234V31.7959C18.375 31.7681 18.6291 31.7681 18.996 31.6292C19.4759 31.4625 19.7299 30.9903 19.7299 30.2958V23.0731C19.7299 21.0174 18.742 19.9618 17.6129 19.9618C15.7499 19.9618 14.7337 21.573 14.4232 22.2397V30.1569C14.4232 30.7958 14.6773 31.2403 15.1289 31.4903C15.5241 31.6848 15.8628 31.7959 16.3427 31.8237V32.7682H10.1045V31.7959ZM31.9805 31.7959C32.4322 31.7681 32.7991 31.7403 33.1378 31.6292C33.6459 31.4625 33.8717 30.9903 33.8717 30.2958V21.573C33.8717 20.9618 33.5612 20.434 33.1378 20.1284C32.7991 19.934 32.2628 19.7118 31.7829 19.684V18.7673L36.0735 18.4061L36.2711 18.6006V20.7118H36.3557C37.3719 19.6006 38.3316 18.1839 40.618 18.1839C42.2834 18.1839 43.469 19.2951 43.9771 20.7952C45.0215 19.6284 46.0659 18.1839 48.324 18.1839C50.808 18.1839 51.796 20.2118 51.796 23.0453V30.1569C51.796 30.7958 51.9936 31.2403 52.4734 31.4903C52.8404 31.657 53.2638 31.7681 53.7437 31.7959V32.7404H47.5054V31.7959C47.9571 31.7681 48.2394 31.7681 48.6345 31.6292C49.1426 31.4625 49.3402 30.9903 49.3402 30.2958V23.0731C49.3402 21.0174 48.3805 19.9618 47.2232 19.9618C45.3037 19.9618 44.2876 21.6285 44.0617 22.2119V30.1569C44.0617 30.7958 44.2876 31.2403 44.7674 31.4903C45.1062 31.6292 45.4731 31.7681 45.953 31.7959V32.7404H39.7994V31.7959C40.2511 31.7681 40.5051 31.7681 40.8721 31.6292C41.3519 31.4625 41.606 30.9903 41.606 30.2958V23.0731C41.606 21.0174 40.618 19.9618 39.4889 19.9618C37.6259 19.9618 36.6098 21.573 36.2993 22.2397V30.1569C36.2993 30.7958 36.5533 31.2403 37.005 31.4903C37.4001 31.6848 37.7389 31.7959 38.2187 31.8237V32.7682H31.9805V31.7959ZM54.8727 28.1568V21.6008C54.8163 20.8229 54.5905 20.434 54.1671 20.1007C53.8283 19.8784 53.292 19.7118 52.8121 19.684V18.7673L57.1309 18.4061L57.3285 18.6006V28.3512C57.3285 30.3791 58.3164 31.4347 59.4455 31.4347C61.3932 31.4347 62.3529 29.7957 62.6917 29.129V21.4341C62.6352 20.8229 62.4094 20.2673 61.986 19.934C61.6473 19.7118 60.9698 19.6562 60.2641 19.6284V18.7673L64.9216 18.4061L65.1192 18.6006V29.7402C65.1756 30.3513 65.4015 30.8514 65.8249 31.1847C66.1636 31.407 66.6435 31.4625 67.1233 31.4903V32.407L62.9175 32.7682L62.7199 32.5459V30.6847H62.6352C61.619 31.8237 60.6593 33.0737 58.3165 33.0737C55.8607 33.046 54.8727 30.9903 54.8727 28.1568ZM67.3209 31.7959C67.8008 31.7681 68.1395 31.7681 68.4782 31.6292C68.9863 31.4347 69.2121 30.9903 69.2121 30.268V21.6285C69.1557 20.9896 68.9016 20.3507 68.4782 20.0451C68.1395 19.8229 67.6596 19.684 67.1798 19.6562V18.7395L71.4703 18.4061L71.6397 18.5728V20.6563H71.6961C72.7123 19.6006 73.7567 18.1839 76.0713 18.1839C78.5553 18.1839 79.6844 20.0451 79.6844 22.9064V30.1569C79.6844 30.7958 79.9102 31.2403 80.3901 31.4625C80.7853 31.6292 81.0957 31.7681 81.5756 31.7959V32.7404H75.2527V31.7959C75.7326 31.7681 76.156 31.7681 76.4947 31.6292C77.0028 31.4347 77.2286 30.9903 77.2286 30.268V23.0731C77.2286 21.0174 76.1842 19.934 74.9987 19.934C73.051 19.934 71.9219 21.4896 71.6397 22.2119V30.1569C71.6397 30.7958 71.8937 31.2125 72.3736 31.4625C72.7688 31.657 73.1922 31.7959 73.6438 31.8237V32.7682H67.3209V31.7959ZM81.6885 25.6844C81.6885 21.2674 84.1443 18.1839 87.9267 18.1839C91.6809 18.1839 94.0238 21.323 94.0238 25.4621C94.0238 29.6291 91.7938 33.1293 87.7291 33.1293C84.5395 33.1015 81.6885 30.2124 81.6885 25.6844ZM91.3422 25.5177C91.3422 22.4064 90.4954 19.2951 87.8985 19.2951C85.104 19.2951 84.3701 22.6008 84.3701 25.4621C84.3701 28.9624 85.3863 31.9903 87.8985 31.9903C90.2696 31.9903 91.3422 29.0457 91.3422 25.5177Z" fill="#959595"></path> <path d="M93.9288 31.9033C94.4088 31.8753 94.7194 31.8473 95.1148 31.7073C95.6231 31.5393 95.849 31.0913 95.849 30.3913V15.6626C95.7643 14.9905 95.5101 14.2905 95.1148 13.9825C94.8042 13.7585 93.7311 13.5065 93.251 13.4785V12.5264L98.0517 12.1624L98.2494 12.4424V30.2233C98.2494 30.8673 98.4753 31.3433 98.9553 31.5953C99.3225 31.7633 99.6613 31.9033 100.141 31.9313V32.8834H93.9288V31.9033ZM99.8873 25.7431C99.8873 21.2908 102.344 18.1827 106.128 18.1827C109.884 18.1827 112.228 21.3468 112.228 25.519C112.228 29.7192 109.997 33.2474 105.93 33.2474C102.711 33.2194 99.8873 30.3073 99.8873 25.7431ZM109.545 25.575C109.545 22.4389 108.698 19.3027 106.1 19.3027C103.304 19.3027 102.57 22.6349 102.57 25.519C102.57 29.0472 103.587 32.0993 106.1 32.0993C108.472 32.0993 109.545 29.1312 109.545 25.575ZM112.284 34.3675C112.284 32.7714 113.386 31.4833 116.04 31.3993V31.1753C114.995 30.8673 113.668 30.3913 113.668 28.8512C113.668 27.4791 114.798 26.9471 115.73 26.5831V26.4711C113.979 25.7711 113.019 24.203 113.019 22.5229C113.019 19.9468 115.136 18.1827 117.791 18.1827C119.627 18.1827 121.095 19.1067 121.377 19.1067C122.366 18.3787 123.015 18.1827 124.145 18.1827C124.766 18.1827 125.416 18.8267 125.416 19.6668C125.416 20.5628 125.02 21.1788 124.286 21.1788C123.326 21.1788 123.128 20.5348 123.128 19.3587C122.253 19.3587 121.914 19.5548 121.49 19.8628V19.8908C122.083 20.6188 122.507 21.8229 122.507 22.6629C122.507 25.127 120.276 26.9191 117.989 26.9191H116.464C116.04 27.1151 115.504 27.3391 115.504 27.9832C115.504 29.3272 117.085 29.1872 118.384 29.2712C119.175 29.2992 120.784 29.3552 121.377 29.4112C122.959 29.5232 124.766 30.8113 124.766 33.2194C124.766 35.7115 122.422 37.8676 118.073 37.8676C114.063 37.8676 112.284 36.4396 112.284 34.3675ZM122.592 33.7234C122.592 33.1074 122.479 32.2674 121.236 31.9033C120.643 31.8473 119.485 31.7073 117.057 31.7073C115.278 32.0994 114.515 33.0514 114.515 34.4795C114.515 35.4035 115.758 36.6916 118.497 36.6916C120.954 36.6916 122.592 35.5715 122.592 33.7234ZM120.022 22.6069C120.022 20.8428 119.401 19.3027 117.706 19.3027C115.984 19.3027 115.504 20.7588 115.504 22.4949C115.504 24.399 116.379 25.8551 117.706 25.8551C119.316 25.8551 120.022 24.287 120.022 22.6069ZM126.941 35.8795C126.941 35.0955 127.534 34.1714 128.465 34.1714C129.059 34.1714 129.849 34.3955 129.849 35.6555V36.4396C130.894 36.2155 132.193 33.7514 132.617 32.5474C130.64 27.1711 130.245 26.0231 128.409 21.0388C128.098 20.2268 127.195 19.6948 126.404 19.6108V18.6027H132.25V19.6668C131.628 19.6668 130.809 19.8068 130.809 20.2828C130.809 20.3108 130.866 20.5628 130.979 20.8988C131.515 22.5229 132.701 25.9391 133.859 28.9912H133.887C134.904 26.3591 135.525 24.455 136.542 21.4869C136.627 21.2628 136.74 20.8708 136.74 20.6188C136.74 20.0028 135.412 19.6108 135.017 19.5268V18.5747H139.931V19.4988C139.422 19.6108 138.293 20.3108 137.954 21.2068C137.361 22.8029 136.034 26.6111 134.904 29.4392C132.786 34.8155 131.798 37.9236 128.917 37.9236C127.957 37.9236 126.941 37.2516 126.941 35.8795Z" fill="#959595"></path> </svg> </a> </div> <div class="swiper-slide"> <a href="/web/20240318040954/https://www.science.org/journal/scirobotics" title="Science Robotics Journal Logo" class="footer__slider__link"> <svg width="103" height="37" viewbox="0 0 103 37" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M6.65629 9.7427L6.20866 10.4031H5.72659L5.63477 7.034H5.95614C6.53004 8.56744 7.40235 10.0225 9.10107 10.0225C10.3292 10.0225 10.926 9.28379 10.926 8.20926C10.926 7.32502 10.4784 6.66463 9.58314 6.29526C8.8256 5.98186 8.28614 5.78039 7.52861 5.4334C6.51856 4.97449 5.91023 4.1686 5.91023 2.91498C5.91023 1.38154 7.13836 0.251052 8.74526 0.251052C9.4454 0.251052 10.3177 0.553263 10.7998 0.945017L11.2245 0.295824H11.718L11.7869 3.56417H11.4655C10.9031 1.91881 10.2489 0.654 8.45831 0.654C8.06806 0.654 7.06949 1.00098 7.06949 2.12028C7.06949 3.00453 7.45974 3.50821 8.29762 3.97831C8.97481 4.37007 9.652 4.53796 10.2603 4.82898C11.3737 5.37744 12.1886 5.94828 12.1886 7.43695C12.1886 9.19424 10.8457 10.4367 9.02072 10.4367C7.88442 10.4479 7.08097 10.0897 6.65629 9.7427ZM12.5559 6.97803C12.5559 5.20954 13.7152 3.56417 15.5631 3.56417C16.9404 3.56417 17.6406 4.35888 17.6406 5.23193C17.6406 5.71323 17.3651 6.03782 16.8945 6.03782C16.6305 6.03782 16.1025 5.88112 16.1025 5.32147C16.1025 4.71705 16.2747 4.70586 16.2747 4.42603C16.2058 4.01189 15.9992 3.91116 15.5401 3.91116C14.7482 3.91116 13.9906 4.67228 13.9906 6.85491C13.9906 8.60102 14.6334 9.80986 15.7697 9.80986C16.6764 9.80986 17.2274 9.36214 17.652 8.52267L17.939 8.72414C17.4454 9.67554 16.5043 10.4367 15.4368 10.4367C13.52 10.4367 12.5559 8.95919 12.5559 6.97803ZM18.7539 