CINXE.COM
PEP 635 – Structural Pattern Matching: Motivation and Rationale | peps.python.org
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="color-scheme" content="light dark"> <title>PEP 635 – Structural Pattern Matching: Motivation and Rationale | peps.python.org</title> <link rel="shortcut icon" href="../_static/py.png"> <link rel="canonical" href="https://peps.python.org/pep-0635/"> <link rel="stylesheet" href="../_static/style.css" type="text/css"> <link rel="stylesheet" href="../_static/mq.css" type="text/css"> <link rel="stylesheet" href="../_static/pygments.css" type="text/css" media="(prefers-color-scheme: light)" id="pyg-light"> <link rel="stylesheet" href="../_static/pygments_dark.css" type="text/css" media="(prefers-color-scheme: dark)" id="pyg-dark"> <link rel="alternate" type="application/rss+xml" title="Latest PEPs" href="https://peps.python.org/peps.rss"> <meta property="og:title" content='PEP 635 – Structural Pattern Matching: Motivation and Rationale | peps.python.org'> <meta property="og:description" content="This PEP provides the motivation and rationale for PEP 634 (“Structural Pattern Matching: Specification”). First-time readers are encouraged to start with PEP 636, which provides a gentler introduction to the concepts, syntax and semantics of patterns."> <meta property="og:type" content="website"> <meta property="og:url" content="https://peps.python.org/pep-0635/"> <meta property="og:site_name" content="Python Enhancement Proposals (PEPs)"> <meta property="og:image" content="https://peps.python.org/_static/og-image.png"> <meta property="og:image:alt" content="Python PEPs"> <meta property="og:image:width" content="200"> <meta property="og:image:height" content="200"> <meta name="description" content="This PEP provides the motivation and rationale for PEP 634 (“Structural Pattern Matching: Specification”). First-time readers are encouraged to start with PEP 636, which provides a gentler introduction to the concepts, syntax and semantics of patterns."> <meta name="theme-color" content="#3776ab"> </head> <body> <svg xmlns="http://www.w3.org/2000/svg" style="display: none;"> <symbol id="svg-sun-half" viewBox="0 0 24 24" pointer-events="all"> <title>Following system colour scheme</title> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"> <circle cx="12" cy="12" r="9"></circle> <path d="M12 3v18m0-12l4.65-4.65M12 14.3l7.37-7.37M12 19.6l8.85-8.85"></path> </svg> </symbol> <symbol id="svg-moon" viewBox="0 0 24 24" pointer-events="all"> <title>Selected dark colour scheme</title> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"> <path stroke="none" d="M0 0h24v24H0z" fill="none"></path> <path d="M12 3c.132 0 .263 0 .393 0a7.5 7.5 0 0 0 7.92 12.446a9 9 0 1 1 -8.313 -12.454z"></path> </svg> </symbol> <symbol id="svg-sun" viewBox="0 0 24 24" pointer-events="all"> <title>Selected light colour scheme</title> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"> <circle cx="12" cy="12" r="5"></circle> <line x1="12" y1="1" x2="12" y2="3"></line> <line x1="12" y1="21" x2="12" y2="23"></line> <line x1="4.22" y1="4.22" x2="5.64" y2="5.64"></line> <line x1="18.36" y1="18.36" x2="19.78" y2="19.78"></line> <line x1="1" y1="12" x2="3" y2="12"></line> <line x1="21" y1="12" x2="23" y2="12"></line> <line x1="4.22" y1="19.78" x2="5.64" y2="18.36"></line> <line x1="18.36" y1="5.64" x2="19.78" y2="4.22"></line> </svg> </symbol> </svg> <script> document.documentElement.dataset.colour_scheme = localStorage.getItem("colour_scheme") || "auto" </script> <section id="pep-page-section"> <header> <h1>Python Enhancement Proposals</h1> <ul class="breadcrumbs"> <li><a href="https://www.python.org/" title="The Python Programming Language">Python</a> » </li> <li><a href="../pep-0000/">PEP Index</a> » </li> <li>PEP 635</li> </ul> <button id="colour-scheme-cycler" onClick="setColourScheme(nextColourScheme())"> <svg aria-hidden="true" class="colour-scheme-icon-when-auto"><use href="#svg-sun-half"></use></svg> <svg aria-hidden="true" class="colour-scheme-icon-when-dark"><use href="#svg-moon"></use></svg> <svg aria-hidden="true" class="colour-scheme-icon-when-light"><use href="#svg-sun"></use></svg> <span class="visually-hidden">Toggle light / dark / auto colour theme</span> </button> </header> <article> <section id="pep-content"> <h1 class="page-title">PEP 635 – Structural Pattern Matching: Motivation and Rationale</h1> <dl class="rfc2822 field-list simple"> <dt class="field-odd">Author<span class="colon">:</span></dt> <dd class="field-odd">Tobias Kohn <kohnt at tobiaskohn.ch>, Guido van Rossum <guido at python.org></dd> <dt class="field-even">BDFL-Delegate<span class="colon">:</span></dt> <dd class="field-even"><p></p></dd> <dt class="field-odd">Discussions-To<span class="colon">:</span></dt> <dd class="field-odd"><a class="reference external" href="https://mail.python.org/archives/list/python-dev@python.org/">Python-Dev list</a></dd> <dt class="field-even">Status<span class="colon">:</span></dt> <dd class="field-even"><abbr title="Accepted