CINXE.COM
Search results for: pedestrian comfort
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pedestrian comfort</title> <meta name="description" content="Search results for: pedestrian comfort"> <meta name="keywords" content="pedestrian comfort"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pedestrian comfort" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pedestrian comfort"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 859</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pedestrian comfort</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">859</span> Empirical Study and Modelling of Three-Dimensional Pedestrian Flow in Railway Foot-Over-Bridge Stair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ujjal%20Chattaraj">Ujjal Chattaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Raviteja"> M. Raviteja</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Aemala"> Chaitanya Aemala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the years vehicular traffic has been given priority over pedestrian traffic. With the increase of population in cities, pedestrian traffic is increasing day by day. Pedestrian safety has become a matter of concern for the Traffic Engineers. Pedestrian comfort is primary important for the Engineers who design different pedestrian facilities. Pedestrian comfort and safety can be measured in terms of different level of service (LOS) of the facilities. In this study video data on pedestrian movement have been collected from different railway foot over bridges (FOB) in India. The level of service of those facilities has been analyzed. A cellular automata based model has been formulated to mimic the route choice behaviour of the pedestrians on the foot over bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20automata%20model" title="cellular automata model">cellular automata model</a>, <a href="https://publications.waset.org/abstracts/search?q=foot%20over%20bridge" title=" foot over bridge"> foot over bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20of%20service" title=" level of service"> level of service</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian" title=" pedestrian"> pedestrian</a> </p> <a href="https://publications.waset.org/abstracts/54466/empirical-study-and-modelling-of-three-dimensional-pedestrian-flow-in-railway-foot-over-bridge-stair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">858</span> Pedestrian Areas, Development Stimulus in Urban Old Fabrics; Analyzing Stroget, Pedestrian Street in Copenhagen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiomars%20Habibi">Kiomars Habibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Behzadfar"> Mostafa Behzadfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Airin%20Jaberi"> Airin Jaberi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Designing appropriate places for the comfort of pedestrians is one of the most important aspects of modern urbanization and renovation and rehabilitation stimulus of urban old fabrics. So, that special cities designed for pedestrians with a complete network of streets without cars, can be considered as one of the best habitations in the world. The number of these cities with a network of streets and squares in which beauty, enjoyment and comfort are mostly concerned for the pedestrians designed regions is increasing around the world, such as Stockholm, Copenhagen, Munich, Frankfurt, Venice, Rome, etc. In this paper, we are going to explain the influential factors regarding the efficiency of these cities by identifying one of the most important pedestrian ways of the world; Strøget is a car free zone in Copenhagen, Denmark. This popular tourist attraction in the center of town is the longest pedestrian shopping area in Europe. Analyses indicate that world-wide experience concerning the renovation and rehabilitation of old fabrics has many advantages in exploiting the idea of pedestrian way for regeneration of old fabrics. Transforming the streets to appropriate places for the comfort of pedestrians, expanding the public spaces such as city squares, and decreasing the masses of building alongside the brought comfort and peace is the main reason in the success of Strøget pedestrian street in urban old fabrics of Copenhagen. Hypothesis: The Strøget pedestrian street has been the development stimulus in Copenhagen and the urban old fabrics development as a result <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development" title="development">development</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulus" title=" stimulus"> stimulus</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20street" title=" pedestrian street"> pedestrian street</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20landscape" title=" urban landscape"> urban landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=Stroget" title=" Stroget"> Stroget</a> </p> <a href="https://publications.waset.org/abstracts/154594/pedestrian-areas-development-stimulus-in-urban-old-fabrics-analyzing-stroget-pedestrian-street-in-copenhagen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">857</span> Research of Street Aspect Ratio on a Wind Environmental Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qi%20Kan">Qi Kan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyu%20Ying"> Xiaoyu Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With a rapid urbanization in China, the high-density new urban-center districts have already changed the microclimate in the city. Because of the using characters of building the commercial pedestrian streets which have emerged massively making a large number of pedestrians appear in there, pedestrian comfort in the commercial streets of the new urban-center districts requires more attention. The different street spatial layout will change the wind environment in the street and then influence the pedestrian comfort. Computational fluid dynamics (CFD) models are used to study the correlation between the street aspect ratio and wind environment, under the simulation with relevant weather conditions. The results show that the wind speed in the city streets is inversely proportional to the street aspect ratio. The conclusion will provide an evaluation basis for urban planners and architects at the beginning stage of the design to effectively avoid the potential poor physical environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=street%20spatial%20layout" title="street spatial layout">street spatial layout</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20environment" title=" wind environment"> wind environment</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20aspect%20ratio" title=" street aspect ratio"> street aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort" title=" pedestrian comfort"> pedestrian comfort</a> </p> <a href="https://publications.waset.org/abstracts/85340/research-of-street-aspect-ratio-on-a-wind-environmental-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">856</span> Improvement to Pedestrian Walkway Facilities to Enhance Pedestrian Safety-Initiatives in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basavaraj%20Kabade">Basavaraj Kabade</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20T.%20Nagaraja"> K. T. Nagaraja</a>, <a href="https://publications.waset.org/abstracts/search?q=Swathi%20Ramanathan"> Swathi Ramanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Veeraragavan"> A. Veeraragavan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Reashma"> P. S. Reashma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deteriorating quality of the pedestrian environment and the increasing risk of pedestrian crashes are major concerns for most of the cities in India. The recent shift in the priority to motorized transport and the abating condition of existing pedestrian facilities can be considered as prime reasons for the increasing pedestrian related crashes in India. Bengaluru City – the IT capital hub of the nation is not much different from this. The increase in number of pedestrian crashes in Bengaluru reflects the same. To resolve this issue and to ensure safe, sustainable and pedestrian friendly sidewalks, Govt. of Karnataka, India has implemented newfangled pedestrian sidewalks popularized programme named Tender S.U.R.E. (Specifications for Urban Road Execution) projects. Tender SURE adopts unique urban street design guidelines where the pedestrians are given prime preference. The present study presents an assessment of the quality and performance of the pedestrian side walk and the walkability index of the newly built pedestrian friendly sidewalks. Various physical and environmental factors affecting pedestrian safety are identified and studied in detail. The pedestrian mobility is quantified through Pedestrian Level of Service (PLoS) and the pedestrian walking comfort is measured by calculating the Walkability Index (WI). It is observed that the new initiatives taken in reference to improving pedestrian safety have succeeded in Bengaluru by attaining a level of Service of ‘A’ and with a good WI score. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20safety" title="pedestrian safety">pedestrian safety</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20level%20of%20service%20%28PLoS%29" title=" pedestrian level of service (PLoS)"> pedestrian level of service (PLoS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Right%20of%20Way%20%28RoW%29" title=" Right of Way (RoW)"> Right of Way (RoW)</a>, <a href="https://publications.waset.org/abstracts/search?q=Tender%20S.U.R.E%20%28Specifications%20for%20Urban%20Road%20Execution%29" title=" Tender S.U.R.E (Specifications for Urban Road Execution)"> Tender S.U.R.E (Specifications for Urban Road Execution)</a>, <a href="https://publications.waset.org/abstracts/search?q=walkability%20index%20%28WI%29" title=" walkability index (WI)"> walkability index (WI)</a>, <a href="https://publications.waset.org/abstracts/search?q=walkway%20facilities" title=" walkway facilities"> walkway facilities</a> </p> <a href="https://publications.waset.org/abstracts/80671/improvement-to-pedestrian-walkway-facilities-to-enhance-pedestrian-safety-initiatives-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">855</span> Tuned Mass Damper Vibration Control of Pedestrian Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qinglin%20Shu">Qinglin Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the analysis of the structural vibration comfort of a domestic bridge, this paper studies the vibration reduction control principle of TMD, the derivation process of design parameter optimization and how to simulate TMD in the finite element software ANSYS. The research shows that, in view of the problem that the comfort level of a bridge exceeds the limit in individual working conditions, the vibration reduction control design of the bridge can effectively reduce the vibration of the structure by using TMD. Calculations show that when the mass ratio of TMD is 0.01, the vibration reduction rate under different working conditions is more than 90%, and the dynamic displacement of the TMD mass block is within 0.01m, indicating that the design of TMD is reasonable and safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridges" title="pedestrian bridges">pedestrian bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=human-induced%20vibration" title=" human-induced vibration"> human-induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort" title=" comfort"> comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20dampers" title=" tuned mass dampers"> tuned mass dampers</a> </p> <a href="https://publications.waset.org/abstracts/152738/tuned-mass-damper-vibration-control-of-pedestrian-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">854</span> Simulation of Pedestrian Service Time at Different Delay Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imran%20Badshah">Imran Badshah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pedestrian service time reflects the performance of the facility, and it’s a key parameter to analyze the capability of facilities provided to serve pedestrians. The level of service of pedestrians (LOS) mainly depends on pedestrian time and safety. The pedestrian time utilized by taking a service is mainly influenced by the number of available services and the time utilized by each pedestrian in receiving a service; that is called a delay time. In this paper, we analyzed the simulated pedestrian service time with different delay times. A simulation is performed in AnyLogic by developing a model that reflects the real scenario of pedestrian services such as ticket machine gates at rail stations, airports, shopping malls, and cinema halls. The simulated pedestrian time is determined for various delay values. The simulated result shows how pedestrian time changes with the delay pattern. The histogram and time plot graph of a model gives the mean, maximum and minimum values of the pedestrian time. This study helps us to check the behavior of pedestrian time at various services such as subway stations, airports, shopping malls, and cinema halls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-based%20simulation" title="agent-based simulation">agent-based simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=anylogic%20model" title=" anylogic model"> anylogic model</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20behavior" title=" pedestrian behavior"> pedestrian behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20delay" title=" time delay"> time delay</a> </p> <a href="https://publications.waset.org/abstracts/158989/simulation-of-pedestrian-service-time-at-different-delay-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">853</span> Determination of the Walkability Comfort for Urban Green Space Using Geographical Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muge%20Unal">Muge Unal</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20Uslu"> Cengiz Uslu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Faruk%20Altunkasa"> Mehmet Faruk Altunkasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Walkability relates to the ability of the places to connect people with varied destinations within a reasonable amount of time and effort, and to offer visual interest in journeys throughout the network. So, the good quality of the physical environment and arrangement of walkway and sidewalk appear to be more crucial in influencing the pedestrian route choice. Also, proximity, connectivity, and accessibility are significant factor for walkability in terms of an equal opportunity for using public spaces. As a result, there are two important points for walkability. Firstly, the place should have a well-planned street network for accessible and secondly facilitate the pedestrian need for comfort. In this respect, this study aims to examine the both physical and bioclimatic comfort levels of the current condition of pedestrian route with reference to design criteria of a street to access the urban green spaces. These aspects have been identified as the main indicators for walkable streets such as continuity, materials, slope, bioclimatic condition, walkway width, greenery, and surface. Additionally, the aim was to identify the factors that need to be considered in future guidelines and policies for planning and design in urban spaces especially streets. Adana city was chosen as a study area. Adana is a province of Turkey located in south-central Anatolia. This study workflow can be summarized in four stages: (1) environmental and physical data were collected by referred to literature and used in a weighted criteria method to determine the importance level of these data , (2) environmental characteristics of pedestrian routes gained from survey studies are evaluated to hierarchies these criteria of the collected information, (3) and then each pedestrian routes will have a score that provides comfortable access to the park, (4) finally, the comfortable routes to park will be mapped using GIS. It is hoped that this study will provide an insight into future development planning and design to create a friendly and more comfort street environment for the users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comfort%20level" title="comfort level">comfort level</a>, <a href="https://publications.waset.org/abstracts/search?q=geographical%20information%20system%20%28GIS%29" title=" geographical information system (GIS)"> geographical information system (GIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=walkability" title=" walkability"> walkability</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20criteria%20method" title=" weighted criteria method"> weighted criteria method</a> </p> <a href="https://publications.waset.org/abstracts/61847/determination-of-the-walkability-comfort-for-urban-green-space-using-geographical-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">852</span> Revisiting Pedestrians’ Appraisals of Urban Streets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norhaslina%20Hassan">Norhaslina Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherina%20Rezvanipour"> Sherina Rezvanipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhosein%20Ghaffarian%20Hoseini"> Amirhosein Ghaffarian Hoseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ng%20Siew%20Cheok"> Ng Siew Cheok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The walkability features of urban streets are prominent factors that are often focused on achieving a pedestrian-friendly environment. The limited attention that walkability enhancements devote to pedestrians' experiences or perceptions, on the other hand, raises the question of whether walkability enhancement is sufficient for pedestrians to enjoy using the streets. Thus, this paper evaluates the relationship between the socio-physical components of urban streets and pedestrians’ perceptions. A total of 1152 pedestrians from five urban streets in two major Malaysian cities, Kuala Lumpur, and George Town, Penang, participated in this study. In particular, this study used pedestrian preference scores towards socio-physical attributes that exist in urban streets to assess their impact on pedestrians’ appraisals of street likeability, comfort, and safety. Through analysis, the principal component analysis extracted eight socio-physical components, which were then tested via an ordinal regression model to identify their impact on pedestrian street likeability, comfort (visual, auditory, haptic and olfactory), and safety (physical safety, environmental safety, and security). Furthermore, a non-parametric Kruskal Wallis test was used to identify whether the results were subjected to any socio-demographic differences. The results found that all eight components had some degree of effect on the appraisals. It was also revealed that pedestrians’ preferences towards the attributes as well as their appraisals significantly varied based on their age, gender, ethnicity and education. These results and their implications for urban planning are further discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20appraisal" title="pedestrian appraisal">pedestrian appraisal</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20perception" title=" pedestrian perception"> pedestrian perception</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20sociophysical%20attributes" title=" street sociophysical attributes"> street sociophysical attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=walking%20experience" title=" walking experience"> walking experience</a> </p> <a href="https://publications.waset.org/abstracts/155814/revisiting-pedestrians-appraisals-of-urban-streets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">851</span> Design of Target Selection for Pedestrian Autonomous Emergency Braking System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Song">Tao Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Cheng"> Hao Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangfeng%20Tian"> Guangfeng Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuang%20Xu"> Chuang Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An autonomous emergency braking system is an advanced driving assistance system that enables vehicle collision avoidance and pedestrian collision avoidance to improve vehicle safety. At present, because the pedestrian target is small, and the mobility is large, the pedestrian AEB system is faced with more technical difficulties and higher functional requirements. In this paper, a method of pedestrian target selection based on a variable width funnel is proposed. Based on the current position and predicted position of pedestrians, the relative position of vehicle and pedestrian at the time of collision is calculated, and different braking strategies are adopted according to the hazard level of pedestrian collisions. In the CNCAP standard operating conditions, comparing the method of considering only the current position of pedestrians and the method of considering pedestrian prediction position, as well as the method based on fixed width funnel and variable width funnel, the results show that, based on variable width funnel, the choice of pedestrian target will be more accurate and the opportunity of the intervention of AEB system will be more reasonable by considering the predicted position of the pedestrian target and vehicle's lateral motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20emergency%20braking%20system" title="automatic emergency braking system">automatic emergency braking system</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20target%20selection" title=" pedestrian target selection"> pedestrian target selection</a>, <a href="https://publications.waset.org/abstracts/search?q=TTC" title=" TTC"> TTC</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20width%20funnel" title=" variable width funnel"> variable width funnel</a> </p> <a href="https://publications.waset.org/abstracts/131807/design-of-target-selection-for-pedestrian-autonomous-emergency-braking-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">850</span> The Strategies to Improve the Pedestrian System in the Context of Old Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuxiao%20Jiang">Yuxiao Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Ma"> Dong Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengyu%20Zhan"> Mengyu Zhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingxia%20Yun"> Yingxia Yun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China now is entering the phase of old aging and the aging speed is on acceleration. The proportion of the aged citizens in the urban areas is getting larger. Traveling on foot is one of the main travel methods for the old, but the bad walking environment and unsystematic pedestrian system cause inconvenience to the old who travel on foot. The paper analyzes the behavioral characteristics and the spatial preferences of the elderly group as well as the new traffic demands of them, finding out that some problems exist in the current pedestrian system. Thus, the paper proposes strategies in the areas of planning and design, and engineering technology so as to promote the traffic environment and perfect the pedestrian system for the old people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=old%20aging" title="old aging">old aging</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20system" title=" pedestrian system"> pedestrian system</a>, <a href="https://publications.waset.org/abstracts/search?q=perfection%20strategies" title=" perfection strategies"> perfection strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20characteristics" title=" travel characteristics"> travel characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20demand" title=" future demand"> future demand</a> </p> <a href="https://publications.waset.org/abstracts/60460/the-strategies-to-improve-the-pedestrian-system-in-the-context-of-old-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">849</span> A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Koo%20Kim">Hyun-Koo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonghun%20Kim"> Yonghun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Hoon%20Kim"> Yong-Hoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Hee%20Lee"> Ju Hee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Myungho%20Song"> Myungho Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20driver%20assistance%20system" title="advanced driver assistance system">advanced driver assistance system</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20detection" title=" pedestrian detection"> pedestrian detection</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo%20matching%20method" title=" stereo matching method"> stereo matching method</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo%20long-wave%20IR%20camera" title=" stereo