CINXE.COM

Search results for: brittle fracture index

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: brittle fracture index</title> <meta name="description" content="Search results for: brittle fracture index"> <meta name="keywords" content="brittle fracture index"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="brittle fracture index" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="brittle fracture index"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4267</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: brittle fracture index</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4267</span> Predicting the Uniaxial Strength Distribution of Brittle Materials Based on a Uniaxial Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Sonnenreich">Benjamin Sonnenreich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brittle fracture failure probability is best described using a stochastic approach which is based on the 'weakest link concept' and the connection between a microstructure and macroscopic fracture scale. A general theoretical and experimental framework is presented to predict the uniaxial strength distribution according to independent uniaxial test data. The framework takes as input the applied stresses, the geometry, the materials, the defect distributions and the relevant random variables from uniaxial test results and gives as output an overall failure probability that can be used to improve the reliability of practical designs. Additionally, the method facilitates comparisons of strength data from several sources, uniaxial tests, and sample geometries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brittle%20fracture" title="brittle fracture">brittle fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20distribution" title=" strength distribution"> strength distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial" title=" uniaxial"> uniaxial</a>, <a href="https://publications.waset.org/abstracts/search?q=weakest%20link%20concept" title=" weakest link concept"> weakest link concept</a> </p> <a href="https://publications.waset.org/abstracts/4969/predicting-the-uniaxial-strength-distribution-of-brittle-materials-based-on-a-uniaxial-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4266</span> Dimensionless Binding Values in the Evaluation of Paracetamol Tablet Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abayomi%20T.%20Ogunjimi">Abayomi T. Ogunjimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gbenga%20Alebiowu"> Gbenga Alebiowu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical properties of paracetamol tablets containing Neem (Azadirachta indica) gum were compared with standard Acacia gum BP as binder. Two dimensionless binding quantities BEN and BEC were used in assessing the influence of binder type on two mechanical properties, Tensile Strength (TS) and Brittle Fracture Index (BFI). The two quantities were also used to assess the influence of relative density and binder concentration on TS and BFI as well as compare Binding Efficiencies (BE). The result shows that TS is dependent on relative density, binder type and binder concentration while BFI is dependent on the binder type and binder concentration; and that although, the inclusion of NMG in a paracetamol tablet formulation may not enhance the TS of the tablets produced, however it will decrease the tendency of the tablets to cap or laminate. This work concludes that BEN may be useful in quantitative assessment while BEC may be appropriate for qualitative assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binding%20efficiency" title="binding efficiency">binding efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index" title=" brittle fracture index"> brittle fracture index</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionless%20binding" title=" dimensionless binding"> dimensionless binding</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/2503/dimensionless-binding-values-in-the-evaluation-of-paracetamol-tablet-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4265</span> Cracking Mode and Path in Duplex Stainless Steels Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20A.%20E.%20Alhegagi">Faraj A. E. Alhegagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassam%20F.%20A.%20Alhajaji"> Bassam F. A. Alhajaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ductile and brittle fractures are the two main modes for the failure of engineering components. Fractures are classified with respect to several characteristics, such as strain to fracture, ductile or brittle crystallographic mode, shear or cleavage, and the appearance of fracture, granular or transgranular. Cleavage is a brittle fracture involves transcrystalline fracture along specific crystallographic planes and in certain directions. Fracture of duplex stainless steels takes place transgranularly by cleavage of the ferrite phase. On the other hand, ductile fracture occurs after considerable plastic deformation prior to failure and takes place by void nucleation, growth, and coalescence to provide an easy fracture path. Twinning causes depassivation more readily than slip and appears at stress lower than the theoretical yield stress. Consequently, damage due to twinning can occur well before that due to slip. Stainless steels are clean materials with the low efficiency of second particles phases on the fracture mechanism. The ferrite cleavage and austenite tear off are the main mode by which duplex stainless steels fails. In this study, the cracking mode and path of specimens of duplex stainless steels were investigated. Zeron 100 specimens were heat treated to different times cooled down and pulled to failure. The fracture surface was investigated by scanning electron microscopy (SEM) concentrating on the cracking mechanism, path, and origin. Cracking mechanisms were studied for those grains either as ferrite or austenite grains identified according to fracture surface features. Cracks propagated through the ferrite and the austenite two phases were investigated. Cracks arrested at the grain boundary were studied as well. For specimens aged for 100h, the ferrite phase was noted to crack by cleavage along well-defined planes while austenite ridges were clearly observed within the ferrite grains. Some grains were observed to fail with topographic features that were not clearly identifiable as ferrite cleavage or austenite tearing. Transgranular cracking was observed taking place in the ferrite phase on well-defined planes. No intergranular cracks were observed for the tested material. The austenite phase was observed to serve as a crack bridge and crack arrester. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenite%20ductile%20tear%20off" title="austenite ductile tear off">austenite ductile tear off</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking%20mode" title=" cracking mode"> cracking mode</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite%20cleavage" title=" ferrite cleavage"> ferrite cleavage</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steels%20failure" title=" stainless steels failure"> stainless steels failure</a> </p> <a href="https://publications.waset.org/abstracts/99349/cracking-mode-and-path-in-duplex-stainless-steels-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4264</span> Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Fakoor">Mahdi Fakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannaneh%20Manafi%20Farid"> Hannaneh Manafi Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed-mode%20fracture" title="mixed-mode fracture">mixed-mode fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20strain%20energy%20density%20criterion" title=" minimum strain energy density criterion"> minimum strain energy density criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials" title=" orthotropic materials"> orthotropic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20limit%20curve" title=" fracture limit curve"> fracture limit curve</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20II%20critical%20stress%20intensity%20factor" title=" mode II critical stress intensity factor"> mode II critical stress intensity factor</a> </p> <a href="https://publications.waset.org/abstracts/91812/extended-strain-energy-density-criterion-for-fracture-investigation-of-orthotropic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4263</span> Effect of Hydroxyl Functionalization on the Mechanical and Fracture Behaviour of Monolayer Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akarsh%20Verma">Akarsh Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Parashar"> Avinash Parashar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this article is to study the effects of hydroxyl functional group on the mechanical strength and fracture toughness of graphene. This functional group forms the backbone of intrinsic atomic structure of graphene oxide (GO). Molecular dynamics-based simulations were performed in conjunction with reactive force field (ReaxFF) parameters to capture the mode-I fracture toughness of hydroxyl functionalised graphene. Moreover, these simulations helped in concluding that spatial distribution and concentration of hydroxyl functional group significantly affects the fracture morphology of graphene nanosheet. In contrast to literature investigations, atomistic simulations predicted a transition in the failure morphology of hydroxyl functionalised graphene from brittle to ductile as a function of its spatial distribution on graphene sheet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ReaxFF" title=" ReaxFF"> ReaxFF</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/84672/effect-of-hydroxyl-functionalization-on-the-mechanical-and-fracture-behaviour-of-monolayer-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4262</span> Avoidance of Brittle Fracture in Bridge Bearings: Brittle Fracture Tests and Initial Crack Size</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalie%20Hoyer">Natalie Hoyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bridges in both roadway and railway systems depend on bearings to ensure extended service life and functionality. These bearings enable proper load distribution from the superstructure to the substructure while permitting controlled movement of the superstructure. The design of bridge bearings, according to Eurocode DIN EN 1337 and the relevant sections of DIN EN 1993, increasingly requires the use of thick plates, especially for long-span bridges. However, these plate thicknesses exceed the limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with DIN EN 1993-1-10 regulations regarding material toughness and through-thickness properties necessitates further modifications. Consequently, these standards cannot be directly applied to the selection of bearing materials without supplementary guidance and design rules. In this context, a recommendation was developed in 2011 to regulate the selection of appropriate steel grades for bearing components. Prior to the initiation of the research project underlying this contribution, this recommendation had only been available as a technical bulletin. Since July 2023, it has been integrated into guideline 804 of the German railway. However, recent findings indicate that certain bridge-bearing components are exposed to high fatigue loads, which necessitate consideration in structural design, material selection, and calculations. Therefore, the German Centre for Rail Traffic Research called a research project with the objective of defining a proposal to expand the current standards in order to implement a sufficient choice of steel material for bridge bearings to avoid brittle fracture, even for thick plates and components subjected to specific fatigue loads. The results obtained from theoretical considerations, such as finite element simulations and analytical calculations, are validated through large-scale component tests. Additionally, experimental observations are used to calibrate the calculation models and modify the input parameters of the design concept. Within the large-scale component tests, a brittle failure is artificially induced in a bearing component. For this purpose, an artificially generated initial defect is introduced at the previously defined hotspot into the specimen using spark erosion. Then, a dynamic load is applied until the crack initiation process occurs to achieve realistic conditions in the form of a sharp notch similar to a fatigue crack. This initiation process continues until the crack length reaches a predetermined size. Afterward, the actual test begins, which requires cooling the specimen with liquid nitrogen until a temperature is reached where brittle fracture failure is expected. In the next step, the component is subjected to a quasi-static tensile test until failure occurs in the form of a brittle failure. The proposed paper will present the latest research findings, including the results of the conducted component tests and the derived definition of the initial crack size in bridge bearings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20bearings" title="bridge bearings">bridge bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=brittle%20fracture" title=" brittle fracture"> brittle fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20crack%20size" title=" initial crack size"> initial crack size</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20tests" title=" large-scale tests"> large-scale tests</a> </p> <a href="https://publications.waset.org/abstracts/186078/avoidance-of-brittle-fracture-in-bridge-bearings-brittle-fracture-tests-and-initial-crack-size" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4261</span> Optimization of the Numerical Fracture Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hentati">H. Hentati</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Abdelmoula"> R. Abdelmoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Jia"> Li Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Maalej"> A. Maalej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present numerical simulations of the quasi-static crack propagation based on the variation approach. We perform numerical simulations of a piece of brittle material without initial crack. An alternate minimization algorithm is used. Based on these numerical results, we determine the influence of numerical parameters on the location of crack. We show the importance of trying to optimize the time of numerical computation and we present the first attempt to develop a simple numerical method to optimize this time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title="fracture mechanics">fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=variation%20approach" title=" variation approach"> variation approach</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic" title=" mechanic"> mechanic</a> </p> <a href="https://publications.waset.org/abstracts/5187/optimization-of-the-numerical-fracture-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4260</span> Brittle Fracture Tests on Steel Bridge Bearings: Application of the Potential Drop Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalie%20Hoyer">Natalie Hoyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Usually, steel structures are designed for the upper region of the steel toughness-temperature curve. To address the reduced toughness properties in the temperature transition range, additional safety assessments based on fracture mechanics are necessary. These assessments enable the appropriate selection of steel materials to prevent brittle fracture. In this context, recommendations were established