and implementation complete, or no longer active">Final</abbr></dd> <dt class="field-odd">Type<span class="colon">:</span></dt> <dd class="field-odd"><abbr title="Non-normative PEP containing background, guidelines or other information relevant to the Python ecosystem">Informational</abbr></dd> <dt class="field-even">Created<span class="colon">:</span></dt> <dd class="field-even">12-Sep-2020</dd> <dt class="field-odd">Python-Version<span class="colon">:</span></dt> <dd class="field-odd">3.10</dd> <dt class="field-even">Post-History<span class="colon">:</span></dt> <dd class="field-even">22-Oct-2020, 08-Feb-2021</dd> <dt class="field-odd">Resolution<span class="colon">:</span></dt> <dd class="field-odd"><a class="reference external" href="https://mail.python.org/archives/list/python-committers@python.org/message/SQC2FTLFV5A7DV7RCEAR2I2IKJKGK7W3">Python-Committers message</a></dd> </dl> <hr class="docutils" /> <section id="contents"> <details><summary>Table of Contents</summary><ul class="simple"> <li><a class="reference internal" href="#abstract">Abstract</a></li> <li><a class="reference internal" href="#motivation">Motivation</a><ul> <li><a class="reference internal" href="#pattern-matching-and-oo">Pattern Matching and OO</a></li> <li><a class="reference internal" href="#patterns-and-functional-style">Patterns and Functional Style</a></li> </ul> </li> <li><a class="reference internal" href="#rationale">Rationale</a><ul> <li><a class="reference internal" href="#overview-and-terminology">Overview and Terminology</a></li> <li><a class="reference internal" href="#the-match-statement">The Match Statement</a><ul> <li><a class="reference internal" href="#match-semantics">Match Semantics</a></li> <li><a class="reference internal" href="#guards">Guards</a></li> </ul> </li> <li><a class="reference internal" href="#patterns">Patterns</a><ul> <li><a class="reference internal" href="#as-patterns">AS Patterns</a></li> <li><a class="reference internal" href="#or-patterns">OR Patterns</a></li> <li><a class="reference internal" href="#literal-patterns">Literal Patterns</a></li> <li><a class="reference internal" href="#capture-patterns">Capture Patterns</a></li> <li><a class="reference internal" href="#wildcard-pattern">Wildcard Pattern</a></li> <li><a class="reference internal" href="#value-patterns">Value Patterns</a></li> <li><a class="reference internal" href="#group-patterns">Group Patterns</a></li> <li><a class="reference internal" href="#sequence-patterns">Sequence Patterns</a></li> <li><a class="reference internal" href="#mapping-patterns">Mapping Patterns</a></li> <li><a class="reference internal" href="#class-patterns">Class Patterns</a></li> </ul> </li> </ul> </li> <li><a class="reference internal" href="#history-and-context">History and Context</a></li> <li><a class="reference internal" href="#backwards-compatibility">Backwards Compatibility</a></li> <li><a class="reference internal" href="#security-implications">Security Implications</a></li> <li><a class="reference internal" href="#reference-implementation">Reference Implementation</a></li> <li><a class="reference internal" href="#references">References</a></li> <li><a class="reference internal" href="#copyright">Copyright</a></li> </ul> </details></section> <section id="abstract"> <h2><a class="toc-backref" href="#abstract" role="doc-backlink">Abstract</a></h2> <p>This PEP provides the motivation and rationale for <a class="pep reference internal" href="../pep-0634/" title="PEP 634 – Structural Pattern Matching: Specification">PEP 634</a> (“Structural Pattern Matching: Specification”). First-time readers are encouraged to start with <a class="pep reference internal" href="../pep-0636/" title="PEP 636 – Structural Pattern Matching: Tutorial">PEP 636</a>, which provides a gentler introduction to the concepts, syntax and semantics of patterns.</p> </section> <section id="motivation"> <h2><a class="toc-backref" href="#motivation" role="doc-backlink">Motivation</a></h2> <p>(Structural) pattern matching syntax is found in many languages, from Haskell, Erlang and Scala to Elixir and Ruby. (A proposal for JavaScript is also under consideration.)</p> <p>Python already supports a limited form of this through sequence unpacking assignments, which the new proposal leverages.</p> <p>Several other common Python idioms are also relevant:</p> <ul> <li>The <code class="docutils literal notranslate"><span class="pre">if</span> <span class="pre">...</span> <span class="pre">elif</span> <span class="pre">...</span> <span class="pre">elif</span> <span class="pre">...