CINXE.COM
Search results for: hypersonic flow
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hypersonic flow</title> <meta name="description" content="Search results for: hypersonic flow"> <meta name="keywords" content="hypersonic flow"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hypersonic flow" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hypersonic flow"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2271</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hypersonic flow</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2271</span> Approximate Method of Calculation of Inviscid Hypersonic Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=F.%20Sokhanvar">F. Sokhanvar</a>, <a href="https://publications.waset.org/search?q=A.%20B.%20Khoshnevis"> A. B. Khoshnevis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work steady inviscid hypersonic flows are calculated by approximate Method. Maslens' inverse method is the chosen approximate method. For the inverse problem, parabolic shock shape is chosen for the two-dimensional flow, and the body shape and flow field are calculated using Maslen's method. For the axisymmetric inverse problem paraboloidal shock is chosen and the surface distribution of pressure is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hypersonic%20flow" title="Hypersonic flow">Hypersonic flow</a>, <a href="https://publications.waset.org/search?q=Inverse%20problem%20method" title=" Inverse problem method"> Inverse problem method</a> </p> <a href="https://publications.waset.org/7375/approximate-method-of-calculation-of-inviscid-hypersonic-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7375/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7375/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7375/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7375/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7375/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7375/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7375/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7375/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7375/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7375/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3066</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2270</span> Hypersonic Flow of CO2-N2 Mixture around a Spacecraft during the Atmospheric Reentry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zineddine%20Bouyahiaoui">Zineddine Bouyahiaoui</a>, <a href="https://publications.waset.org/search?q=Rabah%20Haoui"> Rabah Haoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to analyze a flow around the axisymmetric blunt body taken into account the chemical and vibrational nonequilibrium flow. This work concerns the entry of spacecraft in the atmosphere of the planet Mars. Since the equations involved are non-linear partial derivatives, the volume method is the only way to solve this problem. The choice of the mesh and the CFL is a condition for the convergence to have the stationary solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hypersonic%20flow" title="Hypersonic flow">Hypersonic flow</a>, <a href="https://publications.waset.org/search?q=nonequilibrium%20flow" title=" nonequilibrium flow"> nonequilibrium flow</a>, <a href="https://publications.waset.org/search?q=shock%20wave" title=" shock wave"> shock wave</a>, <a href="https://publications.waset.org/search?q=blunt%20body." title=" blunt body."> blunt body.</a> </p> <a href="https://publications.waset.org/10008333/hypersonic-flow-of-co2-n2-mixture-around-a-spacecraft-during-the-atmospheric-reentry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008333/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008333/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008333/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008333/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008333/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008333/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008333/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008333/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008333/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008333/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">926</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2269</span> Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Haoui">R. Haoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hypersonic%20flow" title="Hypersonic flow">Hypersonic flow</a>, <a href="https://publications.waset.org/search?q=viscous%20flow" title=" viscous flow"> viscous flow</a>, <a href="https://publications.waset.org/search?q=chemical%20kinetic" title=" chemical kinetic"> chemical kinetic</a>, <a href="https://publications.waset.org/search?q=dissociation" title=" dissociation"> dissociation</a>, <a href="https://publications.waset.org/search?q=finite%20volumes" title=" finite volumes"> finite volumes</a>, <a href="https://publications.waset.org/search?q=frozen%20and%20non-equilibrium%20flow." title=" frozen and non-equilibrium flow."> frozen and non-equilibrium flow.</a> </p> <a href="https://publications.waset.org/10001453/chemical-and-vibrational-nonequilibrium-hypersonic-viscous-flow-around-an-axisymmetric-blunt-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001453/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001453/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001453/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001453/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001453/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001453/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001453/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001453/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001453/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001453/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2204</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2268</span> Parallel Computation in Hypersonic Aerodynamic Heating Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ding%20Guo-hao">Ding Guo-hao</a>, <a href="https://publications.waset.org/search?q=Li%20Hua"> Li Hua</a>, <a href="https://publications.waset.org/search?q=Wang%20Wen-long"> Wang Wen-long</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A parallel computational fluid dynamics code has been developed for the study of aerodynamic heating problem in hypersonic flows. The code employs the 3D Navier-Stokes equations as the basic governing equations to simulate the laminar hypersonic flow. The cell centered finite volume method based on structured grid is applied for spatial discretization. The AUSMPW+ scheme is used for the inviscid fluxes, and the MUSCL approach is used for higher order spatial accuracy. The implicit LU-SGS scheme is applied for time integration to accelerate the convergence of computations in steady flows. A parallel programming method based on MPI is employed to shorten the computing time. The validity of the code is demonstrated by comparing the numerical calculation result with the experimental data of a hypersonic flow field around a blunt body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aerodynamic%20Heating" title="Aerodynamic Heating">Aerodynamic Heating</a>, <a href="https://publications.waset.org/search?q=AUSMPW%2B" title=" AUSMPW+"> AUSMPW+</a>, <a href="https://publications.waset.org/search?q=MPI" title=" MPI"> MPI</a>, <a href="https://publications.waset.org/search?q=ParallelComputation" title=" ParallelComputation"> ParallelComputation</a> </p> <a href="https://publications.waset.org/3723/parallel-computation-in-hypersonic-aerodynamic-heating-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3723/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3723/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3723/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3723/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3723/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3723/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3723/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3723/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3723/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3723/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1965</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2267</span> Large-Eddy Simulation of Hypersonic Configuration Aerodynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Huang%20Shengqin">Huang Shengqin</a>, <a href="https://publications.waset.org/search?q=Xiao%20Hong"> Xiao Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> LES with mixed subgrid-scale model has been used to simulate aerodynamic performance of hypersonic configuration. The simulation was conducted to replicate conditions and geometry of a model which has been previously tested. LES Model has been successful in predict pressure coefficient with the max error 1.5% besides afterbody. But in the high Mach number condition, it is poor in predict ability and product 12.5% error. The calculation error are mainly conducted by the distribution swirling. The fact of poor ability in the high Mach number and afterbody region indicated that the mixed subgrid-scale model should be improved in large eddied especially in hypersonic separate region. In the condition of attach and sideslip flight, the calculation results have waves. LES are successful in the prediction the pressure wave in hypersonic flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hypersonic" title="Hypersonic">Hypersonic</a>, <a href="https://publications.waset.org/search?q=LES" title=" LES"> LES</a>, <a href="https://publications.waset.org/search?q=mixed%20Subgrid-scale%20model" title=" mixed Subgrid-scale model"> mixed Subgrid-scale model</a>, <a href="https://publications.waset.org/search?q=experiment." title="experiment.">experiment.