in 2011 to regulate the appropriate selection of steel grades for bridge bearing components. However, these recommendations are no longer fully aligned with more recent insights: Designing bridge bearings and their components in accordance with DIN EN 1337 and the relevant sections of DIN EN 1993 has led to an increasing trend of using large plate thicknesses, especially for long-span bridges. However, these plate thicknesses surpass the application limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with the regulations outlined in DIN EN 1993-1-10 regarding material toughness and through-thickness properties requires some further modifications. Therefore, these standards cannot be directly applied to the material selection for bearings without additional information. In addition, recent findings indicate that certain bridge bearing components are subjected to high fatigue loads, necessitating consideration in structural design, material selection, and calculations. To address this issue, the German Center for Rail Traffic Research initiated a research project aimed at developing a proposal to enhance the existing standards. This proposal seeks to establish guidelines for the selection of steel materials for bridge bearings to prevent brittle fracture, particularly for thick plates and components exposed to specific fatigue loads. The results derived from theoretical analyses, including finite element simulations and analytical calculations, are verified through component testing on a large-scale. During these large-scale tests, where a brittle failure is deliberately induced in a bearing component, an artificially generated defect is introduced into the specimen at the predetermined hotspot. Subsequently, a dynamic load is imposed until the crack initiation process transpires, replicating realistic conditions akin to a sharp notch resembling a fatigue crack. To stop the action of the dynamic load in time, it is important to precisely determine the point at which the crack size transitions from stable crack growth to unstable crack growth. To achieve this, the potential drop measurement method is employed. The proposed paper informs about the choice of measurement method (alternating current potential drop (ACPD) or direct current potential drop (DCPD)), presents results from correlations with created FE models, and may proposes a new approach to introduce beach marks into the fracture surface within the framework of potential drop measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beach%20marking" title="beach marking">beach marking</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20bearing%20design" title=" bridge bearing design"> bridge bearing design</a>, <a href="https://publications.waset.org/abstracts/search?q=brittle%20fracture" title=" brittle fracture"> brittle fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20for%20fatigue" title=" design for fatigue"> design for fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20drop" title=" potential drop"> potential drop</a> </p> <a href="https://publications.waset.org/abstracts/186124/brittle-fracture-tests-on-steel-bridge-bearings-application-of-the-potential-drop-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4259</span> An Unusual Fracture Pattern: Fracture of the Distal Radius (Colles&#039;) along with Fracture of the Ipsilateral Scaphoid &amp; Capitate Bones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srikanta%20Tagore%20Sarkar">Srikanta Tagore Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20Kumar%20Mandal"> Prasanta Kumar Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dibakar%20Roy"> Dibakar Roy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The association of a capitate fracture with a scaphoid fracture has been termed as the naviculocapitate syndrome. The existence of some nondisplaced fractures of scaphoid and capitate with or without the fracture of lunate or radius suggests that there is a spectrum of these injuries, and this confuses the terminology. With our case; we report an unusual variety of this naviculocapitate syndrome with distal radial Colles fracture in addition to the nondisplaced fractures of the scaphoid, capitate and the dorsal lip of radial fracture. When we looked at the literature there is no another Colles fracture reported together with undisplaced scapho-capitate syndrome. The coronal and sagittal images that obtained from the MDCT (Multidetector computed tomography) is useful and effective imaging modality to diagnose complex wrist fractures with more details that are not detected in X-rays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scaphoid" title="scaphoid">scaphoid</a>, <a href="https://publications.waset.org/abstracts/search?q=capitate" title=" capitate"> capitate</a>, <a href="https://publications.waset.org/abstracts/search?q=Colles%E2%80%99%20fracture" title=" Colles’ fracture"> Colles’ fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=syndrome" title=" syndrome"> syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=MDCT" title=" MDCT"> MDCT</a>, <a href="https://publications.waset.org/abstracts/search?q=unusual" title=" unusual"> unusual</a> </p> <a href="https://publications.waset.org/abstracts/13989/an-unusual-fracture-pattern-fracture-of-the-distal-radius-colles-along-with-fracture-of-the-ipsilateral-scaphoid-capitate-bones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4258</span> Research on the Feasibility of Evaluating Low-Temperature Cracking Performance of Asphalt Mixture Using Fracture Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Yang">Tao Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongli%20Zhao"> Yongli Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-temperature cracking is one of the major challenges for asphalt pavement in the cold region. Fracture energy could determine from various test methods, which is a commonly used parameter to evaluate the low-temperature cracking resistance of asphalt mixture. However, the feasibility of evaluating the low-temperature cracking performance of asphalt mixture using fracture energy is not investigated comprehensively. This paper aims to verify whether fracture energy is an appropriate parameter to evaluate the low-temperature cracking performance. To achieve this goal, this paper compared the test results of thermal stress restrained specimen test (TSRST) and semi-circular bending test (SCB) of asphalt mixture with different types of aggregate, TSRST and indirect tensile test (IDT) of asphalt mixture with different additives, and single-edge notched beam test (SENB) and TSRST of asphalt mixture with different asphalt. Finally, the correlation between in-suit cracking performance and fracture energy was surveyed. The experimental results showed the evaluation result of critical cracking temperature and fracture energy are not always consistent; the in-suit cracking performance is also not correlated well with fracture energy. These results indicated that it is not feasible to evaluate low-temperature performance by fracture energy. Then, the composition of fracture energy of TSRST, SCB, disk-shaped compact tension test (DCT), three-point bending test (3PB) and IDT was analyzed. The result showed: the area of thermal stress versus temperature curve is the multiple of fracture energy and could be used to represent fracture energy of TSRST, as the multiple is nearly equal among different asphalt mixtures for a specific specimen; the fracture energy, determined from TSRST, SCB, DCT, 3PB, SENB and IDT, is mainly the surface energy that forms the fracture face; fracture energy is inappropriate to evaluate the low-temperature cracking performance of asphalt mixture, as the relaxation/viscous performance is not considered; if the fracture energy was used, it is recommended to combine this parameter with an index characterizing the relaxation or creep performance of asphalt mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title="asphalt pavement">asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20region" title=" cold region"> cold region</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20cracking%20temperature" title=" critical cracking temperature"> critical cracking temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20energy" title=" fracture energy"> fracture energy</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20cracking" title=" low-temperature cracking"> low-temperature cracking</a> </p> <a href="https://publications.waset.org/abstracts/131656/research-on-the-feasibility-of-evaluating-low-temperature-cracking-performance-of-asphalt-mixture-using-fracture-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4257</span> Micro-CT Assessment of Fracture Healing in Androgen-Deficient Osteoporosis Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20N.