</span> <span class="pre">else</span></code> idiom is often used to find out the type or shape of an object in an ad-hoc fashion, using one or more checks like <code class="docutils literal notranslate"><span class="pre">isinstance(x,</span> <span class="pre">cls)</span></code>, <code class="docutils literal notranslate"><span class="pre">hasattr(x,</span> <span class="pre">"attr")</span></code>, <code class="docutils literal notranslate"><span class="pre">len(x)</span> <span class="pre">==</span> <span class="pre">n</span></code> or <code class="docutils literal notranslate"><span class="pre">"key"</span> <span class="pre">in</span> <span class="pre">x</span></code> as guards to select an applicable block. The block can then assume <code class="docutils literal notranslate"><span class="pre">x</span></code> supports the interface checked by the guard. For example:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span> <span class="n">host</span><span class="p">,</span> <span class="n">port</span> <span class="o">=</span> <span class="n">x</span> <span class="n">mode</span> <span class="o">=</span> <span class="s2">"http"</span> <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">==</span> <span class="mi">3</span><span class="p">:</span> <span class="n">host</span><span class="p">,</span> <span class="n">port</span><span class="p">,</span> <span class="n">mode</span> <span class="o">=</span> <span class="n">x</span> <span class="c1"># Etc.</span> </pre></div> </div> <p>Code like this is more elegantly rendered using <code class="docutils literal notranslate"><span class="pre">match</span></code>:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">match</span> <span class="n">x</span><span class="p">:</span> <span class="k">case</span> <span class="n">host</span><span class="p">,</span> <span class="n">port</span><span class="p">:</span> <span class="n">mode</span> <span class="o">=</span> <span class="s2">"http"</span> <span class="k">case</span> <span class="n">host</span><span class="p">,</span> <span class="n">port</span><span class="p">,</span> <span class="n">mode</span><span class="p">:</span> <span class="k">pass</span> <span class="c1"># Etc.</span> </pre></div> </div> </li> <li>AST traversal code often looks for nodes matching a given pattern, for example the code to detect a node of the shape “A + B * C” might look like this:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">if</span> <span class="p">(</span><span class="nb">isinstance</span><span class="p">(</span><span class="n">node</span><span class="p">,</span> <span class="n">BinOp</span><span class="p">)</span> <span class="ow">and</span> <span class="n">node</span><span class="o">.</span><span class="n">op</span> <span class="o">==</span> <span class="s2">"+"</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">node</span><span class="o">.</span><span class="n">right</span><span class="p">,</span> <span class="n">BinOp</span><span class="p">)</span> <span class="ow">and</span> <span class="n">node</span><span class="o">.</span><span class="n">right</span><span class="o">.</span><span class="n">op</span> <span class="o">==</span> <span class="s2">"*"</span><span class="p">):</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">c</span> <span class="o">=</span> <span class="n">node</span><span class="o">.</span><span class="n">left</span><span class="p">,</span> <span class="n">node</span><span class="o">.</span><span class="n">right</span><span class="o">.</span><span class="n">left</span><span class="p">,</span> <span class="n">node</span><span class="o">.</span><span class="n">right</span><span class="o">.</span><span class="n">right</span> <span class="c1"># Handle a + b*c</span> </pre></div> </div> <p>Using <code class="docutils literal notranslate"><span class="pre">match</span></code> this becomes more readable:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">match</span> <span class="n">node</span><span class="p">:</span> <span class="k">case</span> <span class="n">BinOp</span><span class="p">(</span><span class="s2">"+"</span><span class="p">,</span> <span class="n">a</span><span class="p">,</span> <span class="n">BinOp</span><span class="p">(</span><span class="s2">"*"</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">c</span><span class="p">)):</span> <span class="c1"># Handle a + b*c</span> </pre></div> </div> </li> </ul> <p>We believe that adding pattern matching to Python will enable Python users to write cleaner, more readable code for examples like those above, and many others.</p> <p>For a more academic discussion to this proposal, see <a class="footnote-reference brackets" href="#id6" id="id1">[1]</a>.</p> <section id="pattern-matching-and-oo"> <h3><a class="toc-backref" href="#pattern-matching-and-oo" role="doc-backlink">Pattern Matching and OO</a></h3> <p>Pattern matching is complimentary to the object-oriented paradigm. Using OO and inheritance we can easily define a method on a base class that defines default behavior for a specific operation on that class, and we can override this default behavior in subclasses. We can also use the Visitor pattern to separate actions from data.</p> <p>But this is not sufficient for all situations. For example, a code generator may consume an AST, and have many operations where the generated code needs to vary based not just on the class of a node, but also on the value of some class attributes, like the <code class="docutils literal notranslate"><span class="pre">BinOp</span></code> example above. The Visitor pattern is insufficiently flexible for this: it can only select based on the class.