</a> </p> <a href="https://publications.waset.org/5646/large-eddy-simulation-of-hypersonic-configuration-aerodynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5646/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5646/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5646/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5646/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5646/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5646/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5646/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5646/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5646/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5646/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1572</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2266</span> Applications of AUSM+ Scheme on Subsonic, Supersonic and Hypersonic Flows Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Muhammad%20Yamin%20Younis">Muhammad Yamin Younis</a>, <a href="https://publications.waset.org/search?q=Muhammad%20Amjad%20Sohail"> Muhammad Amjad Sohail</a>, <a href="https://publications.waset.org/search?q=Tawfiqur%20Rahman"> Tawfiqur Rahman</a>, <a href="https://publications.waset.org/search?q=Zaka%20Muhammad"> Zaka Muhammad</a>, <a href="https://publications.waset.org/search?q=Saifur%20Rahman%20Bakaul"> Saifur Rahman Bakaul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of Advection Upstream Splitting Method AUSM schemes are evaluated against experimental flow fields at different Mach numbers and results are compared with experimental data of subsonic, supersonic and hypersonic flow fields. The turbulent model used here is SST model by Menter. The numerical predictions include lift coefficient, drag coefficient and pitching moment coefficient at different mach numbers and angle of attacks. This work describes a computational study undertaken to compute the Aerodynamic characteristics of different air vehicles configurations using a structured Navier-Stokes computational technique. The CFD code bases on the idea of upwind scheme for the convective (convective-moving) fluxes. CFD results for GLC305 airfoil and cone cylinder tail fined missile calculated on above mentioned turbulence model are compared with the available data. Wide ranges of Mach number from subsonic to hypersonic speeds are simulated and results are compared. When the computation is done by using viscous turbulence model the above mentioned coefficients have a very good agreement with the experimental values. AUSM scheme is very efficient in the regions of very high pressure gradients like shock waves and discontinuities. The AUSM versions simulate the all types of flows from lower subsonic to hypersonic flow without oscillations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Subsonic" title="Subsonic">Subsonic</a>, <a href="https://publications.waset.org/search?q=supersonic" title=" supersonic"> supersonic</a>, <a href="https://publications.waset.org/search?q=Hypersonic" title=" Hypersonic"> Hypersonic</a>, <a href="https://publications.waset.org/search?q=AUSM%2B" title=" AUSM+"> AUSM+</a>, <a href="https://publications.waset.org/search?q=Drag%0ACoefficient" title=" Drag Coefficient"> Drag Coefficient</a>, <a href="https://publications.waset.org/search?q=lift%20Coefficient" title=" lift Coefficient"> lift Coefficient</a>, <a href="https://publications.waset.org/search?q=Pitching%20moment%20coefficient" title=" Pitching moment coefficient"> Pitching moment coefficient</a>, <a href="https://publications.waset.org/search?q=pressure%0ACoefficient" title=" pressure Coefficient"> pressure Coefficient</a>, <a href="https://publications.waset.org/search?q=turbulent%20flow." title=" turbulent flow."> turbulent flow.</a> </p> <a href="https://publications.waset.org/13154/applications-of-ausm-scheme-on-subsonic-supersonic-and-hypersonic-flows-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13154/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13154/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13154/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13154/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13154/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13154/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13154/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13154/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13154/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13154/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3244</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2265</span> An Approximate Engineering Method for Aerodynamic Heating Solution around Blunt Body Nose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sahar%20Noori">Sahar Noori</a>, <a href="https://publications.waset.org/search?q=Seyed%20Amir%20Hossein"> Seyed Amir Hossein</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Ebrahimi"> Mohammad Ebrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is devoted to predict laminar and turbulent heating rates around blunt re-entry spacecraft at hypersonic conditions. Heating calculation of a hypersonic body is normally performed during the critical part of its flight trajectory. The procedure is of an inverse method, where a shock wave is assumed, and the body shape that supports this shock, as well as the flowfield between the shock and body, are calculated. For simplicity the normal momentum equation is replaced with a second order pressure relation; this simplification significantly reduces computation time. The geometries specified in this research, are parabola and ellipsoids which may have conical after bodies. An excellent agreement is observed between the results obtained in this paper and those calculated by others- research. Since this method is much faster than Navier-Stokes solutions, it can be used in preliminary design, parametric study of hypersonic vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aerodynamic%20Heating" title="Aerodynamic Heating">Aerodynamic Heating</a>, <a href="https://publications.waset.org/search?q=Blunt%20Body" title=" Blunt Body"> Blunt Body</a>, <a href="https://publications.waset.org/search?q=Hypersonic%0AFlow" title=" Hypersonic Flow"> Hypersonic Flow</a>, <a href="https://publications.waset.org/search?q=Laminar" title=" Laminar"> Laminar</a>, <a href="https://publications.waset.org/search?q=Turbulent." title=" Turbulent."> Turbulent.