%20Shuid">Ahmad N. Shuid</a>, <a href="https://publications.waset.org/abstracts/search?q=Azri%20Jalil"> Azri Jalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabarul%20A.%20Mokhtar"> Sabarul A. Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20F.%20Khamis"> Mohd F. Khamis</a>, <a href="https://publications.waset.org/abstracts/search?q=Norliza%20Muhammad"> Norliza Muhammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-CT provides a 3-D image of fracture callus, which can be used to calculate quantitative parameters. In this study, micro-CT was used to assess the fracture healing of orchidectomised rats, an androgen-deficient osteoporosis model. The effect of testosterone (hormone replacement) on fracture healing was also assessed with micro-CT. The rats were grouped into orchidectomised-control (ORX), sham-operated (SHAM), and orchidectomised; and injected with testosterone intramuscularly once weekly (TEN). Treatment duration was six weeks. The fracture was induced and fixed with plates and screws in the right tibia of all the rats. An in vitro micro-CT was used to scan the fracture callus area which consisted of 100 axial slices above and below fracture line. The analysis has shown that micro-CT was able to detect a significant difference in the fracture healing rate of ORX and TEN groups. In conclusion, micro-CT can be used to assess fracture healing in androgen-deficient osteoporosis. This imaging tool can be used to test agents that influence fracture healing in the androgen-deficient model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=androgen" title="androgen">androgen</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=orchidectomy" title=" orchidectomy"> orchidectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis "> osteoporosis </a> </p> <a href="https://publications.waset.org/abstracts/33626/micro-ct-assessment-of-fracture-healing-in-androgen-deficient-osteoporosis-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4256</span> An Experimental Investigation on Mechanical Behaviour of Fiber Reinforced Polymer (FRP) Composite Laminates Used for Pipe Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tasnim%20Kallel">Tasnim Kallel</a>, <a href="https://publications.waset.org/abstracts/search?q=Rim%20Taktak"> Rim Taktak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this experimental work, fiber reinforced polymer (FRP) composite laminates were manufactured using hand lay-up technique. The unsaturated polyester (UP) and vinylester (VE) were considered as resins reinforced with different woven fabrics (bidirectional and quadriaxial rovings). The mechanical behaviour of the resulting composites was studied and then compared. A focus was essentially done on the evaluation of the effect of E-Glass fiber and ply orientation on the mechanical properties such as tensile strength, flexural strength, and hardness of the studied composite laminates. Also, crack paths and fracture surfaces were examined, and failure mechanisms were analyzed. From the main results, it was found that the quadriaxial composite laminates (QA/VE and QA/UP) with stacking sequences of [0°, +45°, 90°, -45°] present a very ductile tensile behaviour. The other laminate samples (R500/VE, RM/VE, R500/UP and RM/UP) show a very brittle behaviour whatever the used resin. The intrinsic toughness KIC of QA/VE laminate, obtained in fracture tests, are found more important than that of RM/VE composite. Thus, the QA/VE samples, as multidirectional laminate, presents the highest interlaminar fracture resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20growth" title="crack growth">crack growth</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20orientation" title=" fiber orientation"> fiber orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20behavior" title=" fracture behavior"> fracture behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=e-glass%20fiber%20fabric" title=" e-glass fiber fabric"> e-glass fiber fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=laminate%20composite" title=" laminate composite"> laminate composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a> </p> <a href="https://publications.waset.org/abstracts/55949/an-experimental-investigation-on-mechanical-behaviour-of-fiber-reinforced-polymer-frp-composite-laminates-used-for-pipe-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4255</span> Fracture Behaviour of Functionally Graded Materials Using Graded Finite Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Molavi%20Nojumi">Mohamad Molavi Nojumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Wang"> Xiaodong Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research fracture behaviour of linear elastic isotropic functionally graded materials (FGMs) are investigated using modified finite element method (FEM). FGMs are advantageous because they enhance the bonding strength of two incompatible materials, and reduce the residual stress and thermal stress. Ceramic/metals are a main type of FGMs. Ceramic materials are brittle. So, there is high possibility of crack existence during fabrication or in-service loading. In addition, damage analysis is necessary for a safe and efficient design. FEM is a strong numerical tool for analyzing complicated problems. Thus, FEM is used to investigate the fracture behaviour of FGMs. Here an accurate 9-node biquadratic quadrilateral graded element is proposed in which the influence of the variation of material properties is considered at the element level. The stiffness matrix of graded elements is obtained using the principle of minimum potential energy. The implementation of graded elements prevents the forced sudden jump of material properties in traditional finite elements for modelling FGMs. Numerical results are verified with existing solutions. Different numerical simulations are carried out to model stationary crack problems in nonhomogeneous plates. In these simulations, material variation is supposed to happen in directions perpendicular and parallel to the crack line. Two special linear and exponential functions have been utilized to model the material gradient as they are mostly discussed in literature. Also, various sizes of the crack length are considered. A major difference in the fracture behaviour of FGMs and homogeneous materials is related to the break of material symmetry. For example, when the material gradation direction is normal to the crack line, even under applying the mode I loading there exists coupled modes I and II of fracture which originates from the induced shear in the model. Therefore, the necessity of the proper modelling of the material variation should be considered in capturing the fracture behaviour of FGMs specially, when the material gradient index is high. Fracture properties such as mode I and mode II stress intensity factors (SIFs), energy