</p> <p>See a <a class="reference external" href="https://github.com/gvanrossum/patma/blob/be5969442d0584005492134c3b24eea408709db2/examples/expr.py#L231">complete example</a>.</p> <p>Like the Visitor pattern, pattern matching allows for a strict separation of concerns: specific actions or data processing is independent of the class hierarchy or manipulated objects. When dealing with predefined or even built-in classes, in particular, it is often impossible to add further methods to the individual classes. Pattern matching not only relieves the programmer or class designer from the burden of the boilerplate code needed for the Visitor pattern, but is also flexible enough to directly work with built-in types. It naturally distinguishes between sequences of different lengths, which might all share the same class despite obviously differing structures. Moreover, pattern matching automatically takes inheritance into account: a class <em>D</em> inheriting from <em>C</em> will be handled by a pattern that targets <em>C</em> by default.</p> <p>Object oriented programming is geared towards single-dispatch: it is a single instance (or the type thereof) that determines which method is to be called. This leads to a somewhat artificial situation in case of binary operators where both objects might play an equal role in deciding which implementation to use (Python addresses this through the use of reversed binary methods). Pattern matching is structurally better suited to handle such situations of multi-dispatch, where the action to be taken depends on the types of several objects to equal parts.</p> </section> <section id="patterns-and-functional-style"> <h3><a class="toc-backref" href="#patterns-and-functional-style" role="doc-backlink">Patterns and Functional Style</a></h3> <p>Many Python applications and libraries are not written in a consistent OO style – unlike Java, Python encourages defining functions at the top-level of a module, and for simple data structures, tuples (or named tuples or lists) and dictionaries are often used exclusively or mixed with classes or data classes.</p> <p>Pattern matching is particularly suitable for picking apart such data structures. As an extreme example, it’s easy to write code that picks a JSON data structure using <code class="docutils literal notranslate"><span class="pre">match</span></code>:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">match</span> <span class="n">json_pet</span><span class="p">:</span> <span class="k">case</span> <span class="p">{</span><span class="s2">"type"</span><span class="p">:</span> <span class="s2">"cat"</span><span class="p">,</span> <span class="s2">"name"</span><span class="p">:</span> <span class="n">name</span><span class="p">,</span> <span class="s2">"pattern"</span><span class="p">:</span> <span class="n">pattern</span><span class="p">}:</span> <span class="k">return</span> <span class="n">Cat</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">pattern</span><span class="p">)</span> <span class="k">case</span> <span class="p">{</span><span class="s2">"type"</span><span class="p">:</span> <span class="s2">"dog"</span><span class="p">,</span> <span class="s2">"name"</span><span class="p">:</span> <span class="n">name</span><span class="p">,</span> <span class="s2">"breed"</span><span class="p">:</span> <span class="n">breed</span><span class="p">}:</span> <span class="k">return</span> <span class="n">Dog</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">breed</span><span class="p">)</span> <span class="k">case</span><span class="w"> </span><span class="k">_</span><span class="p">:</span> <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Not a suitable pet"</span><span class="p">)</span> </pre></div> </div> <p>Functional programming generally prefers a declarative style with a focus on relationships in data. Side effects are avoided whenever possible. Pattern matching thus naturally fits and highly supports functional programming style.</p> </section> </section> <section id="rationale"> <h2><a class="toc-backref" href="#rationale" role="doc-backlink">Rationale</a></h2> <p>This section provides the rationale for individual design decisions. It takes the place of “Rejected ideas” in the standard PEP format. It is organized in sections corresponding to the specification (<a class="pep reference internal" href="../pep-0634/" title="PEP 634 – Structural Pattern Matching: Specification">PEP 634</a>).