long-wave IR camera"> stereo long-wave IR camera</a> </p> <a href="https://publications.waset.org/abstracts/58413/a-study-of-effective-stereo-matching-method-for-long-wave-infrared-camera-module" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">848</span> Enabling the Physical Elements of a Pedestrian Friendly District around a Rail Station for Supporting Transit Oriented Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dyah%20Titisari%20Widyastuti">Dyah Titisari Widyastuti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rail-station area development that is based on the concept of TOD (Transit Oriented Development) is principally oriented to pedestrian accessibility for daily mobility. The aim of this research is elaborating how far the existing physical elements of a rail-station district could facilitate pedestrian mobility and establish a pedestrian friendly district toward implementation of a TOD concept. This research was conducted through some steps: (i) mapping the rail-station area pedestrian sidewalk and pedestrian network as well as activity nodes and transit nodes, (ii) assessing the level of pedestrian sidewalk connectivity joining trip origin and destination. The research area coverage in this case is limited to walking distance of the rail station (around 500 meters or 10-15 minutes walking). The findings of this research on the current condition of the street and pedestrian sidewalk network and connectivity, show good preference for the foot modal share (more than 50%) is achieved. Nevertheless, it depends on the distance from the trip origin to destination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessibility%20of%20daily%20mobility" title="accessibility of daily mobility">accessibility of daily mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian-friendly%20district" title=" pedestrian-friendly district"> pedestrian-friendly district</a>, <a href="https://publications.waset.org/abstracts/search?q=rail-station%20district" title=" rail-station district"> rail-station district</a>, <a href="https://publications.waset.org/abstracts/search?q=transit%20oriented%20development" title=" transit oriented development"> transit oriented development</a> </p> <a href="https://publications.waset.org/abstracts/72883/enabling-the-physical-elements-of-a-pedestrian-friendly-district-around-a-rail-station-for-supporting-transit-oriented-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">847</span> Improving an Automotive Bumper Structure for Pedestrian Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hassan%20Shojaeefard">Mohammad Hassan Shojaeefard</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Khalkhali"> Abolfazl Khalkhali</a>, <a href="https://publications.waset.org/abstracts/search?q=Khashayar%20Ghadirinejad"> Khashayar Ghadirinejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, first, a three-dimensional finite element model of lower legform impactor according to the pedestrian protection regulation EC 78/2009 is carried out. The FE model of lower legform impactor then validated on static and dynamic tests by three main criteria which are bending angle, shear displacement and upper tibia acceleration. At the second step, the validated impactor is employed to evaluate bumper of a B-class automotive based on pedestrian protection criteria defined in EC regulation. Finally, based on some investigations an improved design for the bumper is then represented and compared with the base design. Results show that very good improvement in meeting the pedestrian protection criteria is achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20protection" title="pedestrian protection">pedestrian protection</a>, <a href="https://publications.waset.org/abstracts/search?q=legform%20impactor" title=" legform impactor"> legform impactor</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20bumper" title=" automotive bumper"> automotive bumper</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/54450/improving-an-automotive-bumper-structure-for-pedestrian-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">846</span> Sustainable Traffic Flow: The Case Study of Un-Signalized Pedestrian Crossing at Stationary Bottleneck and Its Impact on Traffic Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imran%20Badshah">Imran Badshah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper study the impact of Un-signalized pedestrian on traffic flow at Stationary Bottleneck. The Highway Capacity Manual (HCM) analyze the methodology of level of service for Urban street segment but it does not include the impact of un-signalized pedestrian crossing at stationary bottleneck. The un-signalized pedestrian crossing in urban road segment causes conflict between vehicles and pedestrians. As a result, the average time taken by vehicle to travel along a road segment increased. The speed of vehicle and the level of service decreases as the running time of a segment increased. To analyze the delay, we need to determine the pedestrian speed while crossing the road at a stationary bottleneck. The objective of this research is to determine the speed of pedestrian and its impact on traffic flow at stationary bottleneck. In addition, the result of this study should be incorporated in the Urban Street Analysis Chapter of HCM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stationary%20bottleneck" title="stationary bottleneck">stationary bottleneck</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow" title=" traffic flow"> traffic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20speed" title=" pedestrian speed"> pedestrian speed</a>, <a href="https://publications.waset.org/abstracts/search?q=HCM" title=" HCM"> HCM</a> </p> <a href="https://publications.waset.org/abstracts/159043/sustainable-traffic-flow-the-case-study-of-un-signalized-pedestrian-crossing-at-stationary-bottleneck-and-its-impact-on-traffic-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Agent-Based Modeling of Pedestrian Corridor Congestion on the Characteristics of Physical Space Form</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sun%20Shi">Sun Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Cheng"> Sun Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pedestrian corridor is the most crowded area in the public space. The crowded severity has been focused on the field of evacuation strategies of the entrance in large public spaces. The aim of this paper is to analyze the walking efficiency in different spaces of pedestrian corridor with the variation of spatial parameters. The congestion condition caused by the variation of walking efficiency is modeled as well. This study established the space model of the walking corridor by setting the width, slope, turning form and turning angle of the pedestrian corridor. The pedestrian preference of walking mode varied with the difference of the crowded severity, walking speed, field of vision, sight direction and the expected destination, which is influenced by the characters of physical space form. Swarm software is applied to build Agent model. According to the output of the Agent model, the relationship between the pedestrian corridor width, ground slope, turning forms, turning angle and the walking efficiency, crowded severity is acquired. The results of the simulation can be applied to pedestrian corridor design in order to reduce the crowded severity and the potential safety risks caused by crowded people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crowded%20severity" title="crowded severity">crowded severity</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title=" multi-agent"> multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20preference" title=" pedestrian preference"> pedestrian preference</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20space%20design" title=" urban space design"> urban space design</a> </p> <a href="https://publications.waset.org/abstracts/82996/agent-based-modeling-of-pedestrian-corridor-congestion-on-the-characteristics-of-physical-space-form" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">844</span> Capacity Loss at Midblock Sections of Urban Arterials Due to Pedestrian Crossings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Dhamaniya">Ashish