release rates, and field variables near the crack tip are investigated and compared with results obtained using conventional homogeneous elements. It is revealed that graded elements provide higher accuracy with less effort in comparison with conventional homogeneous elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title=" fracture mechanics"> fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20materials" title=" functionally graded materials"> functionally graded materials</a>, <a href="https://publications.waset.org/abstracts/search?q=graded%20element" title=" graded element"> graded element</a> </p> <a href="https://publications.waset.org/abstracts/61024/fracture-behaviour-of-functionally-graded-materials-using-graded-finite-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4254</span> Laser-TIG Welding-Brazing for Dissimilar Metals between Aluminum Alloy and Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangfang%20Xu">Xiangfang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bintao%20Wu"> Bintao Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yugang%20Miao"> Yugang Miao</a>, <a href="https://publications.waset.org/abstracts/search?q=Duanfeng%20Han"> Duanfeng Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiments were conducted on 5A06 aluminum alloy and Q235 steel using the laser-TIG hybrid heat source welding-brazing method to realize the reliable connection of Al/Fe dissimilar metals and the welding characteristics were analyzed. It was found that the joints with uniform seam and high tensile strength could be obtained using such a method, while the welding process demanded special welding parameters. Spectrum measurements showed that the Al and Fe atoms diffused more thoroughly at the brazing interface and formed a 3μm-thick intermetallic compound layer at the Al/Fe joints brazed connection interface. Shearing tests indicated that the shearing strength of the Al/Fe welding-brazed joint was 165MPa. The fracture occurred near the melting zone of aluminum alloy, which belonged to the mixed mode with the ductile fracture as the base and the brittle fracture as the supplement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%2FFe%20dissimilar%20metals" title="Al/Fe dissimilar metals">Al/Fe dissimilar metals</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-TIG%20hybrid%20heat%20source" title=" laser-TIG hybrid heat source"> laser-TIG hybrid heat source</a>, <a href="https://publications.waset.org/abstracts/search?q=shearing%20strength" title=" shearing strength"> shearing strength</a>, <a href="https://publications.waset.org/abstracts/search?q=welding-brazing%20method" title=" welding-brazing method"> welding-brazing method</a> </p> <a href="https://publications.waset.org/abstracts/17285/laser-tig-welding-brazing-for-dissimilar-metals-between-aluminum-alloy-and-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4253</span> Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergin%20Kosa">Ergin Kosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20G%C3%B6ksenli"> Ali Göksenli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200-500 µm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4,76 m/s. As ductile material steel St 37 with Brinell Hardness Number (BHN) of 245 and quenched St 37 with 510 BHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using optical microscopy and Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear was observed by ductile material at a particle impact angle of 300. On the contrary wear rate increased by brittle materials by an increase in impact angle and reached maximum value at 450. High amount of craters were detected after observation on ductile material surface Also plastic deformation zones were detected, which are typical failure modes for ductile materials. Craters formed by particles were deeper according to brittle material worn surface. Amount of craters decreased on brittle material surface. Microcracks around craters were detected which are typical failure modes of brittle materials. Deformation wear was the dominant wear mechanism on brittle material. At the end it is concluded that wear rate could not be directly related to impact angle of the hard particle due to the different responses of ductile and brittle materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosive%20wear" title="erosive wear">erosive wear</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20impact%20angle" title=" particle impact angle"> particle impact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20sand" title=" silica sand"> silica sand</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile-brittle%20material" title=" ductile-brittle material"> ductile-brittle material</a> </p> <a href="https://publications.waset.org/abstracts/35312/effect-of-impact-angle-on-erosive-abrasive-wear-of-ductile-and-brittle-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4252</span> Fracture Dislocation of Upper Sacrum in an Adolescent: Case Report and Review of Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Alireza%20Mirghasemi">S. Alireza Mirghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Rahimi%20Gabaran"> Narges Rahimi Gabaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although sacral fractures in children are rare due to the fact that the occurrence of pelvic fracture is not common in childhood. Sacral fractures present a high risk of neurological damage. This kind of fracture is often missed because the routine pelvic X-rays imaging scarcely show this fracture. Also, the treatment is controversial, and it ranges from fine reduction to conservative treatments without any try to reduce the dislocation. In this article, a case of fracture dislocation of S1 and S2 along with a suggested diagnostic test and treatment based on similar cases are presented. The case investigates a 14-year-old boy who entered the hospital one week after a car accident that knocked him to the ground in crawling position and a rack fell down on his body. Pain and tenderness in the sacral region and a fracture in the left leg were notable--we detected incomplete bilateral palsy of L5, S1 and S2 roots. In radiographs of the spine fracture dislocation of S1, the sacral fracture was seen. The treatment included a skeletal traction with a halo over the patient’s head and two femoral pins. After one week, another surgery was performed in order to stabilize and reduce the fracture, and we employed a posterior approach with CD and a pedicular screw. After two years of follow-up, the fracture is completely cured without any loss of reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adolescent" title="adolescent">adolescent</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20in%20adolescent" title=" fracture in adolescent"> fracture in adolescent</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20dislocation" title=" fracture dislocation"> fracture dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=sacrum" title=" sacrum"> sacrum</a> </p> <a href="https://publications.waset.org/abstracts/34780/fracture-dislocation-of-upper-sacrum-in-an-adolescent-case-report-and-review-of-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4251</span> Failure Analysis of Fractured Dental Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Bansal">Rajesh Bansal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Raj%20Sharma"> Amit Raj Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakil%20Singh"> Vakil Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The success and predictability of titanium implants for long durations are well established and there has been a tremendous increase in the popularity of implants among patients as well as clinicians over the last four decades. However, sometimes complications arise, which lead to the loss of the implant as well as the