</p> <section id="overview-and-terminology"> <h3><a class="toc-backref" href="#overview-and-terminology" role="doc-backlink">Overview and Terminology</a></h3> <p>Much of the power of pattern matching comes from the nesting of subpatterns. That the success of a pattern match depends directly on the success of subpattern is thus a cornerstone of the design. However, although a pattern like <code class="docutils literal notranslate"><span class="pre">P(Q(),</span> <span class="pre">R())</span></code> succeeds only if both subpatterns <code class="docutils literal notranslate"><span class="pre">Q()</span></code> and <code class="docutils literal notranslate"><span class="pre">R()</span></code> succeed (i.e. the success of pattern <code class="docutils literal notranslate"><span class="pre">P</span></code> depends on <code class="docutils literal notranslate"><span class="pre">Q</span></code> and <code class="docutils literal notranslate"><span class="pre">R</span></code>), the pattern <code class="docutils literal notranslate"><span class="pre">P</span></code> is checked first. If <code class="docutils literal notranslate"><span class="pre">P</span></code> fails, neither <code class="docutils literal notranslate"><span class="pre">Q()</span></code> nor <code class="docutils literal notranslate"><span class="pre">R()</span></code> will be tried (this is a direct consequence of the fact that if <code class="docutils literal notranslate"><span class="pre">P</span></code> fails, there are no subjects to match against <code class="docutils literal notranslate"><span class="pre">Q()</span></code> and <code class="docutils literal notranslate"><span class="pre">R()</span></code> in the first place).</p> <p>Also note that patterns bind names to values rather than performing an assignment. This reflects the fact that patterns aim to not have side effects, which also means that Capture or AS patterns cannot assign a value to an attribute or subscript. We thus consistently use the term ‘bind’ instead of ‘assign’ to emphasise this subtle difference between traditional assignments and name binding in patterns.</p> </section> <section id="the-match-statement"> <h3><a class="toc-backref" href="#the-match-statement" role="doc-backlink">The Match Statement</a></h3> <p>The match statement evaluates an expression to produce a subject, finds the first pattern that matches the subject, and executes the associated block of code. Syntactically, the match statement thus takes an expression and a sequence of case clauses, where each case clause comprises a pattern and a block of code.</p> <p>Since case clauses comprise a block of code, they adhere to the existing indentation scheme with the syntactic structure of <code class="docutils literal notranslate"><span class="pre"><keyword></span> <span class="pre">...:</span> <span class="pre"><(indented)</span> <span class="pre">block></span></code>, which resembles a compound statement. The keyword <code class="docutils literal notranslate"><span class="pre">case</span></code> reflects its widespread use in pattern matching languages, ignoring those languages that use other syntactic means such as a symbol like <code class="docutils literal notranslate"><span class="pre">|</span></code>, because it would not fit established Python structures. The syntax of patterns following the keyword is discussed below.</p> <p>Given that the case clauses follow the structure of a compound statement, the match statement itself naturally becomes a compound statement itself as well, following the same syntactic structure. This naturally leads to <code class="docutils literal notranslate"><span class="pre">match</span> <span class="pre"><expr>:</span> <span class="pre"><case_clause>+</span></code>. Note that the match statement determines a quasi-scope in which the evaluated subject is kept alive (although not in a local variable), similar to how a with statement might keep a resource alive during execution of its block. Furthermore, control flows from the match statement to a case clause and then leaves the block of the match statement. The block of the match statement thus has both syntactic and semantic meaning.</p> <p>Various suggestions have sought to eliminate or avoid the naturally arising “double indentation” of a case clause’s code block. Unfortunately, all such proposals of <em>flat indentation schemes</em> come at the expense of violating Python’s established structural paradigm, leading to additional syntactic rules:</p> <ul> <li><em>Unindented case clauses.</em> The idea is to align case clauses with the <code class="docutils literal notranslate"><span class="pre">match</span></code>, i.e.:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">match</span> <span class="n">expression</span><span class="p">:</span> <span class="k">case</span> <span class="n">pattern_1</span><span class="p">:</span> <span class="o">...</span> <span class="k">case</span> <span class="n">pattern_2</span><span class="p">:</span> <span class="o">...</span> </pre></div> </div> <p>This may look awkward to the eye of a Python programmer, because everywhere else a colon is followed by an indent. The <code class="docutils literal notranslate"><span class="pre">match</span></code> would neither follow the syntactic scheme of simple nor composite statements but rather establish a category of its own.