1.03456C18.7539 0.54207 19.1442 0.12793 19.6262 0.12793C20.1657 0.12793 20.533 0.519684 20.533 0.978596C20.533 1.48228 20.1542 1.91881 19.6262 1.91881C19.1442 1.90761 18.7539 1.50467 18.7539 1.03456ZM18.1226 9.97775C18.3522 9.96656 18.5473 9.93298 18.7195 9.87702C18.972 9.78747 19.0868 9.51884 19.0868 9.22782V5.08642C19.0523 4.78421 18.9376 4.52677 18.7195 4.37007C18.5588 4.25814 18.1456 4.11263 17.916 4.10144V3.82161L20.3149 3.66491L20.4067 3.76565V9.13828C20.4067 9.44049 20.533 9.68674 20.774 9.79867C20.9806 9.8994 21.2102 9.95537 21.3709 9.96656V10.2576H18.1226V9.97775ZM25.2733 6.10498C25.2733 5.06403 25.0667 3.88877 24.137 3.88877C23.345 3.88877 22.7597 4.78421 22.7367 6.13856L25.2733 6.10498ZM21.302 6.94445C21.302 5.20954 22.358 3.55298 24.1485 3.55298C25.9849 3.55298 26.6736 4.85137 26.6736 6.31765V6.45196H22.7252V6.60866C22.7252 8.4667 23.2762 9.79867 24.6535 9.79867C25.6521 9.79867 26.0079 9.39572 26.5129 8.51147L26.7769 8.67937C26.3063 9.69793 25.3996 10.4255 24.2747 10.4255C22.2547 10.4367 21.302 8.84726 21.302 6.94445ZM26.9276 10.017C27.1561 10.0058 27.3503 9.97213 27.5216 9.91604C27.7729 9.82629 27.8872 9.57948 27.8872 9.26537V5.11454C27.8529 4.81164 27.7387 4.50874 27.5216 4.35168C27.3731 4.2395 27.0876 4.13853 26.8477 4.11609V3.84685L29.0866 3.68979L29.1894 3.79076V4.77798H29.2008C29.7148 4.2395 30.206 3.58882 31.3255 3.58882C32.5477 3.58882 33.1189 4.49752 33.1189 5.87739V9.22049C33.1189 9.53461 33.2217 9.75898 33.4501 9.87116C33.6443 9.96091 33.8157 10.017 34.0555 10.0282V10.3199H30.8229V10.017C31.0399 10.0058 31.2683 9.97213 31.4283 9.91604C31.6796 9.82629 31.7824 9.57948 31.7824 9.26537V5.84373C31.7824 4.84529 31.2912 4.30681 30.7315 4.30681C29.8176 4.30681 29.3036 4.9126 29.178 5.24916V9.19805C29.178 9.51217 29.2922 9.73654 29.5092 9.84873C29.6806 9.94969 29.9204 10.0058 30.1146 10.017V10.3087H26.9048V10.017H26.9276ZM33.8385 7.01046C33.8385 5.23794 34.9922 3.58882 36.8313 3.58882C38.202 3.58882 38.8988 4.38534 38.8988 5.26038C38.8988 5.74277 38.6247 6.0681 38.1564 6.0681C37.8936 6.0681 37.3682 5.91105 37.3682 5.35012C37.3682 4.74433 37.5395 4.73311 37.5395 4.45265C37.471 4.03756 37.2654 3.9366 36.8085 3.9366C36.0203 3.9366 35.2664 4.69945 35.2664 6.88705C35.2664 8.63713 35.906 9.84873 37.0369 9.84873C37.9393 9.84873 38.4876 9.39999 38.9103 8.5586L39.1958 8.76054C38.7047 9.7141 37.768 10.477 36.7056 10.477C34.798 10.477 33.8385 8.99612 33.8385 7.01046ZM43.1824 6.13541C43.1824 5.0921 42.9768 3.91416 42.0516 3.91416C41.2634 3.91416 40.6808 4.81164 40.658 6.16907L43.1824 6.13541ZM39.2301 6.9768C39.2301 5.23794 40.281 3.57761 42.063 3.57761C43.8906 3.57761 44.576 4.87895 44.576 6.34857V6.48319H40.6465V6.64025C40.6465 8.50251 41.1948 9.83751 42.5656 9.83751C43.5594 9.83751 43.9135 9.43364 44.4161 8.54738L44.6788 8.71566C44.2105 9.73654 43.3081 10.4657 42.1886 10.4657C40.1782 10.477 39.2301 8.88394 39.2301 6.9768Z" fill="#959595"></path> <path d="M0.930664 34.8135C1.44776 34.7837 2.60363 34.6645 3.02948 34.5156C3.75949 34.2474 3.94199 33.6516 3.94199 32.9068V16.5806C3.94199 15.8656 3.75949 15.2101 3.02948 14.9718C2.51238 14.7931 1.47818 14.6143 0.930664 14.6143V13.4226H10.938C13.8581 13.4226 16.9911 14.9122 16.9911 18.6363C16.9911 22.1815 14.6794 23.4328 11.5464 24.3266V24.6841C13.2802 25.131 15.379 26.3227 16.3219 28.8848C16.7782 30.1957 17.3561 32.2216 17.5082 32.728C17.9948 34.2772 18.8161 34.456 19.3636 34.5454C19.9416 34.6347 20.6108 34.7539 21.1583 34.7837V35.9158H14.7098C14.2839 33.592 13.7973 31.6257 13.0368 29.4509C12.2155 27.1867 10.3905 25.1906 8.32211 25.1906H7.1054V32.8472C7.1054 33.592 7.31833 34.1879 8.01793 34.456C8.38294 34.6347 9.69089 34.7241 10.2384 34.7539V35.886H0.961084V34.8135H0.930664ZM8.74795 23.9393C11.3334 23.9393 13.4322 21.9432 13.4322 18.964C13.4322 16.0443 11.6376 14.7633 9.41714 14.7633H7.1054V23.9691H8.74795V23.9393Z" fill="#959595"></path> <path d="M19.92 28.3438C19.92 23.5955 22.657 20.2509 26.7935 20.2509C30.9301 20.2509 33.5427 23.6553 33.5427 28.075C33.5427 32.5843 31.0856 36.3172 26.6069 36.3172C23.0613 36.3471 19.92 33.2413 19.92 28.3438ZM30.5569 28.1646C30.5569 24.7901 29.6238 21.4753 26.7624 21.4753C23.6833 21.4753 22.8747 25.029 22.8747 28.1049C22.8747 31.8676 23.9944 35.1526 26.7624 35.1526C29.4061 35.1227 30.5569 31.9572 30.5569 28.1646Z" fill="#959595"></path> <path d="M34.7188 36.4793C34.8113 35.2204 34.8421 32.8224 34.8421 30.4843V17.4153C34.8421 16.7558 34.503 15.8865 34.0407 15.5568C33.6708 15.347 32.6536 15.1671 32.0988 15.1072V14.118L37.2464 13.7283L37.4621 14.0281V22.3311H37.5546C38.2327 21.4918 39.6506 20.2329 41.5309 20.2329C44.8907 20.2329 47.5107 23.3803 47.5107 28.2962C47.5107 32.9123 44.4283 36.3594 40.9452 36.3594C38.9725 36.3594 37.4621 35.4602 36.5991 34.8607L35.6435 36.7191L34.7188 36.4793ZM44.5516 28.3561C44.5516 25.1488 43.4728 22.0314 40.5137 22.0314C39.1266 22.0314 38.1711 22.7808 37.4621 23.68V32.3428C37.8012 33.332 38.6951 35.0705 40.7295 35.0705C42.9488 35.0705 44.5516 32.7624 44.5516 28.3561ZM48.5895 28.3261C48.5895 23.5601 51.302 20.2029 55.4016 20.2029C59.5012 20.2029 62.0904 23.6201 62.0904 28.0564C62.0904 32.5826 59.6553 36.3294 55.2167 36.3294C51.7028 36.3594 48.5895 33.242 48.5895 28.3261ZM59.1621 28.1463C59.1621 24.7591 58.2374 21.4319 55.4016 21.4319C52.3501 21.4319 51.5486 24.9989 51.5486 28.0863C51.5486 31.8632 52.6583 35.1604 55.4016 35.1604C58.0216 35.1304 59.1621 31.9531 59.1621 28.1463ZM64.3713 31.8032V22.4211H61.628V20.9223H64.4022V16.6059H66.9297V20.8923H70.906V22.3911H66.9605V31.2937C66.9605 33.1821 67.3921 34.2612 69.0257 34.2612C70.2587 34.2612 70.4436 33.0022 70.5669 31.7733H71.6458C71.4608 34.1713 70.2587 36.2095 67.9161 36.2095C65.5426 36.2395 64.3713 34.6509 64.3713 31.8032ZM72.6013 34.9206C73.1253 34.8906 73.4644 34.8607 73.8959 34.7108C74.4199 34.5309 74.6665 34.0214 74.6665 33.272V23.9798C74.6049 23.2903 74.3274 22.7208 73.8959 22.3611C73.4952 22.0614 72.663 21.8815 72.139 21.8515V20.8624L77.1324 20.4727L77.3174 20.6825V33.0622C77.3174 33.7816 77.5948 34.2912 78.1188 34.531C78.5503 34.7108 78.8894 34.8906 79.3826 34.9206V35.9398H72.6013V34.9206ZM73.9576 15.6767C73.9576 14.5976 74.7898 13.6984 75.7453 13.6984C76.855 13.6984 77.5948 14.5377 77.5948 15.5268C77.5948 16.6359 76.7934 17.5951 75.7453 17.5951C74.7898 17.5951 73.9576 16.6959 73.9576 15.6767ZM79.1052 28.2062C79.1052 24.0697 81.6635 20.2329 85.7939 20.2329C88.9071 20.2329 90.4791 22.0614 90.4791 24.0997C90.4791 25.5085 89.9551 26.2878 88.8455 26.2878C88.2598 26.2878 87.2118 25.8682 87.2118 24.6392C87.2118 23.2004 87.6125 23.2304 87.6125 22.6309C87.4892 21.7017 86.8111 21.4918 85.7323 21.4918C83.9753 21.4918 82.0334 23.1105 82.0334 28.0863C82.0334 31.7733 83.6979 34.531 86.3487 34.531C88.229 34.531 89.2462 33.5418 90.2942 31.5934L91.3114 32.4027C90.1709 34.5909 88.0749 36.3294 85.6398 36.3294C81.3245 36.2995 79.1052 32.8224 79.1052 28.2062ZM93.4999 34.9806L93.2225 36.0597H92.1745L92.0512 30.5443H93.13C93.4691 32.1629 94.9486 35.0705 97.1679 35.0705C99.2023 35.0705 99.9421 33.9914 99.9421 32.4927C99.9421 30.7241 98.8324 30.0647 96.5514 29.3453C94.6404 28.7458 92.4211 27.5768 92.4211 24.6692C92.4211 22.1813 94.2088 20.2329 96.9213 20.2329C98.0618 20.2329 99.2639 20.5626 99.9729 21.1321L100.219 20.2029H101.206L101.422 25.1188H100.343C100.035 23.2304 98.8324 21.5218 96.8905 21.5218C95.3493 21.5218 94.5479 22.451 94.5479 23.5601C94.5479 25.4485 95.5343 25.8982 97.9385 26.7375C100.374 27.6067 102.069 28.7758 102.069 31.5035C102.069 34.471 99.8188 36.3294 97.0138 36.3294C95.5959 36.3594 94.0239 35.5501 93.4999 34.9806Z" fill="#959595"></path> </svg> </a> </div> <div class="swiper-slide"> <a href="/web/20240318040954/https://www.science.org/journal/signaling" title="Science Signaling Journal Logo" class="footer__slider__link"> <svg width="118" height="37" viewbox="0 0 118 37" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M2.40481 28.3857L1.38324 29.8882H0.288578L0.0693359 22.3756H0.79937C2.11327 25.8097 4.08413 29.0293 7.87967 29.0293C10.6529 29.0293 11.9668 27.3838 11.9668 24.9516C11.9668 23.0192 10.9452 21.5174 8.97433 20.6585C7.2958 19.9434 6.05421 19.5136 4.3026 18.7262C2.04019 17.725 0.653201 15.8649 0.653201 