CINXE.COM
Search results for: stiffness and damping
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stiffness and damping</title> <meta name="description" content="Search results for: stiffness and damping"> <meta name="keywords" content="stiffness and damping"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stiffness and damping" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stiffness and damping"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1052</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stiffness and damping</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1052</span> Drastic Increase of Wave Dissipation within Metastructures Having Negative Stiffness Inclusions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Chronopoulos">D. Chronopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Antoniadis"> I. Antoniadis</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Spitas"> V. Spitas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Koulocheris"> D. Koulocheris</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Polenta"> V. Polenta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A concept of a simple linear oscillator, incorporating a negative stiffness element is demonstrated to exhibit extraordinary damping properties. This oscillator shares the same overall (static) stiffness, the same mass and the same damping element with a reference classical linear SDOF oscillator. However, it differs from the original SDOF oscillator by appropriately redistributing the component spring stiffness elements and by re-allocating the damping element. Despite the fact that the proposed oscillator incorporates a negative stiffness element, it is designed to be both statically and dynamically stable. Once such an oscillator is optimally designed, it is shown to exhibit an extraordinary apparent damping ratio, which is even several orders of magnitude higher than that of the original SDOF system, especially in cases where the original damping of the SDOF system is low. This damping behavior is not a result of a novel additional extraordinary energy dissipation mechanism, but a result of the phase difference between the positive and the negative stiffness elastic forces, which is in turn a consequence of the proper re-distribution of the stiffness and the damper elements. This fact ensures that an adequate level of elastic forces exists throughout the entire frequency range, able to counteract the inertial and the excitation forces. Next, Acoustic or Phononic Meta-materials are considered, in which one atom is replaced by the concept of the above simple linear oscillator. The results indicate that not only the damping of the meta-material verifies and exceeds the one expected from the so-called "meta-damping" behavior, but also that the band gap of the meta-material can be significantly increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title="wave propagation">wave propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20structures" title=" periodic structures"> periodic structures</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20damping" title=" wave damping"> wave damping</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a> </p> <a href="https://publications.waset.org/abstracts/12429/drastic-increase-of-wave-dissipation-within-metastructures-having-negative-stiffness-inclusions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1051</span> Simplified Analysis on Steel Frame Infill with FRP Composite Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=HyunSu%20Seo">HyunSu Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=HoYoung%20Son"> HoYoung Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungjin%20Kim"> Sungjin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=WooYoung%20Jung"> WooYoung Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to understand the seismic behavior of steel frame structure with infill FRP composite panel, simple models for simulation on the steel frame with the panel systems were developed in this study. To achieve the simple design method of the steel framed structure with the damping panel system, 2-D finite element analysis with the springs and dashpots models was conducted in ABAQUS. Under various applied spring stiffness and dashpot coefficient, the expected hysteretic energy responses of the steel frame with damping panel systems we re investigated. Using the proposed simple design method which decides the stiffness and the damping, it is possible to decide the FRP and damping materials on a steel frame system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title="numerical analysis">numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=infill" title=" infill"> infill</a>, <a href="https://publications.waset.org/abstracts/search?q=GFRP" title=" GFRP"> GFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a> </p> <a href="https://publications.waset.org/abstracts/47889/simplified-analysis-on-steel-frame-infill-with-frp-composite-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1050</span> Variations of the Modal Characteristics of the Feeding Stage with Different Preloaded Linear Guide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui-Pui%20Hung">Jui-Pui Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Run%20Chen"> Yong-Run Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Cheng%20Shih"> Wei-Cheng Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Wei%20Lin"> Chun-Wei Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed to assess the variations of the modal characteristics of the feeding stage with different linear guide modulus. The dynamic characteristics of the feeding stage were characterized in terms of the modal stiffness, modal frequency and modal damping, which are assessed from the vibration tests. According to the experimental measurements, the actual preload of the linear guide modulus was found to deviate from the rated values as setting in factory. This may be due to the assemblage errors of guide modules. For the stage with linear guides, the dynamic stiffness was affected to change by the preload set on the rolling balls. The variation of the dynamic stiffness at first and second modes is 20.8 and 10.5%, respectively when the linear guide preload is adjusted from medium and high amount. But the modal damping ratio is reduced by 8.97 and 9.65%, respectively. For high-frequency mode, the modal stiffness increases by 171.2% and the damping ratio reduced by 34.4%. Current results demonstrate the importance in the determining the preloaded amount of linear guide modulus in practical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20stiffness" title="contact stiffness">contact stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding%20stage" title=" feeding stage"> feeding stage</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20guides" title=" linear guides"> linear guides</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20characteristics" title=" modal characteristics"> modal characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-load" title=" pre-load"> pre-load</a> </p> <a href="https://publications.waset.org/abstracts/51628/variations-of-the-modal-characteristics-of-the-feeding-stage-with-different-preloaded-linear-guide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1049</span> Shock Isolation Performance of a Pre-Compressed Large Deformation Shock Isolator with Quasi-Zero-Stiffness Characteristic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Chen">Ji Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunhui%20Zhang"> Chunhui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanming%20Zeng"> Fanming Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhang"> Lei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Li"> Ying Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zhang"> Wei Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the synthetic principle of