CINXE.COM
Current Progress on Microbial l-malic Acid Production - Synthetic Biology and Engineering - Full-Text HTML - SCIEPublish
<!DOCTYPE html> <html class="no-js" lang="en"> <head> <meta charset="utf-8" /> <meta http-equiv="x-ua-compatible" content="ie=edge" /> <title>Current Progress on Microbial l-malic Acid Production - Synthetic Biology and Engineering - Full-Text HTML - SCIEPublish</title> <meta name="keywords" content="SCIE Publishing, SCIEPublish, open access, fast publication" /> <meta name="description" content="SCIEPublish is an international open-access journal publishing service provider run by SCIE Publishing Limited, dedicated to supporting and inspiring scientists or institutions/societies who aspire to publish high-quality journals." /> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1.0,maximum-scale=1.0,minimum-scale=1.0"> <meta name="title" content="Current Progress on Microbial l-malic Acid Production"> <link rel="image_src" href="https://www.sciepublish.com/uploads/2024/05/28/171687534826sk.jpg"> <meta name="dc.title" content="Current Progress on Microbial l-malic Acid Production"> <meta name="dc.creator" content="Lu Mou"> <meta name="dc.creator" content="Min Qiu"> <meta name="dc.creator" content="Wankui Jiang"> <meta name="dc.creator" content="Wenming Zhang"> <meta name="dc.creator" content="Fengxue Xin"> <meta name="dc.creator" content="Yujia Jiang"> <meta name="dc.creator" content="Min Jiang"> <meta name="dc.type" content="Review"> <meta name="dc.source" content="Synthetic Biology and Engineering 2024, Vol. 2, Page 10010"> <meta name="dc.date" content="2024-05-24"> <meta name="dc.identifier" content="10.35534/sbe.2024.10010"> <meta name="dc.publisher" content="SCIEPublish"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/4.0/"> <meta name="dc.format" content="application/pdf"> <meta name="dc.language" content="en"> <meta name="dc.description" content="As an important intermediate in the tricarboxylic acid (TCA) cycle, l-malic acid (l-MA) is also one of the 12 important platform bulk chemicals with high added value. Owing to its various applications in food, pharmaceuticals, cosmetics and industry, the global l-MA market size is growing year by year. Over the last few decades, increasing concerns regarding fossil fuels depletion and excessive CO2 emissions have led the global commitment to fostering a green economy and sustainable development. Alternatively, the sustainable microbial fermentation of l-MA has gradually attracted more and more attention. Here, this review summarizes the common l-MA biosynthesis pathways and compares the differences between different chassis microorganisms as well. Moreover, regulation strategies of genetic metabolic engineering and fermentation process to boost the l-MA production are summarized, and the research status of l-MA production from the cheaper substrates is also discussed. Finally, the direction of further exploration of industrialized l-MA biosynthesis is proposed, which provides a theoretical guidance on promoting technological innovation in industrial l-MA production."> <meta name="dc.subject" content="<sc>l</sc>-malic acid"> <meta name="dc.subject" content="Microbial biosynthesis"> <meta name="dc.subject" content="Strain engineering"> <meta name="dc.subject" content="Process optimization"> <meta name="prism.issn" content="2958-9053"> <meta name="prism.publicationName" content="Synthetic Biology and Engineering"> <meta name="prism.publicationDate" content="2024-05-24"> <meta name="prism.volume" content="2"> <meta name="prism.number" content="2"> <meta name="prism.section" content="Review"> <meta name="prism.startingPage" content="10010"> <meta name="citation_issn" content="2958-9053"> <meta name="citation_journal_title" content="Synthetic Biology and Engineering"> <meta name="citation_publisher" content="SCIEPublish"> <meta name="citation_title" content="Current Progress on Microbial l-malic Acid Production"> <meta name="citation_publication_date" content="2024/05"> <meta name="citation_online_date" content="2024/05/24"> <meta name="citation_volume" content="2"> <meta name="citation_issue" content="2"> <meta name="citation_firstpage" content="10010"> <meta name="citation_author" content="Mou, Lu"> <meta name="citation_author" content="Qiu, Min"> <meta name="citation_author" content="Jiang, Wankui"> <meta name="citation_author" content="Zhang, Wenming"> <meta name="citation_author" content="Xin, Fengxue"> <meta name="citation_author" content="Jiang, Yujia"> <meta name="citation_author" content="Jiang, Min"> <meta name="citation_doi" content="10.35534/sbe.2024.10010"> <meta name="citation_abstract_html_url" content="https://www.sciepublish.com/article/pii/192"> <meta name="citation_pdf_url" content="https://www.sciepublish.com/index/article/view_full_text/id/192"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.sciepublish.com/index/article/view_full_text/id/192"> <meta name="fulltext_pdf" content="https://www.sciepublish.com/index/article/view_full_text/id/192"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.sciepublish.com/article/pii/192"> <meta name="citation_fulltext_html_url" content="https://www.sciepublish.com/article/pii/192"> <meta name="fulltext_html" content="https://www.sciepublish.com/article/pii/192"> <meta property="og:site_name" content="SCIEPUBLISH" /> <meta property="og:type" content="Review" /> <meta property="og:url" content="https://www.sciepublish.com/article/pii/192" /> <meta property="og:title" content="Current Progress on Microbial l-malic Acid Production" /> <meta property="og:description" content="As an important intermediate in the tricarboxylic acid (TCA) cycle, l-malic acid (l-MA) is also one of the 12 important platform bulk chemicals with high added value. Owing to its various applications in food, pharmaceuticals, cosmetics and industry, the global l-MA market size is growing year by year. Over the last few decades, increasing concerns regarding fossil fuels depletion and excessive CO2 emissions have led the global commitment to fostering a green economy and sustainable development. Alternatively, the sustainable microbial fermentation of l-MA has gradually attracted more and more attention. Here, this review summarizes the common l-MA biosynthesis pathways and compares the differences between different chassis microorganisms as well. Moreover, regulation strategies of genetic metabolic engineering and fermentation process to boost the l-MA production are summarized, and the research status of l-MA production from the cheaper substrates is also discussed. Finally, the direction of further exploration of industrialized l-MA biosynthesis is proposed, which provides a theoretical guidance on promoting technological innovation in industrial l-MA production." /> <meta property="og:image" content="https://www.sciepublish.com/uploads/2024/05/24/0a0ce41575802a5cc06df312c5616cd7.jpg" /> <meta property="og:image:secure_url" content="https://www.sciepublish.com/uploads/2024/05/24/0a0ce41575802a5cc06df312c5616cd7.jpg" /> <meta name="twitter:site" content="@sciepublish"> <meta name="twitter:image" content="https://www.sciepublish.com/uploads/2024/05/24/0a0ce41575802a5cc06df312c5616cd7.jpg" /> <meta name="twitter:card" content="summary_large_image"> <link rel="shortcut icon" type="image/x-icon" href="/favicon.ico" /> <link rel="stylesheet" href="/static/css/bootstrap.css" /> <link rel="stylesheet" href="/static/font/bootstrap-icons.css"> <link rel="stylesheet" href="/static/css/lightbox.css" /> <link rel="stylesheet" href="/static/css/theme.css?74" /> <link rel="stylesheet" href="/static/css/common.css?90" /> <link rel="stylesheet" href="/static/css/ckeditorStyle.css?2" /> <link rel="stylesheet" href="/static/css/select-mania.min.css" /> <script src="/static/js/jquery-3.7.1.min.js"></script> <script src="/static/js/lightbox.js"></script> <script src="/static/js/bootstrap.bundle.min.js"></script> <script src="/static/js/select-mania.js"></script> <link rel="stylesheet" href="/static/katex/katex.min.css"> <script src="/static/katex/katex.min.js"></script> <script src="/static/katex/contrib/auto-render.min.js"></script> <style> .katex{ font-size: 1.5rem!important; } .tooltip-inner{ /* min-width: 40rem; */ width: auto; max-width: 40rem; padding: 1rem; text-align: left; } .tooltip-inner .html-fig_img, .tooltip-inner .html-figpopup-table { padding: 1.5rem 1.5rem 1rem; background-color: #FFFeFa; border: 1px solid #e9ded8; border-radius: 5px; margin: 1.5rem 0 2rem; } .tooltip-inner .html-figpopup-table{margin-top:1rem;} .tooltip-inner .html-fig_img img, .tooltip-inner .html-figpopup-table img{ width: 100%; } .centered-div { max-width: 60%; position: fixed; top: 50%; left: 50%; transform: translate(-50%, -50%); z-index: 1000; background-color: rgba(255, 255, 255, 1); padding: 20px; border: 1px solid #ccc; box-shadow: 0 2px 5px rgba(0,0,0,0.2); } .topic-collection a{ display: block; font-size: .85rem; line-height: 1.5; } topic-collection h6.article-menu-collapse{ font-weight: 700; } .popover-content { width: 500px; } .popover { max-width:95%; } </style> </head> <body class="header-no-fixed"> <header> <nav class="navbar navbar-expand-lg navbar-light my-body-container"> <div class="navbar-left"> <a href="/" class="uk-navbar-item" alt="Back to the homepage"> <svg xmlns="http://www.w3.org/2000/svg" class="navbar-logo" xml:space="preserve" version="1.0" viewBox="0 0 5.08 1.933"> <path d="M1.021 1.245a.29.29 0 0 1-.211-.054l-.027-.023-.003-.003.056-.066.003.004a.3.3 0 0 0 .043.033.2.2 0 0 0 .128.027l.024-.007.019-.01a.07.07 0 0 0 .022-.032.1.1 0 0 0 0-.036l-.004-.014a.1.1 0 0 0-.016-.02.1.1 0 0 0-.027-.017L.994 1.01.919.98a.3.3 0 0 1-.076-.05.14.14 0 0 1-.034-.067.2.2 0 0 1 0-.06.13.13 0 0 1 .027-.056.2.2 0 0 1 .049-.041A.2.2 0 0 1 .95.683a.3.3 0 0 1 .07-.001.2.2 0 0 1 .06.017.3.3 0 0 1 .075.05l.003.003-.05.061L1.103.81a.2.2 0 0 0-.053-.034.2.2 0 0 0-.063-.013.1.1 0 0 0-.046.008L.925.78a.06.06 0 0 0-.023.047l.001.015.006.012a.1.1 0 0 0 .018.02.1.1 0 0 0 .027.017L.97.899l.016.006.074.032a.3.3 0 0 1 .058.033.14.14 0 0 1 .051.08.2.2 0 0 1 0 .07.15.15 0 0 1-.048.081.2.2 0 0 1-.062.035zm.527-.002a.24.24 0 0 1-.1 0 .23.23 0 0 1-.125-.069.2.2 0 0 1-.051-.089.3.3 0 0 1-.019-.119.4.4 0 0 1 .02-.12.3.3 0 0 1 .052-.09.23.23 0 0 1 .176-.076.3.3 0 0 1 .064.01.3.3 0 0 1 .053.025.2.2 0 0 1 .04.034l.002.003-.052.061L1.605.81A.2.2 0 0 0 1.56.776a.2.2 0 0 0-.037-.012.15.15 0 0 0-.082.013.13.13 0 0 0-.049.039l-.018.029a.2.2 0 0 0-.022.073.4.4 0 0 0 .002.104.2.2 0 0 0 .014.05.2.2 0 0 0 .023.04.14.14 0 0 0 .066.047.15.15 0 0 0 .107-.009l.028-.017.025-.023.003-.004.051.06-.002.003a.3.3 0 0 1-.076.059.2.2 0 0 1-.045.015m.314-.004h-.09V.69h.095v.549zm.485 0h-.331V.69h.328v.08H2.11v.141h.198v.082H2.11v.165h.242v.08zm.215 0h-.09V.69h.169a.4.4 0 0 1 .083.008L2.76.71l.031.016a.13.13 0 0 1 .044.053q.009.015.012.036a.22.22 0 0 1-.012.121l-.018.03a.176.176 0 0 1-.09.057.3.3 0 0 1-.084.011h-.076v.205zm.005-.472v.19h.068a.2.2 0 0 0 .056-.006.1.1 0 0 0 .038-.018.1.1 0 0 0 .022-.031.1.1 0 0 0 .007-.045l-.003-.03a.07.07 0 0 0-.028-.04L2.703.776 2.671.769 2.633.767zm.539.48a.2.2 0 0 1-.067-.003.1.1 0 0 1-.075-.07.3.3 0 0 1-.013-.09V.827h.093v.248a.3.3 0 0 0 .007.055l.008.017.012.012.016.007.02.002a.1.1 0 0 0 .033-.006.1.1 0 0 0 .03-.019.2.2 0 0 0 .03-.032V.826h.093v.413h-.078l-.006-.057a.2.2 0 0 1-.078.057zm.548-.002-.034.003-.03-.003-.029-.01A.2.2 0 0 1 3.51 1.2l-.007.039h-.075V.645h.093q0 .11-.002.219l.01-.008A.2.2 0 0 1 3.59.823a.2.2 0 0 1 .043-.007.2.2 0 0 1 .07.015.15.15 0 0 1 .07.074.2.2 0 0 1 .022.076.4.4 0 0 1 0 .095.3.3 0 0 1-.029.082.2.2 0 0 1-.079.075zm-.07-.077a.1.1 0 0 0 .046-.002.1.1 0 0 0 .043-.032l.015-.028a.2.2 0 0 0 .01-.036.3.3 0 0 0-.006-.114A.1.1 0 0 0 3.68.93.07.07 0 0 0 3.64.9.1.1 0 0 0 3.59.899l-.023.008-.023.015-.023.02v.193a.2.2 0 0 0 .043.027zm.424.08h-.015a.1.1 0 0 1-.051-.013l-.017-.016-.011-.022-.007-.026-.002-.031V.645h.093v.5L4 1.16l.003.004.003.003.008.002h.008l.005-.001h.004l.013.071-.004.002-.009.002zm.22-.01H4.14V.827h.093v.413zm-.026-.48L4.187.76q-.009 0-.016-.002L4.157.753a.05.05 0 0 1-.02-.02.1.1 0 0 1-.008-.027L4.13.69a.05.05 0 0 1 .027-.032L4.17.653a.07.07 0 0 1 .045.005.05.05 0 0 1 .03.048.1.1 0 0 1-.009.028.1.1 0 0 1-.02.019zm.315.488a.25.25 0 0 1-.19-.054l-.004-.003.045-.062.004.003a.3.3 0 0 0 .053.034.13.13 0 0 0 .058.012l.022-.002.016-.005.013-.008.009-.01a.05.05 0 0 0 .007-.025q0-.006-.002-.012l-.005-.01-.008-.009-.011-.008-.028-.014-.016-.006-.017-.007a.4.4 0 0 1-.079-.041.1.1 0 0 1-.028-.034L4.348.964 4.345.939a.12.12 0 0 1 .023-.07.1.1 0 0 1 .038-.033A.2.2 0 0 1 4.46.82a.2.2 0 0 1 .13.022l.037.024.003.003-.045.059-.003-.003A.2.2 0 0 0 4.54.9a.1.1 0 0 0-.065-.008.1.1 0 0 0-.027.012l-.007.01a.04.04 0 0 0-.007.022q0 .006.002.01l.005.01a.1.1 0 0 0 .017.015l.027.013.016.006.016.006.063.028.019.013a.1.1 0 0 1 .029.035l.008.023a.13.13 0 0 1-.008.077.1.1 0 0 1-.03.04.14.14 0 0 1-.05.027zm.307-.007h-.088V.645h.092q0 .115-.002.229a.3.3 0 0 1 .05-.038.2.2 0 0 1 .048-.017.2.2 0 0 1 .068.002.1.1 0 0 1 .057.038q.01.014.018.033A.314.314 0 0 1 5.08.98v.258h-.093V.99L4.985.96 4.98.936 4.97.92 4.96.907 4.943.9a.1.1 0 0 0-.037 0 .1.1 0 0 0-.03.011l-.016.01-.032.03v.288z" /> <path d="M1.844 1.377a.97.97 0 0 1-.878.563A.963.963 0 0 1 0 .974.964.964 0 0 1 .966.007a.96.96 0 0 1 .865.536l-.048.024A.92.92 0 0 0 .966.062a.91.91 0 0 0-.912.912.91.91 0 0 0 .912.912.91.91 0 0 0 .83-.532z" class="logo-circle" /> </svg> </a> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <div class="btn-menu"> <span></span> <span></span> <span></span> </div> </button> <div class="collapse navbar-collapse" id="navbarSupportedContent"> <div class="nav-form-search"> <form