13.0744C0.653201 9.64022 3.42717 7.13651 7.00348 7.13651C8.6097 7.13651 10.5806 7.78013 11.6752 8.71055L12.6237 7.27954H13.7192L13.8653 14.5769H13.1345C11.8937 10.9282 10.4344 8.13769 6.34653 8.13769C5.47111 8.13769 3.20793 8.92509 3.20793 11.4288C3.20793 13.3612 4.08335 14.5054 5.9819 15.5788C7.51427 16.437 9.04741 16.8668 10.3613 17.5112C12.843 18.7269 14.6677 20.0141 14.6677 23.3768C14.6677 27.3123 11.6752 30.102 7.51427 30.102C5.17879 29.9598 3.35408 29.1724 2.40481 28.3857ZM16.347 28.8863C16.8578 28.8863 17.2955 28.8148 17.6601 28.6718C18.2447 28.4572 18.4632 27.8844 18.4632 27.2407V18.011C18.3901 17.3674 18.0986 16.7238 17.6601 16.3655C17.2955 16.0794 16.347 15.7934 15.8354 15.7219V15.0782L21.2372 14.7207L21.4556 14.9352V26.9547C21.4556 27.5983 21.748 28.1712 22.2588 28.4572C22.6972 28.6718 23.2811 28.8148 23.5727 28.8148V29.4584H16.2739V28.8863H16.347ZM17.7332 8.13769C17.7332 7.065 18.6094 6.13457 19.704 6.13457C20.9449 6.13457 21.748 6.99348 21.748 8.06694C21.748 9.21114 20.8718 10.1416 19.704 10.1416C18.6094 10.1416 17.7332 9.21114 17.7332 8.13769ZM23.6457 32.8933C23.6457 31.104 25.252 29.5307 28.3175 29.4584V29.2439C27.1497 28.8863 25.1058 28.2427 25.1058 26.3818C25.1058 24.8085 26.8574 24.1642 27.8059 23.8066V23.5921C25.6166 22.7332 24.375 21.2306 24.375 19.299C24.375 16.3655 26.7843 14.5769 29.7768 14.5769C31.8207 14.5769 33.5723 15.5788 34.0108 15.5788C35.1055 14.8637 35.7624 14.5769 37.0763 14.5769C37.8064 14.5769 38.5364 15.2213 38.5364 16.1517C38.5364 17.0814 38.0256 17.725 37.2225 17.725C36.1278 17.725 35.8355 17.0098 35.8355 15.6503C34.9593 15.6503 34.5216 15.7934 34.0839 16.1509V16.437C34.7408 17.2959 35.1785 18.5124 35.1785 19.5136C35.1785 22.3041 32.4784 24.0934 30.0691 24.0934H28.3906C27.879 24.3787 27.4413 24.737 27.4413 25.4522C27.4413 27.0262 29.266 26.9547 30.5799 27.0262C31.4561 27.0262 33.3539 27.1692 33.9377 27.2407C35.6893 27.3123 37.7333 28.8863 37.7333 31.6053C37.7333 34.5381 35.1785 36.828 30.1422 36.828C25.5435 36.828 23.6457 35.3255 23.6457 32.8933ZM35.1055 32.2489C35.1055 31.5338 34.9593 30.4603 33.6454 29.959C33.0615 29.8882 31.6753 29.7452 29.0475 29.7452C27.0767 30.1743 26.4197 31.1755 26.4197 33.1078C26.4197 34.3951 27.5874 36.0406 30.726 36.0406C33.5 35.9691 35.1055 34.7534 35.1055 32.2489ZM32.1861 19.3705C32.1861 17.2244 31.5291 15.2928 29.8498 15.2928C28.0982 15.2928 27.5874 17.1529 27.5874 19.299C27.5874 21.589 28.5359 23.306 29.9229 23.306C31.4561 23.306 32.1861 21.4452 32.1861 19.3705ZM39.3395 28.8863C39.8503 28.8863 40.288 28.8148 40.6526 28.6718C41.2373 28.4572 41.4557 27.9566 41.4557 27.2407V18.011C41.3827 17.3674 41.0911 16.6523 40.6526 16.294C40.288 16.0079 39.6311 15.7934 39.1203 15.7934V15.1498L44.1566 14.7922L44.3759 15.006V17.2244C45.5436 16.0079 46.6383 14.5769 49.193 14.5769C51.967 14.5769 53.2078 16.5808 53.2078 19.6566V27.0977C53.2078 27.8128 53.4262 28.3142 53.9378 28.528C54.3755 28.7433 54.7402 28.8863 55.3248 28.8863V29.5307H48.0245V28.8863C48.536 28.8863 49.0476 28.8148 49.4122 28.6718C49.9961 28.4572 50.2153 27.9566 50.2153 27.2407V19.5851C50.2153 17.3674 49.1199 16.1509 47.8791 16.1509C45.8352 16.1509 44.6674 17.5104 44.3759 18.2256V27.0262C44.3759 27.7413 44.6682 28.2427 45.1059 28.4565C45.4705 28.6718 46.0544 28.8148 46.4921 28.8148V29.4584H39.1933V28.8863H39.3395ZM55.9087 26.5256C55.9087 23.8781 57.368 22.9477 58.828 22.3756C60.5796 21.6605 62.5513 21.1591 63.8644 20.3725V18.5831C63.8644 18.0103 63.7913 15.292 61.3828 15.292C60.3612 15.292 59.9958 16.0071 59.7042 16.3647C59.7042 16.8661 59.9965 17.5812 59.9965 18.2971C59.9965 19.1552 59.0473 19.7273 58.0249 19.7273C57.0764 19.7273 56.6379 18.9407 56.6379 18.0103C56.6379 16.0787 59.2657 14.5761 61.602 14.5761C64.5944 14.5761 66.8568 15.0775 66.8568 19.3698C66.8568 22.2318 66.7107 25.5229 66.7107 26.5964C66.7107 27.1685 67.2222 28.2419 68.0984 28.2419C68.9739 28.2419 69.12 26.9539 69.1931 25.7375H69.9231C69.777 28.7425 68.5361 29.8875 66.6384 29.8875C65.2514 29.8875 64.3752 29.2431 63.9382 27.7406H63.8644C62.7697 29.1001 61.2366 29.959 59.485 29.959C57.368 29.959 55.9087 28.6003 55.9087 26.5256ZM63.7182 26.8832L63.8644 21.2306C61.0181 22.2326 59.0473 23.163 59.0473 26.0243C59.0473 27.5991 59.7765 28.4572 61.0181 28.4572C62.5505 28.4572 63.0621 27.8851 63.7182 26.8832ZM70.9824 28.709C71.4932 28.709 72.0032 28.6368 72.3678 28.4945C72.9517 28.28 73.1702 27.7794 73.1702 27.065V8.84825C73.1702 8.13313 72.8786 7.34801 72.3678 6.99044C72.0032 6.70515 70.837 6.34759 70.3262 6.34759V5.70473L75.9418 5.34717L76.1603 5.56171V26.8512C76.1603 27.5656 76.4519 28.0654 76.9619 28.3515C77.4004 28.5653 77.7642 28.709 78.275 28.709V29.3511H70.9824V28.709ZM79.442 28.709C79.952 28.709 80.3897 28.6368 80.7544 28.4945C81.3375 28.28 81.5567 27.7079 81.5567 27.065V17.8497C81.4836 17.2069 81.1921 16.564 80.7544 16.2065C80.3897 15.9204 79.442 15.6351 78.9312 15.5636V14.9208L84.3276 14.5632L84.546 14.7777V26.7797C84.546 27.4226 84.8384 27.9939 85.3484 28.28C85.7861 28.4945 86.3692 28.6375 86.6608 28.6375V29.2796H79.3681V28.709H79.442ZM80.9005 7.99086C80.9005 6.91893 81.7752 5.99002 82.8691 5.99002C84.1091 5.99002 84.9107 6.84818 84.9107 7.91935C84.9107 9.06279 84.036 9.99094 82.8691 9.99094C81.7752 9.99094 80.9005 9.06279 80.9005 7.99086ZM87.8277 28.7083C88.3385 28.7083 88.7762 28.6368 89.1409 28.4945C89.724 28.28 89.9425 27.7794 89.9425 27.065V17.8497C89.8701 17.2069 89.5778 16.4925 89.1409 16.135C88.7762 15.8497 88.1193 15.6351 87.6093 15.6351V14.9923L92.6402 14.6347L92.8595 14.8492V17.0631C94.0265 15.8497 95.1203 14.4202 97.6728 14.4202C100.444 14.4202 101.684 16.421 101.684 19.493V26.9227C101.684 27.6371 101.902 28.1369 102.412 28.3515C102.851 28.5653 103.215 28.709 103.798 28.709V29.3511H96.5058V28.7083C97.0166 28.7083 97.5266 28.6368 97.8912 28.4945C98.4743 28.28 98.6936 27.7794 98.6936 27.065V19.4215C98.6936 17.2069 97.5997 15.9919 96.3596 15.9919C94.318 15.9919 93.1518 17.3499 92.8595 18.0635V26.8505C92.8595 27.5656 93.1518 28.0654 93.5888 28.28C93.9534 28.4945 94.5365 28.6375 94.9742 28.6375V29.2796H87.6816V28.709L87.8277 28.7083Z" fill="#959595"></path> <path d="M103.395 32.8614C103.395 31.0583 104.961 29.4714 107.95 29.3998V29.183C106.811 28.8224 104.819 28.1735 104.819 26.2982C104.819 24.712 106.526 24.063 107.452 23.7016V23.4856C105.316 22.6198 104.107 21.1059 104.107 19.1583C104.107 16.2012 106.455 14.3981 109.374 14.3981C111.366 14.3981 113.074 15.4084 113.501 15.4084C114.568 14.6872 115.208 14.3981 116.49 14.3981C117.202 14.3981 117.913 15.0471 117.913 15.9851C117.913 16.9224 117.415 17.5721 116.632 17.5721C115.565 17.5721 115.28 16.8501 115.28 15.4799C114.426 15.4799 113.999 15.6245 113.572 15.9851V16.2742C114.212 17.1392 114.64 18.3648 114.64 19.3744C114.64 22.1877 112.007 23.9907 109.658 23.9907H108.021C107.523 24.2791 107.096 24.6397 107.096 25.3601C107.096 26.9471 108.875 26.8756 110.156 26.9471C111.01 26.9471 112.861 27.0917 113.43 27.1639C115.138 27.2362 117.13 28.8224 117.13 31.5635C117.13 34.5199 114.64 36.8281 109.73 36.8281C105.245 36.8281 103.395 35.3141 103.395 32.8614ZM114.568 32.2124C114.568 31.4912 114.426 30.4094 113.145 29.9042C112.576 29.832 111.224 29.6882 108.661 29.6882C106.74 30.1211 106.1 31.1306 106.1 33.0774C106.1 34.3761 107.238 36.0346 110.298 36.0346C113.003 35.9623 114.568 34.7367 114.568 32.2124ZM111.722 19.2306C111.722 17.0669 111.081 15.1193 109.444 15.1193C107.737 15.1193 107.238 16.9946 107.238 19.1583C107.238 21.4665 108.163 23.1972 109.515 23.1972C111.01 23.1972 111.722 21.3219 111.722 19.2306Z" fill="#959595"></path> <path d="M26.996 9.86322L26.5468 10.5507H26.0697L25.9854 7.11348H26.3223C26.912 8.68085 27.7825 10.1656 29.5229 10.1656C30.7586 10.1656 31.3765 9.42325 31.3765 8.32318C31.3765 7.4159 30.927 6.75609 30.0007 6.37108C29.2145 6.04103 28.6809 5.84853 27.8947 5.49114C26.8556 5.02384 26.238 4.19886 26.238 2.90657C26.238 1.3392 27.4734 0.184166 29.1298 0.184166C29.832 0.184166 30.7304 0.486884 31.2358 0.899228L31.6571 0.239125H32.1624L32.2467 3.59372H31.9097C31.3483 1.91642 30.6743 0.651763 28.8493 0.651763C28.4562 0.651763 27.4452 1.00915 27.4452 2.16418C27.4452 3.07145 27.8383 3.56638 28.6806 4.06131C29.3546 4.44632 30.0565 4.63883 30.6743 