force, a pre-compressed nonlinear isolator with quasi-zero-stiffness (QZS) is developed for shock isolation of ship equipment. The proposed isolator consists of a vertical spring with positive stiffness and several lateral springs with negative stiffness. An analytical expression of vertical stiffness of the nonlinear isolator is derived and numerical simulation on the effect of the geometric design parameters is carried out. Besides, a pre-compressed QZS shock isolation system model is established. The stiffness characteristic of the system is studied and the effects of excitation amplitude and friction damping on shock isolation performance are discussed respectively. The research results show that in comparison with linear shock isolation system, the pre-compressed QZS shock isolation system could realize constant-force or approximately constant-force function and perform better anti-impact performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quasi-zero-stiffness" title="quasi-zero-stiffness">quasi-zero-stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=constant-force" title=" constant-force"> constant-force</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-compressed" title=" pre-compressed"> pre-compressed</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20deformation" title=" large deformation"> large deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20isolation" title=" shock isolation"> shock isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20damping" title=" friction damping"> friction damping</a> </p> <a href="https://publications.waset.org/abstracts/39796/shock-isolation-performance-of-a-pre-compressed-large-deformation-shock-isolator-with-quasi-zero-stiffness-characteristic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">697</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1048</span> Estimation of the Effect of Initial Damping Model and Hysteretic Model on Dynamic Characteristics of Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinji%20Ukita">Shinji Ukita</a>, <a href="https://publications.waset.org/abstracts/search?q=Naohiro%20Nakamura"> Naohiro Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Miyazu"> Yuji Miyazu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In considering the dynamic characteristics of structure, natural frequency and damping ratio are useful indicator. When performing dynamic design, it's necessary to select an appropriate initial damping model and hysteretic model. In the linear region, the setting of initial damping model influences the response, and in the nonlinear region, the combination of initial damping model and hysteretic model influences the response. However, the dynamic characteristics of structure in the nonlinear region remain unclear. In this paper, we studied the effect of setting of initial damping model and hysteretic model on the dynamic characteristics of structure. On initial damping model setting, Initial stiffness proportional, Tangent stiffness proportional, and Rayleigh-type were used. On hysteretic model setting, TAKEDA model and Normal-trilinear model were used. As a study method, dynamic analysis was performed using a lumped mass model of base-fixed. During analysis, the maximum acceleration of input earthquake motion was gradually increased from 1 to 600 gal. The dynamic characteristics were calculated using the ARX model. Then, the characteristics of 1st and 2nd natural frequency and 1st damping ratio were evaluated. Input earthquake motion was simulated wave that the Building Center of Japan has published. On the building model, an RC building with 30×30m planes on each floor was assumed. The story height was 3m and the maximum height was 18m. Unit weight for each floor was 1.0t/m2. The building natural period was set to 0.36sec, and the initial stiffness of each floor was calculated by assuming the 1st mode to be an inverted triangle. First, we investigated the difference of the dynamic characteristics depending on the difference of initial damping model setting. With the increase in the maximum acceleration of the input earthquake motions, the 1st and 2nd natural frequency decreased, and the 1st damping ratio increased. Then, in the natural frequency, the difference due to initial damping model setting was small, but in the damping ratio, a significant difference was observed (Initial stiffness proportional≒Rayleigh type>Tangent stiffness proportional). The acceleration and the displacement of the earthquake response were largest in the tangent stiffness proportional. In the range where the acceleration response increased, the damping ratio was constant. In the range where the acceleration response was constant, the damping ratio increased. Next, we investigated the difference of the dynamic characteristics depending on the difference of hysteretic model setting. With the increase in the maximum acceleration of the input earthquake motions, the natural frequency decreased in TAKEDA model, but in Normal-trilinear model, the natural frequency didn’t change. The damping ratio in TAKEDA model was higher than that in Normal-trilinear model, although, both in TAKEDA model and Normal-trilinear model, the damping ratio increased. In conclusion, in initial damping model setting, the tangent stiffness proportional was evaluated the most. In the hysteretic model setting, TAKEDA model was more appreciated than the Normal-trilinear model in the nonlinear region. Our results would provide useful indicator on dynamic design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=initial%20damping%20model" title="initial damping model">initial damping model</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title=" damping ratio"> damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteretic%20model" title=" hysteretic model"> hysteretic model</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a> </p> <a href="https://publications.waset.org/abstracts/84895/estimation-of-the-effect-of-initial-damping-model-and-hysteretic-model-on-dynamic-characteristics-of-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1047</span> The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Krutil">Jaroslav Krutil</a>, <a href="https://publications.waset.org/abstracts/search?q=Franti%C5%A1ek%20Pochyl%C3%BD"> František Pochylý</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Fialov%C3%A1"> Simona Fialová</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladim%C3%ADr%20Hab%C3%A1n"> Vladimír Habán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An in-compressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20modeling" title="computational modeling">computational modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20gap" title=" hydrodynamic gap"> hydrodynamic gap</a>, <a href="https://publications.waset.org/abstracts/search?q=matrices%20of%20mass" title=" matrices of mass"> matrices of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping" title=" stiffness and damping"> stiffness and damping</a> </p> <a href="https://publications.waset.org/abstracts/22442/the-effects-of-a-thin-liquid-layer-on-the-hydrodynamic-machine-rotor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1046</span> Effects of the Mass and Damping Matrix Model in the Non-Linear Seismic Response of Steel Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Reyes-Salazar">Alfredo Reyes-Salazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20D.%20Llanes-Tizoc"> Mario D. Llanes-Tizoc</a>, <a href="https://publications.waset.org/abstracts/search?q=Eden%20Bojorquez"> Eden Bojorquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Valenzuela-Beltran"> Federico Valenzuela-Beltran</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Bojorquez"> Juan Bojorquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20R.