class="form-search" method="get" action="/index/search/index.html"> <input class="search-input" type="text" name="search" placeholder="What are you looking for?" autofocus /> <button type="submit">Search</button> </form> </div> <ul class="navbar-nav uk-navbar-nav"> <li class="nav-item "> <a class="nav-link" href="/">Home</a> </li> <li class="nav-item "> <a class="nav-link" href="/About_SCIEPublish">About</a> </li> <li class="nav-item uk-active"> <a class="nav-link" href="/index/journals/index">Journals</a> </li> <li class="nav-item "> <a class="nav-link" href="/news/list">News</a> </li> </ul> <a class="js-navbar-toggle sc-icon-button sc-transition" title="Search" href="#"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-search" viewBox="0 0 16 16"> <path d="M11.742 10.344a6.5 6.5 0 1 0-1.397 1.398h-.001c.03.04.062.078.098.115l3.85 3.85a1 1 0 0 0 1.415-1.414l-3.85-3.85a1.007 1.007 0 0 0-.115-.1zM12 6.5a5.5 5.5 0 1 1-11 0 5.5 5.5 0 0 1 11 0z"/> </svg> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"/> </svg> </a> <a class="uk-button sc-transition" href="/my/submitting">Publish with us</a> <a class="text-login" title="Sign in" href="/index/user/login.html"> Sign in </a> </div> </nav> </header> <section class="breadcrumbs pt-3"> <div class="my-body-container"> <nav aria-label="breadcrumb"> <ol class="breadcrumb p-0 mb-0"> <li class="breadcrumb-item" title="Home"> <a href="/">Home</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="Journals"> <a href="/index/journals/index">Journals</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="sbe"> <a href="/journals/sbe">sbe</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="Volume 2"> <a href="/journals/sbe/roll/2">Volume 2</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item" title="Issue 2"> <a href="/journals/sbe/roll/2/2">Issue 2</a> <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-right ml-1 mr-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z"/> </svg> </li> <li class="breadcrumb-item active" aria-current="page" title='10.35534/sbe.2024.10010'>10.35534/sbe.2024.10010</li> </ol> </nav> </div> </section> <section class="fixed-title"> <div class="my-body-container d-flex align-items-center border-bottom border-dark pt-2 pb-2"> <div class="item-img"> <a class="d-flex align-items-center" href="/journals/sbe"> <div class="cover-img"> <img src="/uploads/2024/05/28/171687534826sk.jpg" alt="Synthetic Biology and Engineering-logo" /> </div> <h6 class="flex-grow-1 pl-2" title="Synthetic Biology and Engineering">Synthetic Biology and Engineering</h6> </a> </div> <h2 class="journals-text" title="Current Progress on Microbial <sc>l</sc>-malic Acid Production">Current Progress on Microbial <sc>l</sc>-malic Acid Production</h2> </div> </section> <section class="page-items mt-3"> <div class="d-flex my-body-container border-dark border-top pt-4 collapse show" id="rightCollapse"> <div class="left-items-260 mr-3"> <div class="left-content d-flex"> <div class="left-content-item"> <div class="item-img"> <a class="d-flex align-items-center" href="/journals/sbe"> <div class="cover-img"> <img src="/uploads/2024/05/28/171687534826sk.jpg" alt="Synthetic Biology and Engineering-logo" /> </div> <h6 class="flex-grow-1 pl-2">Synthetic Biology and Engineering</h6> </a> </div> <div class="btn-bottom"> <a class="sc-btn-submit d-flex align-items-center justify-content-center mt-3" href="/my/submitting/journal/25"> Submit to SBE <svg xmlns="http://www.w3.org/2000/svg" width="12" height="12" fill="currentColor" class="bi bi-chevron-double-right ml-1" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M3.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L9.293 8 3.646 2.354a.5.5 0 0 1 0-.708z"></path> <path fill-rule="evenodd" d="M7.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L13.293 8 7.646 2.354a.5.5 0 0 1 0-.708z"></path> </svg> </a> <a class="sc-cite-modal sc-btn-submit d-flex align-items-center justify-content-center mt-2" href="/index/article/download_article/id/192.html"> <span>Download PDF</span> </a> <!-- Modal --> <div class="sc-cite-modal sc-btn-submit d-flex align-items-center justify-content-center border-0 mt-2" data-toggle="modal" data-target="#citeModal"> Cite This Article </div> </div> <!-- collapse --> <div class="article-menu-collapse d-flex justify-content-between mt-2"> <h6 class="mb-0 d-flex align-items-center">Contents</h6> <div class="btn-collapse pt-2 pb-2 pl-2" data-toggle="collapse" data-target="#articleMenuCollapse" aria-expanded="true" aria-controls="articleMenuCollapse"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-chevron-up" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M7.646 4.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1-.708.708L8 5.707l-5.646 5.647a.5.5 0 0 1-.708-.708l6-6z"/> </svg> </div> </div> <div class="articleMenuCollapse-column p-0" id="articleMenuCollapse"> <div class="menu pt-2"> <div class="list-group" id="article-menu-float"> <a class="list-group-item list-group-item-action" href="#link-introduction">1. Introduction</a> <a class="list-group-item list-group-item-action" href="#link-materials-and-methods">2. The Common Metabolic Pathway and Chassis Microbes for <sc>l</sc>-MA Production</a> <a class="list-group-item list-group-item-action" href="#link-theory-calculation">3. Metabolic Engineering to Boost the <sc>l</sc>-MA Production </a> <a class="list-group-item list-group-item-action" href="#link-results">4. Culture Process Optimization to Increase the Microbial <sc>l</sc>-MA Production</a> <a class="list-group-item list-group-item-action" href="#link-discussion">5. Microbial <sc>l</sc>-MA Production from Cheap Substrate Utilization</a> <a class="list-group-item list-group-item-action" href="#link-conclusions">6. Conclusion and Prospects</a> <a class="list-group-item list-group-item-action" href="#link-author-contributions">Author Contributions</a> <a class="list-group-item list-group-item-action" href="#link-ethics-statement">Ethics Statement</a> <a class="list-group-item list-group-item-action" href="#link-informed-consent-statement">Informed Consent Statement</a> <a class="list-group-item list-group-item-action" href="#link-funding">Funding</a> <a class="list-group-item list-group-item-action" href="#link-declaration-competing-interest">Declaration of competing Interest</a> <a class="list-group-item list-group-item-action" href="#html-references_list">References</a> </div> </div> </div> </div> <span class="btn-out" data-toggle="collapse" data-target="#rightCollapse" aria-expanded="true" aria-controls="rightCollapse"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="currentColor" class="bi bi-chevron-bar-left" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M11.854 3.646a.5.5 0 0 1 0 .708L8.207 8l3.647 3.646a.5.5 0 0 1-.708.708l-4-4a.5.5 0 0 1 0-.708l4-4a.5.5 0 0 1 .708 0zM4.5 1a.5.5 0 0 0-.5.5v13a.5.5 0 0 0 1 0v-13a.5.5 0 0 0-.5-.5z"/> </svg> </span> </div> </div> <div class="blog-detailss-wrap flex-grow-1"> <div class="details__content pb-30"> <div class="articlelei access-tags d-flex justify-content-between"> <p class="mb-0 d-flex align-items-center"> <span class="btn-text classdise mr-1">Review</span> <span class="btn-text textdise">Open Access</span> </p> <div class="share-buttons social-share d-flex align-items-center mb-2" data-initialized="true"> Share This Article: <a href="" class="share-btn social-share-icon twitter-btn icon-twitter d-flex align-items-center justify-content-center" title="Share on Twitter"> <svg t="1713929395475" class="icon" viewBox="0 0 1399 1024" fill="currentColor" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="8742" width="20" height="20"> <path d="M282.021569 119.281213l323.998199 433.216256-326.044203 352.222995h73.379441l285.451142-308.376452 230.636674 308.376452h249.713149l-342.227762-457.583832 303.479459-327.855419h-73.379441l-262.886398 284.008876-212.407111-284.008876h-249.713149z m107.909957 54.051408h114.71879l506.578928 677.328049h-114.718791l-506.578927-677.328049z" p-id="8743"></path> </svg> </a> <a href="" class="share-btn social-share-icon facebook-btn icon-facebook d-flex align-items-center justify-content-center" title="Share on Facebook"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-facebook" viewBox="0 0 16 16"> <path d="M16 8.049c0-4.446-3.582-8.05-8-8.05C3.58 0-.002 3.603-.002 8.05c0 4.017 2.926 7.347 6.75 7.951v-5.625h-2.03V8.05H6.75V6.275c0-2.017 1.195-3.131 3.022-3.131.876 0 1.791.157 1.791.157v1.98h-1.009c-.993 0-1.303.621-1.303 1.258v1.51h2.218l-.354 2.326H9.25V16c3.824-.604 6.75-3.934 6.75-7.951z"/> </svg> </a> <a href="mailto:?subject=Current Progress on Microbial l-malic Acid Production&body=https%3A%2F%2Fwww.sciepublish.com%2Farticle%2Fpii%2F192" class="share-btn social-share-icon email-btn icon-email d-flex align-items-center justify-content-center" id="email-share-btn" title="Share on Email"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-envelope-fill" viewBox="0 0 16 16"> <path d="M.05 3.555A2 2 0 0 1 2 2h12a2 2 0 0 1 1.95 1.555L8 8.414.05 3.555ZM0 4.697v7.104l5.803-3.558L0 4.697ZM6.761 8.83l-6.57 4.027A2 2 0 0 0 2 14h12a2 2 0 0 0 1.808-1.144l-6.57-4.027L8 9.586l-1.239-.757Zm3.436-.586L16 11.801V4.697l-5.803 3.546Z"/> </svg> </a> <a href="" class="share-btn social-share-icon LinkedIn-btn icon-linkedin d-flex align-items-center justify-content-center" id="email-LinkedIn-btn" title="Share on LinkedIn"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-linkedin" viewBox="0 0 16 16"> <path d="M0 1.146C0 .513.526 0 1.175 0h13.65C15.474 0 16 .513 16 1.146v13.708c0 .633-.526 1.146-1.175 1.146H1.175C.526 16 0 15.487 0 14.854V1.146zm4.943 12.248V6.169H2.542v7.225h2.401zm-1.2-8.212c.837 0 1.358-.554 1.358-1.248-.015-.709-.52-1.248-1.342-1.248-.822 0-1.359.54-1.359 1.248 0 .694.521 1.248 1.327 1.248h.016zm4.908 8.212V9.359c0-.216.016-.432.08-.586.173-.431.568-.878 1.232-.878.869 0 1.216.662 1.216 1.634v3.865h2.401V9.25c0-2.22-1.184-3.252-2.764-3.252-1.274 0-1.845.7-2.165 1.193v.025h-.016a5.54 5.54 0 0 1 .016-.025V6.169h-2.4c.03.678 0 7.225 0 7.225h2.4z"/> </svg> </a> <a href="" class="share-btn social-share-icon wechat-btn icon-wechat d-flex align-items-center justify-content-center" id="wechat-share-btn" title="Share on WeChat"> <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-wechat" viewBox="0 0 16 16"> <path d="M11.176 14.429c-2.665 0-4.826-1.8-4.826-4.018 0-2.22 2.159-4.02 4.824-4.02S16 8.191 16 10.411c0 1.21-.65 2.301-1.666 3.036a.324.324 0 0 0-.12.366l.218.81a.616.616 0 0 1 .029.117.166.166 0 0 1-.162.162.177.177 0 0 1-.092-.03l-1.057-.61a.519.519 0 0 0-.256-.074.509.509 0 0 0-.142.021 5.668 5.668 0 0 1-1.576.22ZM9.064 9.542a.647.647 0 1 0 .557-1 .645.645 0 0 0-.646.647.615.615 0 0 0 .09.353Zm3.232.001a.646.646 0 1 0 .546-1 .645.645 0 0 0-.644.644.627.627 0 0 0 .098.356Z"/> <path d="M0 6.826c0 1.455.781 2.765 2.001 3.656a.385.385 0 0 1 .143.439l-.161.6-.1.373a.499.499 0 0 0-.032.14.192.192 0 0 0 .193.193c.039 0 .077-.01.111-.029l1.268-.733a.622.622 0 0 1 .308-.088c.058 0 .116.009.171.025a6.83 6.83 0 0 0 1.625.26 4.45 4.45 0 0 1-.177-1.251c0-2.936 2.785-5.02 5.824-5.02.05 0 .1 0 .15.002C10.587 3.429 8.392 2 5.796 2 2.596 2 0 4.16 0 6.826Zm4.632-1.555a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Zm3.875 0a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Z"/> </svg> </a> </div> </div> <h1 class="mb-2 acquiesce-title">Current Progress on Microbial <sc>l</sc>-malic Acid Production</h1> <div class="affiliation mb-1"> <div class="affiliation_author"> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Lu Mou" target="_blank">Lu Mou</a> <sup>1</sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Min Qiu" target="_blank">Min Qiu</a> <sup>1</sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Wankui Jiang" target="_blank">Wankui Jiang</a> <sup>1</sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Wenming Zhang" target="_blank">Wenming Zhang</a> <sup>1,2</sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Fengxue Xin" target="_blank">Fengxue Xin</a> <sup>1</sup> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Yujia Jiang" target="_blank">Yujia Jiang</a> <sup>1,*</sup> <a href="mailto:jiangyujia@njtech.edu.cn"> <sup><i class="bi bi-envelope-fill"></i></sup> </a> </span> <span class="mr-2"> <a href="https://scholar.google.com/scholar?q=Min Jiang" target="_blank">Min Jiang</a> <sup>1,*</sup> <a href="mailto:bioengine@njtech.edu.cn"> <sup><i class="bi bi-envelope-fill"></i></sup> </a> </span> </div> </div> <div class="d-flex mb-1"> <div class="information-collapse mr-4"> Author Information </div> <!