</a> </p> <a href="https://publications.waset.org/14786/an-approximate-engineering-method-for-aerodynamic-heating-solution-around-blunt-body-nose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14786/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14786/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14786/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14786/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14786/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14786/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14786/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14786/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14786/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14786/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3721</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2264</span> Numerical Study of Hypersonic Glide Vehicle based on Blunted Waverider</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Liu%20Jian-xia">Liu Jian-xia</a>, <a href="https://publications.waset.org/search?q=Hou%20Zhong-xi"> Hou Zhong-xi</a>, <a href="https://publications.waset.org/search?q=Chen%20Xiao-qing"> Chen Xiao-qing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The waverider is proved to be a remarkably useful configuration for hypersonic glide vehicle (HGV) in terms of the high lift-to-drag ratio. Due to the severe aerodynamic heating and the processing technical restriction, the sharp leading edge of waverider should be blunted, and then the flow characteristics and the aerodynamic performance along the trajectory will change. In this paper, the flow characteristics of a HGV, including the rarefied gas effect and transition phenomenon, were studied based on a reference trajectory. A numerical simulation was carried out to study the performance of the HGV under a typical condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aerodynamic" title="Aerodynamic">Aerodynamic</a>, <a href="https://publications.waset.org/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/search?q=Thermodynamic" title=" Thermodynamic"> Thermodynamic</a>, <a href="https://publications.waset.org/search?q=Waverider" title=" Waverider"> Waverider</a> </p> <a href="https://publications.waset.org/5684/numerical-study-of-hypersonic-glide-vehicle-based-on-blunted-waverider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5684/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5684/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5684/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5684/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5684/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5684/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5684/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5684/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5684/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5684/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2903</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2263</span> Influence of Cavity Length on Forward-facing Cavity and Opposing Jet Combined Thermal Protection System Cooling Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hai-bo%20Lu">Hai-bo Lu</a>, <a href="https://publications.waset.org/search?q=Wei-qiang%20Liu"> Wei-qiang Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study on the influence of forward-facing cavity length upon forward-facing cavity and opposing jet combined thermal protection system (TPS) cooling efficiency under hypersonic flow is conducted, by means of which the flow field parameters, heat flux distribution along the outer body surface are obtained. The numerical simulation results are validated by experiments and the cooling effect of the combined TPS with different cavity length is analyzed. The numerical results show that the combined configuration dose well in cooling the nose of the hypersonic vehicle. The deeper the cavity is, the weaker the heat flux is. The recirculation region plays a key role for the reduction of the aerodynamic heating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermal%20protection" title="Thermal protection">Thermal protection</a>, <a href="https://publications.waset.org/search?q=hypersonic%20vehicle" title=" hypersonic vehicle"> hypersonic vehicle</a>, <a href="https://publications.waset.org/search?q=aerodynamic%0Aheating" title=" aerodynamic heating"> aerodynamic heating</a>, <a href="https://publications.waset.org/search?q=forward-facing%20cavity" title=" forward-facing cavity"> forward-facing cavity</a>, <a href="https://publications.waset.org/search?q=opposing%20jet" title=" opposing jet"> opposing jet</a> </p> <a href="https://publications.waset.org/13599/influence-of-cavity-length-on-forward-facing-cavity-and-opposing-jet-combined-thermal-protection-system-cooling-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13599/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13599/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13599/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13599/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13599/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13599/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13599/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13599/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13599/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13599/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1731</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2262</span> Physico-chemical State of the Air at the Stagnation Point during the Atmospheric Reentry of a Spacecraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rabah%20Haoui">Rabah Haoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermal phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body, especially at the stagnation point and along the wall of spacecraft for several altitudes. This allows the capture shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, along with CFL coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of 10-8 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Chemical%20kinetic" title="Chemical kinetic">Chemical kinetic</a>, <a href="https://publications.waset.org/search?q=dissociation" title=" dissociation"> dissociation</a>, <a href="https://publications.waset.org/search?q=finite%20volumes" title=" finite volumes"> finite volumes</a>, <a href="https://publications.waset.org/search?q=frozen" title="frozen">frozen</a>, <a href="https://publications.waset.org/search?q=hypersonic%20flow" title=" hypersonic flow"> hypersonic flow</a>, <a href="https://publications.waset.org/search?q=non-equilibrium" title=" non-equilibrium"> non-equilibrium</a>, <a href="https://publications.waset.org/search?q=Reactive%20flow" title=" Reactive flow"> Reactive flow</a>, <a href="https://publications.waset.org/search?q=supersonicflow" title=" supersonicflow "> supersonicflow </a>, <a href="https://publications.waset.org/search?q=vibration." title=" vibration."> vibration.</a> </p> <a href="https://publications.waset.org/10000/physico-chemical-state-of-the-air-at-the-stagnation-point-during-the-atmospheric-reentry-of-a-spacecraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1853</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2261</span> Comparison of Detached Eddy Simulations with Turbulence Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Muhammad%20Amjad%20Sohail">Muhammad Amjad Sohail</a>, <a href="https://publications.waset.org/search?q=Prof.%20Yan%20Chao"> Prof. Yan Chao</a>, <a href="https://publications.waset.org/search?q=Mukkarum%20Husain"> Mukkarum Husain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow field around hypersonic vehicles is very complex and difficult to simulate. The boundary layers are squeezed between shock layer and body surface. Resolution of boundary layer, shock wave and turbulent regions where the flow field has high values is difficult of capture. Detached eddy simulation (DES) is a modification of a RANS model in which the model switches to a subgrid scale formulation in regions fine enough for LES calculations. Regions near solid body boundaries and where the turbulent length scale is less than the maximum grid dimension are assigned the RANS mode of solution. As the turbulent length scale exceeds the grid dimension, the regions are solved using the LES mode. Therefore the grid resolution is not as demanding as pure LES, thereby considerably cutting down the cost of the computation. In this research study hypersonic flow is simulated at Mach 8 and different angle of attacks to resolve the proper boundary layers and discontinuities. The flow is also simulated in the long wake regions. Mesh is little different than RANS simulations and it is made dense near the boundary layers and in the wake regions to resolve it properly. Hypersonic blunt cone cylinder body with frustrum at angle 5o and 10 o are simulated and there aerodynamics study is performed to calculate aerodynamics characteristics of different geometries. The results and then compared with experimental as well as with some turbulence model (SA Model). The results achieved with DES simulation have very good resolution as well as have excellent agreement with experimental and available data. Unsteady simulations are performed for DES calculations by using duel time stepping method or implicit time stepping. The simulations are performed at Mach number 8 and angle of attack from 0o to 10o for all these cases. The results and resolutions for DES model found much better than SA turbulence model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Detached%20eddy%20simulation" title="Detached eddy simulation">Detached eddy simulation</a>, <a href="https://publications.waset.org/search?q=dual%20time%20stepping" title=" dual time stepping"> dual