Dhamaniya</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Chandra"> Satish Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pedestrian crossings at grade in India are very common and pedestrian cross the carriageway at undesignated locations where they found the path to access the residential and commercial areas. Present paper aims to determine capacity loss on 4-lane urban arterials due to such crossings. Base capacity which is defined as the capacity without any influencing factor is determined on 4-lane roads by collecting speed-flow data in the field. It is observed that base capacity is varying from 1636 pcu/hr/lane to 2043 pcu/hr/lane which is attributed to the different operating conditions at different sections. The variation in base capacity is related with the operating speed on the road sections. Free flow speed of standard car is measured in the field and 85th percentile of this speed is reported as operating speed. Capacity of the 4-lane road sections with different pedestrian cross-flow is also determined and compared with the capacity of base section. The difference in capacity values is reported as capacity loss due to the average number of pedestrian crossings in one hour. It has been observed that capacity of 4-lane road section reduces from 18 to 30 percent with pedestrian cross-flow of 800 to 1550 peds/hr. A model is proposed between capacity loss and pedestrian cross-flow from the observed data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacity" title="capacity">capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed" title=" free flow speed"> free flow speed</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian" title=" pedestrian"> pedestrian</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20arterial" title=" urban arterial"> urban arterial</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a> </p> <a href="https://publications.waset.org/abstracts/35845/capacity-loss-at-midblock-sections-of-urban-arterials-due-to-pedestrian-crossings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">843</span> Assessment of Pedestrian Comfort in a Portuguese City Using Computational Fluid Dynamics Modelling and Wind Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Vicente">Bruno Vicente</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Rafael"> Sandra Rafael</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Rodrigues"> Vera Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Sorte"> Sandra Sorte</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Silva"> Sara Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Isabel%20Miranda"> Ana Isabel Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Borrego"> Carlos Borrego</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind comfort for pedestrians is an important condition in urban areas. In Portugal, a country with 900 km of coastline, the wind direction are predominantly from Nor-Northwest with an average speed of 2.3 m·s -1 (at 2 m height). As a result, a set of city authorities have been requesting studies of pedestrian wind comfort for new urban areas/buildings, as well as to mitigate wind discomfort issues related to existing structures. This work covers the efficiency evaluation of a set of measures to reduce the wind speed in an outdoor auditorium (open space) located in a coastal Portuguese urban area. These measures include the construction of barriers, placed at upstream and downstream of the auditorium, and the planting of trees, placed upstream of the auditorium. The auditorium is constructed in the form of a porch, aligned with North direction, driving the wind flow within the auditorium, promoting channelling effects and increasing its speed, causing discomfort in the users of this structure. To perform the wind comfort assessment, two approaches were used: i) a set of experiments using the wind tunnel (physical approach), with a representative mock-up of the study area; ii) application of the CFD (Computational Fluid Dynamics) model VADIS (numerical approach). Both approaches were used to simulate the baseline scenario and the scenarios considering a set of measures. The physical approach was conducted through a quantitative method, using hot-wire anemometer, and through a qualitative analysis (visualizations), using the laser technology and a fog machine. Both numerical and physical approaches were performed for three different velocities (2, 4 and 6 m·s-1 ) and two different directions (NorNorthwest and South), corresponding to the prevailing wind speed and direction of the study area. The numerical results show an effective reduction (with a maximum value of 80%) of the wind speed inside the auditorium, through the application of the proposed measures. A wind speed reduction in a range of 20% to 40% was obtained around the audience area, for a wind direction from Nor-Northwest. For southern winds, in the audience zone, the wind speed was reduced from 60% to 80%. Despite of that, for southern winds, the design of the barriers generated additional hot spots (high wind speed), namely, in the entrance to the auditorium. Thus, a changing in the location of the entrance would minimize these effects. The results obtained in the wind tunnel compared well with the numerical data, also revealing the high efficiency of the purposed measures (for both wind directions). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20microclimate" title="urban microclimate">urban microclimate</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort" title=" pedestrian comfort"> pedestrian comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20experiments" title=" wind tunnel experiments"> wind tunnel experiments</a> </p> <a href="https://publications.waset.org/abstracts/80322/assessment-of-pedestrian-comfort-in-a-portuguese-city-using-computational-fluid-dynamics-modelling-and-wind-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">842</span> Real-Time Pedestrian Detection Method Based on Improved YOLOv3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingting%20Luo">Jingting Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Wang"> Yong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Wang"> Ying Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20detection" title="pedestrian detection">pedestrian detection</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20detection" title=" feature detection"> feature detection</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20detection" title=" real-time detection"> real-time detection</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLOv3" title=" YOLOv3"> YOLOv3</a> </p> <a href="https://publications.waset.org/abstracts/114446/real-time-pedestrian-detection-method-based-on-improved-yolov3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">841</span> Applying Big Data to Understand Urban Design Quality: The Correlation between Social Activities and Automated Pedestrian Counts in Dilworth Park, Philadelphia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Min%20Lee">Jae Min Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Presence of people and intensity of activities have been widely accepted as an indicator for successful public spaces in urban design literature. This study attempts to predict the qualitative indicators, presence of people and intensity of activities, with the quantitative measurements of pedestrian counting. We conducted participant observation in Dilworth Park, Philadelphia to collect the total number of people and activities in the park. Then, the participant observation data is compared with detailed pedestrian counts at 10 exit locations to estimate the number of park users. The study found that there is a clear correlation between the intensity of social activities and automated pedestrian counts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20pedestrian%20count" title="automated pedestrian count">automated pedestrian count</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20space" title=" public space"> public space</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20design" title=" urban design"> urban design</a> </p> <a