-- <div class="information-collapse articleInformation"> Article Information </div> --> </div> <div class="articledz"> <div class="affiliation_zt"> <div class="information-item affiliation_at collapse pl-2 pr-2 pb-2"> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>1</sup></div> <div class="affiliation_name flex-grow-1"> State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China </div> </div> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>2</sup></div> <div class="affiliation_name flex-grow-1"> Jiangsu Biochemical Chiral Engineering Technology Research Center, Changmao Biochemical Engineering Co., Ltd, Changzhou 213034, China </div> </div> <div class="affiliation d-flex"> <div class="affiliation_sup mr-2"><sup>*</sup></div> <div class="affiliation_name flex-grow-1"> Authors to whom correspondence should be addressed. </div> </div> </div> </div> <div class="d-flex align-items-center"> <div class="mr-2 d-flex align-items-center"><span>Views:</span><b class="ml-2">1085</b></div> <div class="mr-2 d-flex align-items-center"><span>Downloads:</span><b class="ml-2">179</b></div> <a tabindex="0" class="mr-2 align-items-center cursor-pointer" style="display: none;" data-bind="popover1" data-container="body" data-toggle="popover" data-trigger="focus" data-placement="bottom"> <span>Citations:</span> <b class="ml-2">0</b> </a> </div> <div class="information-item pb-3"> <div class="articledoi"> <em>Synthetic Biology and Engineering</em> <b>2024</b>, <em>2</em> (2), 10010; <a href="https://doi.org/10.35534/sbe.2024.10010" target="_blank">https://doi.org/10.35534/sbe.2024.10010</a> </div> <p class="d-flex fal-title mb-0"> <i class="fal fa-calendar-alt"></i> <span class="mr-3">Received: 27 March 2024</span> <span class="mr-3">Accepted: 22 May 2024</span> <span class="mr-3">Published: 24 May 2024</span> </p> </div> <div class="articleneir pull-item d-flex"> <a href="http://creativecommons.org/licenses/by/4.0/" itemprop="license" rel="license" data-license="by" class="pull-left pt-1"> <img src="/style/image/iconby.png" alt="Creative Commons"> </a> <p class="flex-grow-1 ml-2"> © 2024 The authors. This is an open access article under the Creative Commons Attribution 4.0 International License (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/</a>). </p> </div> <div class="meta-info text-break border-top border-dark pt-3 mt-3"> <div class="articleneir abstract"> <span>ABSTRACT:</span> As an important intermediate in the tricarboxylic acid (TCA) cycle, <sc>l</sc>-malic acid (<sc>l</sc>-MA) is also one of the 12 important platform bulk chemicals with high added value. Owing to its various applications in food, pharmaceuticals, cosmetics and industry, the global <sc>l</sc>-MA market size is growing year by year. Over the last few decades, increasing concerns regarding fossil fuels depletion and excessive CO<sub>2</sub> emissions have led the global commitment to fostering a green economy and sustainable development. Alternatively, the sustainable microbial fermentation of <sc>l</sc>-MA has gradually attracted more and more attention. Here, this review summarizes the common <sc>l</sc>-MA biosynthesis pathways and compares the differences between different chassis microorganisms as well. Moreover, regulation strategies of genetic metabolic engineering and fermentation process to boost the <sc>l</sc>-MA production are summarized, and the research status of <sc>l</sc>-MA production from the cheaper substrates is also discussed. Finally, the direction of further exploration of industrialized <sc>l</sc>-MA biosynthesis is proposed, which provides a theoretical guidance on promoting technological innovation in industrial <sc>l</sc>-MA production. </div> <div class="articleneir mt-2 keywords"> <span>Keywords:</span> <sc>l</sc>-malic acid; Microbial biosynthesis; Strain engineering; Process optimization </div> <div class="article-item pt-4"> <h2 class="border-bottom"> <a id="link-introduction" class="anchor-66"></a> 1. Introduction </h2> <div class="link-introduction article-item-text pt-2">Malic acid, also known as 2-hydroxysuccinic acid, is a well-known C4 dicarboxylic acid, which has been widely applied in food, pharmaceuticals, oil, wastewater treatment, metal cleaning, textile finishing etc. Due to the asymmetric carbon atoms in the molecular structure of malic acid, there exist two stereoisomers, namely <sc>l</sc>-malic acid (<sc>l</sc>-MA) and <sc>d</sc>-malic acid (<sc>d</sc>-MA) [<a href='#B1' class='html-bibr' title='1'>1</a>]. However, only the <sc>l</sc>-MA can be metabolized by living cells [<a href='#B1' class='html-bibr' title='1'>1</a>]. Given the significant commercial value of <sc>l</sc>-MA, the United States Department of Energy has recognized it as one of the 12 important bulk chemicals with the highest added value. According to a report by IMARC Group, the global malic acid market size reached $211.7 million in 2022, and is expected to reach $283.7 million by 2028, with a compound annual growth rate of 5.1% between 2023 and 2028. On one hand, natural extraction efficiency of <sc>l</sc>-MA from immature fruits such as hawthorns, apples, and grapes were quite low (only 0.4~0.7%). On the other hand, chemical synthesis process has the disadvantage of using petroleum-based products and requiring high temperatures and pressures, resulting in severe environmental pollution and excessive carbon emissions [<a href='#B1' class='html-bibr' title='1'>1</a>]. Besides, the final products of chemical synthesis are usually a racemic mixture <sc>d,l</sc>-malic acid, needing extra separation and extraction [<a href='#B2' class='html-bibr' title='2'>2</a>]. Alternatively, the microbial synthesis provides an environmentally friendly and cost-effective way to synthesize high-purity <sc>l</sc>-MA. Bacteria, yeasts and filamentous fungi are common chassis for <sc>l</sc>-MA production due to their characteristics. For example, yeasts are competent in low pH fermentation and environmentally friendly production while filamentous fungi can utilize affordable and abundant lignocellulose to synthesize <sc>l</sc>-MA (<a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>). <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure1'><img data-large='/uploads/2024/05/24/0a0ce41575802a5cc06df312c5616cd7.jpg' data-original='/uploads/2024/05/24/0a0ce41575802a5cc06df312c5616cd7.jpg' src='/uploads/2024/05/24/0a0ce41575802a5cc06df312c5616cd7.jpg'><a class='html-expand html-figpopup' href='#Figure1'></a></div></div><div class='html-fig_description'><b><a href='#Figure1' class='html-fig html-figpopup'>Figure 1</a>. </b>Panoramic view of microbial production of <sc>l</sc>-MA.</div></div> To better understand the state-of-art of microbial <sc>l</sc>-MA production, this review will introduce common biosynthesis pathway and chassis microbes for <sc>l</sc>-MA production. What is more, the differences between different chassis microorganisms will also be compared. Besides, metabolic engineering strategies on boosting <sc>l</sc>-MA production, such as reinforcement on reductive tricarboxylic acid (rTCA) cycle synthesis pathway, secretion enhancement, by-product reduction and cofactor regulation will be summarized. Furthermore, fermentation process optimization including pH regulation, fed-batch and two-stage strategy will also be concluded. Moreover, the concern on cheap feedstock utilization will also be discussed to save operating costs. Finally, the direction of further exploration in industrial <sc>l</sc>-MA production will be pointed out. </div> <h2 class="border-bottom"> <a id="link-materials-and-methods" class="anchor-66"></a> 2. The Common Metabolic Pathway and Chassis Microbes for <sc>l</sc>-MA Production </h2> <div class="link-materials-and-methods article-item-text"><i>2.1. Biosynthesis Pathways of <sc>l</sc>-MA</i> Generally, there are three main metabolic pathways for <sc>l</sc>-MA biosynthesis, namely the tricarboxylic acid (TCA) cycle, the glyoxylic acid route, and the rTCA cycle as <a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a> shows. TCA cycle begins with oxaloacetate and acetyl-CoA, then citrate synthase converts the substances into citrate. After multiple oxidation and decarboxylation reactions, <sc>l</sc>-MA was finally formed, accompanied by the release of two carbon dioxide [<a href='#B3' class='html-bibr' title='3'>3</a>]. Thus, a theoretical <sc>l</sc>-MA yield of TCA cycle was 1 mol/mol glucose. Another <sc>l</sc>-MA biosynthesis pathway was glyoxylate shunt discovered by Hans Adolf Krebs in 1954, which is a branch pathway of the TCA cycle that enables microorganisms to utilize acetic acid, ethanol, and other C<sub>2</sub> substances for growth [<a href='#B4' class='html-bibr' title='4'>4</a>]. Since cyclic glyoxylate shunt completely synthesizes <sc>l</sc>-MA from acetyl-CoA, its theoretical yield was also 1 mol/mol glucose. Except the two mentioned-above <sc>l</sc>-MA biosynthesis pathway, another pathway that achieves a theoretical conversion of 2 mol <sc>l</sc>-MA/mol glucose by fixing CO<sub>2</sub> during reaction, namely rTCA cycle. According to a <sup>13</sup>C NMR analysis on the typical <sc>l</sc>-MA producer <i>Aspergillus flavus</i>, it has been confirmed that rTCA pathway was just a simple two-step reaction comprised of pyruvate-oxaloacetate-malate. Specifically, pyruvate carboxylase (<i>pyc</i>) and malate dehydrogenase (<i>mdh</i>) are the two critical enzymes, <i>pyc</i> realized the carboxylation of pyruvate to oxaloacetate, then reduction of oxaloacetate to malate was accomplished under <i>mdh</i> catalysis [<a href='#B2' class='html-bibr' title='2'>2</a>,<a href='#B5' class='html-bibr' title='5'>5</a>]. Especially, this efficient synthesis pathway is located in the cytoplasm, <sc>l</sc>-MA can be exported into the extracellular more easily than the TCA pathway, which was located in mitochondria. Hence, the rTCA pathway becomes a popular pathway introduced into cell factories for the efficient <sc>l</sc>-MA production. <div class='html-fig-wrap'><div class='html-fig_img'><div class='html-figpopup html-figpopup-link' href='#Figure2'><img data-large='/uploads/2024/05/24/57a1ceb82081d817e6ebcf30cea4a5e5.jpg' data-original='/uploads/2024/05/24/57a1ceb82081d817e6ebcf30cea4a5e5.jpg' src='/uploads/2024/05/24/57a1ceb82081d817e6ebcf30cea4a5e5.jpg'><a class='html-expand html-figpopup' href='#Figure2'></a></div></div><div class='html-fig_description'><b><a href='#Figure2' class='html-fig html-figpopup'>Figure 2</a>. </b>Microbial biosynthetic pathways of <sc>l</sc>-MA.</div></div> <i>2.2. Typical <sc>l</sc>-MA Producing Microbial Chassis</i> As reported, although there exist several fungi and yeasts as natural <sc>l</sc>-MA producers, the performances of these wild types are far from the requirements of industrial production scale. In the meantime, selecting an appropriate starting chassis is the prerequisite to obtain a high-producing strain. Hence, this section describes unique properties of different microorganisms and discusses advantages and disadvantages of the commonly used hosts, providing the references on the efficient <sc>l</sc>-MA production. 2.2.1. Bacteria Bacterial <sc>l</sc>-MA production primarily depended on <i>Escherichia</i> and <i>Bacillus</i> owing to their advantage of clear genetic background, facile genetic manipulation and rapid metabolic rates [<a href='#B6' class='html-bibr' title='6'>6</a>]. However, due to the limited <sc>l</sc>-MA producing capability, genetic engineering is required. As reported, overexpressing phosphoenolpyruvate carboxykinase (<i>pckA</i>) which mediates the conversion of phosphoenolpyruvate into oxaloacetate can increase oxaloacetate accumulation, contributing to the efficient organic acid production. The strategy also works for the microbial synthesis of <sc>l</sc>-MA. Soo et al. found that overexpressing gene <i>pckA</i> derived from <i>Mannheimia succiniciproducens</i> in <i>E. coli</i> produced 9.25 g/L of <sc>l</sc>-MA after 12 h in a 5-L bioreactor. Of course, the appropriate source of <i>pckA</i> is also important, and another engineered <i>E. coli</i> which overexpressed native <i>pckA</i> only produced 1.42 g/L <sc>l</sc>-MA [<a href='#B7' class='html-bibr' title='7'>7</a>]. To further improve the <sc>l</sc>-MA production, <i>mdh</i> and <i>pck</i> were co-overexpressed in <i>E. coli</i> BA040 and 13.14 g/L of <sc>l</sc>-MA with a yield of 0.73 g/g was produced, which obtained an increase of 199.3% and 143.3% than that of the parent one, respectively. What is more, its final <sc>l</sc>-MA concentration achieved 28.50 g/L with a yield of 0.69 g/g through a scale-up fermentation in 5-L fermentor [<a href='#B8' class='html-bibr' title='8'>8</a>]. 2.2.2. Yeasts Compared to bacteria, several kinds of yeasts are the natural <sc>l</sc>-MA producers, such as <i>Zygosaccharomyces rouxii</i>, however the amount of <sc>l</sc>-MA accumulation was still far from the industrial requirements [<a href='#B2' class='html-bibr' title='2'>2</a>]. Picking up a suitable synthesis pathway is important to further improve the <sc>l</sc>-MA production, and rTCA pathway was the most selected one. For instance, through simultaneously overexpressing <i>pyc2</i> and <i>mdh3</i> in <i>Saccharomyces cerevisiae</i>, the final <sc>l</sc>-MA production was improved to 59 g/L with a productivity of 0.18 g/L/h in a 500-mL flask [<a href='#B9' class='html-bibr' title='9'>9</a>]. Besides, high acid tolerance of yeasts was a prominent advantage for simplifying downstream recycle process, reducing the overall cost and environmental pollution [<a href='#B10' class='html-bibr' title='10'>10</a>,<a href='#B11' class='html-bibr' title='11'>11</a>]. For example, Sun et al. continuously sub-cultured <i>S. cerevisiae</i> under extremely low pH (decreased to pH 2.3) for 1710 generations. After a series of metabolic pathways modifications, the mutant could finally realize 232.9 g/L of <sc>l</sc>-MA titer with a productivity of 1.62 g/L/h a 3-L fermentor at 144 h without any neutralizer addition [<a href='#B12' class='html-bibr' title='12'>12</a>]. 