4.94125C31.7975 5.49085 32.6398 6.09629 32.6398 7.60841C32.6398 9.39562 31.264 10.6606 29.4107 10.6606C28.2317 10.5783 27.417 10.2206 26.996 9.86322ZM32.9768 7.03089C32.9768 5.21605 34.1558 3.53876 36.0373 3.53876C37.441 3.53876 38.1429 4.33611 38.1429 5.24338C38.1429 5.73861 37.8623 6.06866 37.3849 6.06866C37.104 6.06866 36.5705 5.90349 36.5705 5.32626C36.5705 4.72112 36.7391 4.69379 36.7391 4.4187C36.6548 3.97873 36.4583 3.89643 36.0091 3.89643C35.1947 3.89643 34.4367 4.66646 34.4367 6.89335C34.4367 8.68085 35.0824 9.91818 36.2617 9.91818C37.1881 9.91818 37.7498 9.45088 38.1708 8.59856L38.4796 8.81811C37.9746 9.78063 37.0197 10.578 35.9529 10.578C33.9593 10.578 32.9768 9.06557 32.9768 7.03089ZM39.2943 0.954187C39.2943 0.459257 39.6871 0.0192871 40.1927 0.0192871C40.7542 0.0192871 41.119 0.404298 41.119 0.899228C41.119 1.42149 40.7259 1.86146 40.1927 1.86146C39.6871 1.86146 39.2943 1.44912 39.2943 0.954187ZM38.6482 10.0831C38.873 10.0557 39.0695 10.0281 39.2658 9.97314C39.5187 9.89085 39.631 9.61575 39.631 9.31304V5.07851C39.6031 4.77608 39.4905 4.50128 39.2658 4.33611C39.0974 4.22619 38.6764 4.06131 38.4517 4.06131V3.78622L40.8946 3.62134L40.9786 3.73126V9.23074C40.9786 9.53317 41.119 9.78034 41.3438 9.91818C41.5404 10.0281 41.793 10.0831 41.9614 10.0831V10.3858H38.6764V10.0831H38.6482ZM45.9202 6.15095C45.9202 5.07851 45.724 3.89643 44.7692 3.89643C43.9551 3.89643 43.3654 4.80371 43.3372 6.2062L45.9202 6.15095ZM41.8773 7.00327C41.8773 5.24368 42.9441 3.53876 44.7692 3.53876C46.6503 3.53876 47.3522 4.85867 47.3522 6.37108V6.50863H43.3375V6.67321C43.3375 8.57064 43.8992 9.91788 45.303 9.91788C46.3136 9.91788 46.6788 9.50554 47.1842 8.59827L47.465 8.76315C46.9876 9.80826 46.061 10.5507 44.9381 10.5507C42.8604 10.578 41.8773 8.95565 41.8773 7.00327Z" fill="#959595"></path> <path d="M47.3652 10.1768C47.5908 10.1492 47.788 10.1215 47.9851 10.0663C48.2387 9.98339 48.3512 9.73446 48.3512 9.40294V5.14636C48.323 4.84247 48.2105 4.53828 47.9851 4.37252C47.8441 4.26202 47.5341 4.15121 47.3088 4.12388V3.84732L49.5908 3.68156L49.7036 3.79207V4.78722H49.7318C50.2668 4.23439 50.7739 3.57076 51.901 3.57076C53.1405 3.57076 53.732 4.51066 53.732 5.92021V9.34769C53.732 9.67921 53.8448 9.90022 54.0701 10.011C54.2673 10.0939 54.4365 10.1492 54.6901 10.1768V10.481H51.3656V10.1768C51.591 10.1492 51.8163 10.1215 51.9856 10.0663C52.2388 9.98339 52.3517 9.73446 52.3517 9.40294V5.89258C52.3517 4.8698 51.8445 4.31727 51.281 4.31727C50.3517 4.31727 49.8161 4.92535 49.6754 5.2845V9.31977C49.6754 9.65187 49.7882 9.87259 50.0133 9.98339C50.1825 10.0939 50.436 10.1492 50.6332 10.1492V10.453H47.337V10.1768H47.3652ZM54.4362 7.10874C54.4362 5.2845 55.6197 3.59868 57.5071 3.59868C58.9156 3.59868 59.6201 4.40015 59.6201 5.31213C59.6201 5.8097 59.3381 6.14151 58.8595 6.14151C58.5774 6.14151 58.0424 5.97546 58.0424 5.39501C58.0424 4.78722 58.2116 4.7593 58.2116 4.48303C58.127 4.04071 57.9296 3.95783 57.4789 3.95783C56.6621 3.95783 55.9014 4.73167 55.9014 6.97032C55.9014 8.76723 56.5493 10.011 57.7324 10.011C58.662 10.011 59.2258 9.54107 59.6483 8.68435L59.958 8.90536C59.4509 9.87259 58.4931 10.6744 57.4225 10.6744C55.4225 10.6744 54.4362 9.154 54.4362 7.10874ZM64.0431 6.2241C64.0431 5.14636 63.8456 3.95812 62.8881 3.95812C62.071 3.95812 61.4793 4.8701 61.4511 6.27965L64.0431 6.2241ZM59.9862 7.08112C59.9862 5.31213 61.0568 3.59839 62.8878 3.59839C64.7752 3.59839 65.4798 4.92535 65.4798 6.44541V6.58354H61.4508V6.7496C61.4508 8.65672 62.0146 10.011 63.4231 10.011C64.4374 10.011 64.8037 9.59662 65.3105 8.68435L65.5926 8.85011C65.1134 9.90051 64.1838 10.6467 63.0571 10.6467C60.944 10.6744 59.9862 9.0435 59.9862 7.08112Z" fill="#959595"></path> </svg> </a> </div> <div class="swiper-slide"> <a href="/web/20240318040954/https://www.science.org/journal/stm" title="Science Translational Medicine Journal Logo" class="footer__slider__link"> <svg width="110" height="47" viewbox="0 0 110 47" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M9.56946 11.2879C11.6575 11.2879 13.1846 9.98001 13.1846 8.13188C13.1846 6.56801 12.2497 5.94252 10.9719 5.37386C10.2862 5.06109 9.50707 4.89048 8.72795 4.46399C7.7618 3.95222 7.32553 3.44045 7.32553 2.50213C7.32553 1.30792 8.44749 0.938262 8.91492 0.938262C10.9719 0.938262 11.7198 2.27463 12.3431 3.98066H12.7172L12.6236 0.511769H12.0627L11.564 1.1942C11.0031 0.796097 10.0058 0.454938 9.22667 0.454938C7.38791 0.454938 5.98549 1.64914 5.98549 3.26978C5.98549 4.60615 6.67112 5.45914 7.82425 5.94252C8.69685 6.31218 9.32016 6.51118 10.1616 6.8524C11.1901 7.2505 11.6887 7.96127 11.6887 8.87114C11.6887 10.0085 11.0031 10.7762 9.60062 10.7762C7.66837 10.7762 6.67112 9.24075 6.01665 7.62011H5.64258L5.73606 11.1742H6.29705L6.82687 10.4634C7.38785 10.8899 8.29162 11.2879 9.56946 11.2879ZM16.8621 11.2596C18.0776 11.2596 19.1372 10.4634 19.7293 9.4398L19.3865 9.24075C18.8879 10.1222 18.2645 10.6056 17.2361 10.6056C15.9272 10.6056 15.2104 9.32608 15.2104 7.47794C15.2104 5.17481 16.083 4.37871 16.9868 4.37871C17.5166 4.37871 17.7348 4.49243 17.8283 4.91892C17.8283 5.20325 17.6413 5.2317 17.6413 5.85724C17.6413 6.45435 18.2334 6.6249 18.545 6.6249C19.0749 6.6249 19.3865 6.28374 19.3865 5.77191C19.3865 4.83365 18.5762 4.00905 17.018 4.00905C14.8987 4.00905 13.5898 5.74347 13.5898 7.62011C13.5586 9.72413 14.6494 11.2596 16.8621 11.2596ZM21.5681 1.90503C22.1602 1.90503 22.5966 1.45009 22.5966 0.909876C22.5966 0.426493 22.1914 0 21.5681 0C21.0071 0 20.5708 0.454938 20.5708 0.966706C20.5708 1.47848 21.0071 1.90503 21.5681 1.90503ZM19.854 11.0889L23.5627 11.0889V10.7762C23.3757 10.7477 23.1263 10.6908 22.877 10.6056C22.5966 10.4918 22.4719 10.236 22.4719 9.89474V4.2081L22.3784 4.09438L19.6358 4.26499V4.54932C19.9163 4.57771 20.3838 4.71987 20.5396 4.83365C20.789 5.0042 20.9136 5.28859 20.9448 5.6013V9.98001C20.9448 10.2928 20.8201 10.5771 20.5396 10.6624C20.3526 10.7193 20.1345 10.7477 19.854 10.7761V11.0889ZM26.6792 11.2596C27.957 11.2596 28.9855 10.4918 29.5464 9.41136L29.2347 9.24075C28.6738 10.1791 28.2375 10.6056 27.1155 10.6056C25.5572 10.6056 24.9028 9.21236 24.9028 7.2505V7.07983H29.4218V6.93767C29.4218 5.37386 28.6426 4.00905 26.5233 4.00905C24.4665 4.00905 23.2822 5.77191 23.2822 7.59166C23.2822 9.58196 24.3729 11.2596 26.6792 11.2596ZM24.9028 6.73868C24.9339 5.31703 25.5884 4.35027 26.4922 4.35027C27.5519 4.35027 27.8012 5.6013 27.8012 6.68179L24.9028 6.73868Z" fill="#959595"></path> <path d="M29.4669 11.28H33.1558V10.9656C32.937 10.937 32.6556 10.8798 32.468 10.7941C32.2179 10.6797 32.0929 10.451 32.0929 10.108V5.93458C32.2492 5.5916 32.8432 4.93412 33.8748 4.93412C34.5 4.93412 35.0941 5.50581 35.0941 6.56346V10.1937C35.0941 10.5367 34.969 10.794 34.6876 10.8797C34.5001 10.9369 34.25 10.9655 33.9999 10.9941V11.3085H37.6888V10.9941C37.4074 10.9655 37.1886 10.9083 37.001 10.8226C36.7196 10.7083 36.6259 10.4796 36.6259 10.1366V6.59205C36.6259 5.13423 35.9694 4.16231 34.5626 4.16231C33.2809 4.16231 32.7182 4.84839 32.1242 5.42008H32.0617V4.39108L31.9366 4.27676L29.3732 4.44822V4.73406C29.6545 4.76266 29.9671 4.84845 30.1546 4.99131C30.4048 5.16283 30.5298 5.47727 30.561 5.79177V10.1938C30.561 10.5368 30.436 10.7941 30.1547 10.8798C29.9671 10.937 29.7483 10.9656 29.4669 10.9942V11.28ZM40.5648 11.4515C41.784 11.4515 42.847 10.6511 43.4409 9.62208L43.0971 9.42196C42.5968 10.3081 41.9717 10.7941 40.94 10.7941C39.627 10.7941 38.908 9.50775 38.908 7.64976C38.908 5.33435 39.7833 4.53401 40.6899 4.53401C41.2214 4.53401 41.4402 4.64833 41.534 5.0771C41.534 5.36294 41.3464 5.39154 41.3464 6.02042C41.3464 6.62071 41.9404 6.79217 42.253 6.79217C42.7844 6.79217 43.0971 6.44919 43.0971 5.93463C43.0971 4.99137 42.2842 4.16237 40.7212 4.16237C38.5953 4.16237 37.2824 5.90604 37.2824 7.79268C37.2511 9.90792 38.3453 11.4515 40.5648 11.4515ZM46.911 11.4515C48.1928 11.4515 49.2244 10.6797 49.7871 9.59348L49.4745 9.42196C48.9118 10.3653 48.4741 10.7941 47.3487 10.7941C45.7856 10.7941 45.1291 9.39342 45.1291 7.42111V7.24953H49.662V7.10661C49.662 5.53446 48.8805 4.16237 46.7547 4.16237C44.6915 4.16237 43.5035 5.93463 43.5035 7.76409C43.5035 9.765 44.5976 11.4515 46.911 11.4515ZM45.129 6.90655C45.1604 5.47733 45.8169 4.50541 