time stepping</a>, <a href="https://publications.waset.org/search?q=hypersonic%20flow" title="hypersonic flow">hypersonic flow</a>, <a href="https://publications.waset.org/search?q=turbulence%20modeling" title=" turbulence modeling"> turbulence modeling</a> </p> <a href="https://publications.waset.org/15329/comparison-of-detached-eddy-simulations-with-turbulence-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15329/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15329/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15329/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15329/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15329/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15329/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15329/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15329/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15329/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15329/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2349</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2260</span> Numerical Studies on Flow Field Characteristics of Cavity Based Scramjet Combustors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rakesh%20Arasu">Rakesh Arasu</a>, <a href="https://publications.waset.org/search?q=Sasitharan%20Ambicapathy"> Sasitharan Ambicapathy</a>, <a href="https://publications.waset.org/search?q=Sivaraj%20Ponnusamy"> Sivaraj Ponnusamy</a>, <a href="https://publications.waset.org/search?q=Mohanraj%20Murugesan"> Mohanraj Murugesan</a>, <a href="https://publications.waset.org/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The flow field within the combustor of scramjet engine is very complex and poses a considerable challenge in the design and development of a supersonic combustor with an optimized geometry. In this paper comprehensive numerical studies on flow field characteristics of different cavity based scramjet combustors with transverse injection of hydrogen have been carried out for both non-reacting and reacting flows. The numerical studies have been carried out using a validated 2D unsteady, density based 1st-order implicit k-omega turbulence model with multi-component finite rate reacting species. The results show a wide variety of flow features resulting from the interactions between the injector flows, shock waves, boundary layers, and cavity flows. We conjectured that an optimized cavity is a good choice to stabilize the flame in the hypersonic flow, and it generates a recirculation zone in the scramjet combustor. We comprehended that the cavity based scramjet combustors having a bearing on the source of disturbance for the transverse jet oscillation, fuel/air mixing enhancement, and flameholding improvement. We concluded that cavity shape with backward facing step and 45o forward ramp is a good choice to get higher temperatures at the exit compared to other four models of scramjet combustors considered in this study.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Flame%20holding" title="Flame holding">Flame holding</a>, <a href="https://publications.waset.org/search?q=Hypersonic%20flow" title=" Hypersonic flow"> Hypersonic flow</a>, <a href="https://publications.waset.org/search?q=Scramjet%0D%0Acombustor" title=" Scramjet combustor"> Scramjet combustor</a>, <a href="https://publications.waset.org/search?q=Supersonic%20combustor." title=" Supersonic combustor."> Supersonic combustor.</a> </p> <a href="https://publications.waset.org/16233/numerical-studies-on-flow-field-characteristics-of-cavity-based-scramjet-combustors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16233/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16233/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16233/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16233/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16233/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16233/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16233/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16233/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16233/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16233/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3224</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2259</span> Heat Flux Reduction Research in Hypersonic Flow with Opposing Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yisheng%20Rong">Yisheng Rong</a>, <a href="https://publications.waset.org/search?q=Jian%20Sun"> Jian Sun</a>, <a href="https://publications.waset.org/search?q=Weiqiang%20Liu"> Weiqiang Liu</a>, <a href="https://publications.waset.org/search?q=Renjun%20Zhan"> Renjun Zhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A CFD study on heat flux reduction in hypersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position, surface pressure distributions and heat flux distributions are obtained and validated with experiments. The physical mechanism of heat reduction has been analyzed. When the opposing jet blows, the freestream is blocked off, flows to the edges and not interacts with the surface to form aerodynamic heating. At the same time, the jet flows back to form cool recirculation region, which reduces the difference in temperature between the surface and the nearby gas, and then reduces the heat flux. As the pressure ratio increases, the interface between jet and freestream is gradually pushed away from the surface. Larger the total pressure ratio is, lower the heat flux is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and total heat load can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic heating.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=opposing%20jet" title="opposing jet">opposing jet</a>, <a href="https://publications.waset.org/search?q=aerodynamic%20heating" title=" aerodynamic heating"> aerodynamic heating</a>, <a href="https://publications.waset.org/search?q=total%20pressure%20ratio" title=" total pressure ratio"> total pressure ratio</a>, <a href="https://publications.waset.org/search?q=thermal%20protection%20system" title=" thermal protection system"> thermal protection system</a> </p> <a href="https://publications.waset.org/4260/heat-flux-reduction-research-in-hypersonic-flow-with-opposing-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4260/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4260/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4260/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4260/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4260/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4260/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4260/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4260/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4260/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4260/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2068</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2258</span> Flow Visualization of Angled Supersonic Jets into a Supersonic Cross Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yan%20Shao">Yan Shao</a>, <a href="https://publications.waset.org/search?q=Jin%20Zhou"> Jin Zhou</a>, <a href="https://publications.waset.org/search?q=Lin%20Lai"> Lin Lai</a>, <a href="https://publications.waset.org/search?q=Haiyan%20Wu"> Haiyan Wu</a>, <a href="https://publications.waset.org/search?q=Jing%20Lei"> Jing Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes Nano-particle based Planar Laser Scattering (NPLS) flow visualization of angled supersonic jets into a supersonic cross flow based on the HYpersonic Low TEmperature (HYLTE) nozzle which was widely used in DF chemical laser. In order to investigate the non-reacting flowfield in the HYLTE nozzle, a testing section with windows was designed and manufactured. The impact of secondary fluids orifice separation on mixing was examined. For narrow separation of orifices, the secondary fuel penetration increased obviously compared to diluent injection, which means smaller separation of diluent and fuel orifices would enhance the mixing of fuel and oxidant. Secondary injections with angles of 30, 40 and 50 degrees were studied. It was found that the injectant penetration increased as the injection angle increased, while the interfacial surface area to entrain the freestream fluid is largest when the injection angle is 40 degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=HYLTE%20nozzle" title="HYLTE nozzle">HYLTE nozzle</a>, <a href="https://publications.waset.org/search?q=NPLS" title=" NPLS"> NPLS</a>, <a href="https://publications.waset.org/search?q=supersonic%20mixing" title=" supersonic mixing"> supersonic mixing</a>, <a href="https://publications.waset.org/search?q=transverse%0Ainjection" title=" transverse