2.2.3. Filamentous Fungi Compared to the bacteria and yeasts, fungi are a kind of natural <sc>l</sc>-MA producers, which have a quite high-producing ability. For instance, a typical <sc>l</sc>-MA producing fungus is <i>A. flavus</i>, whose titer of <sc>l</sc>-MA reached 113 g/L with a productivity of 0.59 g/L/h after fermentation condition optimization in a 16-L fermentor [<a href='#B13' class='html-bibr' title='13'>13</a>]. However, it was found that <i>A. flavus</i> produced carcinogen aflatoxin during the fermentation process, which is harmful to human health and unsuitable for food-grade <sc>l</sc>-MA production. Hence, other lower <sc>l</sc>-MA producing capacity but safer fungi were selected as the starting chassis, such as <i>A. oryzae</i>. To improve its <sc>l</sc>-MA productivity, native <i>pyc</i> and <i>mdh</i> in <i>A. oryzae</i> NRRL 3488 were overexpressed, improving the <sc>l</sc>-MA titer from 26.1 g/L to 42.3 g/L with a 28.3% increase [<a href='#B14' class='html-bibr' title='14'>14</a>]. Then, after going through further genetic modifications, <i>A. oryzae</i> NRRL 3488 produced 165 g/L <sc>l</sc>-MA with a productivity of 1.38 g/L/h in 3-L fed-batch culture, achieving a competitive <sc>l</sc>-MA productivity [<a href='#B14' class='html-bibr' title='14'>14</a>]. Apart from the advantage of containing native <sc>l</sc>-MA biosynthetic pathways in some fungal species, fungi have another striking trait of degrading and utilizing cheap substrates. For instance, as an excellent natural lignocellulose degrader, <i>Myceliophthora thermophila</i> produced 181 g/L <sc>l</sc>-MA from Avicel in a 5-L fed-batch fermentor through co-overexpression of malate transporter (<i>mae</i>) and <i>pyc</i> from <i>A. oryzae</i> [<a href='#B15' class='html-bibr' title='15'>15</a>]. </div> <h2 class="border-bottom"> <a id="link-theory-calculation" class="anchor-66"></a> 3. Metabolic Engineering to Boost the <sc>l</sc>-MA Production </h2> <div class="link-theory-calculation article-item-text"><i>3.1. Reinforcement on <sc>l</sc>-MA rTCA Synthesis Pathway</i> As described above, since rTCA pathway is the most selected one for microbial <sc>l</sc>-MA biosynthesis owing to its high theoretical yield. Hence, picking up appropriate sources for <i>pyc</i> and <i>mdh</i> is a prerequisite to obtain <sc>l</sc>-MA hyper-producing strain. Xi et al. combinatorically expressed two source-derived <i>pyc</i> (<i>Pichia kudriavzevii</i> and <i>A. oryzae</i>) and five source-derived cytoplasmic <i>mdh</i> (<i>P. kudriavzevii</i>, <i>Z. rouxii</i>, <i>Corynebacterium glutamicum</i>, <i>S. cerevisiae</i> and <i>A. oryzae</i>) in <i>P. kudriavzevii</i>. And among these ten generating strains, MA006-10 whose <i>pyc</i> and <i>mdh</i> from <i>A. oryzae</i> produced the highest <sc>l</sc>-MA titer of 43.8 g/L in 250-mL shake [<a href='#B3' class='html-bibr' title='3'>3</a>]. Apart from screening optimal gene sources, selecting proper isozyme also count a lot. For example, cytoplasmic MDH2 was prone to be inactivated by glucose catabolism, while isozyme MDH3 which was derived from the peroxisome has overcome this (MDH3ΔSKL). Hence, overexpressed MDH3ΔSKL in <i>S. cerevisiae</i> has a higher MDH activity, achieving 4.2 g/L <sc>l</sc>-MA titer with a 3.6-fold increase [<a href='#B12' class='html-bibr' title='12'>12</a>]. Apart from exploring malate dehydrogenase with higher activity, inactivation enzymes which is harmful to it also counts. For example, glucose-induced degradation defective (GID) complex facilitated the degradation of MDH2, which is detrimental to <sc>l</sc>-MA synthesis. And the missense mutation in GID4 subunit in <i>S. cerevisiae</i> resulted in the inactivation of GID complex, contributing to a 14.2-fold increase in <sc>l</sc>-MA production [<a href='#B16' class='html-bibr' title='16'>16</a>]. <i>3.2. Secretion Enhancement </i> In spite of introducing pivotal genes to promote <sc>l</sc>-MA generation, strengthening the cytoplasmic export of <sc>l</sc>-MA into the external by overexpressing transporter genes also have a significant effect on <sc>l</sc>-MA productivity. For example, by introducing a malate transporter gene <i>SpMAE1</i> derived from <i>Schizosaccharomyces pombe</i> to an acid-tolerant yeast <i>P. kudriavzevii</i>, the <sc>l</sc>-MA titer was improved to 43.8 g/L from below 3 g/L in 250-mL flask [<a href='#B3' class='html-bibr' title='3'>3</a>]. Similarly, Sun et al. verified that a <i>SpMae</i> variant enhanced the export capacity of <sc>l</sc>-MA successfully, contributing to 59.9 g/L <sc>l</sc>-MA with a 25% increase and a reduction of fermentation time by 72 h in <i>S. cerevisiae</i> [<a href='#B12' class='html-bibr' title='12'>12</a>]. Apart from affecting <sc>l</sc>-MA production in yeasts, introduction of carboxylic acid transporters also works in fungi. For instance, overexpressing the native C4-dicarboxylic acid transporter in <i>A. oryzae</i> NRRL 3488 improved <sc>l</sc>-MA concentrations to 60 g/L, roughly two-fold of that of wild-type (27 g/L) after 72 h [<a href='#B5' class='html-bibr' title='5'>5</a>]. Moreover, simultaneous overexpression of <i>A. oryzae</i>-derived C4-dicarboxylate transporter gene and <i>S. pombe</i>-derived <sc>l</sc>-MA permease gene improved the <sc>l</sc>-MA titer of <i>A. oryzae</i> from 58.5 g/L to 89.5 g/L [<a href='#B14' class='html-bibr' title='14'>14</a>]. <i>3.3. By-products Reduction</i> For efficient <sc>l</sc>-MA production, enhancing carbon flux to target products is not enough, it is also requisite to suppress the shunt of the by-product formation to reduce competition on carbon metabolic flow. Besides, by-products mixture brought out more difficulty in downstream separation and extraction. As reported, the most accumulated by-product during <sc>l</sc>-MA biosynthesis are fumaric acid, succinic acid, lactic acid, formic acid, citric acid as well as acetic acid [<a href='#B2' class='html-bibr' title='2'>2</a>]. Specifically, gene <i>fumB</i> (coding fumarase), <i>frdABCD</i> (coding fumarate reductase), <i>ldhA</i> (coding lactate dehydrogenase), <i>pflB</i> (coding pyruvate formate-lyase) and <i>poxB</i> (coding pyruvate oxidase) was respectively related to fumaric acid, succinic acid, lactic acid, formic acid and acetic acid biosynthesis. Thus, destruction of these by-product generating pathway may boost the <sc>l</sc>-MA production. For example, Dong et al. sequentially knocked out <i>frdBC</i>, <i>fumB</i> and <i>fumAC</i> in <i>E. coli</i> F0511 in order to inhibit the conversion of <sc>l</sc>-MA to succinate, resulting in succinate accumulation was decreased by 64.9%, 76.9%, and 91.5%, respectively compared to the parent one. Accordingly, the highest <sc>l</sc>-MA titer was increased up to 7.78 g/L [<a href='#B17' class='html-bibr' title='17'>17</a>]. <i>3.4. Cofactor Regulation </i> In addition to the strategies mentioned above, cofactor regulation could be considered as another working strategy on <sc>l</sc>-MA production improvement. For example, introducing soluble pyridine nucleotide transhydrogenase <i>SthA</i> derived from <i>E. coli</i> (EcSthA) into engineered <i>P. kudriavzevii</i> successfully improved <sc>l</sc>-MA production to 38.3 g/L in 250-mL flask. The underlying mechanism was that EcSthA provided adequate cytosolic NADH, which is important to activate malate dehydrogenase and the by-product pyruvic acid accumulation was decreased to 2.9 g/L from 7.9 g/L at the same time [<a href='#B3' class='html-bibr' title='3'>3</a>]. Similarly, overexpressing of NADH oxidase LlNOX from <i>Lactobacillus lactis</i> leads to a 36.7% decrease on succinic acid unexpectedly [<a href='#B18' class='html-bibr' title='18'>18</a>]. Aside from NADH content regulation, cofactor NADPH also has an effect on <sc>l</sc>-MA improvement. For instance, Dong et al. introduced gene <i>pos5</i> coding NADH kinase into <i>E. coli</i> W3110 to provide more NADPH, and this engineered <i>E. coli</i> W3110 produced 21.65 g/L <sc>l</sc>-MA with a yield of 0.36 g/g in a 5-L bioreactor with a 183.4% increase [<a href='#B17' class='html-bibr' title='17'>17</a>]. </div> <h2 class="border-bottom"> <a id="link-results" class="anchor-66"></a> 4. Culture Process Optimization to Increase the Microbial <sc>l</sc>-MA Production </h2> <div class="link-results article-item-text"><i>4.1. pH Regulation</i> It is well-known that fermentation conditions play key roles in <sc>l</sc>-MA production, especially pH. Generally, near-neutral pH (6.0–6.5) was considered as optimal pH for effective <sc>l</sc>-MA production, no matter for bacteria, yeasts and fungi [<a href='#B3' class='html-bibr' title='3'>3</a>,<a href='#B9' class='html-bibr' title='9'>9</a>]. However, the medium pH decreases markedly due to the overproduction of acidic products, which severely inhibits the metabolic activity and the production of cells [<a href='#B12' class='html-bibr' title='12'>12</a>]. Zambanini et al. found that dissolved <sc>l</sc>-MA in the medium does cause a product inhibition as soon as the concentration reached 100 g/L and addition of neutralizing agent to the broth precipitated out the <sc>l</sc>-MA into carbonate form, greatly alleviating product inhibition and toxicity on strain [<a href='#B19' class='html-bibr' title='19'>19</a>]. And among various kinds of neutralizers, CaCO<sub>3</sub> is the most used one. A study has proved that <sc>l</sc>-MA titer reached 129 g/L under the CaCO<sub>3</sub>-buffered system while the titer just reached 4.0 g/L in MES-buffered system [<a href='#B20' class='html-bibr' title='20'>20</a>]. The reason is that CaCO<sub>3</sub> not only has the ability of maintaining fermentation broth at appropriate pH, but also supplies the CO<sub>2</sub> required for the <sc>l</sc>-MA production. For instance, enhanced <sc>l</sc>-MA titer of 195 g/L and productivity of 0.74 g/L/h was achieved in <i>Ustilago trichophora</i> TZ1 in a 2.5-L bioreactor with CaCO<sub>3</sub> buffer system, while the titer and productivity of the initial one was 142 g/L and 0.54 g/L/h, respectively [<a href='#B20' class='html-bibr' title='20'>20</a>]. What is more, the addition amount of neutralizer also accounts. For example, a modified yeast <i>P. kudriavzevii</i> produced only 53.2 g/L <sc>l</sc>-MA with 20 g/L CaCO<sub>3</sub> addition, whereas 199.4 g/L of <sc>l</sc>-MA with a yield of 0.94 g/g was achieved in a 3-L fermentor when CaCO<sub>3</sub> neutralizer increased to 70 g/L [<a href='#B3' class='html-bibr' title='3'>3</a>]. <i>4.2. Fed-batch Strategy</i> Another major limitation of organic acid production during fermentation is the substrate inhibition, especially when using glucose as the substrate. Hence, fed-batch strategy is a commonly adopted method. For example, the maximum <sc>l</sc>-MA titer reached 165 g/L at 120 h in a 3-L fed-batch fermentor by an engineered <i>A. oryzae</i> strain, which was increased by 17.9% and 13.1% compared with that in 250-mL shake flasks and in batch culture, respectively [<a href='#B14' class='html-bibr' title='14'>14</a>]. Similarly, an engineered <i>Trichoderma reesei</i> produced 220.5 g/L <sc>l</sc>-MA with the productivity of 1.15 g/L/h in a 5-L fed-batch culture while only produced 105 g/L <sc>l</sc>-MA in 250-mL flask culture [<a href='#B21' class='html-bibr' title='21'>21</a>]. <i>4.3. Two-stage Regulation Strategy</i> The two-stage regulation strategy was another commonly used strategy to maintain a balance between microbial growth and metabolite formation, bringing in higher target titer. The underlying mechanism of two-stage strategy is that aerobic phase supported growth of the strain, while anaerobic phase was designed to minimize the carbon flux to biomass while maximize the carbon flow to the target products. For example, Zhang et al. adapted a two-stage strategy during <sc>l</sc>-MA fermentation by <i>E. coli</i>, namely cells grown aerobically (1.0 vvm air) for 16 h and then shifted to anaerobic conditions for <sc>l</sc>-MA production (72 h). With this approach, 33.9 g/L <sc>l</sc>-MA was produced with a yield of 1.42 mol/mol glucose in 3-L bioreactor, higher than 21.9 g/L of <sc>l</sc>-MA without two-stage regulation [<a href='#B22' class='html-bibr' title='22'>22</a>]. Similarly, Jiang et al. conducted a dual-phase fermentation process of the recombinant <i>E. coli</i> BA063 for higher <sc>l</sc>-MA titer. Specifically, aerobic culture was finished when DCW reached around 11 g/L, then shifted into anaerobic phase by sparging CO<sub>2</sub>. Finally, <sc>l</sc>-MA concentration of this engineered <i>E. coli</i> reached 28.50 g/L with a yield of 0.69 g/g within 67 h in a 5-L fermentor [<a href='#B8' class='html-bibr' title='8'>8</a>]. Besides, anaerobic condition also had an effect on ATP level and intracellular NAD(H) pool enhancement, resulting in <sc>l</sc>-MA yield increase. </div> <h2 class="border-bottom"> <a id="link-discussion" class="anchor-66"></a> 5. Microbial <sc>l</sc>-MA Production from Cheap Substrate Utilization </h2> <div class="link-discussion article-item-text"><i>5.1. Utilization of Glycerol or Methanol as the Feedback </i> From the above sections, it can be deduced that glucose is the most widely used fermentable substrates in microbial <sc>l</sc>-MA production cases. However, to further meet the industrial interests, cheaper carbon sources need exploring. One of potential carbon sources is crude glycerol, a major by-product accounting for approximately 10% of the total volume of produced biodiesel [<a href='#B23' class='html-bibr' title='23'>23</a>]. To make use of this kind of feedstock for <sc>l</sc>-MA production, Zambanini et al. obtained the <i>U. trichophora</i> RK089 which could synthesize <sc>l</sc>-MA through glycerol assimilation after screening 74 <i>Ustilago</i> strains [<a href='#B19' class='html-bibr' title='19'>19</a>]. And further adaptive laboratory evolution (ALE) improved glycerol intake and <sc>l</sc>-MA synthesis efficiency, the growth and production rate of <i>U. trichophora</i> TZ1 reached 0.26 g/L/h and 3.5 g/L/h, which were increased by 2.5- and 6.6-fold, respectively after domestication. Along with further medium optimization, the final titer of <sc>l</sc>-MA reached 196 g/L in 500-mL flask [<a href='#B20' class='html-bibr' title='20'>20</a>]. Apart from crude glycerol, methanol is another promising feedstock