prosthesis. Fracture of dental implants is rare; however, at times, implants or abutment screws fracture and lead to many problems for the clinician and the patient. Possible causes of implant fracture include improper design, overload, fatigue and corrosion. Six retrieved fractured dental implants, with varying diameters and designs, were collected from time to time to examine by scanning electron microscope (SEM) to characterize fracture behavior and assess the mechanism of fracture. In this investigation, it was observed that fracture of the five dental implants occurred due to fatigue crack initiation and propagation from the thread roots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium" title="titanium">titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=dental" title=" dental"> dental</a>, <a href="https://publications.waset.org/abstracts/search?q=implant" title=" implant"> implant</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a> </p> <a href="https://publications.waset.org/abstracts/171204/failure-analysis-of-fractured-dental-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4250</span> Railway Crane Accident: A Comparative Metallographic Test on Pins Fractured during Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thiago%20Viana">Thiago Viana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eventually train accidents occur on railways and for some specific cases it is necessary to use a train rescue with a crane positioned under a platform wagon. These tumbled machines are collected and sent to the machine shop or scrap yard. In one of these cranes that were being used to rescue a wagon, occurred a fall of hoist due to fracture of two large pins. The two pins were collected and sent for failure analysis. This work investigates the main cause and the secondary causes for the initiation of the fatigue crack. All standard failure analysis procedures were applied, with careful evaluation of the characteristics of the material, fractured surfaces and, mainly, metallographic tests using an optical microscope to compare the geometry of the peaks and valleys of the thread of the pins and their respective seats. By metallographic analysis, it was concluded that the fatigue cracks were started from a notch (stress concentration) in the valley of the threads of the pin applied to the right side of the crane (pin 1). In this, it was verified that the peaks of the threads of the pin seat did not have proper geometry, with sharp edges being present that caused such notches. The visual analysis showed that fracture of the pin on the left side of the crane (pin 2) was brittle type, being a consequence of the fracture of the first one. Recommendations for this and other railway cranes have been made, such as nondestructive testing, stress calculation, design review, quality control and suitability of the mechanical forming process of the seat threads and pin threads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crane" title="crane">crane</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=pin" title=" pin"> pin</a>, <a href="https://publications.waset.org/abstracts/search?q=railway" title=" railway"> railway</a> </p> <a href="https://publications.waset.org/abstracts/104967/railway-crane-accident-a-comparative-metallographic-test-on-pins-fractured-during-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4249</span> Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guoyang%20Fu">Guoyang Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Qing%20Li"> Chun-Qing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ductile%20metal%20pipes" title="Ductile metal pipes">Ductile metal pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20fracture%20toughness" title=" elastic fracture toughness"> elastic fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20crack" title=" longitudinal crack"> longitudinal crack</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a> </p> <a href="https://publications.waset.org/abstracts/79581/model-of-elastic-fracture-toughness-for-ductile-metal-pipes-with-external-longitudinal-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4248</span> Socio-Economic Problems in Treatment of Non-Union Both Bones Fracture of the Leg: A Retrospective Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Kumar%20Kanojia">Rajendra Kumar Kanojia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Treatment of fracture both bones of leg following trauma is done intially at nearby primary health care center.primary management for shock,pain,control of bleeding,plaster application. These are treated for primay fixation of fracture, debridment of wound. Then, they were refered to tertiary care where they were again and planned for further treatment. This leads to loss of lot of time, money, job, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20both%20bones%20leg" title="fracture both bones leg">fracture both bones leg</a>, <a href="https://publications.waset.org/abstracts/search?q=non-union" title=" non-union"> non-union</a>, <a href="https://publications.waset.org/abstracts/search?q=ilizarov" title=" ilizarov"> ilizarov</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a> </p> <a href="https://publications.waset.org/abstracts/19616/socio-economic-problems-in-treatment-of-non-union-both-bones-fracture-of-the-leg-a-retrospective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4247</span> Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Huang">Juan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Ninanya"> Hugo Ninanya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture" title="fracture">fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro-geomechanical%20model" title=" hydro-geomechanical model"> hydro-geomechanical model</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluid" title=" non-Newtonian fluid"> non-Newtonian fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/76848/coupled-hydro-geomechanical-modeling-of-oil-reservoir-considering-non-newtonian-fluid-through-a-fracture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4246</span> Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reda%20Abdel%20Azim">Reda Abdel Azim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Shehab"> Tariq Shehab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=naturally%20fractured%20reservoirs" title="naturally fractured reservoirs">naturally fractured reservoirs</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20intensity" title=" fracture intensity"> fracture intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a> </p> <a href="https://publications.waset.org/abstracts/74553/estimation-of-reservoirs-fracture-network-properties-using-an-artificial-intelligence-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4245</span> Development of an Image-Based Biomechanical Model for Assessment of Hip Fracture Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Nasiri%20Sarvi">Masoud Nasiri Sarvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunhua%20Luo"> Yunhua Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-trauma hip fracture, usually caused by fall from standing height, has become a main source of morbidity and mortality for the elderly. Factors affecting hip fracture include sex, race, age, body weight, height, body mass distribution, etc., and thus, hip fracture risk in fall differs widely from subject to subject. It is therefore necessary to develop a subject-specific biomechanical model to predict hip fracture risk. The objective of this study is to develop a two-level, image-based, subject-specific biomechanical model consisting of a whole-body dynamics model and a proximal-femur finite element (FE) model for more accurately assessing the risk of hip fracture in lateral falls. Required information for constructing the model is extracted from a whole-body and a