injection"> transverse injection</a> </p> <a href="https://publications.waset.org/14821/flow-visualization-of-angled-supersonic-jets-into-a-supersonic-cross-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14821/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14821/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14821/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14821/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14821/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14821/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14821/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14821/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14821/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14821/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1842</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2257</span> Study of Aero-thermal Effects with Heat Radiation in Optical Side Window</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chun-Chi%20Li">Chun-Chi Li</a>, <a href="https://publications.waset.org/search?q=Da-Wei%20Huang"> Da-Wei Huang</a>, <a href="https://publications.waset.org/search?q=Yin-Chia%20Su"> Yin-Chia Su</a>, <a href="https://publications.waset.org/search?q=Liang-Chih%20Tasi"> Liang-Chih Tasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In hypersonic environments, the aerothermal effect makes it difficult for the optical side windows of optical guided missiles to withstand high heat. This produces cracking or breaking, resulting in an inability to function. This study used computational fluid mechanics to investigate the external cooling jet conditions of optical side windows. The turbulent models k-蔚 and k-蠅 were simulated. To be in better accord with actual aerothermal environments, a thermal radiation model was added to examine suitable amounts of external coolants and the optical window problems of aero-thermodynamics. The simulation results indicate that when there are no external cooling jets, because airflow on the optical window and the tail groove produce vortices, the temperatures in these two locations reach a peak of approximately 1600 K. When the external cooling jets worked at 0.15 kg/s, the surface temperature of the optical windows dropped to approximately 280 K. When adding thermal radiation conditions, because heat flux dissipation was faster, the surface temperature of the optical windows fell from 280 K to approximately 260 K. The difference in influence of the different turbulence models k-蔚 and k-蠅 on optical window surface temperature was not significant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=aero-optical%20side%20window" title="aero-optical side window">aero-optical side window</a>, <a href="https://publications.waset.org/search?q=aerothermal%20effect" title=" aerothermal effect"> aerothermal effect</a>, <a href="https://publications.waset.org/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/search?q=hypersonic%20flow" title=" hypersonic flow"> hypersonic flow</a> </p> <a href="https://publications.waset.org/9027/study-of-aero-thermal-effects-with-heat-radiation-in-optical-side-window" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9027/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9027/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9027/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9027/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9027/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9027/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9027/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9027/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9027/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9027/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3116</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2256</span> Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Geng%20Xiangren">Geng Xiangren</a>, <a href="https://publications.waset.org/search?q=Liu%20Lei"> Liu Lei</a>, <a href="https://publications.waset.org/search?q=Gui%20Ye-Wei"> Gui Ye-Wei</a>, <a href="https://publications.waset.org/search?q=Tang%20Wei"> Tang Wei</a>, <a href="https://publications.waset.org/search?q=Wang%20An-ling"> Wang An-ling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aero-thermo-elasticity" title="Aero-thermo-elasticity">Aero-thermo-elasticity</a>, <a href="https://publications.waset.org/search?q=elastic%20deformation" title=" elastic deformation"> elastic deformation</a>, <a href="https://publications.waset.org/search?q=structural%20temperature" title=" structural temperature"> structural temperature</a>, <a href="https://publications.waset.org/search?q=multi-field%20coupling." title=" multi-field coupling."> multi-field coupling.</a> </p> <a href="https://publications.waset.org/10005928/studying-the-temperature-field-of-hypersonic-vehicle-structure-with-aero-thermo-elasticity-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005928/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005928/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005928/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005928/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005928/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005928/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005928/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005928/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005928/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005928/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">894</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2255</span> Numerical Simulation of Inviscid Transient Flows in Shock Tube and its Validations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Al-Falahi%20Amir">Al-Falahi Amir</a>, <a href="https://publications.waset.org/search?q=Yusoff%20M.%20Z"> Yusoff M. Z</a>, <a href="https://publications.waset.org/search?q=Yusaf%20T"> Yusaf T</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of this paper is to develop a new two dimensional time accurate Euler solver for shock tube applications. The solver was developed to study the performance of a newly built short-duration hypersonic test facility at Universiti Tenaga Nasional “UNITEN" in Malaysia. The facility has been designed, built, and commissioned for different values of diaphragm pressure ratios in order to get wide range of Mach number. The developed solver uses second order accurate cell-vertex finite volume spatial discretization and forth order accurate Runge-Kutta temporal integration and it is designed to simulate the flow process for similar driver/driven gases (e.g. air-air as working fluids). The solver is validated against analytical solution and experimental measurements in the high speed flow test facility. Further investigations were made on the flow process inside the shock tube by using the solver. The shock wave motion, reflection and interaction were investigated and their influence on the performance of the shock tube was determined. The results provide very good estimates for both shock speed and shock pressure obtained after diaphragm rupture. Also detailed information on the gasdynamic processes over the full length of the facility is available. The agreements obtained have been reasonable.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=shock%20tunnel" title="shock tunnel">shock tunnel</a>, <a href="https://publications.waset.org/search?q=shock%20tube" title=" shock tube"> shock tube</a>, <a href="https://publications.waset.org/search?q=shock%20wave" title=" shock wave"> shock wave</a>, <a href="https://publications.waset.org/search?q=CFD." title=" CFD."> CFD.