owing to its low price, abundance, energy richness and renewability [<a href='#B24' class='html-bibr' title='24'>24</a>]. Similar to the strategy above-mentioned, <i>A. niger</i> MTCC 281 was sub-cultured adaptively in the medium containing methanol (1–5%) and <sc>l</sc>-MA (40–80 g/L) for 22 weeks. Finally, with enhanced stress tolerance, the mutant <i>A. niger</i> MTCC produced 62.54 g/L of <sc>l</sc>-MA after 192 h, 4.45-fold higher than the control strain MTCC 281 [<a href='#B25' class='html-bibr' title='25'>25</a>]. <i>5.2. Utilization of Lignocellulose as the Feedback </i> Lignocellulose is a kind of abundant and renewable resource, but the complex structure hinders its utilization [<a href='#B26' class='html-bibr' title='26'>26</a>]. Thus, the pretreatment on lignocellulosic substrates is commonly required [<a href='#B27' class='html-bibr' title='27'>27</a>,<a href='#B28' class='html-bibr' title='28'>28</a>]. However, as one of the major components, the poor utilization capability of xylose usually hinders the efficient total component sugars utilization of lignocellulose hydrolysate [<a href='#B29' class='html-bibr' title='29'>29</a>]. For example, <i>S. cerevisiae</i> CTMAE produced 70 mg <sc>l</sc>-MA/g xylose under 10 g/L xylose condition after the XR-XDH assimilation pathway import in 125-mL flask [<a href='#B30' class='html-bibr' title='30'>30</a>]. Furthermore, by eliminating the by-product pathway, enhancing the <sc>l</sc>-MA synthesis pathway, transport function and a fed-batch fermentation, <sc>l</sc>-MA titer of <i>S. cerevisiae</i> CTMAE reached 61.2 g/L with a yield of 0.23 g/g xylose in a 3-L bioreactor [<a href='#B31' class='html-bibr' title='31'>31</a>]. However, a problem worth noting is that lignocellulose hydrolysate usually contains quite amounts of inhibitors, such as furans, weak acids and phenolic aldehydes, having a negative effect on cell growth and product generation. Alternatively, some fungi with the strong cellulose degradation ability, becoming the promising chassis microorganisms. For example, after expressing an exogenous <i>pyc</i> derived from <i>C. glutamicum</i> ATCC 13032, 62.76 g/L of <sc>l</sc>-MA was directly produced from 100 g/L cellulose by a modified strain <i>Thermobifida fusca</i> muC in 3-L fermentor. What is more, it even could directly degrade milled corn stover and obtain 21.47 g/L of <sc>l</sc>-MA [<a href='#B32' class='html-bibr' title='32'>32</a>]. </div> <h2 class="border-bottom"> <a id="link-conclusions" class="anchor-66"></a> 6. Conclusion and Prospects </h2> <div class="link-conclusions article-item-text">With the expanding demand for <sc>l</sc>-MA, more and more attentions were paid to realize biological production for its environmental protection. And selecting an appropriate starting chassis is the fundamental step. Based on this review, it can be deduced that bacteria have a relatively low <sc>l</sc>-MA titer than that of the yeasts and fungi as <a href='#Table1' class='html-table html-tablepopup'>Table 1</a> shows. What is more, yeasts have an obvious advantage of significant acid-tolerance capacity, contributing to reduced neutralizer addition and lower investment cost. When it comes to fungi, which has a native ability of utilizing cheap lignocellulose feedbacks, saving overall cost as well. Collectively, yeasts and fungi chassis exhibit superior performance in <sc>l</sc>-MA production compared to bacterial ones. Besides, it is also worth noting that filamentous fungal has another unique feature, namely its specific morphological is closely correlated with target production [<a href='#B14' class='html-bibr' title='14'>14</a>,<a href='#B33' class='html-bibr' title='33'>33</a>]. Hence, making full use of this trait is also a direction for <sc>l</sc>-MA production enhancement. For example, Chen et al. realized 142.5 g/L <sc>l</sc>-MA of <i>A. oryzae</i> in a 7.5-L fermentor, much higher than 105.5 g/L of the origin one through overexpression of gene <i>cdc14</i> (cell division cycle 14) with three copies [<a href='#B33' class='html-bibr' title='33'>33</a>]. Similarly, deletion of <i>gul1</i> which encodes a putative mRNA-binding protein related to hyphal morphology in <i>T. reesei</i> boosting the <sc>l</sc>-MA production reached 235.8 g/L from 170 g/L in 5-L fermentor [<a href='#B34' class='html-bibr' title='34'>34</a>]. Apart from breeding high-producing chassis through metabolic engineering, there still exist another three problems as for <sc>l</sc>-MA microbial fermentation process. One is a plenty of neutralizers should be added to maintain the neutral pH, supporting microorganism growth and organic acid generation in its carboxylate form. Consequently, inorganic acids sulfuric or hydrochloric acid was added to release carboxylic acids form, which bring the challenges for the downstream extraction process, such as the increased environmental pollution and overall production costs. Hence, realizing reduction on neutralizers usage is a main requirement especially when it comes to industrial production. And ALE is a promising strategy to breed acid-tolerant strains, making for neutralizers decrease. Besides, further genetic modifications could focus on membrane engineering to enhance microbial resistance to stress. The other problem need solving is the difficulty in downstream separation and extraction process. As reported, the emerging innovation extraction techniques, namely in-situ product recovery (ISPR) system by trioctylamine in 1-octanol successfully improved <sc>l</sc>-MA titer of <i>A. niger</i> PJR1 to 131.48 g/L from 115.67 g/L through fed-batch extractive fermentation [<a href='#B35' class='html-bibr' title='35'>35</a>]. This approach decreases the adverse effects of stress caused by low pH and high <sc>l</sc>-MA concentrations on the physiological traits of the producing strain and simplified downstream process. Last but not least, the costs of substrates should be reduced. Although the lignocellulose hydrolysate is considered as a promising substrate, the inhibitors hinder the cell growth and the final <sc>l</sc>-MA production. Hence, approaches towards elimination of inhibitors should be developed. As reported, detoxification treatment is a promising strategy [<a href='#B32' class='html-bibr' title='32'>32</a>]. Besides, ALE to improve the strain tolerance, genetic modifications on resistance ability enhancement both can be considered as promising strategies to overcome the inhibitor problem. Collectively, to further promote <sc>l</sc>-MA industrial production scale, ideal <sc>l</sc>-MA cell factories with high productivity and strong resistance ability need breeding through integrating disciplines. Furthermore, in conjunction with innovative separation and extraction techniques downstream process, the cost will be further optimized. <div class='html-fig-wrap'><div class='html-table_wrap_discription'><b><a href='#Table1' class='html-table html-tablepopup'>Table 1</a>. </b>A summary on typical chassis for <sc>l</sc>-malic acid production.<div class='html-figpopup-table html-figpopup-link'><img data-large='/uploads/2024/05/24/9a019cf1b771084ef249d5aa329c637b.jpg' data-original='/uploads/2024/05/24/9a019cf1b771084ef249d5aa329c637b.jpg' src='/uploads/2024/05/24/9a019cf1b771084ef249d5aa329c637b.jpg'><a class='html-expand html-tablepopup' href='#Table1'></a></div></div></div> </div> <div class="link-supplementary-materials article-item-text"></div> <div class="link-appendix article-item-text"></div> <div class="link-appendix-b article-item-text"></div> <div class="link-acknowledgments article-item-text"></div> <h2 class="border-bottom"> <a id="link-author-contributions" class="anchor-66"></a> Author Contributions </h2> <div class="link-author-contributions article-item-text">Conceptualization, M.J. and Y.J.; Validation, W.J., W.Z., and F.X.; Writing—Original Draft Preparation, L.M.; Writing—Review & Editing, L.M. and M.Q.; Supervision, Y.J.; Project Administration, M.J.</div> <h2 class="border-bottom"> <a id="link-ethics-statement" class="anchor-66"></a> Ethics Statement </h2> <div class="link-ethics-statement article-item-text">Not applicable.</div> <h2 class="border-bottom"> <a id="link-informed-consent-statement" class="anchor-66"></a> Informed Consent Statement </h2> <div class="link-informed-consent-statement article-item-text">Not applicable.</div> <h2 class="border-bottom"> <a id="link-funding" class="anchor-66"></a> Funding </h2> <div class="link-funding article-item-text">This research was funded by National Key R & D Program of China (2022YFC3401301), Shandong Taishan Industrial Experts Program (202306155), Open Funding Project of Key Laboratory for Crop and Animal Integrated Farming and State Key Laboratory of Materials-Oriented Chemical Engineering (No. KL-MCE-23A10), China Postdoctoral Science Foundation (No. 2023M740370). </div> <h2 class="border-bottom"> <a id="link-declaration-competing-interest" class="anchor-66"></a> Declaration of competing Interest </h2> <div class="link-declaration-competing-interest article-item-text">The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</div> <h2 class="border-bottom"> <a id="html-references_list" class="anchor-66"></a> References </h2> <div class="references_zt"> <div class="references_at"> <div class="references html-x" id='B1'> <div class="references_sup">1.</div> <div class="references_name"> Wu N, Zhang JH, Chen YR, Xu Q, Song P, Li Y, et al. Recent advances in microbial production of L-malic acid. <i> Appl. Microb. Biotechnol. </i><b> 2022</b>,<i> 106,</i> 7973–7992. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Recent advances in microbial production of L-malic acid.&nbsp;&publication_year=2022&author=Wu N&author=Zhang JH&author=Chen YR&author=Xu Q&author=Song P&author=Li Y&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B2'> <div class="references_sup">2.</div> <div class="references_name"> Xi Y, Fan F, Zhang X. Microbial l-malic acid production: History, current progress, and perspectives. <i> Green Carbon. </i><b> 2023</b>,<i> 1,</i> 118–132. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Microbial l-malic acid production: History, current progress, and perspectives.&nbsp;&publication_year=2023&author=Xi Y&author=Fan F&author=Zhang X." target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B3'> <div class="references_sup">3.</div> <div class="references_name"> Xi Y, Xu H, Zhan T, Qin Y, Fan F, Zhang X. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH. <i> Metab. Eng. </i><b> 2023</b>,<i> 75,</i> 170–180. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH.&nbsp;&publication_year=2023&author=Xi Y&author=Xu H&author=Zhan T&author=Qin Y&author=Fan F&author=Zhang X. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B4'> <div class="references_sup">4.</div> <div class="references_name"> Kornberg HL, Krebs HA. Synthesis of Cell Constituents from C2-Units by a Modified Tricarboxylic Acid Cycle. <i> Nature </i><b> 1957</b>,<i> 179,</i> 988–991. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Synthesis of Cell Constituents from C2-Units by a Modified Tricarboxylic Acid Cycle.&nbsp;&publication_year=1957&author=Kornberg HL&author=Krebs HA. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B5'> <div class="references_sup">5.</div> <div class="references_name"> Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, et al. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid. <i> Appl. Microb. Biotechnol. </i><b> 2013</b>,<i> 97,</i> 8903–8912. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid.&nbsp;&publication_year=2013&author=Brown SH&author=Bashkirova L&author=Berka R&author=Chandler T&author=Doty T&author=McCall K&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B6'> <div class="references_sup">6.</div> <div class="references_name"> Yang D, Prabowo CPS, Eun H, Park SY, Cho IJ, Jiao S, et al. Escherichia coli as a platform microbial host for systems metabolic engineering. <i> Microb. Cell Fact. Book </i><b> 2021</b>,<i> 65,</i> 225–246. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Escherichia coli as a platform microbial host for systems metabolic engineering.&nbsp;&publication_year=2021&author=Yang D&author=Prabowo CPS&author=Eun H&author=Park SY&author=Cho IJ&author=Jiao S&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B7'> <div class="references_sup">7.</div> <div class="references_name"> Moon SY, Hong SH, Kim TY, Lee SY. Metabolic engineering of Escherichia coli for the production of malic acid. <i> Biochem. Eng. J. </i><b> 2008</b>,<i> 40,</i> 312–320. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Metabolic engineering of Escherichia coli for the production of malic acid.&nbsp;&publication_year=2008&author=Moon SY&author=Hong SH&author=Kim TY&author=Lee SY. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B8'> <div class="references_sup">8.</div> <div class="references_name"> Jiang Y, Zheng T, Ye X, Xin F, Zhang W, Dong W, et al. Metabolic engineering of Escherichia coli for l-malate production anaerobically. <i> Microb. Cell Fact. </i><b> 2020</b>,<i> 19,</i> 165. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Metabolic engineering of Escherichia coli for l-malate production anaerobically.&nbsp;&publication_year=2020&author=Jiang Y&author=Zheng T&author=Ye X&author=Xin F&author=Zhang W&author=Dong W&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B9'> <div class="references_sup">9.</div> <div class="references_name"> Zelle RM, de Hulster E, van Winden WA, De Waard P, Dijkema C, Winkler AA, et al. Malic acid production by Saccharomyces cerevisiae: Engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. <i> Appl. Environ. Microb. </i><b> 2008</b>,<i> 74,</i> 2766–2777. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Malic acid production by Saccharomyces cerevisiae: Engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export.&nbsp;&publication_year=2008&author=Zelle RM&author=de Hulster E&author=van Winden WA&author=De Waard P&author=Dijkema C&author=Winkler AA&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B10'> <div class="references_sup">10.</div> <div class="references_name"> Liu TT, Sun L, Zhang C, Liu Y, Li J, Du G, et al. Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae. <i> Bioresour. Technol. </i><b> 2023</b>,<i> 379,</i> 129023. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae.&nbsp;&publication_year=2023&author=Liu TT&author=Sun L&author=Zhang C&author=Liu Y&author=Li J&author=Du G&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B11'> <div class="references_sup">11.</div> <div class="references_name"> Malubhoy Z, Bahia FM, de Valk SC, de Hulster E, Rendulić T, Ortiz JPR, et al. Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae. <i> Microb. Cell Fact.</i><b> 2022</b>,<i> 21,</i> 102. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae.&nbsp;&publication_year=2022&author=Malubhoy Z&author=Bahia FM&author=de Valk SC&author=de Hulster E&author=Rendulić T&author=Ortiz JPR&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B12'> <div class="references_sup">12.</div> <div class="references_name"> Sun L, Zhang QW, Kong X, Liu Y, Li J, Du G, et al. Highly efficient neutralizer-free L-malic acid production using engineered Saccharomyces cerevisiae. <i> Bioresour. Technol. </i><b> 2023</b>,<i> 370,</i> 128580. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Highly efficient neutralizer-free L-malic acid production using engineered Saccharomyces cerevisiae.&nbsp;&publication_year=2023&author=Sun L&author=Zhang QW&author=Kong X&author=Liu Y&author=Li J&author=Du G&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B13'> <div class="references_sup">13.</div> <div class="references_name"> Battat E, Peleg Y, Bercovitz A, Rokem JS, Goldberg I. Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor. <i> Biotech. Bioeng.</i><b> 1991</b>,<i> 37,</i> 1108–1116. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor.&nbsp;&publication_year=1991&author=Battat E&author=Peleg Y&author=Bercovitz A&author=Rokem JS&author=Goldberg I. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B14'> <div class="references_sup">14.</div> <div class="references_name"> Liu J, Xie Z, Shin H-D, Li J, Du G, Chen J, et al. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate. <i> J. Biotech. </i><b> 2017</b>,<i> 253 ,</i> 1–9. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.&nbsp;&publication_year=2017&author=Liu J&author=Xie Z&author=Shin H-D&author=Li J&author=Du G&author=Chen J&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B15'> <div class="references_sup">15.</div> <div class="references_name"> Li JG, Lin LC, Sun T, Xu J, Ji J, Liu Q, et al. Direct production of commodity chemicals from lignocellulose using Myceliophthora thermophila. <i> Metab. Eng. </i><b> 2020</b>,<i> 61 ,</i> 416–426. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Direct production of commodity chemicals from lignocellulose using Myceliophthora thermophila.&nbsp;&publication_year=2020&author=Li JG&author=Lin LC&author=Sun T&author=Xu J&author=Ji J&author=Liu Q&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B16'> <div class="references_sup">16.</div> <div class="references_name"> Negoro H, Matsumura K, Matsuda F, Shimizu H, Hata Y, Ishida H. Effects of mutations of GID protein-coding genes on malate production and enzyme expression profiles in Saccharomyces cerevisiae.<i> Appl. Microb. Biotech. </i><b> 2020</b>,<i> 104,</i> 4971–4983. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Effects of mutations of GID protein-coding genes on malate production and enzyme expression profiles in Saccharomyces cerevisiae.&publication_year=2020&author=Negoro H&author=Matsumura K&author=Matsuda F&author=Shimizu H&author=Hata Y&author=Ishida H. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B17'> <div class="references_sup">17.</div> <div class="references_name"> Dong XX, Chen XL, Qian YY, Wang Y, Wang L, Qiao W, et al. Metabolic engineering of Escherichia coli W3110 to produce L-malate. <i> Biotech. Bioeng. </i><b> 2017</b>,<i> 114,</i> 656–664. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Metabolic engineering of Escherichia coli W3110 to produce L-malate.&nbsp;&publication_year=2017&author=Dong XX&author=Chen XL&author=Qian YY&author=Wang Y&author=Wang L&author=Qiao W&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B18'> <div class="references_sup">18.</div> <div class="references_name"> Liu JJ, Li JH, Liu YF, Shin HD, Ledesma-Amaro R, Du G, et al. Synergistic Rewiring of Carbon Metabolism and Redox Metabolism in Cytoplasm and Mitochondria of Aspergillus oryzae for Increased L-Malate Production. <i> Acs Synth Biol. </i><b> 2018</b>,<i> 7,</i> 2139–2147. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Synergistic Rewiring of Carbon Metabolism and Redox Metabolism in Cytoplasm and Mitochondria of Aspergillus oryzae for Increased L-Malate Production.&nbsp;&publication_year=2018&author=Liu JJ&author=Li JH&author=Liu YF&author=Shin HD&author=Ledesma-Amaro R&author=Du G&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B19'> <div class="references_sup">19.</div> <div class="references_name"> Zambanini T, Sarikaya E, Kleineberg W, Buescher JM, Meurer G, Wierckx N, et al. Efficient malic acid production from glycerol with Ustilago trichophora TZ1. <i> Biotech. Biof. </i><b> 2016</b>,<i> 9,</i> 67. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Efficient malic acid production from glycerol with Ustilago trichophora TZ1.&nbsp;&publication_year=2016&author=Zambanini T&author=Sarikaya E&author=Kleineberg W&author=Buescher JM&author=Meurer G&author=Wierckx N&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B20'> <div class="references_sup">20.</div> <div class="references_name"> Zambanini T, Kleineberg W, Sarikaya E, Buescher JM, Meurer G, Wierckx N, et al. Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations. <i> Biotech. Biof. </i><b> 2016</b>,<i> 9,</i> 1–10. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations.&nbsp;&publication_year=2016&author=Zambanini T&author=Kleineberg W&author=Sarikaya E&author=Buescher JM&author=Meurer G&author=Wierckx N&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B21'> <div class="references_sup">21.</div> <div class="references_name"> Chen YM, Han A, Wang M, Wei D, Wang W. Metabolic Engineering of Trichoderma reesei for L-Malic Acid Production. <i> J. Agr. Food Chem. </i><b> 2023</b>,<i> 71,</i> 4043–4050. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Metabolic Engineering of Trichoderma reesei for L-Malic Acid Production.&nbsp;&publication_year=2023&author=Chen YM&author=Han A&author=Wang M&author=Wei D&author=Wang W. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B22'> <div class="references_sup">22.</div> <div class="references_name"> Zhang X, Wang X, Shanmugam KT, Ingram L. L-Malate Production by Metabolically Engineered Escherichia coli. <i> Appl. Environ. Microb. </i><b> 2011</b>,<i> 77,</i> 427–434. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=L-Malate Production by Metabolically Engineered Escherichia coli.&nbsp;&publication_year=2011&author=Zhang X&author=Wang X&author=Shanmugam KT&author=Ingram L. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B23'> <div class="references_sup">23.</div> <div class="references_name"> Kong PS, Aroua MK, Daud WMAW. Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. <i> Renew. Sus. Energy Rev. </i><b> 2016, </b>,<i> 63 ,</i> 533–555. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Conversion of crude and pure glycerol into derivatives: A feasibility evaluation.&nbsp;&publication_year=2016, &author=Kong PS&author=Aroua MK&author=Daud WMAW. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B24'> <div class="references_sup">24.</div> <div class="references_name"> Lee EY, Sarwar A. Methanol-tolerant yeast for biofuel production. <i> Nat. Metab. </i><b> 2022</b>,<i> 4,</i> 800–801. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Methanol-tolerant yeast for biofuel production.&nbsp;&publication_year=2022&author=Lee EY&author=Sarwar A. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B25'> <div class="references_sup">25.</div> <div class="references_name"> Iyyappan J, Bharathiraja B, Baskar G, Jayamuthunagai J, Barathkumar S. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol. <i> Bioresour. Tech. </i><b> 2018</b>,<i> 251 ,</i> 264–267. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol.&nbsp;&publication_year=2018&author=Iyyappan J&author=Bharathiraja B&author=Baskar G&author=Jayamuthunagai J&author=Barathkumar S. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B26'> <div class="references_sup">26.</div> <div class="references_name"> Deng Y, Mao Y, Zhang X. Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass. <i> Biotech. Progr. </i><b> 2016</b>,<i> 32,</i> 14–20. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass.&nbsp;&publication_year=2016&author=Deng Y&author=Mao Y&author=Zhang X. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B27'> <div class="references_sup">27.</div> <div class="references_name"> Xia J, Xu JX, Hu L, Liu X. Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation. <i> Prep. Biochem. Biotech. </i><b> 2016</b>,<i> 46,</i> 798–802. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation.&nbsp;&publication_year=2016&author=Xia J&author=Xu JX&author=Hu L&author=Liu X. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B28'> <div class="references_sup">28.</div> <div class="references_name"> Cheng C, Zhou YP, Lin M, Wei P, Yang ST. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis. <i> Biores. Tech. </i><b> 2017</b>,<i> 223 ,</i> 166–174. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis.&nbsp;&publication_year=2017&author=Cheng C&author=Zhou YP&author=Lin M&author=Wei P&author=Yang ST. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B29'> <div class="references_sup">29.</div> <div class="references_name"> Carroll A, Somerville C. Cellulosic Biofuels. <i> Annu. Rev. Plant Biol. </i><b> 2009</b>,<i> 60,</i> 165–182. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Cellulosic Biofuels.&nbsp;&publication_year=2009&author=Carroll A&author=Somerville C. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B30'> <div class="references_sup">30.</div> <div class="references_name"> Kang NK, Lee JW, Ort DR, Jin YS. L-malic acid production from xylose by engineered Saccharomyces cerevisiae. <i> Biotech. J. </i><b> 2022</b>,<i> 17,</i> 2000431. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=L-malic acid production from xylose by engineered Saccharomyces cerevisiae.&nbsp;&publication_year=2022&author=Kang NK&author=Lee JW&author=Ort DR&author=Jin YS. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B31'> <div class="references_sup">31.</div> <div class="references_name"> Kim SR, Park YC, Jin YS, Seo JH. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. <i> Biotech. Adv. </i><b> 2013</b>,<i> 31,</i> 851–861. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.&nbsp;&publication_year=2013&author=Kim SR&author=Park YC&author=Jin YS&author=Seo JH. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B32'> <div class="references_sup">32.</div> <div class="references_name"> Xia J, Qiu ZY, Ma SB, Liu Q, Han R, Liu X, et al. Efficient polymalic acid production from corn straw hydrolysate by detoxification of phenolic inhibitors. <i> Front. Bioeng. Biotech. </i><b> 2023</b>,<i> 11,</i> 1339982. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Efficient polymalic acid production from corn straw hydrolysate by detoxification of phenolic inhibitors.&nbsp;&publication_year=2023&author=Xia J&author=Qiu ZY&author=Ma SB&author=Liu Q&author=Han R&author=Liu X&author=et al. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B33'> <div class="references_sup">33.</div> <div class="references_name"> Chen XL, Zhou J, Ding Q, Luo Q, Liu L. Morphology engineering of Aspergillus oryzae for l-malate production. <i> Biotech. Bioeng. </i><b> 2019</b>,<i> 116,</i> 2662–2673. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Morphology engineering of Aspergillus oryzae for l-malate production.&nbsp;&publication_year=2019&author=Chen XL&author=Zhou J&author=Ding Q&author=Luo Q&author=Liu L. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B34'> <div class="references_sup">34.</div> <div class="references_name"> Chen YM, Wang JJ, Wang M, Luo Q, Liu L. Engineering the metabolism and morphology of the filamentous fungus Trichoderma reesei for efficient L-malic acid production. <i> Biores. Tech. </i><b> 2023</b>,<i> 387,</i> 2662–2673. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Engineering the metabolism and morphology of the filamentous fungus Trichoderma reesei for efficient L-malic acid production.&nbsp;&publication_year=2023&author=Chen YM&author=Wang JJ&author=Wang M&author=Luo Q&author=Liu L. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B35'> <div class="references_sup">35.</div> <div class="references_name"> Iyyappan J, Baskar G, Bharathiraja B, Gopinath M. Enhanced malic acid production using Aspergillus niger coupled with in situ product recovery. <i> Biores. Tech. </i><b> 2020</b>,<i> 308,</i> 123259. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Enhanced malic acid production using Aspergillus niger coupled with in situ product recovery.