46.7234 4.50541C47.7863 4.50541 48.0364 5.76312 48.0364 6.84936L45.129 6.90655Z" fill="#959595"></path> <path d="M5.41249 28.2039C5.18742 28.313 4.17521 28.4763 3.78149 28.4763H3.72523V28.9665H10.4743V28.4763C10.137 28.4217 9.06834 28.2039 8.84327 28.095C8.44955 27.8772 8.2809 27.5504 8.2809 27.0602V15.0787H9.18072C9.74324 15.0787 10.2493 15.1331 10.7556 15.1876C11.5991 15.2965 12.6678 17.2571 12.8928 18.183H13.3989V14.534H0.913086V18.183H1.41934C1.64426 17.2571 2.71287 15.2965 3.55657 15.1876C4.06268 15.0787 4.68132 15.0787 5.1313 15.0787H6.03112V27.1691C6.03112 27.6048 5.91874 28.0406 5.41249 28.2039Z" fill="#959595"></path> <path d="M12.5508 28.3833C12.8877 28.3833 13.1683 28.3287 13.4489 28.2193C13.8417 28.1099 14.01 27.727 14.01 27.2894V21.2178C13.9539 20.7802 13.7855 20.3425 13.4489 20.0691C13.2243 19.9051 12.7754 19.7409 12.4387 19.7409V19.3032L15.806 19.0844L15.9743 19.2485V20.6708C16.8162 19.5222 17.7141 18.9751 18.556 18.9751C19.2295 18.9751 19.903 19.5769 19.903 20.2879C19.903 21.0538 19.4539 21.6007 18.7805 21.6007C18.1632 21.6007 17.602 21.3272 17.602 20.5614C17.602 20.3425 17.7703 20.1785 17.7703 19.9049C16.8162 19.9049 16.1989 20.8348 15.9743 21.2724V27.1253C15.9743 27.6176 16.1427 27.9458 16.4795 28.0551C16.8162 28.2192 17.4335 28.2739 17.7703 28.3287V28.7663H12.5508V28.3833ZM20.1276 26.7971C20.1276 25.0467 21.0816 24.445 22.0357 24.062C23.2142 23.5699 24.5051 23.2417 25.3469 22.7494V21.5459C25.3469 21.163 25.2907 19.4126 23.7194 19.4126C23.0459 19.4126 22.7653 19.9049 22.5969 20.1237C22.5969 20.452 22.7653 20.8896 22.7653 21.3819C22.7653 21.9289 22.148 22.3118 21.4744 22.3118C20.857 22.3118 20.5764 21.8195 20.5764 21.163C20.5764 19.9051 22.3163 18.9204 23.8315 18.9204C25.7959 18.9204 27.3112 19.2485 27.3112 22.0381C27.3112 23.8979 27.1989 26.086 27.1989 26.7971C27.1989 27.18 27.5357 27.891 28.0969 27.891C28.6582 27.891 28.7704 27.0706 28.8265 26.2501H29.3317C29.2194 28.2193 28.4337 28.985 27.199 28.985C26.2449 28.985 25.6838 28.5475 25.403 27.5628H25.3469C24.6173 28.4381 23.6071 29.0398 22.4286 29.0398C21.0816 29.0398 20.1276 28.1645 20.1276 26.7971ZM25.347 27.0706L25.4592 23.3511C23.6071 24.0074 22.2601 24.609 22.2601 26.4688C22.2601 27.5082 22.7653 28.0551 23.5509 28.0551C24.5051 28.0551 24.842 27.6722 25.347 27.0706ZM29.5562 28.3833C29.893 28.3833 30.1735 28.3287 30.4541 28.2193C30.8469 28.1099 31.0154 27.727 31.0154 27.2894V21.2178C30.9592 20.7802 30.7908 20.3425 30.4541 20.0691C30.2296 19.9051 29.7806 19.7409 29.4439 19.7409V19.3032L32.8112 19.0844L32.9797 19.2485V20.6708C33.7654 19.9049 34.4949 18.9204 36.1787 18.9204C38.0308 18.9204 38.8726 20.2331 38.8726 22.257V27.1253C38.8726 27.6176 39.041 27.8911 39.3778 28.0551C39.6584 28.1645 39.9389 28.2739 40.2757 28.2739V28.7115H35.4491V28.2739C35.7858 28.2739 36.1226 28.2193 36.347 28.1099C36.7399 28.0005 36.8522 27.6176 36.8522 27.18V22.1477C36.8522 20.6708 36.1226 19.9049 35.2807 19.9049C33.9337 19.9049 33.1481 20.7802 32.9797 21.2724V27.0706C32.9797 27.5628 33.1481 27.8364 33.4848 28.0005C33.7654 28.1645 34.1022 28.2193 34.3827 28.2739V28.7115H29.5562V28.3833ZM41.9594 28.2739L41.7911 28.9304H41.1176L41.0053 25.6484H41.4543C41.6788 26.6877 42.8573 28.6021 44.4288 28.6021C45.7196 28.6021 46.2809 27.7816 46.2809 26.7971C46.2809 25.7578 45.4952 25.2655 44.0359 24.8279C42.8013 24.3904 41.2859 23.6245 41.2859 21.8195C41.2859 20.2331 42.5767 18.9751 44.3726 18.9751C45.1584 18.9751 46.0002 19.1391 46.4494 19.5221L46.6176 18.9751H47.235L47.3473 21.8741H46.8981C46.7298 20.6708 45.6634 19.4674 44.3726 19.4674C43.3063 19.4674 42.8013 20.2879 42.8013 20.999C42.8013 22.1477 43.4747 22.4212 45.0461 22.9682C46.6176 23.5151 47.7961 24.3904 47.7961 26.086C47.7961 27.9458 46.2248 29.0944 44.3726 29.0944C43.3624 29.0944 42.2961 28.6021 41.9594 28.2739ZM48.0767 28.3833C48.4136 28.3833 48.7502 28.3287 48.9748 28.2193C49.3677 28.1099 49.4798 27.727 49.4798 27.2894V15.2555C49.4798 14.7632 49.3115 14.271 48.9748 14.0522C48.7502 13.8881 47.9646 13.6693 47.6279 13.6145V13.2317L51.3319 13.0129L51.4442 13.177V27.18C51.4442 27.6722 51.6125 28.0005 52.0054 28.1645C52.286 28.3285 52.5666 28.3833 52.9033 28.4381V28.8756H48.0767V28.3833ZM53.3523 26.7971C53.3523 25.0467 54.3064 24.445 55.2606 24.062C56.4391 23.5699 57.7299 23.2417 58.5718 22.7494V21.5459C58.5718 21.163 58.5157 19.4126 56.9443 19.4126C56.2708 19.4126 55.9901 19.9049 55.8218 20.1237C55.8218 20.452 55.9901 20.8896 55.9901 21.3819C55.9901 21.9289 55.3728 22.3118 54.6994 22.3118C54.082 22.3118 53.8014 21.8195 53.8014 21.163C53.8014 19.9051 55.5412 18.9204 57.0564 18.9204C59.0209 18.9204 60.5361 19.2485 60.5361 22.0381C60.5361 23.8979 60.4238 26.086 60.4238 26.7971C60.4238 27.18 60.7607 27.891 61.3218 27.891C61.883 27.891 61.9953 27.0706 62.0515 26.2501H62.5565C62.4442 28.2193 61.6586 28.985 60.4239 28.985C59.4697 28.985 58.9086 28.5475 58.628 27.5628H58.5718C57.8422 28.4381 56.832 29.0398 55.6533 29.0398C54.3064 29.0398 53.3523 28.1645 53.3523 26.7971ZM58.5157 27.0706L58.628 23.3511C56.7758 24.0074 55.4289 24.609 55.4289 26.4688C55.4289 27.5082 55.9341 28.0551 56.7197 28.0551C57.7299 28.0551 58.0666 27.6722 58.5157 27.0706ZM63.679 26.086V20.1237H61.8269V19.2486H63.7351V15.9666H65.6433V19.2486H68.3373V20.1237H65.6433V25.8124C65.6433 27.0159 66.0361 27.7816 67.1025 27.7816C68.0566 27.7816 68.1127 26.9612 68.225 26.1407H68.73C68.6177 27.727 67.776 28.985 66.2046 28.985C64.5771 28.985 63.679 27.9458 63.679 26.086ZM69.1229 28.3833C69.4598 28.3833 69.7404 28.3287 70.021 28.2193C70.4138 28.1099 70.5821 27.6722 70.5821 27.2894V21.2178C70.526 20.7802 70.3575 20.3973 70.021 20.1785C69.7964 20.0145 69.179 19.7956 68.8423 19.7956V19.3034L72.4342 19.0846L72.5466 19.2486V27.1256C72.5466 27.563 72.7149 27.9459 73.1077 28.1101C73.3883 28.2741 73.7812 28.3288 74.0056 28.3835V28.8212H69.179V28.3835L69.1229 28.3833ZM70.0771 14.7086C70.0771 13.9974 70.6383 13.3957 71.3677 13.3957C72.1537 13.3957 72.7148 13.9428 72.7148 14.6538C72.7148 15.4197 72.1537 16.0214 71.3679 16.0214C70.6383 16.0214 70.0771 15.4195 70.0771 14.7086ZM74.2302 24.062C74.2302 21.0536 76.0823 18.9751 78.8884 18.9751C81.6945 18.9751 83.4344 21.1084 83.4344 23.9527C83.4344 26.7971 81.7507 29.1492 78.7201 29.1492C76.3628 29.0944 74.2302 27.18 74.2302 24.062ZM81.2455 23.9527C81.2455 21.7101 80.6843 19.4674 78.8322 19.4674C76.8678 19.4674 76.3628 21.9289 76.3628 23.898C76.3628 26.4142 77.0362 28.6021 78.8322 28.6021C80.572 28.6021 81.2455 26.4689 81.2455 23.9527ZM83.7711 28.3833C84.1078 28.3833 84.3884 28.3287 84.669 28.2193C85.0619 28.1099 85.2303 27.727 85.2303 27.2894V21.2178C85.1742 20.7802 85.0057 20.3425 84.669 20.0691C84.4444 19.9051 83.9956 19.7409 83.6588 19.7409V19.3032L87.0262 19.0844L87.1946 19.2485V20.6708C87.9804 19.9049 88.7098 18.9204 90.3937 18.9204C92.2458 18.9204 93.0875 20.2331 93.0875 22.257V27.1253C93.0875 27.6176 93.2558 27.8911 93.5926 28.0551C93.8733 28.1645 94.1539 28.2739 94.4906 28.2739V28.7115H89.6079V28.2739C89.9446 28.2739 90.2814 28.2193 90.5058 28.1099C90.8987 28.0005 91.011 27.6176 91.011 27.18V22.1477C91.011 20.6708 90.2814 19.9049 89.4395 19.9049C88.0925 19.9049 87.3069 20.7802 87.1385 21.2724V27.0706C87.1385 27.5628 87.3069 27.8364 87.6436 28.0005C87.9242 28.1645 88.2609 28.2193 88.5415 28.2739V28.7115H83.715V28.3835L83.7711 28.3833ZM94.9397 26.7971C94.9397 25.0467 95.8937 24.445 96.8478 24.062C98.0264 23.5699 99.3172 23.2417 100.159 22.7494V21.5459C100.159 21.163 100.103 19.4126 98.5314 19.4126C97.858 19.4126 97.5774 19.9049 97.409 20.1237C97.409 20.452 97.5774 20.8896 97.5774 21.3819C97.5774 21.9289 96.9601 22.3118 96.2866 22.3118C95.6691 22.3118 95.3885 21.8195 95.3885 21.163C95.3885 19.9051 97.1284 18.9204 98.6436 18.9204C100.608 18.9204 102.123 19.2485 102.123 22.0381C102.123 23.8979 102.011 26.086 102.011 26.7971C102.011 27.18 102.348 27.891 102.909 27.891C103.47 27.891 103.582 27.0706 103.639 26.2501H104.144C104.032 28.2193 103.246 28.985 102.011 28.985C101.057 28.985 100.496 28.5475 100.215 27.5628H100.159C99.4294 28.4381 98.4192 29.0398 97.2407 29.0398C95.8937 29.0398 94.9397 28.1645 94.9397 26.7971ZM100.159 27.0706L100.271 23.3511C98.4192 24.0074 97.0722 24.609 97.0722 26.4688C97.0722 27.5082 