hip DXA (Dual Energy X-ray Absorptiometry) image of the subject. The proposed model considers all parameters subject-specifically, which will provide a fast, accurate, and non-expensive method for predicting hip fracture risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20density" title="bone mineral density">bone mineral density</a>, <a href="https://publications.waset.org/abstracts/search?q=hip%20fracture%20risk" title=" hip fracture risk"> hip fracture risk</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20force" title=" impact force"> impact force</a>, <a href="https://publications.waset.org/abstracts/search?q=sideways%20falls" title=" sideways falls "> sideways falls </a> </p> <a href="https://publications.waset.org/abstracts/34060/development-of-an-image-based-biomechanical-model-for-assessment-of-hip-fracture-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4244</span> Undercasts in Fracture Care: A Randomized Control Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Kenny">B. Kenny </a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is currently no literature comparing undercasts in fracture care. This study is a randomised trial comparing the 4 commonly used undercasts in Australia. These are Webril, Sofban, Goretech and Delta-dry. The ideal undercast should be comfortable for the patient and not cause itchiness. It should be durable enough to withstand daily activities. The clinician/technician should find the undercast easy to apply and remove. It should provide adequate padding without compromising cast mouldability to obtain a good cast index and air index. 18 volunteering medical students were randomly allocated to receive 4 angular casts, one over each elbow and ankle(total of 72 casts). They were blinded to cast type. After an hour their casts were stressed by pouring 20ml Normal Saline onto the skin beneath. Each student filled a questionnaire about comfort, itchiness, weight and water resistance. Subsequently they ranked each cast 1 to 4 based on preference. Our preliminary results show Delta-dry is the most preferred undercast followed by Webril, Sofban and Goretech in that order. Underlay selection is important component of patient care with long immobilsation. Webril or Deltra-dry are by far the most preferred undercasts in our study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=casts" title="casts">casts</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20modality" title=" treatment modality"> treatment modality</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20compliance" title=" patient compliance"> patient compliance</a> </p> <a href="https://publications.waset.org/abstracts/20978/undercasts-in-fracture-care-a-randomized-control-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4243</span> Fracture Energy Corresponding to the Puncture/Cutting of Nitrile Rubber by Pointed Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ennouri%20Triki">Ennouri Triki</a>, <a href="https://publications.waset.org/abstracts/search?q=Toan%20Vu-Khanh"> Toan Vu-Khanh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resistance to combined puncture/cutting by pointed blades is an important property of gloves materials. The purpose of this study is to propose an approach derived from the fracture mechanics theory to calculate the fracture energy associated to the puncture/cutting of nitrile rubber. The proposed approach is also based on the application of a sample pre-strained during the puncture/cutting test in order to remove the contribution of friction. It was validated with two different pointed blade angles of 22.5° and 35°. Results show that the applied total fracture energy corresponding to puncture/cutting is controlled by three energies, one is the fracture energy or the intrinsic strength of the material, the other reflects the friction energy between a pointed blade and the material. For an applied pre-strain energy (or tearing energy) of high value, the friction energy is completely removed. Without friction, the total fracture energy is constant. In that case, the fracture contribution of the tearing energy is marginal. Growth of the crack is thus completely caused by the puncture/cutting by a pointed blade. Finally, results suggest that the value of the fracture energy corresponding to puncture/cutting by pointed blades is obtained at a frictional contribution of zero. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastomer" title="elastomer">elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=pointed%20blades" title=" pointed blades"> pointed blades</a> </p> <a href="https://publications.waset.org/abstracts/35346/fracture-energy-corresponding-to-the-puncturecutting-of-nitrile-rubber-by-pointed-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4242</span> The 10-year Risk of Major Osteoporotic and Hip Fractures Among Indonesian People Living with HIV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iqbal%20Pramukti">Iqbal Pramukti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamat%20Lukman"> Mamat Lukman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasniatisari%20Harun"> Hasniatisari Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kusman%20Ibrahim"> Kusman Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: People living with HIV had a higher risk of osteoporotic fracture than the general population. The purpose of this study was to predict the 10-year risk of fracture among people living with HIV (PLWH) using FRAX™ and to identify characteristics related to the fracture risk. Methodology: This study consisted of 75 subjects. The ten-year probability of major osteoporotic fractures (MOF) and hip fractures was assessed using the FRAX™ algorithm. A cross-tabulation was used to identify the participant’s characteristics related to fracture risk. Results: The overall mean 10-year probability of fracture was 2.4% (1.7) for MOF and 0.4% (0.3) for hip fractures. For MOF score, participants with parents’ hip fracture history, smoking behavior and glucocorticoid use showed a higher MOF score than those who were not (3.1 vs. 2.5; 4.6 vs 2.5; and 3.4 vs 2.5, respectively). For HF score, participants with parents’ hip fracture history, smoking behavior and glucocorticoid use also showed a higher HF score than those who were not (0.5 vs. 0.3; 0.8 vs. 0.3; and 0.5 vs. 0.3, respectively). Conclusions: The 10-year risk of fracture was higher among PLWH with several factors, including the parent’s hip. Fracture history, smoking behavior and glucocorticoid used. Further analysis on determining factors using multivariate regression analysis with a larger sample size is required to confirm the factors associated with the high fracture risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HIV" title="HIV">HIV</a>, <a href="https://publications.waset.org/abstracts/search?q=PLWH" title=" PLWH"> PLWH</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporotic%20fractures" title=" osteoporotic fractures"> osteoporotic fractures</a>, <a href="https://publications.waset.org/abstracts/search?q=hip%20fractures" title=" hip fractures"> hip fractures</a>, <a href="https://publications.waset.org/abstracts/search?q=10-year%20risk%20of%20fracture" title=" 10-year risk of fracture"> 10-year risk of fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=FRAX" title=" FRAX"> FRAX</a> </p> <a href="https://publications.waset.org/abstracts/184625/the-10-year-risk-of-major-osteoporotic-and-hip-fractures-among-indonesian-people-living-with-hiv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4241</span> Actual Fracture Length Determination Using a Technique for Shale Fracturing Data Analysis in Real Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Wigwe">M. Wigwe</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y%20Soloman"> M. Y