&nbsp;&publication_year=2020&author=Iyyappan J&author=Baskar G&author=Bharathiraja B&author=Gopinath M. " target="_blank">Google Scholar</a>]</span> </div> </div> <div class="references html-x" id='B36'> <div class="references_sup">36.</div> <div class="references_name"> Mu L, Wen JP. Engineered Bacillus subtilis 168 produces l-malate by heterologous biosynthesis pathway construction and lactate dehydrogenase deletion.<i> World J. Microb. Biot. </i><b> 2013</b>,<i> 29,</i> 33–41. <span class="tages-text">[<a href="https://scholar.google.com/scholar_lookup?title=Engineered Bacillus subtilis 168 produces l-malate by heterologous biosynthesis pathway construction and lactate dehydrogenase deletion.&publication_year=2013&author=Mu L&author=Wen JP. " target="_blank">Google Scholar</a>]</span> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> </section> <div class="modal fade cite-modal" id="citeModal" tabindex="-1" aria-labelledby="exampleModalLabel" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered"> <div class="modal-content border-0"> <div class="modal-body pt-5 pl-5 pr-5 pb-4"> <h3 class="pb-2 border-bottom border-dark">Cite This Article</h3> <h6 class="mt-4 d-flex justify-content-between"> SCIEPublish Style </h6> <p class="modal-text2 text-justify">Mou L, Qiu M, Jiang W, Zhang W, Xin F, Jiang Y, et al. Current Progress on Microbial l-malic Acid Production. <i>Synthetic Biology and Engineering</i> <b>2024</b>, <i>2</i>, 10010. https://doi.org/10.35534/sbe.2024.10010</p> <h6 class="mt-3 d-flex justify-content-between text-justify"> AMA Style </h6> <p class="modal-text2 text-justify">Mou L, Qiu M, Jiang W, Zhang W, Xin F, Jiang Y, et al. Current Progress on Microbial l-malic Acid Production. <i>Synthetic Biology and Engineering</i>. 2024; 2(2):10010. https://doi.org/10.35534/sbe.2024.10010</p> </div> <button type="button" class="btn btn-close" data-dismiss="modal"> <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"></path> </svg> </button> </div> </div> </div> <div class="modal modal-amplification-img" id="imgModal" tabindex="-1" aria-labelledby="imgModal" aria-hidden="true"> <div class="modal-dialog modal-xl modal-dialog-centered modal-dialog-scrollable modal-dialog-img"> <div class="modal-content"> <button type="button" class="btn btn-close" data-dismiss="modal"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-x-lg" viewBox="0 0 16 16"> <path d="M2.146 2.854a.5.5 0 1 1 .708-.708L8 7.293l5.146-5.147a.5.5 0 0 1 .708.708L8.707 8l5.147 5.146a.5.5 0 0 1-.708.708L8 8.707l-5.146 5.147a.5.5 0 0 1-.708-.708L7.293 8 2.146 2.854Z"></path> </svg> </button> <div class="modal-body"> </div> </div> </div> </div> <link rel="stylesheet" href="/static/css/share.min.css?3" /> <script src="/static/js/social-share.min.js"></script> <script> var $config = { image:"https://www.sciepublish.com/uploads/2024/05/24/0a0ce41575802a5cc06df312c5616cd7.jpg", origin:'', wechatQrcodeTitle: "WeChat Share", // WeChat QR code prompt text wechatQrcodeHelper: '<p>Scan QR code</p> <p>This article can be shared to your WeChat.</p>', }; socialShare('.social-share', $config); </script> <script> document.addEventListener("DOMContentLoaded", function() { /**/ var stopScroll = $(document).scrollTop(), column = $('.left-content'), fixedTitle = $('.fixed-title'), acquiesceTitle = $('.acquiesce-title'), acquiesceTitleTop = acquiesceTitle.offset().top; $(window).scroll(function(){ var scrollTop = $(this).scrollTop(); if(scrollTop > acquiesceTitleTop){ column.addClass('fixed'); fixedTitle.addClass('fixed'); }else{ column.removeClass('fixed'); fixedTitle.removeClass('fixed'); } }) if (stopScroll > acquiesceTitleTop ){ column.addClass('fixed'); fixedTitle.addClass('fixed'); } //Anchor navigation $('body').scrollspy({ target: '#article-menu-float' }) //tab switch $('.information-collapse').each(function(){ $(this).click(function(){ $(this).toggleClass('active').siblings().removeClass('active'); $(".information-item").eq($(this).index()).slideToggle().siblings().slideUp(); }) }) function markdownReplace(text) { // Replace the oblique body, bold it to HTML // /article/pii/21 text = text.replace(/</g, '<'); //article/pii/166 text = text.replace(/>/g, '>'); // text = text.replace(/\*\*(.+?)\*\*/g, "<b>$1</b>"); text = text.replace(/\*(.+?)\*/g, "<i>$1</i>"); // article/pii/18 text = text.replace(/&/g, '&');//* /article/pii/181#Figure5 中的* // text = text.replace(/\\\$/g, '$'); //article/pii/19 return text; } // Treatment of non -serial list function replaceConsecutiveBulletsWithList(text) { // Regular expression matching continuously with • starting line const regex = /^(?:•\s.*\n?)+/gm; // Replace the matching line, convert it to <ul> and <li> elements return text.replace(regex, (match) => { // Remove the • and the subsequent blank characters at the beginning of each line, and convert it to <li> element const listItems = match.split('\n').map(line => { return line.replace(/^•\s/, '').trim() ? `<li>${line.replace(/^•\s/, '').trim()}</li>` : ''; }).join(''); // If there is a list item, the package is wrapped in the <ul> label return `<ul>${listItems}</ul>`; }); } // Pre -predetermined formula rendering global indexes window.formula = {}; // Treatment to find a third -level and four -level title, sort out the P label that is not available in the text document.querySelectorAll('.article-item-text').forEach(element => { element.innerHTML = replaceConsecutiveBulletsWithList(element.innerHTML); // Forwards <em> 3.1. Serine Integrase-Mediated DNA Assembly Between Two Plasmids </em> element.innerHTML = element.innerHTML.replace(/(<h[1-6].+?>)/gi, '\r\n$1'); //TODO There is a change in the middle of the H tag to cause problems element.innerHTML = element.innerHTML.replace(/(<\/h[1-6]\s*>)/gi, '$1\r\n'); element.innerHTML = element.innerHTML.replace(/<(em|i)>(\d+\.\d+\..+?)<\/(em|i)>/gi, '\r\n<h4 class="value4">$2</h4>\r\n'); // Processing replacement of level 4 title element.innerHTML = element.innerHTML.replace(/>\s*(\d+\.\d+\.\d+\.\s*.*?)(?=\s*\n|$)/g, '>\r\n<h5 class="value5">$1</h5>\r\n'); element.innerHTML = element.innerHTML.replace(/^\s*(\d+\.\d+\.\d+\.\s*.*?)(?=\s*\n|$)/gm, '\r\n<h5 class="value5">$1</h5>\r\n'); // Processing replacement three -level title element.innerHTML = element.innerHTML.replace(/\*+(\d+\.\d+\..+?)\*+\s+/g, '\r\n<h4 class="value4">$1</h4>\r\n'); // Treatment P tag element.innerHTML = element.innerHTML.replace(/<p.+?>(.+?)<\/p>/gi, '\r\n$1\r\n'); let lastP = document.createElement('p'); Array.from(element.childNodes).forEach(node=> { if (node.childElementCount == 0 && node.textContent.trim().length == 0){ // Delete the empty node element.removeChild(node); } // Handle the title if (/H[1-6]/i.test(node.nodeName)){ if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ // Lastp is not an empty node. element.appendChild(lastP); lastP = document.createElement('p'); } element.appendChild(node); return; } // Check the HTML-Disp-Formula-Info node if (node.classList && node.classList.contains('html-disp-formula-info')){ if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); lastP = document.createElement('p'); } element.appendChild(node); // Treatment of the text formula in the chapter renderMathInElement(node, { delimiters: [ {left: '```latex', right: '```', display: true}, ], throwOnError : false }); const label = node.querySelector('.formula > label'); if (label === null){ return; } var numMatch = label.textContent.match(/\d+/g) if (!numMatch){ return; } const html_pics = node.querySelector('.html_pics') if (html_pics){ formula["Equation"+numMatch[0]]=html_pics.innerHTML; } return; } // Treatment textbooks if (node.nodeType === 3) { var lines = node.nodeValue.split(/\r?\n/); if (lines.length == 1){ // No change, it may be the content of the previous P tag if (node.nodeValue.trim().length > 0){ lastP.appendChild(node); } return; } lines.forEach((line, index)=> { if (index >0){ // Other changes may be the new P tag, the old P label is moved in if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); lastP = document.createElement('p'); } } if (line.trim().length > 0){ lastP.appendChild(document.createTextNode(line)); } }); element.removeChild(node); return; } if (node.classList.contains('html-fig-wrap')){ if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); lastP = document.createElement('p'); } } //Other situations are the content of the previous P tag lastP.appendChild(node); }); if (lastP.childElementCount > 0 || lastP.textContent.trim().length > 0){ element.appendChild(lastP); } if (element.childElementCount == 0 && element.textContent.trim().length == 0){ // Delete the empty node element.parentNode.removeChild(element); } function capitalizeFirstLetter(str) { return str.charAt(0).toUpperCase() + str.slice(1); } // Find the picture form formula without setting the A tag, and give a tag element.innerHTML = element.innerHTML.replace(/(?<!<a.+?>\s*|[a-zA-Z])(Figure|Table|Scheme|Equation)\s+(\(([A-Z]?\d+)\)|([A-Z]?\d+))(?<!\s*<\/a>)/gi, function(match, $2,$3) { match = capitalizeFirstLetter(match); return '<a href="#'+ capitalizeFirstLetter($2) + $3.replace(/\(|\)/g,'') +'">'+ match +'</a>'; }); // Remove Markdown element.innerHTML = markdownReplace(element.innerHTML); // Find a super -text link without setting A tags, give a tagnk without setting A tags, give a tagnk without setting A tags, give a tag element.innerHTML = element.innerHTML.replace(/(?<!<a.+?>\s*)https?:\/\/[^\s\/]+(\/[^\s<.]*)*(?<!\s*<\/a>)/gi, function(match) { return '<a href="'+ match.replace(/[.,,。;\s]+$/, '') +'" target="_blank">'+ match +'</a>'; } ); // Add a box to the formula quotation element.querySelectorAll('a[href^="#Equation"]').forEach(auchor=>{ const id= auchor.getAttribute('href').slice(1); if (formula[id]){ $(auchor).tooltip({ html: true , delay: { "show": 200, "hide": 200 },title:$('<div class="formulaTip">').html(formula[id])}); } }); // Handling in -line formula renderMathInElement(element, { delimiters: [ {left: '$$', right: '$$', display: false}, ], throwOnError : false }); }); document.querySelectorAll("div.articleneir.abstract").forEach(element => { renderMathInElement(element, { delimiters: [ {left: '$$', right: '$$', display: false}, ], throwOnError : false }); }); // Processing reference document.querySelectorAll(".html-bibr").forEach(link => { link.removeAttribute('title'); const target = document.querySelector(link.getAttribute('href')+'.references > .references_name'); if (target){ $(link).tooltip({ html: true , delay: { "show": 200, "hide": 200 },title:target.innerHTML}); } }); document.querySelectorAll(".references").forEach(ref => { if (ref.id){ const a = document.createElement("a"); a.name=ref.id; a.classList.add("anchor-abs-66"); ref.removeAttribute("id"); ref.insertBefore(a, ref.firstChild); } }); // Treat the display area of the formula formula of the picture form, remove the A tag, set the anchor point document.querySelectorAll('.html-fig-wrap .html-fig_description,.html-fig-wrap .html-table_wrap_discription').forEach(element => { element.innerHTML = markdownReplace(element.innerHTML); const match = element.firstChild.textContent.match(/(Figure|Table|Scheme) [A-Z]?\d+/g); if (match){ element.firstChild.textContent = element.firstChild.textContent let id= match[0].replace(" ","") const target = document.createElement("a"); target.name=id; target.classList.add("anchor"); element.parentNode.insertBefore(target, element.parentNode.firstChild); document.querySelectorAll("a[href='#"+id+"']").forEach(auchor => { $(auchor).tooltip({ html: true , delay: { "show": 1000, "hide": 100 },title:$(element.parentNode).html()}); }); } }); // Processing keywords const keywordsContainer = document.querySelector('.keywords') if (keywordsContainer){ let title; while(child = keywordsContainer.firstChild){ // Take out the first non -empty element in Keywords if (child.textContent.trim().length>0){ title = child; title.appendChild(document.createTextNode(' ')); keywordsContainer.removeChild(child); break; } keywordsContainer.removeChild(child); } let listLinks = []; let link = document.createElement('a'); Array.from(keywordsContainer.childNodes).forEach(node=> { // Treatment text nodes if (node.nodeType === 3) { var ks = node.nodeValue.split(/(?<!&#(?:x[0-9a-fA-F]{1,5}|\d{1,6}))[;]|,/); if (ks.length == 1){ // There is no separatist, no new link is created if (link.lastChild && link.lastChild.nodeType === 3){ //Condented text nodes link.lastChild.nodeValue += ks[0]; }else{ link.appendChild(node); } return; }else{ ks.forEach((k, index)=> { if (index==0){ // In the first paragraph, do not create a new LINK, and the merger with the previous merger if (link.lastChild && link.lastChild.nodeType === 3){ //Condented text nodes link.lastChild.nodeValue += k; return; } }else{ // Means encounter; create a new link listLinks.push(link); link = document.createElement('a'); } link.appendChild(document.createTextNode(k.trim())); }); return; } }else{ link.appendChild(node); } }); if (link.innerText.trim().length>0){ listLinks.push(link); } keywordsContainer.innerHTML = ""; keywordsContainer.appendChild(title); listLinks.forEach((link, index, array)=> { link.href = "/index/search/index.html?search="+link.innerHTML.trim().replace(/ /g, '+');// TODO :Angle/lowering/small capitalization keywordsContainer.appendChild(link); if (index !