</a> </p> <a href="https://publications.waset.org/4112/numerical-simulation-of-inviscid-transient-flows-in-shock-tube-and-its-validations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4112/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4112/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4112/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4112/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4112/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4112/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4112/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4112/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4112/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4112/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2751</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2254</span> A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ali%20Sarosh">Ali Sarosh</a>, <a href="https://publications.waset.org/search?q=Dong%20Yun-Feng"> Dong Yun-Feng</a>, <a href="https://publications.waset.org/search?q=Muhammad%20Umer"> Muhammad Umer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=TIPSO-SVM%20expert%20system" title="TIPSO-SVM expert system">TIPSO-SVM expert system</a>, <a href="https://publications.waset.org/search?q=TIPSO%20algorithm" title=" TIPSO algorithm"> TIPSO algorithm</a>, <a href="https://publications.waset.org/search?q=two-step%20SVM%20method" title=" two-step SVM method"> two-step SVM method</a>, <a href="https://publications.waset.org/search?q=aerothermodynamics" title=" aerothermodynamics"> aerothermodynamics</a>, <a href="https://publications.waset.org/search?q=mass-modeling" title=" mass-modeling"> mass-modeling</a>, <a href="https://publications.waset.org/search?q=TSTO%20vehicle." title=" TSTO vehicle. "> TSTO vehicle. </a> </p> <a href="https://publications.waset.org/9997678/a-tipso-svm-expert-system-for-efficient-classification-of-tsto-surrogates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997678/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997678/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997678/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997678/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997678/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997678/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997678/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997678/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997678/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997678/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2318</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2253</span> Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohd%20Hazwan%20bin%20Yusof">Mohd Hazwan bin Yusof</a>, <a href="https://publications.waset.org/search?q=Hiroshi%20Katanoda"> Hiroshi Katanoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Flow%20visualization" title="Flow visualization">Flow visualization</a>, <a href="https://publications.waset.org/search?q=Pressure%20measurement" title=" Pressure measurement"> Pressure measurement</a>, <a href="https://publications.waset.org/search?q=Reverse%20flow" title=" Reverse flow"> Reverse flow</a>, <a href="https://publications.waset.org/search?q=Vortex%20tube." title=" Vortex tube."> Vortex tube.</a> </p> <a href="https://publications.waset.org/9998499/measurement-of-reverse-flow-generated-at-cold-exit-of-vortex-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998499/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998499/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998499/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998499/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998499/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998499/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998499/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998499/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998499/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998499/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1927</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2252</span> Numerical Study of Microscale Gas Flow-Separation Using Explicit Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Chaudhuri">A. Chaudhuri</a>, <a href="https://publications.waset.org/search?q=C.%20Guha"> C. Guha</a>, <a href="https://publications.waset.org/search?q=T.%20K.%20Dutta"> T. K. Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pressure driven microscale gas flow-separation has been investigated by solving the compressible Navier-Stokes (NS) system of equations. A two dimensional explicit finite volume (FV) compressible flow solver has been developed using modified advection upwind splitting methods (AUSM+) with no-slip/first order Maxwell-s velocity slip conditions to predict the flowseparation behavior in microdimensions. The effects of scale-factor of the flow geometry and gas species on the microscale gas flowseparation have been studied in this work. The intensity of flowseparation gets reduced with the decrease in scale of the flow geometry. In reduced dimension, flow-separation may not at all be present under similar flow conditions compared to the larger flow geometry. The flow-separation patterns greatly depend on the properties of the medium under similar flow conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=AUSM%2B" title="AUSM+">AUSM+</a>, <a href="https://publications.waset.org/search?q=FVM" title=" FVM"> FVM</a>, <a href="https://publications.waset.org/search?q=Flow-separation" title=" Flow-separation"> Flow-separation</a>, <a href="https://publications.waset.org/search?q=Microflow." title=" Microflow."> Microflow.</a> </p> <a href="https://publications.waset.org/4506/numerical-study-of-microscale-gas-flow-separation-using-explicit-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4506/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4506/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4506/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4506/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4506/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4506/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4506/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4506/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4506/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4506/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1615</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2251</span> Hydrological Method to Evaluate Environmental Flow (Case Study: Gharasou River, Ardabil)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mehdi%20Fuladipanah">Mehdi Fuladipanah</a>, <a href="https://publications.waset.org/search?q=Mehdi%20Jorabloo"> Mehdi Jorabloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of river ecosystem. Then, it is very serious to determine ecosystem flow requirement. In this paper, Flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude were determined as 1-day, 3-day, 7-day and 30 day. According the second method, hydraulic alteration indices often had low and medium range. In order to maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m3.s-1.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ardabil" title="Ardabil">Ardabil</a>, <a href="https://publications.waset.org/search?q=Environmental%20flow" title=" Environmental flow"> Environmental flow</a>, <a href="https://publications.waset.org/search?q=Flow%20Duration%20Curve" title=" Flow Duration Curve"> Flow Duration Curve</a>, <a href="https://publications.waset.org/search?q=Gharasou%20River." title=" Gharasou River."> Gharasou River.</a> </p> <a href="https://publications.waset.org/10000476/hydrological-method-to-evaluate-environmental-flow-case-study-gharasou-river-ardabil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000476/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000476/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000476/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000476/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000476/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000476/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000476/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000476/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000476/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000476/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2286</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2250</span> File Format of Flow Chart Simulation Software - CFlow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Syahanim%20Mohd%20Salleh">Syahanim Mohd Salleh</a>, <a href="https://publications.waset.org/search?q=Zaihosnita%20Hood"> Zaihosnita Hood</a>, <a href="https://publications.waset.org/search?q=Hairulliza%20Mohd%20Judi"> Hairulliza Mohd Judi</a>, <a href="https://publications.waset.org/search?q=Marini%20Abu%20Bakar"> Marini Abu Bakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CFlow is a flow chart software, it contains facilities to draw and evaluate a flow chart. A flow chart evaluation applies a simulation method to enable presentation of work flow in a flow chart solution. Flow chart simulation of CFlow is executed by manipulating the CFlow data file which is saved in a graphical vector format. These text-based data are organised by using a data classification technic based on a Library classification-scheme. This paper describes the file format for flow chart simulation software of CFlow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFlow" title="CFlow">CFlow</a>, <a href="https://publications.waset.org/search?q=flow%20chart" title=" flow chart"> flow chart</a>, <a href="https://publications.waset.org/search?q=file%20format." title=" file format."