97.5774 28.0551 98.3632 28.0551C99.3172 28.0551 99.654 27.6722 100.159 27.0706Z" fill="#959595"></path> <path d="M105.227 28.2279C105.002 28.3374 104.664 28.3921 104.326 28.3921V28.8847H109.172V28.4469C108.834 28.3921 108.552 28.3373 108.27 28.1731C107.876 28.009 107.707 27.6805 107.707 27.1881V13.177L107.594 13.0129L103.875 13.2318V13.6149C104.213 13.6697 105.002 13.8886 105.227 14.0528C105.565 14.2717 105.735 14.7642 105.735 15.2568V27.2975C105.735 27.7353 105.622 28.1185 105.227 28.2279Z" fill="#959595"></path> <path d="M29.1632 41.6878C29.1632 39.163 30.7356 36.6931 33.4314 36.6931C36.1832 36.6931 37.1941 38.6142 37.1941 40.7546V40.9193H31.2973V41.1389C31.2973 43.8832 32.1396 45.8591 34.1615 45.8591C35.6215 45.8591 36.1832 45.2552 36.9133 43.993L37.3063 44.2673C36.6324 45.8043 35.2845 46.8469 33.5998 46.8469C30.5672 46.7921 29.1632 44.487 29.1632 41.6878ZM35.06 40.4253C35.06 38.8885 34.7792 37.1322 33.3752 37.1322C32.1958 37.1322 31.3534 38.4495 31.2971 40.4253H35.06ZM38.1487 41.6329C38.1487 38.7239 40.2267 36.6931 42.5292 36.6931C43.7648 36.6931 44.6633 37.1871 44.8879 37.2421V33.0159C44.8318 32.5768 44.7194 32.0278 44.3825 31.8083C44.0454 31.5338 43.2031 31.3693 42.6415 31.3143V30.9302L46.685 30.7107L46.8536 30.8753V44.6515C46.9097 45.0906 47.0219 45.4748 47.3589 45.6944C47.5836 45.8589 48.2014 45.9688 48.5383 45.9688V46.3529L45.0564 46.5726L44.944 46.4079V45.4748H44.8317C44.3825 45.9688 43.484 46.7921 42.2484 46.7921C39.9459 46.8469 38.1487 44.8163 38.1487 41.6329ZM44.944 44.926V38.8885C44.7193 38.1751 44.1017 37.1322 42.8099 37.1322C41.3499 37.1322 40.3951 38.8885 40.3951 41.7974C40.3951 43.938 41.1252 45.8591 43.0347 45.8591C43.9332 45.9139 44.4385 45.5297 44.944 44.926ZM49.2122 46.1334C49.5492 46.1334 49.83 46.0786 50.1107 45.9688C50.5039 45.8591 50.6724 45.4199 50.6724 45.0358V38.9435C50.6162 38.5044 50.4477 38.1202 50.1107 37.9006C49.8862 37.7361 49.2684 37.5164 48.9315 37.5164V37.0225L52.5258 36.803L52.638 36.9676V44.8714C52.638 45.3103 52.8065 45.6945 53.1995 45.8592C53.4804 46.0238 53.8734 46.0788 54.0982 46.1336V46.5728H49.2684V46.1336L49.2122 46.1334ZM50.1107 32.4121C50.1107 31.6986 50.6724 31.0948 51.4025 31.0948C52.1886 31.0948 52.7503 31.6437 52.7503 32.3571C52.7503 33.1256 52.1886 33.7294 51.4025 33.7294C50.7286 33.7294 50.1107 33.1255 50.1107 32.4121ZM54.0982 41.6878C54.0982 39.0532 55.8391 36.6383 58.591 36.6383C60.6127 36.6383 61.6798 37.7909 61.6798 39.1082C61.6798 39.8216 61.2866 40.3156 60.5565 40.3156C60.1634 40.3156 59.3771 40.096 59.3771 39.2728C59.3771 38.3947 59.658 38.3397 59.658 37.9555C59.5456 37.3518 59.2649 37.1871 58.591 37.1871C57.4115 37.1871 56.2883 38.3397 56.2883 41.5231C56.2883 44.1027 57.2431 45.8591 58.9279 45.8591C60.2757 45.8591 61.118 45.2004 61.7359 43.993L62.1851 44.2673C61.455 45.6944 60.0511 46.7921 58.4786 46.7921C55.5022 46.7921 54.0982 44.6517 54.0982 41.6878ZM62.5221 46.1334C62.8592 46.1334 63.1399 46.0786 63.4207 45.9688C63.8138 45.8591 63.9822 45.4199 63.9822 45.0358V38.9435C63.9261 38.5044 63.7575 38.1202 63.4207 37.9006C63.196 37.7361 62.5782 37.5164 62.2413 37.5164V37.0225L65.8356 36.803L65.9479 36.9676V44.8714C65.9479 45.3103 66.1164 45.6945 66.5095 45.8592C66.7903 46.0238 67.1834 46.0788 67.408 46.1336V46.5728H62.5782V46.1336L62.5221 46.1334ZM63.4769 32.4121C63.4769 31.6986 64.0384 31.0948 64.7684 31.0948C65.5548 31.0948 66.1163 31.6437 66.1163 32.3571C66.1163 33.1256 65.5548 33.7294 64.7685 33.7294C64.0384 33.7294 63.4769 33.1255 63.4769 32.4121ZM68.0819 46.1334C68.419 46.1334 68.6996 46.0786 68.9805 45.9688C69.3737 45.8591 69.5421 45.4748 69.5421 45.0358V38.9435C69.4859 38.5044 69.3174 38.0652 68.9805 37.7909C68.7558 37.6263 68.3066 37.4616 67.9697 37.4616V37.0224L71.3392 36.8029L71.5076 36.9674V38.3947C72.2939 37.6262 73.0239 36.6383 74.7088 36.6383C76.5621 36.6383 77.4044 37.9555 77.4044 39.9863V44.8711C77.4044 45.3651 77.573 45.6396 77.91 45.8041C78.1907 45.9139 78.4715 46.0237 78.8084 46.0237V46.4627H73.9787V46.0237C74.3158 46.0237 74.6526 45.9688 74.8773 45.8591C75.2703 45.7493 75.3827 45.3651 75.3827 44.926V39.8765C75.3827 38.3947 74.6526 37.6262 73.8103 37.6262C72.4625 37.6262 71.6762 38.5044 71.5076 38.9983V44.8163C71.5076 45.3101 71.6762 45.5846 72.0131 45.7493C72.2939 45.9139 72.6309 45.9688 72.9117 46.0237V46.4627H68.0819V46.1334ZM79.4825 41.6878C79.4825 39.163 81.0549 36.6931 83.7506 36.6931C86.5024 36.6931 87.5133 38.6142 87.5133 40.7546V40.9193H81.6164V41.1389C81.6164 43.8832 82.4589 45.8591 84.4806 45.8591C85.9408 45.8591 86.5024 45.2552 87.2325 43.993L87.6256 44.2673C86.9517 45.8043 85.6039 46.8469 83.919 46.8469C80.8865 46.7921 79.4825 44.487 79.4825 41.6878ZM85.3792 40.4253C85.3792 38.8885 85.0984 37.1322 83.6944 37.1322C82.515 37.1322 81.6726 38.4495 81.6164 40.4253H85.3792Z" fill="#959595"></path> <path d="M11.4238 46.0351C11.7627 45.9803 12.8352 45.871 13.2869 45.4877C13.7385 45.1047 13.9643 44.1743 13.9643 42.587V34.8156C13.9643 33.9398 13.795 33.3924 13.3433 33.0641C12.8352 32.6811 12.0449 32.5168 11.5368 32.462V31.9696H16.3353L20.6824 42.6419L24.1825 33.7756C24.4647 33.0093 24.634 32.1885 24.634 31.9696H29.3762V32.462C29.0374 32.462 28.2471 32.6263 27.9084 32.7357C27.4002 32.8998 27.2874 33.283 27.2874 33.7756V44.667C27.2874 45.1595 27.4567 45.4878 27.9084 45.7069C28.1343 45.8163 29.094 45.9804 29.4326 46.0351V46.5279H22.7147V46.0353C23.0534 46.0353 24.1825 45.9258 24.4647 45.7615C24.9164 45.4878 25.0857 45.1595 25.0857 44.667V33.8302L20.1177 46.2542H19.6097C19.3838 45.4332 18.9887 44.2292 18.65 43.2988L14.8676 33.8304V42.4777C14.8676 44.1196 15.0934 44.9954 15.5451 45.3784C15.8838 45.6521 17.2387 46.0353 17.5774 46.0353V46.5279H11.5368V46.0353L11.4238 46.0351Z" fill="#959595"></path> </svg> </a> </div> </div> </div> <span id="afterSlideshow-j3n" tabindex="-1"></span> </div> </div> </div> </section> <section class="footer__top my-2x mt-md-2_5x mt-xl-3x"> <div class="container-fluid"> <div class="row align-items-start"> <div class="first-col col-12 col-xl-10"> <div class="footer__social-media__wrapper d-flex d-xl-none justify-content-center justify-content-xl-start text-center d-block d-xl-none text-xl-left border-darker-gray border-bottom pb-3"> <div class="footer__social-media"> <h6 class="footer__social-media__title text-uppercase mb-3"><a href="https://web.archive.org/web/20240318040954/https://www.science.org/content/page/science-family-journals-social-media">Follow Us</a></h6> <ul role="list" class="list-inline footer__social-media__list"> <li role="listitem" class="list-inline-item footer__social-media__list-item"> <a href="https://web.archive.org/web/20240318040954/https://www.facebook.com/ScienceMagazine" title="Facebook" target="_blank"> <i aria-hidden="true" class="icon-facebook"></i></a></li> <li role="listitem" class="list-inline-item footer__social-media__list-item"> <a href="https://web.archive.org/web/20240318040954/https://twitter.com/sciencemagazine" title="Twitter" class="text-md" target="_blank"> <i aria-hidden="true" class="icon-twitter"></i></a></li> <li role="listitem" class="list-inline-item footer__social-media__list-item"> <a href="https://web.archive.org/web/20240318040954/https://www.instagram.com/ScienceMagazine" title="Instagram" class="text-xl" target="_blank"> <i aria-hidden="true" class="icon-instagram"></i></a></li> <li role="listitem" class="list-inline-item footer__social-media__list-item"> <a href="https://web.archive.org/web/20240318040954/https://www.youtube.com/user/ScienceMag" title="Youtube" target="_blank"> <i aria-hidden="true" class="icon-youtube"></i></a></li> <li role="listitem" class="list-inline-item footer__social-media__list-item"> <a href="/web/20240318040954/https://www.science.org/about/email-alerts-and-rss-feeds" title="RSS feeds" class="text-md"> <i aria-hidden="true" class="icon-rss"></i></a></li> <li role="listitem" class="list-inline-item footer__social-media__list-item"> <a href="https://web.archive.org/web/20240318040954/https://mp.weixin.qq.com/s?