%20Gaxiola-Camacho"> Jose R. Gaxiola-Camacho</a>, <a href="https://publications.waset.org/abstracts/search?q=Achintya%20Haldar"> Achintya Haldar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic analysis of steel buildings is usually based on the use of the concentrated mass (ML) matrix and the Rayleigh damping matrix (C). Similarly, the initial stiffness matrix (KO) and the first two modes associated with lateral vibrations are commonly used to develop matrix C. The evaluation of the accuracy of these practices for the particular case of steel buildings with moment-resisting steel frames constitutes the main objective of this research. For this, the non-linear seismic responses of three models of steel frames, representing low-, medium- and high-rise steel buildings, are considered. Results indicate that if the ML matrix is used, shears and bending moments in columns are underestimated by up to 30% and 65%, respectively when compared to the corresponding results obtained with the consistent mass matrix (MC). It is also shown that if KO is used in C instead of the tangent stiffness matrix (Kt), axial loads in columns are underestimated by up to 80%. It is concluded that the consistent mass matrix should be used in the structural modelling of moment-resisting steel frames and that the tangent stiffness matrix should be used to develop the Rayleigh damping matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moment-resisting%20steel%20frames" title="moment-resisting steel frames">moment-resisting steel frames</a>, <a href="https://publications.waset.org/abstracts/search?q=consistent%20and%20concentrated%20mass%20matrices" title=" consistent and concentrated mass matrices"> consistent and concentrated mass matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20seismic%20response" title=" non-linear seismic response"> non-linear seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20damping" title=" Rayleigh damping"> Rayleigh damping</a> </p> <a href="https://publications.waset.org/abstracts/153538/effects-of-the-mass-and-damping-matrix-model-in-the-non-linear-seismic-response-of-steel-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1045</span> The Effect of Mathematical Modeling of Damping on the Seismic Energy Demands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selamawit%20Dires">Selamawit Dires</a>, <a href="https://publications.waset.org/abstracts/search?q=Solomon%20Tesfamariam"> Solomon Tesfamariam</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Tannert"> Thomas Tannert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern earthquake engineering and design encompass performance-based design philosophy. The main objective in performance-based design is to achieve a system performing precisely to meet the design objectives so to reduce unintended seismic risks and associated losses. Energy-based earthquake-resistant design is one of the design methodologies that can be implemented in performance-based earthquake engineering. In energy-based design, the seismic demand is usually described as the ratio of the hysteretic to input energy. Once the hysteretic energy is known as a percentage of the input energy, it is distributed among energy-dissipating components of a structure. The hysteretic to input energy ratio is highly dependent on the inherent damping of a structural system. In numerical analysis, damping can be modeled as stiffness-proportional, mass-proportional, or a linear combination of stiffness and mass. In this study, the effect of mathematical modeling of damping on the estimation of seismic energy demands is investigated by considering elastic-perfectly-plastic single-degree-of-freedom systems representing short to long period structures. Furthermore, the seismicity of Vancouver, Canada, is used in the nonlinear time history analysis. According to the preliminary results, the input energy demand is not sensitive to the type of damping models deployed. Hence, consistent results are achieved regardless of the damping models utilized in the numerical analyses. On the other hand, the hysteretic to input energy ratios vary significantly for the different damping models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping" title="damping">damping</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-based%20seismic%20design" title=" energy-based seismic design"> energy-based seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteretic%20energy" title=" hysteretic energy"> hysteretic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20energy" title=" input energy"> input energy</a> </p> <a href="https://publications.waset.org/abstracts/111458/the-effect-of-mathematical-modeling-of-damping-on-the-seismic-energy-demands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1044</span> Implicit Force Control of a Position Controlled Robot - A Comparison with Explicit Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Winkler">Alexander Winkler</a>, <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Such%C3%BD"> Jozef Suchý</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates simple implicit force control algorithms realizable with industrial robots. A lot of approaches already published are difficult to implement in commercial robot controllers, because the access to the robot joint torques is necessary or the complete dynamic model of the manipulator is used. In the past we already deal with explicit force control of a position controlled robot. Well known schemes of implicit force control are stiffness control, damping control and impedance control. Using such algorithms the contact force cannot be set directly. It is further the result of controller impedance, environment impedance and the commanded robot motion/position. The relationships of these properties are worked out in this paper in detail for the chosen implicit approaches. They have been adapted to be implementable on a position controlled robot. The behaviors of stiffness control and damping control are verified by practical experiments. For this purpose a suitable test bed was configured. Using the full mechanical impedance within the controller structure will not be practical in the case when the robot is in physical contact with the environment. This fact will be verified by simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robot%20force%20control" title="robot force control">robot force control</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20control" title=" stiffness control"> stiffness control</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20control" title=" damping control"> damping control</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20control" title=" impedance control"> impedance control</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/22644/implicit-force-control-of-a-position-controlled-robot-a-comparison-with-explicit-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1043</span> Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Anuar">S. A. Anuar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Hamid"> N. H. Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Hashim"> M. H. Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20D.%20Salleh"> S. M. D. Salleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper present the experimental work on the seismic performance of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested at ±0.01%, ±0.1%, ±0.25%, ±0.5%, ±0.75% and ±1.0% drifts until the structure achieves its strength degradation. After that, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. A similar testing approach is applied to the specimen after repair and retrofit. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22 in pushing direction and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel%20form%20building" title="tunnel form building">tunnel form building</a>, <a href="https://publications.waset.org/abstracts/search?q=in-plane%20lateral%20cyclic%20loading" title=" in-plane lateral cyclic loading"> in-plane lateral cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20pattern" title=" crack pattern"> crack pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20strength" title=" lateral strength"> lateral strength</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20viscous%20damping" title=" equivalent viscous damping"> equivalent viscous damping</a>, <a href="https://publications.waset.org/abstracts/search?q=repair%20and%20retrofit" title=" repair and retrofit"> repair and retrofit</a> </p> <a href="https://publications.waset.org/abstracts/11546/comparison-of-double-unit-tunnel-form-building-before-and-after-repair-and-retrofit-under-in-plane-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1042</span> Effects of Viscoelastic and Viscous Links on Seismic Pounding Mitigation in Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Mirzagoltabar%20Roshan">Ali Reza Mirzagoltabar Roshan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahmadi%20Taleshian"> H. Ahmadi Taleshian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Eliasi"> A. Eliasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the effects of viscous and viscoelastic dampers as an efficient technique for seismic pounding mitigation. To aim that, 15 steel frame models with different numbers of stories and bays and also with different types of ductility were analyzed under 10 different earthquake records for assigned values of link damping and stiffness and the most suitable values of damper parameters (damping and stiffness) are presented. Moreover, it is demonstrated that viscous dampers can perform as efficiently as viscoelastic alternative with a more economical aspect for pounding mitigation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjacent%20buildings" title="adjacent buildings">adjacent buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20distance" title=" separation distance"> separation distance</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20pounding%20mitigation" title=" seismic pounding mitigation"> seismic pounding mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20link" title=" viscoelastic link"> viscoelastic link</a> </p> <a href="https://publications.waset.org/abstracts/68289/effects-of-viscoelastic-and-viscous-links-on-seismic-pounding-mitigation-in-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1041</span> Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soltani%20Amir">Soltani Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xuan"> Wang Xuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A Matlab program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20control" title="active control">active control</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control" title=" passive control"> passive control</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dampers" title=" viscous dampers"> viscous dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20control" title=" structural control"> structural control</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a> </p> <a href="https://publications.waset.org/abstracts/5867/vibration-control-of-two-adjacent-structures-using-a-non-linear-damping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1040</span> Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yamaguchi">T. Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Watanabe"> M. Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sasajima"> M. Sasajima</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Yuan"> C. Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Maruyama"> S. Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Ibrahim"> T. B. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Tomita"> H. Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title="dynamic response">dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20impact%20response" title=" nonlinear impact response"> nonlinear impact response</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/15947/nonlinear-impact-responses-for-a-damped-frame-supported-by-nonlinear-springs-with-hysteresis-using-fast-fea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1039</span> Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Krutil">Jaroslav Krutil</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Fialov%C3%A1"> Simona Fialová</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Franti%C5%A1ek%20Pochyl%C3%BD">František Pochylý</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nonlinear mathematical model of mutual fluid-structure interaction is presented in the work. The model is applicable to the general shape of sealing gaps. An in compressible fluid and turbulent flow is assumed. The shaft carries a rotational and procession motion, the gap is axially flowed through. The achieved results of the additional mass, damping and stiffness matrices may be used in the solution of the rotor dynamics. The usage of this mathematical model is expected particularly in hydraulic machines. The method of control volumes in the ANSYS Fluent was used for the simulation. The obtained results of the pressure and velocity fields are used in the mathematical model of additional effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20mathematical%20model" title="nonlinear mathematical model">nonlinear mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20modeling" title=" CFD modeling"> CFD modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20sealing%20gap" title=" hydrodynamic sealing gap"> hydrodynamic sealing gap</a>, <a href="https://publications.waset.org/abstracts/search?q=matrices%20of%20mass" title=" matrices of mass"> matrices of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a> </p> <a href="https://publications.waset.org/abstracts/23190/nonlinear-mathematical-model-of-the-rotor-motion-in-a-thin-hydrodynamic-gap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1038</span> Effect of the Drawbar Force on the Dynamic Characteristics of a Spindle-Tool Holder System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui-Pui%20Hung">Jui-Pui Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Sheng%20Lai"> Yu-Sheng Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzuo-Liang%20Luo"> Tzuo-Liang Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kung-Da%20Wu"> Kung-Da Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Ji%20Zhan"> Yun-Ji Zhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presented the investigation of the influence of the tool holder interface stiffness on the dynamic characteristics of a spindle tool system. The interface stiffness was produced by drawbar force on the tool holder, which tends to affect the spindle dynamics. In order to assess the influence of interface stiffness on the vibration characteristic of spindle unit, we first created a three dimensional finite element model of a high speed spindle system integrated with tool holder. The key point for the creation of FEM model is the modeling of the rolling interface within the angular contact bearings and the tool holder interface. The former can be simulated by a introducing a series of spring elements between inner and outer rings. The contact stiffness was calculated according to Hertz contact theory and the preload applied on the bearings. The interface stiffness of the tool holder was identified through the experimental measurement and finite element modal analysis. Current results show that the dynamic stiffness was greatly influenced by the tool holder system. In addition, variations of modal damping, static stiffness and dynamic stiffness of the spindle tool system were greatly determined by the interface stiffness of the tool holder which was in turn dependent on the draw bar force applied on the tool holder. Overall, this study demonstrates that identification of the interface characteristics of spindle tool holder is of very importance for the refinement of the spindle tooling system to achieve the optimum machining performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stiffness" title="dynamic