href="https://publications.waset.org/abstracts/65013/applying-big-data-to-understand-urban-design-quality-the-correlation-between-social-activities-and-automated-pedestrian-counts-in-dilworth-park-philadelphia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">840</span> Pedestrian Behavior at Signalized Intersections in Izmir, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pelin%20Onelcin">Pelin Onelcin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yalcin%20Alver"> Yalcin Alver</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the walking speed and delays of pedestrians at two signalized intersections where the vehicle speed limits are different. Data was collected during afternoon and evening peak hours on November 15, 2013 and on December 6, 2013. Observational surveys were conducted by video recording technique. Pedestrians were categorized according to their gender, group size, stuff carrying condition and age. Results showed that individuals walked fastest when the group size is taken into consideration. The smallest 15th percentile walking speed was seen in the oldest age group (over 60 years old). Pedestrians experienced high delays both at roadsides and at medians. Factors affecting the pedestrian walking speed were analyzed by ANOVA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20delay" title="pedestrian delay">pedestrian delay</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20walking%20speed" title=" pedestrian walking speed"> pedestrian walking speed</a>, <a href="https://publications.waset.org/abstracts/search?q=signalized%20crosswalk" title=" signalized crosswalk"> signalized crosswalk</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a> </p> <a href="https://publications.waset.org/abstracts/10600/pedestrian-behavior-at-signalized-intersections-in-izmir-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">839</span> Sustainability Enhancement of Pedestrian Space Quality in Old Communities from the Perspective of Inclusiveness:Taking Cao Yang New Village, Shanghai as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Zisu">Feng Zisu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Community is the basic unit of the city, community pedestrian space is also an important part of the urban public space, and its quality improvement is also closely related to the residents' happiness and sense of belonging. Domestic and international research perspectives on community pedestrian space have gradually changed to inclusive design for the whole population, paying more attention to the equitable accessibility of urban space and the multiple composite enhancement of spatial connotation. In order to realize the inclusive and sustainable development of pedestrian space in old communities, this article selects Cao Yang New Village in Shanghai as a practice case, and based on the connotation of inclusiveness, the four dimensions of space, traffic, function and emotion are selected as the layers of inclusive connotation of pedestrian space in old communities. This article identifies the objective social needs, dynamic activity characteristics and subjective feelings of multiple subjects, and reconstructs the structural hierarchy of “spatial perception - behavioral characteristics - subjective feelings” of walking. It also proposes a governance strategy of “reconfiguring the pedestrian network, optimizing street quality, integrating ecological space and reshaping the community scene” from the aspects of quality of physical environment and quality of behavioral perception, aiming to provide new ideas for promoting the inclusive and sustainable development of pedestrian space in old communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inclusivity" title="inclusivity">inclusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=old%20community" title=" old community"> old community</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20space" title=" pedestrian space"> pedestrian space</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20quality" title=" spatial quality"> spatial quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20renovation" title=" sustainable renovation"> sustainable renovation</a> </p> <a href="https://publications.waset.org/abstracts/187390/sustainability-enhancement-of-pedestrian-space-quality-in-old-communities-from-the-perspective-of-inclusivenesstaking-cao-yang-new-village-shanghai-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">838</span> The Effectiveness of Tehran Municipality's Transformation of a Metro Station into Pedestrian-Friendly Public Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homa%20Hedayat">Homa Hedayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Public spaces have been a central concern of urban planners for centuries but have been neglected for a long time. In the modernist planning, the focus has been on the requirements of cars rather than the needs and expectations of pedestrians, and therefore, cities have lost many qualities. Urban public space is a space within the city area which is accessible to all people and is the ground for their activity. People’s public life occurs in urban public spaces in a complex set of forms and functions. These spaces must facilitate diverse behavior, uses, and activities such as shopping, walking, conversation, entertainment, relaxation or even passing the time during festivities and events. One of the public spaces is the surrounding space of public transportation stations. Subway stations, although potentially encompass many different groups of people accommodate few social interactions. Making the surrounding areas of subway stations pedestrian-oriented, potentially increases the socialization capacity. The Sadeghieh Subway Station can be considered as the most important subway station in Tehran, which on the one hand is the rail port of Tehran's western entrance, and on the other is the port for railway journeys inside the city. The main concern of this study is to assess the success or failure of the interventions made by the municipality for changing the surrounding area of the Sadeghieh Subway Station into a pedestrian-oriented space and examine the amount of the area's improvement into a desirable space. The method used in this study is surveying, in which the data were collected using a questionnaire and interview. The study's population is all people who use Sadeghieh Subway, and the sample size for the study was 140 subjects. Using parametric one-sample t-test, we found improvement in factors such as transportation, security, pedestrian infrastructure, vitality and climate comfort. However, there was no improvement in mix use, recreational activity, readability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=public%20space" title="public space">public space</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transportation%20stations" title=" public transportation stations"> public transportation stations</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian-oriented%20space" title=" pedestrian-oriented space"> pedestrian-oriented space</a>, <a href="https://publications.waset.org/abstracts/search?q=socialization" title=" socialization"> socialization</a> </p> <a href="https://publications.waset.org/abstracts/73766/the-effectiveness-of-tehran-municipalitys-transformation-of-a-metro-station-into-pedestrian-friendly-public-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">837</span> Quality Assessment of Pedestrian Streets in Iran: Case Study of Saf, Tehran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fstemeh%20Rais%20Esmaili">Fstemeh Rais Esmaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Ranjbar"> Ehsan Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pedestrian streets as one type of urban public spaces have an important role in improving the quality of urban life. In Iran, planning and designing of pedestrian streets is in its primary steps. In spite of starting this approach in Iran, and designing several pedestrian streets, there are still not organized studies about quality assessment of pedestrian streets. As a result, the strength and weakness points of the initial experiences have not been utilized. This inattention to quality assessment have caused designing pedestrian streets to be limited to just vehicles traffic control and preliminary actions like paving; so that, special potentials of pedestrian streets for creating social, livable