</p> </li> <li><em>Putting the expression on a separate line after “match”.</em> The idea is to use the expression yielding the subject as a statement to avoid the singularity of <code class="docutils literal notranslate"><span class="pre">match</span></code> having no actual block despite the colons:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">match</span><span class="p">:</span> <span class="n">expression</span> <span class="k">case</span> <span class="n">pattern_1</span><span class="p">:</span> <span class="o">...</span> <span class="k">case</span> <span class="n">pattern_2</span><span class="p">:</span> <span class="o">...</span> </pre></div> </div> <p>This was ultimately rejected because the first block would be another novelty in Python’s grammar: a block whose only content is a single expression rather than a sequence of statements. Attempts to amend this issue by adding or repurposing yet another keyword along the lines of <code class="docutils literal notranslate"><span class="pre">match:</span> <span class="pre">return</span> <span class="pre">expression</span></code> did not yield any satisfactory solution.</p> </li> </ul> <p>Although flat indentation would save some horizontal space, the cost of increased complexity or unusual rules is too high. It would also complicate life for simple-minded code editors. Finally, the horizontal space issue can be alleviated by allowing “half-indent” (i.e. two spaces instead of four) for match statements (though we do not recommend this).</p> <p>In sample programs using <code class="docutils literal notranslate"><span class="pre">match</span></code>, written as part of the development of this PEP, a noticeable improvement in code brevity is observed, more than making up for the additional indentation level.</p> <p><em>Statement vs. Expression.</em> Some suggestions centered around the idea of making <code class="docutils literal notranslate"><span class="pre">match</span></code> an expression rather than a statement. However, this would fit poorly with Python’s statement-oriented nature and lead to unusually long and complex expressions and the need to invent new syntactic constructs or break well established syntactic rules. An obvious consequence of <code class="docutils literal notranslate"><span class="pre">match</span></code> as an expression would be that case clauses could no longer have arbitrary blocks of code attached, but only a single expression. Overall, the strong limitations could in no way offset the slight simplification in some special use cases.</p> <p><em>Hard vs. Soft Keyword.</em> There were options to make match a hard keyword, or choose a different keyword. Although using a hard keyword would simplify life for simple-minded syntax highlighters, we decided not to use hard keyword for several reasons:</p> <ul class="simple"> <li>Most importantly, the new parser doesn’t require us to do this. Unlike with <code class="docutils literal notranslate"><span class="pre">async</span></code> that caused hardships with being a soft keyword for few releases, here we can make <code class="docutils literal notranslate"><span class="pre">match</span></code> a permanent soft keyword.</li> <li><code class="docutils literal notranslate"><span class="pre">match</span></code> is so commonly used in existing code, that it would break almost every existing program and will put a burden to fix code on many people who may not even benefit from the new syntax.</li> <li>It is hard to find an alternative keyword that would not be commonly used in existing programs as an identifier, and would still clearly reflect the meaning of the statement.</li> </ul> <p><strong>Use “as” or “|” instead of “case” for case clauses.</strong> The pattern matching proposed here is a combination of multi-branch control flow (in line with <code class="docutils literal notranslate"><span class="pre">switch</span></code> in Algol-derived languages or <code class="docutils literal notranslate"><span class="pre">cond</span></code> in Lisp) and object-deconstruction as found in functional languages. While the proposed keyword <code class="docutils literal notranslate"><span class="pre">case</span></code> highlights the multi-branch aspect, alternative keywords such as <code class="docutils literal notranslate"><span class="pre">as</span></code> would equally be possible, highlighting the deconstruction aspect. <code class="docutils literal notranslate"><span class="pre">as</span></code> or <code class="docutils literal notranslate"><span class="pre">with</span></code>, for instance, also have the advantage of already being keywords in Python. However, since <code class="docutils literal notranslate"><span class="pre">case</span></code> as a keyword can only occur as a leading keyword inside a <code class="docutils literal notranslate"><span class="pre">match</span></code> statement, it is easy for a parser to distinguish between its use as a keyword or as a variable.