stiffness">dynamic stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=spindle-tool%20holder" title=" spindle-tool holder"> spindle-tool holder</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20stiffness" title=" interface stiffness"> interface stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=drawbar%20force" title=" drawbar force"> drawbar force</a> </p> <a href="https://publications.waset.org/abstracts/10212/effect-of-the-drawbar-force-on-the-dynamic-characteristics-of-a-spindle-tool-holder-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1037</span> Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soltani%20Amir">Soltani Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Jiaxin"> Hu Jiaxin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of optimal parameters of a passive control system device is the primary objective of this study. Expanding upon the use of control devices in wind and earthquake hazard reduction has led to development of various control systems. The advantage of non-linearity characteristics in a passive control device and the optimal control method using LQR algorithm are explained in this study. Finally, this paper introduces a simple approach to determine optimum parameters of a nonlinear viscous damper for vibration control of structures. A MATLAB program is used to produce the dynamic motion of the structure considering the stiffness matrix of the SDOF frame and the non-linear damping effect. This study concluded that the proposed system (variable damping system) has better performance in system response control than a linear damping system. Also, according to the energy dissipation graph, the total energy loss is greater in non-linear damping system than other systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20control%20system" title="passive control system">passive control system</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20devices" title=" damping devices"> damping devices</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dampers" title=" viscous dampers"> viscous dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20algorithm" title=" control algorithm"> control algorithm</a> </p> <a href="https://publications.waset.org/abstracts/10226/optimum-parameter-of-a-viscous-damper-for-seismic-and-wind-vibration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1036</span> Simulation of Particle Damping in Boring Tool Using Combined Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chockalingam">S. Chockalingam</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Natarajan"> U. Natarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20M.%20Santhoshsarang"> D. M. Santhoshsarang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle damping is a promising vibration attenuating technique in boring tool than other type of damping with minimal effect on the strength, rigidity and stiffness ratio of the machine tool structure. Due to the cantilever nature of boring tool holder in operations, it suffers chatter when the slenderness ratio of the tool gets increased. In this study, Copper-Stainless steel (SS) particles were packed inside the boring tool which acts as a damper. Damper suppresses chatter generated during machining and also improves the machining efficiency of the tool with better slenderness ratio. In the first approach of particle damping, combined Cu-SS particles were packed inside the vibrating tool, whereas Copper and Stainless steel particles were selected separately and packed inside another tool and their effectiveness was analysed in this simulation. This study reveals that the efficiency of finite element simulation of the boring tools when equipped with particles such as copper, stainless steel and a combination of both. In this study, the newly modified boring tool holder with particle damping was simulated using ANSYS12.0 with and without particles. The aim of this study is to enhance the structural rigidity through particle damping thus avoiding the occurrence of resonance in the boring tool during machining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boring%20bar" title="boring bar">boring bar</a>, <a href="https://publications.waset.org/abstracts/search?q=copper-stainless%20steel" title=" copper-stainless steel"> copper-stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=chatter" title=" chatter"> chatter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20damping" title=" particle damping"> particle damping</a> </p> <a href="https://publications.waset.org/abstracts/28966/simulation-of-particle-damping-in-boring-tool-using-combined-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1035</span> Response of Vibration and Damping System of UV Irradiated Renewable Biopolymer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anika%20Zafiah%20M.%20Rus">Anika Zafiah M. Rus</a>, <a href="https://publications.waset.org/abstracts/search?q=Nik%20Normunira%20Mat%20Hassan"> Nik Normunira Mat Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biopolymer made from renewable material are one of the most important group of polymer because of their versatility and they can be manufactured in a wide range of densities and stiffness. In this project, biopolymer based on waste vegetable oil were synthesized and crosslink with commercial polymethane polyphenyl isocyanate (known as BF).The BF was compressed by using hot compression moulding technique at 90 oC based on the evaporation of volatile matter and known as compress biopolymer (CB). The density, vibration and damping characteristic of CB were determined after UV irradiation. Treatment with titanium dioxide (TiO2) was found to affect the physical property of compress biopolymer composite (CBC). The density of CBC samples was steadily increased with an increase of UV irradiation time and TiO2 loading. The highest density of CBC samples is at 10 % of TiO2 loading of 1.1088 g/cm3 due to the amount of filler loading. The vibration and damping characteristic of CBC samples was generated at displacements of 1 mm and 1.5 mm and acceleration of 0.1 G and 0.15 G base excitation according to ASTM D3580-9. It was revealed that, the vibration and damping characteristic of CBC samples is significantly increased with the increasing of UV irradiation time, lowest thickness and percentages of TiO2 loading at the frequency range of 15 - 25 Hz. Therefore, this study indicated that the damping property of CBC could be improved upon prolonged exposure to UV irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymer%20flexible%20foam" title="biopolymer flexible foam">biopolymer flexible foam</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20irradiation" title=" UV irradiation"> UV irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20and%20damping" title=" vibration and damping"> vibration and damping</a> </p> <a href="https://publications.waset.org/abstracts/16776/response-of-vibration-and-damping-system-of-uv-irradiated-renewable-biopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1034</span> Polymer Aerostatic Thrust Bearing under Circular Support for High Static Stiffness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sy-Wei%20Lo">Sy-Wei Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Heng%20Yu"> Chi-Heng Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new design of aerostatic thrust bearing is proposed for high static stiffness. The bearing body, which is mead of polymer covered with metallic membrane, is held by a circular ring. Such a support helps form a concave air gap to grasp the air pressure. The polymer body, which can be made rapidly by either injection or molding is able to provide extra damping under dynamic loading. The smooth membrane not only serves as the bearing surface but also protects the polymer body. The restrictor is a capillary inside a silicone tube. It can passively compensate the variation of load by expanding the capillary diameter for more air flux. In the present example, the stiffness soars from 15.85 N/µm of typical bearing to 349.85 N/µm at bearing elevation 9.5 µm; meanwhile the load capacity also enhances from 346.86 N to 704.18 N. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerostatic" title="aerostatic">aerostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing" title=" bearing"> bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20stiffness" title=" static stiffness"> static stiffness</a> </p> <a href="https://publications.waset.org/abstracts/30015/polymer-aerostatic-thrust-bearing-under-circular-support-for-high-static-stiffness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1033</span> Magneto-Rheological Damper Based Semi-Active Robust H∞ Control of Civil Structures with Parametric Uncertainties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vedat%20Senol">Vedat Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Gursoy%20Turan"> Gursoy Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anders%20Helmersson"> Anders Helmersson</a>, <a href="https://publications.waset.org/abstracts/search?q=Vortechz%20Andersson"> Vortechz Andersson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developing a mathematical model of a real structure, the simulation results of the model may not match the real structural response. This is a general problem that arises during dynamic motion of the structure, which may be modeled by means of parameter variations in the stiffness, damping, and mass matrices. These changes in parameters need to be estimated, and the mathematical model is updated to obtain higher control performances and robustness. In this study, a linear fractional transformation (LFT) is utilized for uncertainty modeling. Further, a general approach to the design of an H∞ control of a magneto-rheological damper (MRD) for vibration reduction in a building with mass, damping, and stiffness uncertainties is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20modeling" title="uncertainty modeling">uncertainty modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20control" title=" structural control"> structural control</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20Damper" title=" MR Damper"> MR Damper</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%88%9E" title=" H∞"> H∞</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20control" title=" robust control"> robust control</a> </p> <a href="https://publications.waset.org/abstracts/111738/magneto-rheological-damper-based-semi-active-robust-h-control-of-civil-structures-with-parametric-uncertainties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1032</span> Numerical Tools for Designing Multilayer Viscoelastic Damping Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Saleh%20Rezk">Mohammed Saleh Rezk</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Kashani"> Reza Kashani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auxiliary damping has gained popularity in recent years, especially in structures such as mid- and high-rise buildings. Distributed damping systems (typically viscous and viscoelastic) or reactive damping systems (such as tuned mass dampers) are the two types of damping choices for such structures. Distributed VE dampers are normally configured as braces or damping panels, which are engaged through relatively small movements between the structural members when the structure sways under wind or earthquake loading. In addition to being used as stand-alone dampers in distributed damping applications, VE dampers can also be incorporated into the suspension element of tuned mass dampers (TMDs). In this study, analytical and numerical tools for modeling and design of multilayer viscoelastic damping devices to be used in dampening the vibration of large structures are developed. Considering the limitations of analytical models for the synthesis and analysis of realistic, large, multilayer VE dampers, the emphasis of the study has been on numerical modeling using the finite element method. To verify the finite element models, a two-layer VE damper using ½ inch synthetic viscoelastic urethane polymer was built, tested, and the measured parameters were compared with the numerically predicted ones. The numerical model prediction and experimentally evaluated damping and stiffness of the test VE damper were in very good agreement. The effectiveness of VE dampers in adding auxiliary damping to larger structures is numerically demonstrated by chevron bracing one such damper numerically into the model of a massive frame subject to an abrupt lateral load. A comparison of the responses of the frame to the aforementioned load, without and with the VE damper, clearly shows the efficacy of the damper in lowering the extent of frame vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscoelastic" title="viscoelastic">viscoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=damper" title=" damper"> damper</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20damping" title=" distributed damping"> distributed damping</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper" title=" tuned mass damper"> tuned mass damper</a> </p> <a href="https://publications.waset.org/abstracts/158763/numerical-tools-for-designing-multilayer-viscoelastic-damping-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1031</span> Comparison of the Dynamic Characteristics of Active and Passive Hybrid Bearings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20V.%20Shutin">Denis V. Shutin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Yu.%20Babin"> Alexander Yu. Babin</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonid%20A.%20Savin"> Leonid A. Savin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the ways of reducing vibroactivity of rotor systems is to apply active hybrid bearings. Their design allows correction of the rotor’s location by means of separately controlling the supply pressure of the lubricant into the friction area. In a most simple case, the control system is based on a P-regulator. Increase of the gain coefficient allows decreasing the amplitude of rotor’s vibrations. The same effect can be achieved by means of increasing the pressure in the collector of a traditional passive hybrid bearing. However, these approaches affect the dynamic characteristics of the bearing differently. Theoretical studies show that the increase of the gain coefficient of an active bearing increases the stiffness of the bearing, as well as the increase of the pressure in the collector. Nevertheless, in case of a passive bearing, the damping properties deteriorate, whereas the active hybrid bearings obtain higher damping properties, which allow effectively providing the energy dissipation of the rotor vibrations and reducing the load on the constructional elements of a machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20bearings" title="active bearings">active bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20bearings" title=" hybrid bearings"> hybrid bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/47442/comparison-of-the-dynamic-characteristics-of-active-and-passive-hybrid-bearings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1030</span> New Modification Negative Stiffness Device with Constant Force-Displacement Characteristic for Seismic Protection of Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huan%20Li">Huan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianchun%20Li"> Jianchun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yancheng%20Li"> Yancheng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yu"> Yang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a seismic protection method of civil and engineering structures, weakening and damping is effective during the elastic region, while it somehow leads to the early yielding of the entire structure accompanying with large excursions and permanent deformations. Adaptive