and dynamic public spaces have not been used. This article, as an organized study about quality assessment of pedestrian streets in Iran, tries to reach two main goals: first, introducing a framework for quality assessment of pedestrian streets in Iran, and second, creating a context for improving the quality of pedestrian streets especially for further experiences. The main research methods are description and context analyzing. With respect to comparative analysis of ideas about quality, considering international and local case studies and analyzing existing condition of Saf Pedestrian Street, a particular model for quality assessment has been introduced. In this model, main components and assessment criteria have been presented. On the basis of this model, questionnaire and checklist for assessment have been prepared. The questionnaire and interview have been used to assess qualities which are in direct contact with people and the checklist has been used for analyzing visual qualities by authors through observation. Some results of questionnaire and checklist show that 7 of 11 primary components, diversity, flexibility, cleanness, legibility and imaginably, identity, livability, form and physical setting are rated low and very low in quality degree. Three components, efficiency, comfort and distinctiveness, have medium and low quality degree and one component, access, linkage and permeability has high quality degree. Therefore, based on implemented analyzing process, Saf Pedestrian Street needs to be improved and these quality improvement priorities are determined based on presented criteria. Adaption of final results with existing condition illustrates the shortage of services for satisfying user’s needs, inflexibility and impossibility of using spaces in various times, lack of facilities for different climatic conditions, lack of facilities such as drinking fountain, inappropriate designing of existing urban furniture like garbage cans, and creating pollution and unsuitable view, lack of visual attractions, neglecting disabled persons in designing entrances, shortage of benches and their undesirable designing, lack of vegetation, absence of special characters making it different from other streets, preventing people taking part in the space causing lack of affiliation, lack of appropriate elements for leisure time and lack of exhilaration in the space. On the other hand, these results present high access and permeability, high safety, less sound pollution and more relief, comfortable movement along the way due to suitable pavement and economic efficiency, as the strength points of Saf pedestrian street. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20streets" title="pedestrian streets">pedestrian streets</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20assessment" title=" quality assessment"> quality assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20criteria" title=" quality criteria"> quality criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Saf%20Pedestrian%20Street" title=" Saf Pedestrian Street"> Saf Pedestrian Street</a> </p> <a href="https://publications.waset.org/abstracts/5162/quality-assessment-of-pedestrian-streets-in-iran-case-study-of-saf-tehran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> The Influence of Environmental Attributes on Children's Pedestrian-Crash Risk in School Zones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeongwoo%20Lee">Jeongwoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children are the most vulnerable travelers and they are at risk for pedestrian injury. Creating a safe route to school is important because walking to school is one of the main opportunities for promotion of needed physical exercise among children. This study examined how the built environmental attributes near an elementary school influence traffic accidents among school-aged children. The study used two complementary data sources including the locations of police-reported pedestrian crashes and the built environmental characteristics of school areas. The environmental attributes of road segments were collected through GIS measurements of local data and actual site audits using the inventory developed for measuring pedestrian-crash risk scores. The inventory data collected at 840 road segments near 32 elementary schools in the city of Ulsan. We observed all segments in a 300-meter-radius area from the entrance of an elementary school. Segments are street block faces. The inventory included 50 items, organized into four domains: accessibility (17items), pleasurability (11items), perceived safety from traffic (9items), and traffic and land-use measures (13items). Elementary schools were categorized into two groups based on the distribution of the pedestrian-crash hazard index scores. A high pedestrian-crash zone was defined as an school area within the eighth, ninth, and tenth deciles, while no pedestrian-crash zone was defined as a school zone with no pedestrian-crash accident among school-aged children between 2013 and 2016. No- and high pedestrian-crash zones were compared to determine whether different settings of the built environment near the school lead to a different rate of pedestrian-crash incidents. The results showed that a crash risk can be influenced by several environmental factors such as a shape of school-route, number of intersections, visibility and land-use in a street, and a type of sidewalk. The findings inform policy for creating safe routes to school to reduce the pedestrian-crash risk among children by focusing on school zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20school%20travel" title="active school travel">active school travel</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20zone" title=" school zone"> school zone</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20crash" title=" pedestrian crash"> pedestrian crash</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20route%20to%20school" title=" safety route to school"> safety route to school</a> </p> <a href="https://publications.waset.org/abstracts/69990/the-influence-of-environmental-attributes-on-childrens-pedestrian-crash-risk-in-school-zones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> The Conceptual Exploration of Comfort Zone by Using Content Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lilla%20Szab%C3%B3%20Hangya">Lilla Szabó Hangya</a>, <a href="https://publications.waset.org/abstracts/search?q=Szilvia%20Jambori"> Szilvia Jambori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comfort zone is less studied area in the field of psychology. One of the most important definitions is that comfort zone is a psychological state in which things feel familiar to a person with low level of anxiety and stress. But the validity of comfort zone does not confirm till now. The aim of our pilot research is to test which psychological factors could determine how young adults behave during their decision process to stay in one’s comfort zone or to leave it. Every person has a number of comfort zones, so we are not able to measure it directly, only those personality traits which predict if someone leaves his comfort zone easier or harder. In our study at first we wanted to clarify the meaning of comfort zone. 110 young adults (male: 37, female: 73; ages from 18 to 70, average age: 26,6) took part in the study. Beside their demographic datas we asked them what does the comfort zone mean for them. The results showed that the meaning of the comfort zone can be grouped in five dimensions: comfort (49,6 %), leaving it-change (8,1%), ambivalent feelings (10,6%), related to other people (10,6%), pursuit of self-realization (16,8%). Our results demonstrated age related characteristics. For young people at the age of 19 the comfort zone is related to other people, because during adolescents peer relationships become more important. Subjects at the age 20-30 answered that the comfort zone means comfort and stability for them. Their life becomes stable for a while, they are studying or working. But at the age of 25, when they finish university, most of them answered comfort zone means a changing process for them. On the other hand for subjects at the age of 27 the means of the comfort zone is pursuit of self-realization. After