__biz=MzI3NDY3NzQ2Mg==&mid=100002815&idx=1&sn=2949c025a553ac718b9612a0473b9f60&chksm=6b1120465c66a9508b01eaef1589b15d440e50b189106c8c594de8c6471f696a978de952fb15&mpshare=1&scene=1&srcid=0716JJQ5V4cKbgMMsya2MQ0n&sharer_sharetime=" title="WeChat" class="text-md" target="_blank"> <i aria-hidden="true" class="icon-wechat"></i></a></li> <li role="listitem" class="my-3 my-md-2 px-sm-2 mx-auto d-flex"><a href="/web/20240318040954/https://www.science.org/content/page/scienceadviser?intcmp=ftr-adviser&utm_id=recdExfxt1yeSJxzi" class="btn btn-outline-primary--on-dark text-white text-xs py-2 border-white">Get our newsletter</a></li> </ul> </div> </div> <div class="footer__sitemap"> <nav class="footer__sitemap__nav d-flex flex-wrap"> <ul role="list" class="list-unstyled footer__sitemap__list d-flex flex-column mb-0"> <li role="listitem" class="footer__sitemap__list-item--heading mb-3"> <a href="/web/20240318040954/https://www.science.org/news" class="font-weight-bold text-uppercase">NEWS</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/news/all-news">All News</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/news/scienceinsider">ScienceInsider</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/news/features">News Features</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/news-science-subscriptions">Subscribe to News from Science</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/news-subscriber-faqs">News from Science FAQ</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/about-news-science">About News from Science</a> </li> </ul> <ul role="list" class="list-unstyled footer__sitemap__list d-flex flex-column mb-0"> <li role="listitem" class="footer__sitemap__list-item--heading mb-3"> <a href="/web/20240318040954/https://www.science.org/careers" class="font-weight-bold text-uppercase">CAREERS</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/topic/article-type/careers-editorial">Careers Articles</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="https://web.archive.org/web/20240318040954/https://jobs.sciencecareers.org/" target="_blank">Find Jobs</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/careers/employers">Employer Hubs</a> </li> </ul> <ul role="list" class="list-unstyled footer__sitemap__list d-flex flex-column mb-0"> <li role="listitem" class="footer__sitemap__list-item--heading mb-3"> <a href="/web/20240318040954/https://www.science.org/commentary" class="font-weight-bold text-uppercase">COMMENTARY</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/commentary/opinion">Opinion</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/commentary/analysis">Analysis</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/blogs">Blogs</a> </li> </ul> <ul role="list" class="list-unstyled footer__sitemap__list d-flex flex-column mb-0"> <li role="listitem" class="footer__sitemap__list-item--heading mb-3"> <a href="/web/20240318040954/https://www.science.org/journals" class="font-weight-bold text-uppercase">JOURNALS</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/journal/science">Science</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/journal/sciadv">Science Advances</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/journal/sciimmunol">Science Immunology</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/journal/scirobotics">Science Robotics</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/journal/signaling">Science Signaling</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/journal/stm">Science Translational Medicine</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="https://web.archive.org/web/20240318040954/https://spj.sciencemag.org/">Science Partner Journals</a> </li> </ul> <ul role="list" class="list-unstyled footer__sitemap__list d-flex flex-column mb-0"> <li role="listitem" class="footer__sitemap__list-item--heading mb-3"> <a href="/web/20240318040954/https://www.science.org/content/page/contributing-science-family-journals" class="font-weight-bold text-uppercase">AUTHORS & REVIEWERS</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/contributing-science-family-journals">Information for Authors</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/peer-review-science-publications">Information for Reviewers</a> </li> </ul> <ul role="list" class="list-unstyled footer__sitemap__list d-flex flex-column mb-0"> <li role="listitem" class="footer__sitemap__list-item--heading mb-3"> <a href="/web/20240318040954/https://www.science.org/content/page/librarian-portal" class="font-weight-bold text-uppercase">LIBRARIANS</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/action/institutionAccessEntitlements">Manage Your Institutional Subscription</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/librarian-portal">Library Admin Portal</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="https://web.archive.org/web/20240318040954/https://scienceaaas.org/request" target="_blank">Request a Quote</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/librarian-portal-frequently-asked-questions">Librarian FAQs</a> </li> </ul> <ul role="list" class="list-unstyled footer__sitemap__list d-flex flex-column mb-0"> <li role="listitem" class="footer__sitemap__list-item--heading mb-3"> <a href="https://web.archive.org/web/20240318040954/https://advertising.sciencemag.org/" target="_blank" class="font-weight-bold text-uppercase">ADVERTISERS</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="https://web.archive.org/web/20240318040954/https://advertising.sciencemag.org/" target="_blank">Advertising Kits</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/custom-publishing">Custom Publishing Info</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="https://web.archive.org/web/20240318040954/https://employers.sciencecareers.org/" target="_blank">Post a Job</a> </li> </ul> <ul role="list" class="list-unstyled footer__sitemap__list d-flex flex-column mb-0"> <li role="listitem" class="footer__sitemap__list-item--heading mb-3"> <a href="/web/20240318040954/https://www.science.org/content/page/related-sites" class="font-weight-bold text-uppercase">RELATED SITES</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="//web.archive.org/web/20240318040954/https://www.aaas.org/" target="_blank">AAAS.org</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="//web.archive.org/web/20240318040954/https://members.aaas.org/home" target="_blank">AAAS Communities</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="//web.archive.org/web/20240318040954/https://www.eurekalert.org/" target="_blank">EurekAlert!</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="//web.archive.org/web/20240318040954/https://www.scienceintheclassroom.org/" target="_blank">Science in the Classroom</a> </li> </ul> <ul role="list" class="list-unstyled footer__sitemap__list d-flex flex-column mb-0"> <li role="listitem" class="footer__sitemap__list-item--heading mb-3"> <a href="/web/20240318040954/https://www.science.org/content/page/aboutus" class="font-weight-bold text-uppercase">ABOUT US</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/leadership-and-management">Leadership</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="//web.archive.org/web/20240318040954/https://www.aaas.org/careers/workataaas" target="_blank">Work at AAAS</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/prizes-and-awards">Prizes and Awards</a> </li> </ul> <ul role="list" class="list-unstyled footer__sitemap__list d-flex flex-column mb-0"> <li role="listitem" class="footer__sitemap__list-item--heading mb-3"> <a href="/web/20240318040954/https://www.science.org/content/page/help" class="font-weight-bold text-uppercase">HELP</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/faqs">FAQs</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/access-and-subscriptions">Access and Subscriptions</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="//web.archive.org/web/20240318040954/https://backissues.science.org/" target="_blank">Order a Single Issue</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/reprints-and-permissions">Reprints and Permissions</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/email-alerts-and-rss-feeds">TOC Alerts and RSS Feeds</a> </li> <li role="listitem" class="footer__sitemap__list-item mb-1"> <a