negative stiffness device is attractive for realizing yielding property without changing the stiffness of the primary structure. In this paper, a new modification negative stiffness device (MNSD) with constant force-displacement characteristic is proposed by combining a magnetic negative stiffness spring, a piecewise linear positive spring and a passive damper with a certain adaptive stiffness device. The proposed passive control MNSD preserves no effect under small excitation. When the displacement amplitude increases beyond the pre-defined yielding point, the force-displacement characteristics of the system with MNSD will keep constant. The seismic protection effect of the MNSD is evaluated by employing it to a single-degree-of-freedom system under sinusoidal excitation, and real earthquake waves. By comparative analysis, the system with MNSD performs better on reducing acceleration and displacement response under different displacement amplitudes than the scenario without it and the scenario with unmodified certain adaptive stiffness device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=negative%20stiffness" title="negative stiffness">negative stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20stiffness" title=" adaptive stiffness"> adaptive stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=weakening%20and%20yielding" title=" weakening and yielding"> weakening and yielding</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20force-displacement%20characteristic" title=" constant force-displacement characteristic"> constant force-displacement characteristic</a> </p> <a href="https://publications.waset.org/abstracts/125646/new-modification-negative-stiffness-device-with-constant-force-displacement-characteristic-for-seismic-protection-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1029</span> Selection of Rayleigh Damping Coefficients for Seismic Response Analysis of Soil Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huai-Feng%20Wang">Huai-Feng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Lin%20Lou"> Meng-Lin Lou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ru-Lin%20Zhang"> Ru-Lin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One good analysis method in seismic response analysis is direct time integration, which widely adopts Rayleigh damping. An approach is presented for selection of Rayleigh damping coefficients to be used in seismic analyses to produce a response that is consistent with Modal damping response. In the presented approach, the expression of the error of peak response, acquired through complete quadratic combination method, and Rayleigh damping coefficients was set up and then the coefficients were produced by minimizing the error. Two finite element modes of soil layers, excited by 28 seismic waves, were used to demonstrate the feasibility and validity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20damping" title="Rayleigh damping">Rayleigh damping</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20damping" title=" modal damping"> modal damping</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20coefficients" title=" damping coefficients"> damping coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response%20analysis" title=" seismic response analysis"> seismic response analysis</a> </p> <a href="https://publications.waset.org/abstracts/57421/selection-of-rayleigh-damping-coefficients-for-seismic-response-analysis-of-soil-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1028</span> Study on Dynamic Stiffness Matching and Optimization Design Method of a Machine Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Xi">Lu Xi</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Pan"> Li Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Mengmeng"> Wen Mengmeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stiffness of each component has different influences on the stiffness of the machine tool. Taking the five-axis gantry machining center as an example, we made the modal analysis of the machine tool, followed by raising and lowering the stiffness of the pillar, slide plate, beam, ram and saddle so as to study the stiffness matching among these components on the standard of whether the stiffness of the modified machine tool changes more than 50% relative to the stiffness of the original machine tool. The structural optimization of the machine tool can be realized by changing the stiffness of the components whose stiffness is mismatched. For example, the stiffness of the beam is mismatching. The natural frequencies of the first six orders of the beam increased by 7.70%, 0.38%, 6.82%, 7.96%, 18.72% and 23.13%, with the weight increased by 28Kg, leading to the natural frequencies of several orders which had a great influence on the dynamic performance of the whole machine increased by 1.44%, 0.43%, 0.065%, which verified the correctness of the optimization method based on stiffness matching proposed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20tool" title="machine tool">machine tool</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20matching" title=" stiffness matching"> stiffness matching</a> </p> <a href="https://publications.waset.org/abstracts/169087/study-on-dynamic-stiffness-matching-and-optimization-design-method-of-a-machine-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1027</span> Numerical Investigation of Seismic Behaviour of Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tinebeb%20Tefera%20Ashene">Tinebeb Tefera Ashene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glass facade systems have gained popularity in recent times. During an earthquake, building frames suffer large inter-story drifts, causing racking of building facade systems. A facade system is highly vulnerable and fails more frequently than a building with significant devastating effects. The usage of Metallic yield damper connections (Added Damping Stiffness) is proposed in this study to mitigate the aforementioned problems. Results showed as compared to control, usage of Metallic yield damper connections (Added-Damping-And-Stiffness) exhibited a reduction of connection deformation and axial force; differential displacement between frame and facade; and facade distortion by 44.35%, 43.33%, and 51.45% respectively. Also, employing proposed energy-absorbing connections reduced inter-story link joint drift by 71.11% and mitigated detrimental seismic effects on the entire building facade system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damper" title="damper">damper</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20yield" title=" metallic yield"> metallic yield</a>, <a href="https://publications.waset.org/abstracts/search?q=facades" title=" facades"> facades</a> </p> <a href="https://publications.waset.org/abstracts/183196/numerical-investigation-of-seismic-behaviour-of-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1026</span> Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Bensouilah">H. Bensouilah</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Boucherit"> H. Boucherit</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lahmar"> M. Lahmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially when the dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elasto-aerodynamic%20lubrication" title="elasto-aerodynamic lubrication">elasto-aerodynamic lubrication</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20foil%20bearing" title=" air foil bearing"> air foil bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state%20deformation" title=" steady-state deformation"> steady-state deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20deformation" title=" dynamic deformation"> dynamic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping%20coefficients" title=" stiffness and damping coefficients"> stiffness and damping coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=perturbation%20method" title=" perturbation