that period at the age of 31 when they have families and stable job the stability will also dominant. We saw that the comfort zone has much more meaning besides a pleasant psychological trait. Further we would like to determine which psychological factors relate to comfort zone, and what kind of personality traits could predict leaving or staying in one’s comfort zone. We want to observe the relationship between comfort zone and subjective well-being, life satisfaction self-efficacy or self-esteem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comfort%20zone" title="comfort zone">comfort zone</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=personality%20trait" title=" personality trait"> personality trait</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20adults" title=" young adults"> young adults</a> </p> <a href="https://publications.waset.org/abstracts/71275/the-conceptual-exploration-of-comfort-zone-by-using-content-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Yoneda">Masahiro Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simplified%20method" title="simplified method">simplified method</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20walking%20vertical%20force" title=" human walking vertical force"> human walking vertical force</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20component" title=" higher component"> higher component</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridge%20vibration" title=" pedestrian bridge vibration"> pedestrian bridge vibration</a> </p> <a href="https://publications.waset.org/abstracts/28100/human-walking-vertical-force-and-vertical-vibration-of-pedestrian-bridge-induced-by-its-higher-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> Modeling of Traffic Turning Movement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Tilahun%20Mulugeta">Michael Tilahun Mulugeta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pedestrians are the most vulnerable road users as they are more exposed to the risk of collusion. Pedestrian safety at road intersections still remains the most vital and yet unsolved issue in Addis Ababa, Ethiopia. One of the critical points in pedestrian safety is the occurrence of conflict between turning vehicle and pedestrians at un-signalized intersection. However, a better understanding of the factors that affect the likelihood of the conflicts would help provide direction for countermeasures aimed at reducing the number of crashes. This paper has sorted to explore a model to describe the relation between traffic conflicts and influencing factors using Multiple Linear regression methodology. In this research the main focus is to study the interaction of turning (left & right) vehicle with pedestrian at unsignalized intersections. The specific objectives also to determine factors that affect the number of potential conflicts and develop a model of potential conflict. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potential" title="potential">potential</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian" title=" pedestrian"> pedestrian</a>, <a href="https://publications.waset.org/abstracts/search?q=conflicts" title=" conflicts"> conflicts</a> </p> <a href="https://publications.waset.org/abstracts/183192/modeling-of-traffic-turning-movement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Pedestrian Behavioral Analysis for Safety at Road Crossing at Selected Intersections in Dhaka City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Roy">Sumit Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A clear understanding of pedestrian behaviour at road crossing at intersections is needed for providing necessary infrastructure and also for enhancing pedestrian safety at any intersection. Pedestrian road crossing behaviour is studied at Motijheel and Kakrail intersections where Motijheel intersection is a controlled roundabout, and Kakrail intersection is a signalized intersection. Around 60 people at each intersection were interviewed for a questionnaire survey and video recording at different time of a day was done for observation at each intersection. In case of Motijeel intersection, we got pedestrian road crossings were much higher than Kakrail intersection. It is because the number of workplaces here is higher than Kakrail. From questionnaire survey, it is found that 80% of pedestrians crosses at intersection to avail buses and their loading and unloading locations are at intersection, whereas at Kakrail intersection only 25% pedestrian crosses the road for buses as buses do not slow down here. At Motijheel intersection 25 to 40% of pedestrians choose to jump over the barricade for crossing instead of using overbridge for saving time and labour. On the other hand, the pedestrians using overbridge told that they use overbridge for safety. Moreover, pedestrian crosses at the same pace for both red and green interval with vehicle movement in the range of 12.5 to 14.5 km/h and gaps between vehicle were more than 4 m. Here pedestrian crossing speed varies from 3.5 to 7.2 km/h. In Kakrail intersection the road crossing situation can be classified into 4 categories. In case of red time, pedestrians do not wait to cross the road, and crossing speed varies from 3.5 to 7.2 km/h. When vehicle speed varies from 5.4 to 7.4 km/h, and gaps between vehicle vary from 1.5 to 2 m, most of the pedestrians initially choose to wait and try to cross the road in group with crossing speed 2.7 to 3.5 km/h. When vehicle speed varies from 10.8 to 18 km/h, and gaps between vehicles varies from 2 to 3 m most of the people waits and cross the road in group with crossing speed 3.5 to 5.4 km/h. When vehicle speed varies from 25.2 to 32.4 km/h and gaps between vehicles vary from 4 to 6 m most of the pedestrians choose to wait until red time. In Kakrail intersection 87% of people said that they cross the road with risk and 60% of pedestrians told that it is risky to get on and off the bus at this intersection. Planned location of loading and unloading area for buses can improve the pedestrian road crossing behaviour at intersections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crossing%20speed" title="crossing speed">crossing speed</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20behaviour" title=" pedestrian behaviour"> pedestrian behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20crossing" title=" road crossing"> road crossing</a>, <a href="https://publications.waset.org/abstracts/search?q=use%20of%20overbridge" title=" use of overbridge"> use of overbridge</a> </p> <a href="https://publications.waset.org/abstracts/99206/pedestrian-behavioral-analysis-for-safety-at-road-crossing-at-selected-intersections-in-dhaka-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Omni-Modeler: Dynamic Learning for Pedestrian Redetection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Karnes">Michael Karnes</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Yilmaz"> Alper Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20learning" title="dynamic learning">dynamic learning</a>, <a href="https://publications.waset.org/abstracts/search?q=few-shot%20learning" title=" few-shot learning"> few-shot learning</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20redetection" title=" pedestrian redetection"> pedestrian redetection</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20recognition" title=" visual recognition"> visual recognition</a> </p> <a href="https://publications.waset.org/abstracts/172265/omni-modeler-dynamic-learning-for-pedestrian-redetection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haozhe%20Xiang">Haozhe Xiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20convolutional%20network" title=" graph convolutional network"> graph convolutional network</a>, <a href="https://publications.waset.org/abstracts/search?q=attention%20mechanism" title=" attention mechanism"> attention mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTM" title=" LSTM"> LSTM</a> </p> <a href="https://publications.waset.org/abstracts/182188/a-deep-learning-based-pedestrian-trajectory-prediction-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort&page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pedestrian%20comfort&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>