Soloman</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Pirayesh"> E. Pirayesh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Eghorieta"> R. Eghorieta</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Stegent"> N. Stegent</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The moving reference point (MRP) technique has been used in the analyses of the first three stages of two fracturing jobs. The results obtained verify the proposition that a hydraulic fracture in shale grows in spurts rather than in a continuous pattern as originally interpreted by Nolte-Smith technique. Rather than a continuous Mode I fracture that is followed by Mode II, III or IV fractures, these fracture modes could alternate throughout the pumping period. It is also shown that the Nolte-Smith time parameter plot can be very helpful in identifying the presence of natural fractures that have been intersected by the hydraulic fracture. In addition, with the aid of a fracture length-time plot generated from any fracture simulation that matches the data, the distance from the wellbore to the natural fractures, which also translates to the actual fracture length for the stage, can be determined. An algorithm for this technique is developed. This procedure was used for the first 9 minutes of the simulated frac job data. It was observed that after 7mins, the actual fracture length is about 150ft, instead of 250ft predicted by the simulator output. This difference gets larger as the analysis proceeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shale" title="shale">shale</a>, <a href="https://publications.waset.org/abstracts/search?q=fracturing" title=" fracturing"> fracturing</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir" title=" reservoir"> reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=frac-length" title=" frac-length"> frac-length</a>, <a href="https://publications.waset.org/abstracts/search?q=moving-reference-point" title=" moving-reference-point"> moving-reference-point</a> </p> <a href="https://publications.waset.org/abstracts/14083/actual-fracture-length-determination-using-a-technique-for-shale-fracturing-data-analysis-in-real-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">754</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4240</span> Micro-CT Assessment of Fracture Healing with Targeted Delivery of Tocotrienol in Osteoporosis Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nazrun%20Shuid">Ahmad Nazrun Shuid</a>, <a href="https://publications.waset.org/abstracts/search?q=Isa%20Naina%20Mohamed"> Isa Naina Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Izzah%20Ibrahim"> Nurul Izzah Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Norazlina%20Mohamed"> Norazlina Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies have shown that oral tocotrienol, a potent vitamin E, promoted fracture healing of osteoporotic bone. In this study, tocotrienol was combined with a polymer carrier (PLGA), and injected to the fracture site. The slow and constant release of tocotrienol particles would promote fracture healing of post-menopausal osteoporosis rat model. Fracture healing was assessed using micro-CT. Twenty-four Sprague-Dawley rats were ovariectomised or sham-operated and the left tibiae were fractured and fixed with plate and screws. The fractures were created at the upper third of the left tibiae. The rats were divided into 3 groups: sham-operated (SO), ovariectomised-control (OVxC) and PLGA-incorporated tocotrienol treatment (OVx + TT) groups. After 4 weeks, the OVx + TT group showed significantly better callus fracture healing than the OVxC group. In conclusion, tocotrienol-incorporated PLGA was able to promote fracture healing of osteoporotic bone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title="osteoporosis">osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-CT" title=" micro-CT"> micro-CT</a>, <a href="https://publications.waset.org/abstracts/search?q=tocotrienol" title=" tocotrienol"> tocotrienol</a>, <a href="https://publications.waset.org/abstracts/search?q=PLGA" title=" PLGA"> PLGA</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a> </p> <a href="https://publications.waset.org/abstracts/19173/micro-ct-assessment-of-fracture-healing-with-targeted-delivery-of-tocotrienol-in-osteoporosis-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">668</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4239</span> Failure Criterion for Mixed Mode Fracture of Cracked Wood Specimens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Fakoor">Mahdi Fakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Navid%20Ghoreishi"> Seyed Mohammad Navid Ghoreishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20criterion" title="fracture criterion">fracture criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20mode%20loading" title=" mixed mode loading"> mixed mode loading</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20zone" title=" damage zone"> damage zone</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20cracks" title=" micro cracks"> micro cracks</a> </p> <a href="https://publications.waset.org/abstracts/72822/failure-criterion-for-mixed-mode-fracture-of-cracked-wood-specimens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4238</span> Time-Dependent Reliability Analysis of Corrosion Affected Cast Iron Pipes with Mixed Mode Fracture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Qing%20Li">Chun-Qing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoyang%20Fu"> Guoyang Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A significant portion of current water networks is made of cast iron pipes. Due to aging and deterioration with corrosion being the most predominant mechanism, the failure rate of cast iron pipes is very high. Although considerable research has been carried out in the past few decades, most are on the effect of corrosion on the structural capacity of pipes using strength theory as the failure criterion. This paper presents a reliability-based methodology for the assessment of corrosion affected cast iron pipe cracking failures. A nonlinear limit state function taking into account all three fracture modes is proposed for brittle metal pipes with mixed mode fracture. A stochastic model of the load effect is developed, and time-dependent reliability method is employed to quantify the probability of failure and predict the remaining service life. A case study is carried out using the proposed methodology, followed by sensitivity analysis to investigate the effects of the random variables on the probability of failure. It has been found that the larger the inclination angle or the Mode I fracture toughness is, the smaller the probability of pipe failure is. It has also been found that the multiplying and exponential coefficients k and n in the power law corrosion model and the internal pressure have the most influence on the probability of failure for cast iron pipes. The methodology presented in this paper can assist pipe engineers and asset managers in developing a risk-informed and cost-effective strategy for better management of corrosion-affected pipelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20surface%20cracks" title=" inclined surface cracks"> inclined surface cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=pressurized%20cast%20iron%20pipes" title=" pressurized cast iron pipes"> pressurized cast iron pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity" title=" stress intensity"> stress intensity</a> </p> <a href="https://publications.waset.org/abstracts/61735/time-dependent-reliability-analysis-of-corrosion-affected-cast-iron-pipes-with-mixed-mode-fracture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index&amp;page=142">142</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index&amp;page=143">143</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10