method"> perturbation method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerk%20infinite%20element%20method" title=" Galerk infinite element method"> Galerk infinite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a> </p> <a href="https://publications.waset.org/abstracts/14356/analysis-of-a-self-acting-air-journal-bearing-effect-of-dynamic-deformation-of-bump-foil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1025</span> Experimental Evaluation of Contact Interface Stiffness and Damping to Sustain Transients and Resonances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krystof%20Kryniski">Krystof Kryniski</a>, <a href="https://publications.waset.org/abstracts/search?q=Asa%20Kassman%20Rudolphi"> Asa Kassman Rudolphi</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Zhao"> Su Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Per%20Lindholm"> Per Lindholm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ABB offers range of turbochargers from 500 kW to 80+ MW diesel and gas engines. Those operate on ships, power stations, generator-sets, diesel locomotives and large, off-highway vehicles. The units need to sustain harsh operating conditions, exposure to high speeds, temperatures and varying loads. They are expected to work at over-critical speeds damping effectively any transients and encountered resonances. Components are often connected via friction joints. Designs of those interfaces need to account for surface roughness, texture, pre-stress, etc. to sustain against fretting fatigue. The experience from field contributed with valuable input on components performance in hash sea environment and their exposure to high temperature, speed and load conditions. Study of tribological interactions of oxide formations provided an insight into dynamic activities occurring between the surfaces. Oxidation was recognized as the dominant factor of a wear. Microscopic inspections of fatigue cracks on turbine indicated insufficient damping and unrestrained structural stress leading to catastrophic failure, if not prevented in time. The contact interface exhibits strongly non-linear mechanism and to describe it the piecewise approach was used. Set of samples representing the combinations of materials, texture, surface and heat treatment were tested on a friction rig under range of loads, frequencies and excitation amplitudes. Developed numerical technique extracted the friction coefficient, tangential contact stiffness and damping. Vast amount of experimental data was processed with the multi-harmonics balance (MHB) method to categorize the components subjected to the periodic excitations. At the pre-defined excitation level both force and displacement formed semi-elliptical hysteresis curves having the same area and secant as the actual ones. By cross-correlating the terms remaining in the phase and out of the phase, respectively it was possible to separate an elastic energy from dissipation and derive the stiffness and damping characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20interface" title="contact interface">contact interface</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor-dynamics" title=" rotor-dynamics"> rotor-dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20resonances" title=" torsional resonances"> torsional resonances</a> </p> <a href="https://publications.waset.org/abstracts/69924/experimental-evaluation-of-contact-interface-stiffness-and-damping-to-sustain-transients-and-resonances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1024</span> Variation of the Dynamic Characteristics of a Spindle with the Change of Bearing Preload</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinji%20Oouchi">Shinji Oouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajime%20Nomura"> Hajime Nomura</a>, <a href="https://publications.waset.org/abstracts/search?q=Kung-Da%20Wu"> Kung-Da Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jui-Pin%20Hung"> Jui-Pin Hung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the variation of the dynamic characteristics of a spindle with the change of bearing preload. The correlations between the variation of bearing preload and fundamental modal parameters were first examined by conducting vibration tests on physical spindle units. Experimental measurements show that the dynamic compliance and damping ratio associated with the dominating modes were affected to vary with variation of the bearing preload. When the bearing preload was slightly deviated from a standard value, the modal frequency and damping ability also vary to different extent, which further enable the spindle to perform with different compliance. For the spindle used in this study, a standard preload value set on bearings would enable the spindle to behave a higher stiffness as compared with others with a preload variation. This characteristic can be served as a reference to examine the variation of bearing preload of spindle in assemblage or operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20compliance" title="dynamic compliance">dynamic compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20preload" title=" bearing preload"> bearing preload</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20damping" title=" modal damping"> modal damping</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20preload" title=" standard preload"> standard preload</a> </p> <a href="https://publications.waset.org/abstracts/15889/variation-of-the-dynamic-characteristics-of-a-spindle-with-the-change-of-bearing-preload" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1023</span> Evaluation of High Damping Rubber Considering Initial History through Dynamic Loading Test and Program Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyeong%20Hoon%20Park">Kyeong Hoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Taiji%20Mazuda"> Taiji Mazuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High damping rubber (HDR) bearings are dissipating devices mainly used in seismic isolation systems and have a great damping performance. Although many studies have been conducted on the dynamic model of HDR bearings, few models can reflect phenomena such as dependency of experienced shear strain on initial history. In order to develop a model that can represent the dependency of experienced shear strain of HDR by Mullins effect, dynamic loading test was conducted using HDR specimen. The reaction of HDR was measured by applying a horizontal vibration using a hybrid actuator under a constant vertical load. Dynamic program analysis was also performed after dynamic loading test. The dynamic model applied in program analysis is a bilinear type double-target model. This model is modified from typical bilinear model. This model can express the nonlinear characteristics related to the initial history of HDR bearings. Based on the dynamic loading test and program analysis results, equivalent stiffness and equivalent damping ratio were calculated to evaluate the mechanical properties of HDR and the feasibility of the bilinear type double-target model was examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base-isolation" title="base-isolation">base-isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20model" title=" bilinear model"> bilinear model</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20damping%20rubber" title=" high damping rubber"> high damping rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=loading%20test" title=" loading test"> loading test</a> </p> <a href="https://publications.waset.org/abstracts/127258/evaluation-of-high-damping-rubber-considering-initial-history-through-dynamic-loading-test-and-program-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping&page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping&page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stiffness%20and%20damping&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>