== array.length - 1) { keywordsContainer.appendChild(document.createTextNode(', ')); } }); } // Treatment reference copy document.querySelectorAll('.cite-modal h6 ').forEach(h6 => { let a = document.createElement('a'); let h6Text = h6.textContent.trim(); h6.appendChild(a); a.href = "#"; a.textContent = "Copy"; a.onclick = function(e) { if (h6.nextElementSibling) { navigator.clipboard.writeText(h6.nextElementSibling.textContent.replace(/\r\n|\n|\r/g, '')).then(function() { $('#citeModal').modal('hide'); // showToast(h6Text + ' copied to clipboard!'); }, function() { showToast('Failed to copy '+h6Text+' to clipboard.'); }); } e.preventDefault(); }; }); //Picture amplification var $imgModal = $('#imgModal'), $imgModalBody = $imgModal.find('.modal-body'); $(".html-figpopup-link").each(function(){ var dataSrc = $(this).children('img').attr('data-large'); $(this).attr({ 'data-toggle': 'modal', 'data-target': '#imgModal' }) $(this).on('click', function () { $imgModalBody.append(`<img src="`+dataSrc+`" class="amplification-img">`); }) }); $imgModal.on('hidden.bs.modal', function (event) { $imgModalBody.children('img').remove(); }) //The picture is enlarged again $imgModal.on('shown.bs.modal', function (event) { $imgModalBody.children('img').on('click', function () { $(this).parent().parent().toggleClass('toggle-img'); }) }) // Process doi // Doi reference the magazine $.ajax({ type: 'GET', url: '/api/article/doi/id/192', dataType:"json", success: function(data){ var doiEL =""; $.each(data.doi_list, function(k, v) { doiEL += "<p>" + v.title + "." + " <em>" + v.source + "</em>" + " " + "<b>" + v.year + "</b>. " + "[" + "<a target='_blank' href='http://dx.doi.org/" + v.doi + "'>CrossRef</a>" + "]" +"</p>"; }) if (data.doi_count > 0) { $("[data-bind='popover1'] > b").text(data.doi_count); $("[data-bind='popover1']").addClass('d-flex'); $("[data-bind='popover1']").popover({ trigger: 'focus', html: true, delay: { "show": 100, "hide": 500 }, content: function(){ return doiEL; }, }); } }, timeout: 5000, error: function(jqXHR,textStatus){ } }) }) function showToast(message) { var toast = document.createElement('div'); toast.classList.add('toast', 'centered-div', 'show'); toast.setAttribute('role', 'alert'); toast.setAttribute('aria-live', 'assertive'); toast.setAttribute('aria-atomic', 'true'); var toastBody = document.createElement('div'); toastBody.classList.add('toast-body'); toastBody.textContent = message; toast.appendChild(toastBody); document.body.appendChild(toast); setTimeout(function () { toast.classList.remove('show'); toast.classList.add('hide'); setTimeout(function () { document.body.removeChild(toast); }, 500); }, 3000); } </script> <!-- Footer --> <footer class="mt-1"> <div class="my-body-container pt-4 pb-4"> <div class="fotter-top"> <div> <div class="item-text"> <h3>About</h3> <ul> <li> <a href="/About_SCIEPublish" title="About SClEPublish">About SClEPublish</a> </li> <li> <a href="/Management_Team" title="Management Team">Management Team</a> </li> <li> <a href="/Careers" title="Careers">Careers</a> </li> <li> <a href="/Contact" title="Contact">Contact</a> </li> </ul> </div> <div class="item-text"> <h3>Policies</h3> <ul> <li> <a href="/Peer_Review_Policy" title="Peer Review Policy">Peer Review Policy</a> </li> <li> <a href="/Open_Access_Policy" title="Open Access Policy">Open Access Policy</a> </li> <li> <a href="/Licensing_and_Copyright" title="Licensing and Copyright">Licensing and Copyright</a> </li> <li> <a href="/Editorial_Policy" title="Editorial Policy">Editorial Policy</a> </li> <li> <a href="/Advertising_Policy" title="Advertising Policy">Advertising Policy</a> </li> </ul> </div> <div class="item-text"> <h3>Information</h3> <ul> <li> <a href="/For_Authors" title="For Authors">For Authors</a> </li> <li> <a href="/For_Reviewers" title="For Reviewers">For Reviewers</a> </li> <li> <a href="/For_Editors" title="For Editors">For Editors</a> </li> </ul> </div> <div class="item-text item-text-membership"> <h3>A Member of</h3> <ul> <li class="membership-img1"> <a href="https://stm-assoc.org/" target="_blank" rel="nofollow"> <img src="/style/image/stm2024-logo.png"> </a> </li> <li class="membership-img2"> <a href="https://www.alpsp.org/" target="_blank" rel="nofollow" title=""> <img src="/style/image/alpsp-logo.png" alt=""> </a> </li> <!-- <li class="membership-img3"> <a href="https://publicationethics.org/publisher-membership-application-form-1" target="_blank" rel="nofollow" title=""> <img src="/style/image/cope-logo.png" alt=""> </a> </li> --> </ul> </div> </div> <div class="item-text item-text-right"> <h3> <svg xmlns="http://www.w3.org/2000/svg" class="navbar-logo" xml:space="preserve" version="1.0" viewBox="0 0 5.08 1.933"> <path d="M1.021 1.245a.29.29 0 0 1-.211-.054l-.027-.023-.003-.003.056-.066.003.004a.3.3 0 0 0 .043.033.2.2 0 0 0 .128.027l.024-.007.019-.01a.07.07 0 0 0 .022-.032.1.1 0 0 0 0-.036l-.004-.014a.1.1 0 0 0-.016-.02.1.1 0 0 0-.027-.017L.994 1.01.919.98a.3.3 0 0 1-.076-.05.14.14 0 0 1-.034-.067.2.2 0 0 1 0-.06.13.13 0 0 1 .027-.056.2.2 0 0 1 .049-.041A.2.2 0 0 1 .95.683a.3.3 0 0 1 .07-.001.2.2 0 0 1 .06.017.3.3 0 0 1 .075.05l.003.003-.05.061L1.103.81a.2.2 0 0 0-.053-.034.2.2 0 0 0-.063-.013.1.1 0 0 0-.046.008L.925.78a.06.06 0 0 0-.023.047l.001.015.006.012a.1.1 0 0 0 .018.02.1.1 0 0 0 .027.017L.97.899l.016.006.074.032a.3.3 0 0 1 .058.033.14.14 0 0 1 .051.08.2.2 0 0 1 0 .07.15.15 0 0 1-.048.081.2.2 0 0 1-.062.035zm.527-.002a.24.24 0 0 1-.1 0 .23.23 0 0 1-.125-.069.2.2 0 0 1-.051-.089.3.3 0 0 1-.019-.119.4.4 0 0 1 .02-.12.3.3 0 0 1 .052-.09.23.23 0 0 1 .176-.076.3.3 0 0 1 .064.01.3.3 0 0 1 .053.025.2.2 0 0 1 .04.034l.002.003-.052.061L1.605.81A.2.2 0 0 0 1.56.776a.2.2 0 0 0-.037-.012.15.15 0 0 0-.082.013.13.13 0 0 0-.049.039l-.018.029a.2.2 0 0 0-.022.073.4.4 0 0 0 .002.104.2.2 0 0 0 .014.05.2.2 0 0 0 .023.04.14.14 0 0 0 .066.047.15.15 0 0 0 .107-.009l.028-.017.025-.023.003-.004.051.06-.002.003a.3.3 0 0 1-.076.059.2.2 0 0 1-.045.015m.314-.004h-.09V.69h.095v.549zm.485 0h-.331V.69h.328v.08H2.11v.141h.198v.082H2.11v.165h.242v.08zm.215 0h-.09V.69h.169a.4.4 0 0 1 .083.008L2.76.71l.031.016a.13.13 0 0 1 .044.053q.009.015.012.036a.22.22 0 0 1-.012.121l-.018.03a.176.176 0 0 1-.09.057.3.3 0 0 1-.084.011h-.076v.205zm.005-.472v.19h.068a.2.2 0 0 0 .056-.006.1.1 0 0 0 .038-.018.1.1 0 0 0 .022-.031.1.1 0 0 0 .007-.045l-.003-.03a.07.07 0 0 0-.028-.04L2.703.776 2.671.769 2.633.767zm.539.48a.2.2 0 0 1-.067-.003.1.1 0 0 1-.075-.07.3.3 0 0 1-.013-.09V.827h.093v.248a.3.3 0 0 0 .007.055l.008.017.012.012.016.007.02.002a.1.1 0 0 0 .033-.006.1.1 0 0 0 .03-.019.2.2 0 0 0 .03-.032V.826h.093v.413h-.078l-.006-.057a.2.2 0 0 1-.078.057zm.548-.002-.034.003-.03-.003-.029-.01A.2.2 0 0 1 3.51 1.2l-.007.039h-.075V.645h.093q0 .11-.002.219l.01-.008A.2.2 0 0 1 3.59.823a.2.2 0 0 1 .043-.007.2.2 0 0 1 .07.015.15.15 0 0 1 .07.074.2.2 0 0 1 .022.076.4.4 0 0 1 0 .095.3.3 0 0 1-.029.082.2.2 0 0 1-.079.075zm-.07-.077a.1.1 0 0 0 .046-.002.1.1 0 0 0 .043-.032l.015-.028a.2.2 0 0 0 .01-.036.3.3 0 0 0-.006-.114A.1.1 0 0 0 3.68.93.07.07 0 0 0 3.64.9.1.1 0 0 0 3.59.899l-.023.008-.023.015-.023.02v.193a.2.2 0 0 0 .043.027zm.424.08h-.015a.1.1 0 0 1-.051-.013l-.017-.016-.011-.022-.007-.026-.002-.031V.645h.093v.5L4 1.16l.003.004.003.003.008.002h.008l.005-.001h.004l.013.071-.004.002-.009.002zm.22-.01H4.14V.827h.093v.413zm-.026-.48L4.187.76q-.009 0-.016-.002L4.157.753a.05.05 0 0 1-.02-.02.1.1 0 0 1-.008-.027L4.13.69a.05.05 0 0 1 .027-.032L4.17.653a.07.07 0 0 1 .045.005.05.05 0 0 1 .03.048.1.1 0 0 1-.009.028.1.1 0 0 1-.02.019zm.315.488a.25.25 0 0 1-.19-.054l-.004-.003.045-.062.004.003a.3.3 0 0 0 .053.034.13.13 0 0 0 .058.012l.022-.002.016-.005.013-.008.009-.01a.05.05 0 0 0 .007-.025q0-.006-.002-.012l-.005-.01-.008-.009-.011-.008-.028-.014-.016-.006-.017-.007a.4.4 0 0 1-.079-.041.1.1 0 0 1-.028-.034L4.348.964 4.345.939a.12.12 0 0 1 .023-.07.1.1 0 0 1 .038-.033A.2.2 0 0 1 4.46.82a.2.2 0 0 1 .13.022l.037.024.003.003-.045.059-.003-.003A.2.2 0 0 0 4.54.9a.1.1 0 0 0-.065-.008.1.1 0 0 0-.027.012l-.007.01a.04.04 0 0 0-.007.022q0 .006.002.01l.005.01a.1.1 0 0 0 .017.015l.027.013.016.006.016.006.063.028.019.013a.1.1 0 0 1 .029.035l.008.023a.13.13 0 0 1-.008.077.1.1 0 0 1-.03.04.14.14 0 0 1-.05.027zm.307-.007h-.088V.645h.092q0 .115-.002.229a.3.3 0 0 1 .05-.038.2.2 0 0 1 .048-.017.2.2 0 0 1 .068.002.1.1 0 0 1 .057.038q.01.014.018.033A.314.314 0 0 1 5.08.98v.258h-.093V.99L4.985.96 4.98.936 4.97.92 4.96.907 4.943.9a.1.1 0 0 0-.037 0 .1.1 0 0 0-.03.011l-.016.01-.032.03v.288z" /> <path d="M1.844 1.377a.97.97 0 0 1-.878.563A.963.963 0 0 1 0 .974.964.964 0 0 1 .966.007a.96.96 0 0 1 .865.536l-.048.024A.92.92 0 0 0 .966.062a.91.91 0 0 0-.912.912.91.91 0 0 0 .912.912.91.91 0 0 0 .83-.532z" class="logo-circle" /> </svg> </h3> <div class="text-share"> <a href="https://x.com/SCIEPublish" class="share-btn twitter-btn" title="Share on Twitter" target="_blank"> <svg t="1713929395475" class="icon" width="32" height="32" viewBox="0 0 1399 1024" fill="#000000" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="8742"> <path d="M282.021569 119.281213l323.998199 433.216256-326.044203 352.222995h73.379441l285.451142-308.376452 230.636674 308.376452h249.713149l-342.227762-457.583832 303.479459-327.855419h-73.379441l-262.886398 284.008876-212.407111-284.008876h-249.713149z m107.909957 54.051408h114.71879l506.578928 677.328049h-114.718791l-506.578927-677.328049z" p-id="8743"></path> </svg> </a> <a href="" class="share-btn LinkedIn-btn" id="email-LinkedIn-btn" title="Share on LinkedIn" target="_blank"> <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="#000000" class="bi bi-linkedin" viewBox="0 0 16 16"> <path d="M0 1.146C0 .513.526 0 1.175 0h13.65C15.474 0 16 .513 16 1.146v13.708c0 .633-.526 1.146-1.175 1.146H1.175C.526 16 0 15.487 0 14.854V1.146zm4.943 12.248V6.169H2.542v7.225h2.401zm-1.2-8.212c.837 0 1.358-.554 1.358-1.248-.015-.709-.52-1.248-1.342-1.248-.822 0-1.359.54-1.359 1.248 0 .694.521 1.248 1.327 1.248h.016zm4.908 8.212V9.359c0-.216.016-.432.08-.586.173-.431.568-.878 1.232-.878.869 0 1.216.662 1.216 1.634v3.865h2.401V9.25c0-2.22-1.184-3.252-2.764-3.252-1.274 0-1.845.7-2.165 1.193v.025h-.016a5.54 5.54 0 0 1 .016-.025V6.169h-2.4c.03.678 0 7.225 0 7.225h2.4z"/> </svg> </a> <a href="javaScript:void(0)" class="share-btn wechat-btn" id="wechat-share-btn"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="#000000" class="bi bi-wechat" viewBox="0 0 16 16"> <path d="M11.176 14.429c-2.665 0-4.826-1.8-4.826-4.018 0-2.22 2.159-4.02 4.824-4.02S16 8.191 16 10.411c0 1.21-.65 2.301-1.666 3.036a.324.324 0 0 0-.12.366l.218.81a.616.616 0 0 1 .029.117.166.166 0 0 1-.162.162.177.177 0 0 1-.092-.03l-1.057-.61a.519.519 0 0 0-.256-.074.509.509 0 0 0-.142.021 5.668 5.668 0 0 1-1.576.22ZM9.064 9.542a.647.647 0 1 0 .557-1 .645.645 0 0 0-.646.647.615.615 0 0 0 .09.353Zm3.232.001a.646.646 0 1 0 .546-1 .645.645 0 0 0-.644.644.627.627 0 0 0 .098.356Z"/> <path d="M0 6.826c0 1.455.781 2.765 2.001 3.656a.385.385 0 0 1 .143.439l-.161.6-.1.373a.499.499 0 0 0-.032.14.192.192 0 0 0 .193.193c.039 0 .077-.01.111-.029l1.268-.733a.622.622 0 0 1 .308-.088c.058 0 .116.009.171.025a6.83 6.83 0 0 0 1.625.26 4.45 4.45 0 0 1-.177-1.251c0-2.936 2.785-5.02 5.824-5.02.05 0 .1 0 .15.002C10.587 3.429 8.392 2 5.796 2 2.596 2 0 4.16 0 6.826Zm4.632-1.555a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Zm3.875 0a.77.77 0 1 1-1.54 0 .77.77 0 0 1 1.54 0Z"/> </svg> <div class="cord"> <div class="img"> <img src="/style/image/wechat.jpg" alt="SCIEPublish wechat" /> </div> </div> </a> <a href="mailto:office@sciepublish.org" class="share-btn email-btn" id="email-share-btn" title="Share on Email" target="_blank"> <svg xmlns="http://www.w3.org/2000/svg" width="26" height="26" fill="#000000" class="bi bi-envelope-fill" viewBox="0 0 16 16"> <path d="M.05 3.555A2 2 0 0 1 2 2h12a2 2 0 0 1 1.95 1.555L8 8.414.05 3.555ZM0 4.697v7.104l5.803-3.558L0 4.697ZM6.761 8.83l-6.57 4.027A2 2 0 0 0 2 14h12a2 2 0 0 0 1.808-1.144l-6.57-4.027L8 9.586l-1.239-.757Zm3.436-.586L16 11.801V4.697l-5.803 3.546Z"/> </svg> </a> </div> </div> </div> <div class="copyright-box mt-4 mb-0 pt-3 pb-0"> <p class="text-left">Copyright © 2021-2024 SCIE Publishing Ltd. unless otherwise stated.</p> <p class="text-right"> <a href="/Privacy" title="Privacy">Privacy</a> <!-- <a href="" title="Cookies">Cookies</a> --> <a href="/Terms_of_Use" title="Terms of Use">Terms of Use</a> </p> </div> </div> </footer> <!-- Back-top --> <div class="back-top"> <div class="d-flex justify-content-center align-items-center flex-wrap"> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-chevron-up" viewBox="0 0 16 16"> <path fill-rule="evenodd" d="M7.646 4.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1-.708.708L8 5.707l-5.646 5.647a.5.5 0 0 1-.708-.708l6-6z"/> </svg> <span>TOP</span> </div> </div> <!-- Toast --> <div class="toast-container"> <div class="toast" id="liveToast" role="alert" data-delay="3000" aria-live="assertive" aria-atomic="true"> <div class="toast-header"> <strong class="mr-auto">Message</strong> <button type="button" class="ml-2 mb-1 close" data-dismiss="toast" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="toast-body"> </div> </div> </div> <script> $(function () { $('.js-navbar-toggle').on('click', function () { $('header nav').toggleClass('nav-search-active'); }); var windowHeight = $(window).height(), header = $('header'), backTop = $('.back-top'); $(window).scroll(function(){ var scrollTop = $(this).scrollTop(); scrollTop > 0 ? header.addClass('fixed') : header.removeClass('fixed'); scrollTop > windowHeight ? backTop.addClass('fixed') : backTop.removeClass('fixed'); }) backTop.click(function(){ $("body,html").animate({scrollTop:0},300); }) $(".article-abseract.clamp").each(function () { $(this).click(function () { $(this).toggleClass("clamp-open"); }); }); //初始化select $('select.select-mania').selectMania(); }) $('.logout').click(function () { $.get('/index/user/login_out', function (res) { if (res.err == 0) { window.location.href = res.data layer.msg('exit successfully!') } else { layer.msg('Exit failed!') } }) }) </script> </body> </html>