href="/web/20240318040954/https://www.science.org/content/page/contact-us">Contact Us</a> </li> </ul> </nav> </div> </div> <div class="second-col col-12 col-xl-2 text-center text-xl-left"> <div class="footer__social-media__wrapper d-none d-xl-flex justify-content-center justify-content-xl-start text-center text-xl-left border-darker-gray border-bottom pb-2"> <div class="footer__social-media"> <h6 class="footer__social-media__title text-uppercase mb-3"><a href="https://web.archive.org/web/20240318040954/https://www.science.org/content/page/science-family-journals-social-media">Follow Us</a></h6> <ul role="list" class="list-inline footer__social-media__list"> <li role="listitem" class="list-inline-item footer__social-media__list-item"> <a href="https://web.archive.org/web/20240318040954/https://www.facebook.com/ScienceMagazine" title="Facebook" target="_blank"> <i aria-hidden="true" class="icon-facebook"></i></a></li> <li role="listitem" class="list-inline-item footer__social-media__list-item"> <a href="https://web.archive.org/web/20240318040954/https://twitter.com/sciencemagazine" title="Twitter" class="text-md" target="_blank"> <i aria-hidden="true" class="icon-twitter"></i></a></li> <li role="listitem" class="list-inline-item footer__social-media__list-item"> <a href="https://web.archive.org/web/20240318040954/https://www.instagram.com/ScienceMagazine" title="Instagram" class="text-xl" target="_blank"> <i aria-hidden="true" class="icon-instagram"></i></a></li> <li role="listitem" class="list-inline-item footer__social-media__list-item"> <a href="https://web.archive.org/web/20240318040954/https://www.youtube.com/user/ScienceMag" title="YouTube" target="_blank"> <i aria-hidden="true" class="icon-youtube"></i></a></li> <li role="listitem" class="list-inline-item footer__social-media__list-item"> <a href="/web/20240318040954/https://www.science.org/content/page/email-alerts-and-rss-feeds" title="RSS feeds" class="text-md"> <i aria-hidden="true" class="icon-rss"></i></a></li> <li role="listitem" class="list-inline-item footer__social-media__list-item"> <a href="https://web.archive.org/web/20240318040954/https://mp.weixin.qq.com/s?__biz=MzI3NDY3NzQ2Mg==&mid=100002815&idx=1&sn=2949c025a553ac718b9612a0473b9f60&chksm=6b1120465c66a9508b01eaef1589b15d440e50b189106c8c594de8c6471f696a978de952fb15&mpshare=1&scene=1&srcid=0716JJQ5V4cKbgMMsya2MQ0n&sharer_sharetime=" title="WeChat" class="text-md" target="_blank"> <i aria-hidden="true" class="icon-wechat"></i></a></li> </ul> <div class="d-flex my-3 list-inline-item"> <a href="/web/20240318040954/https://www.science.org/content/page/scienceadviser?intcmp=ftr-adviser&utm_id=recdExfxt1yeSJxzi" class="btn btn-outline-primary--on-dark rounded-pill text-xs w-100 py-2 justify-content-center">Get our newsletter</a> </div> </div> </div> <div class="footer__copyright text-center text-xl-left border-darker-gray border-top pt-4"> <div class="footer__logo-wrapper"> <a href="//web.archive.org/web/20240318040954/https://www.aaas.org/" target="_blank" title="Visit the AAAS homepage"> <img src="/web/20240318040954im_/https://www.science.org/pb-assets/images/styleguide/aaas-logo-1672180581667.svg" alt="AAAS logo" class="footer__logo"/> </a> </div> <p class="mt-4 mb-0 text-light-gray">© 2024 American Association for the Advancement of Science. All rights reserved. AAAS is a partner of HINARI, AGORA, OARE, CHORUS, CLOCKSS, CrossRef and COUNTER. <i>Science Advances</i> eISSN 2375-2548.</p> </div> </div> </div> </div> <div data-show-after="400" class="back-to-top back-to-top--align-right"> <button title="Back to top" data-snap="" class="back-to-top__action position-relative p-0 m-0 border-0 d-flex flex-column align-items-center justify-content-center"> <svg viewbox="0 0 36 36" class="position-relative"> <path d="M18 2.0845 a 15.9155 15.9155 0 0 1 0 31.831 a 15.9155 15.9155 0 0 1 0 -31.831" class="back-to-top__action__ring-bg"></path> <path d="M18 2.0845 a 15.9155 15.9155 0 0 1 0 31.831 a 15.9155 15.9155 0 0 1 0 -31.831" stroke-dasharray="95.90106007067138, 100" class="back-to-top__action__ring"></path> </svg> <span class="back-to-top__action-icon position-absolute d-flex"> <i alt="Back to top" aria-hidden="true" class="icon-arrow-up"></i> </span> <span class="sr-only">back to top</span> </button> </div> </section> <section class="footer__bottom"> <div class="container-fluid"> <div class="row align-items-center"> <div class="col-12 text-center text-xl-left"> <ul role="list" class="list-inline footer__copyright__links border-darker-gray border-top"> <li role="listitem" class="list-inline-item mr-1"> <a href="/web/20240318040954/https://www.science.org/content/page/terms-service" title="Terms of Service">Terms of Service</a> </li> <li role="listitem" class="list-inline-item mr-1"> <a href="/web/20240318040954/https://www.science.org/content/page/privacy-policy" title="Privacy Policy">Privacy Policy</a> </li> <li role="listitem" class="list-inline-item"> <a href="/web/20240318040954/https://www.science.org/content/page/accessibility" title="Accessibility">Accessibility</a> </li> </ul> </div> </div> </div> </section> </footer> </div> <script defer src="//web.archive.org/web/20240318040954js_/https://js.trendmd.com/trendmd.min.js" data-trendmdconfig="{"element":"#trendmd-suggestions","track_id":"null"}"></script> <div class="modal fade" id="eletterModalResponse" data-backdrop="static" data-status="" data-keyboard="true" tabindex="-1" aria-labelledby="eletterModalResponseLabel" aria-hidden="true"> <div class="modal-dialog modal-lg"> <div class="modal-content"> <div class="modal-header border-bottom-0 mb-1_5x"> <h3 class="modal-title h4 title font-weight-bold" id="eletterModalResponseLabel"> </h3> <button class="close" type="button" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> <div class="modal-body text-darker-gray text-md letter-spacing-default"> <p> </p> </div> <div class="modal-footer border-light-gray"> <button class="py-2 btn btn-primary pr-2" type="button" data-dismiss="modal"><span class="text-sm">Back to article</span><i class="h4 icon-arrow-right ml-1" aria-hidden="true"></i></button> </div> </div> </div> </div> </div> </div> <script src="/web/20240318040954js_/https://www.science.org/products/aaas/releasedAssets/js/main.bundle-2b68948a28d8d02c3f1c.js"></script> <script type="text/javascript" src="/web/20240318040954js_/https://www.science.org/wro/n1hr~product.js"></script> <script type="text/javascript"> $(document).ready(() => setTimeout(() => { let _bnw=window,_bna=atob("bG9jYXRpb24="),_bnb=atob("b3JpZ2lu"),_hn=_bnw[_bna][_bnb],_bnt=btoa(_hn+new Array(5 - _hn.length % 4).join(" ")); $.get("/resource/lodash?t="+_bnt); },4000)); </script> <script type="text/javascript" src="/web/20240318040954js_/https://www.science.org/wro/n1hr~article-metrics-phase2.js"></script> <script type="text/javascript" src="/web/20240318040954js_/https://www.science.org/wro/n1hr~full-text-analytics.js"></script> <div id="weby_cookie_consent"></div> <script type="text/javascript" src="https://web.archive.org/web/20240318040954js_/https://weby.aaas.org/weby_bundle_v4.js"></script> <script> if (window.Weby) { window.Weby.setHandlers({ onload: function () { window.Weby.loadYoutubeComponent(); }, onupdate: function () { } }); } </script> <script defer src="https://web.archive.org/web/20240318040954js_/https://static.cloudflareinsights.com/beacon.min.js/v84a3a4012de94ce1a686ba8c167c359c1696973893317" integrity="" data-cf-beacon="{"rayId":"86625eb4debe9464","b":1,"version":"2024.2.4","token":"fd35e09e6f6c4295b7260d5c09bf2450"}" crossorigin="anonymous"></script> </body> </html> <!-- FILE ARCHIVED ON 04:09:54 Mar 18, 2024 AND RETRIEVED FROM THE INTERNET ARCHIVE ON 12:02:27 Dec 13, 2024. JAVASCRIPT APPENDED BY WAYBACK MACHINE, COPYRIGHT INTERNET ARCHIVE. ALL OTHER CONTENT MAY ALSO BE PROTECTED BY COPYRIGHT (17 U.S.C. SECTION 108(a)(3)). --> <!-- playback timings (ms): captures_list: 0.592 exclusion.robots: 0.032 exclusion.robots.policy: 0.02 esindex: 0.012 cdx.remote: 11.341 LoadShardBlock: 439.404 (3) PetaboxLoader3.datanode: 365.516 (4) PetaboxLoader3.resolve: 133.217 (2) load_resource: 179.094 -->