> file format.</a> </p> <a href="https://publications.waset.org/3275/file-format-of-flow-chart-simulation-software-cflow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3275/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3275/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3275/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3275/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3275/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3275/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3275/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3275/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3275/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3275/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2553</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2249</span> Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20J.%20Nazari">A. J. Nazari</a>, <a href="https://publications.waset.org/search?q=S.%20Honma"> S. Honma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21<sup>st</sup>, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fractional%20flow" title="Fractional flow">Fractional flow</a>, <a href="https://publications.waset.org/search?q=oil%20displacement" title=" oil displacement"> oil displacement</a>, <a href="https://publications.waset.org/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a>, <a href="https://publications.waset.org/search?q=simultaneously%20flow." title=" simultaneously flow."> simultaneously flow.</a> </p> <a href="https://publications.waset.org/10006133/oil-displacement-by-water-in-hauterivian-sandstone-reservoir-of-kashkari-oil-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006133/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006133/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006133/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006133/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006133/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006133/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006133/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006133/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006133/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006133/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1311</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2248</span> Estimating the Flow Velocity Using Flow Generated Sound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Saeed%20Hosseini">Saeed Hosseini</a>, <a href="https://publications.waset.org/search?q=Ali%20Reza%20Tahavvor"> Ali Reza Tahavvor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is found. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Flow%20generated%20sound" title="Flow generated sound">Flow generated sound</a>, <a href="https://publications.waset.org/search?q=sound%20processing" title=" sound processing"> sound processing</a>, <a href="https://publications.waset.org/search?q=speed" title=" speed"> speed</a>, <a href="https://publications.waset.org/search?q=wave%20power." title=" wave power."> wave power.</a> </p> <a href="https://publications.waset.org/10002083/estimating-the-flow-velocity-using-flow-generated-sound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002083/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002083/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002083/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002083/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002083/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002083/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002083/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002083/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002083/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002083/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2369</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2247</span> Automatic Discrimimation of the Modes of Permanent Flow of a Liquid Simulating Blood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Malika.D%20Kedir-Talha">Malika.D Kedir-Talha</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Mehenni"> Mohamed Mehenni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to be able to automatically differentiate between two modes of permanent flow of a liquid simulating blood, it was imperative to put together a data bank. Thus, the acquisition of the various amplitude spectra of the Doppler signal of this liquid in laminar flow and other spectra in turbulent flow enabled us to establish an automatic difference between the two modes. According to the number of parameters and their nature, a comparative study allowed us to choose the best classifier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Doppler%20spectrum" title="Doppler spectrum">Doppler spectrum</a>, <a href="https://publications.waset.org/search?q=flow%20mode" title=" flow mode"> flow mode</a>, <a href="https://publications.waset.org/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/search?q=permanent%20flow." title=" permanent flow."> permanent flow.</a> </p> <a href="https://publications.waset.org/10827/automatic-discrimimation-of-the-modes-of-permanent-flow-of-a-liquid-simulating-blood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10827/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10827/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10827/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10827/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10827/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10827/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10827/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10827/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10827/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10827/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1204</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2246</span> Large Eddy Simulation of Flow Separation Control over a NACA2415 Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Tahar%20Bouzaher">M. Tahar Bouzaher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study involves a numerical simulation of the flow around a NACA2415 airfoil, with a 15°angle of attack, and flow separation control using a rod, It reposes inputting a cylindrical rod upstream of the leading edge in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, non-stationary flow is simulated using ANSYS FLUENT 13. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 51%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=Flow%20separation" title=" Flow separation"> Flow separation</a>, <a href="https://publications.waset.org/search?q=Active%20control" title=" Active control"> Active control</a>, <a href="https://publications.waset.org/search?q=Boundary%20layer" title=" Boundary layer"> Boundary layer</a>, <a href="https://publications.waset.org/search?q=rod" title=" rod"> rod</a>, <a href="https://publications.waset.org/search?q=NACA%202415." title=" NACA 2415."> NACA 2415.</a> </p> <a href="https://publications.waset.org/9998176/large-eddy-simulation-of-flow-separation-control-over-a-naca2415-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998176/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998176/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998176/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998176/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998176/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998176/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998176/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998176/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998176/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998176/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2461</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2245</span> Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tadashi%20Watanabe">Tadashi Watanabe</a>, <a href="https://publications.waset.org/search?q=Jinya%20Katsuyama"> Jinya Katsuyama</a>, <a href="https://publications.waset.org/search?q=Akihiro%20Mano"> Akihiro Mano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Crack" title="Crack">Crack</a>, <a href="https://publications.waset.org/search?q=critical%20flow" title=" critical flow"> critical flow</a>, <a href="https://publications.waset.org/search?q=leak" title=" leak"> leak</a>, <a href="https://publications.waset.org/search?q=roughness." title=" roughness. "> roughness. </a> </p> <a href="https://publications.waset.org/10010869/comparison-of-two-phase-critical-flow-models-for-estimation-of-leak-flow-rate-through-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010869/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010869/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010869/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010869/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010869/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010869/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010869/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010869/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010869/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010869/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">842</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2244</span> Tidal Flow Patterns Near A Coastal Headland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fu%20E.%20Tang">Fu E. Tang</a>, <a href="https://publications.waset.org/search?q=Daoyi%20Chen"> Daoyi Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental investigations were carried out in the Manchester Tidal flow Facility (MTF) to study the flow patterns in the region around and adjacent to a hypothetical headland in tidal (oscillatory) ambient flow. The Planar laser-induced fluorescence (PLIF) technique was used for visualization, with fluorescent dye released at specific points around the headland perimeter and in its adjacent recirculation zone. The flow patterns can be generalized into the acceleration, stable flow and deceleration stages for each halfcycle, with small variations according to location, which are more distinct for low Keulegan-Carpenter number (KC) cases. Flow patterns in the mixing region are unstable and complex, especially in the recirculation zone. The flow patterns are in agreement with previous visualizations, and support previous results in steady ambient flow. It is suggested that the headland lee could be a viable location for siting of pollutant outfalls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Planar%20laser-induced%20Fluorescence" title="Planar laser-induced Fluorescence">Planar laser-induced Fluorescence</a>, <a href="https://publications.waset.org/search?q=recirculation%0Azone" title=" recirculation zone"> recirculation zone</a>, <a href="https://publications.waset.org/search?q=tidal%20flow" title=" tidal flow"> tidal flow</a>, <a href="https://publications.waset.org/search?q=wake%20flows" title=" wake flows"> wake flows</a> </p> <a href="https://publications.waset.org/2590/tidal-flow-patterns-near-a-coastal-headland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2590/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2590/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2590/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2590/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2590/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2590/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2590/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2590/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2590/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2590/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1645</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2243</span> Use of Heliox during Spontaneous Ventilation: Model Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Martin%20Rozanek">Martin Rozanek</a>, <a href="https://publications.waset.org/search?q=Karel%20Roubik"> Karel Roubik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The study deals with the modelling of the gas flow during heliox therapy. A special model has been developed to study the effect of the helium upon the gas flow in the airways during the spontaneous breathing. Lower density of helium compared with air decreases the Reynolds number and it allows improving the flow during the spontaneous breathing. In the cases, where the flow becomes turbulent while the patient inspires air the flow is still laminar when the patient inspires heliox. The use of heliox decreases the work of breathing and improves ventilation. It allows in some cases to prevent the intubation of the patients.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gas%20flow" title="Gas flow">Gas flow</a>, <a href="https://publications.waset.org/search?q=heliox" title=" heliox"> heliox</a>, <a href="https://publications.waset.org/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/search?q=turbulent%20flow." title=" turbulent flow."> turbulent flow.</a> </p> <a href="https://publications.waset.org/5582/use-of-heliox-during-spontaneous-ventilation-model-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5582/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5582/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5582/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5582/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5582/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5582/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5582/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5582/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5582/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5582/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1502</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2242</span> Experimental Study of the Metal Foam Flow Conditioner for Orifice Plate Flowmeters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Manshoor">B. Manshoor</a>, <a href="https://publications.waset.org/search?q=N.%20Ihsak"> N. Ihsak</a>, <a href="https://publications.waset.org/search?q=Amir%20Khalid"> Amir Khalid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sensitivity of orifice plate metering to disturbed flow (either asymmetric or swirling) is a subject of great concern to flow meter users and manufacturers. The distortions caused by pipe fittings and pipe installations upstream of the orifice plate are major sources of this type of non-standard flows. These distortions can alter the accuracy of metering to an unacceptable degree. In this work, a multi-scale object known as metal foam has been used to generate a predetermined turbulent flow upstream of the orifice plate. The experimental results showed that the combination of an orifice plate and metal foam flow conditioner is broadly insensitive to upstream disturbances. This metal foam demonstrated a good performance in terms of removing swirl and producing a repeatable flow profile within a short distance downstream of the device. The results of using a combination of a metal foam flow conditioner and orifice plate for non-standard flow conditions including swirling flow and asymmetric flow show this package can preserve the accuracy of metering up to the level required in the standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Metal%20foam%20flow%20conditioner" title="Metal foam flow conditioner">Metal foam flow conditioner</a>, <a href="https://publications.waset.org/search?q=flow%20measurement" title=" flow measurement"> flow measurement</a>, <a href="https://publications.waset.org/search?q=orifice%20plate." title=" orifice plate."> orifice plate.</a> </p> <a href="https://publications.waset.org/7657/experimental-study-of-the-metal-foam-flow-conditioner-for-orifice-plate-flowmeters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7657/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7657/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7657/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7657/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7657/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7657/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7657/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7657/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7657/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7657/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2060</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=hypersonic%20flow&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=hypersonic%20flow&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=hypersonic%20flow&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=hypersonic%20flow&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=hypersonic%20flow&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=hypersonic%20flow&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=hypersonic%20flow&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=hypersonic%20flow&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=hypersonic%20flow&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=hypersonic%20flow&page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=hypersonic%20flow&page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=hypersonic%20flow&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>