</p> <p>Other variants would use a symbol like <code class="docutils literal notranslate"><span class="pre">|</span></code> or <code class="docutils literal notranslate"><span class="pre">=></span></code>, or go entirely without special marker.</p> <p>Since Python is a statement-oriented language in the tradition of Algol, and as each composite statement starts with an identifying keyword, <code class="docutils literal notranslate"><span class="pre">case</span></code> seemed to be most in line with Python’s style and traditions.</p> <section id="match-semantics"> <h4><a class="toc-backref" href="#match-semantics" role="doc-backlink">Match Semantics</a></h4> <p>The patterns of different case clauses might overlap in that more than one case clause would match a given subject. The first-to-match rule ensures that the selection of a case clause for a given subject is unambiguous. Furthermore, case clauses can have increasingly general patterns matching wider sets of subjects. The first-to-match rule then ensures that the most precise pattern can be chosen (although it is the programmer’s responsibility to order the case clauses correctly).</p> <p>In a statically typed language, the match statement would be compiled to a decision tree to select a matching pattern quickly and very efficiently. This would, however, require that all patterns be purely declarative and static, running against the established dynamic semantics of Python. The proposed semantics thus represent a path incorporating the best of both worlds: patterns are tried in a strictly sequential order so that each case clause constitutes an actual statement. At the same time, we allow the interpreter to cache any information about the subject or change the order in which subpatterns are tried. In other words: if the interpreter has found that the subject is not an instance of a class <code class="docutils literal notranslate"><span class="pre">C</span></code>, it can directly skip case clauses testing for this again, without having to perform repeated instance-checks. If a guard stipulates that a variable <code class="docutils literal notranslate"><span class="pre">x</span></code> must be positive, say (i.e. <code class="docutils literal notranslate"><span class="pre">if</span> <span class="pre">x</span> <span class="pre">></span> <span class="pre">0</span></code>), the interpreter might check this directly after binding <code class="docutils literal notranslate"><span class="pre">x</span></code> and before any further subpatterns are considered.</p> <p><em>Binding and scoping.</em> In many pattern matching implementations, each case clause would establish a separate scope of its own. Variables bound by a pattern would then only be visible inside the corresponding case block. In Python, however, this does not make sense. Establishing separate scopes would essentially mean that each case clause is a separate function without direct access to the variables in the surrounding scope (without having to resort to <code class="docutils literal notranslate"><span class="pre">nonlocal</span></code> that is). Moreover, a case clause could no longer influence any surrounding control flow through standard statement such as <code class="docutils literal notranslate"><span class="pre">return</span></code> or <code class="docutils literal notranslate"><span class="pre">break</span></code>. Hence, such strict scoping would lead to unintuitive and surprising behavior.</p> <p>A direct consequence of this is that any variable bindings outlive the respective case or match statements. Even patterns that only match a subject partially might bind local variables (this is, in fact, necessary for guards to function properly). However, these semantics for variable binding are in line with existing Python structures such as for loops and with statements.</p> </section> <section id="guards"> <h4><a class="toc-backref" href="#guards" role="doc-backlink">Guards</a></h4> <p>Some constraints cannot be adequately expressed through patterns alone. For instance, a ‘less’ or ‘greater than’ relationship defies the usual ‘equal’ semantics of patterns. Moreover, different subpatterns are independent and cannot refer to each other. The addition of <em>guards</em> addresses these restrictions: a guard is an arbitrary expression attached to a pattern and that must evaluate to a “truthy” value for the pattern to succeed.</p> <p>For example, <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">[x,</span> <span class="pre">y]</span> <span class="pre">if</span> <span class="pre">x</span> <span class="pre"><</span> <span class="pre">y:</span></code> uses a guard (<code class="docutils literal notranslate"><span class="pre">if</span> <span class="pre">x</span> <span class="pre"><</span> <span class="pre">y</span></code>) to express a ‘less than’ relationship between two otherwise disjoint capture patterns <code class="docutils literal notranslate"><span class="pre">x</span></code> and <code class="docutils literal notranslate"><span class="pre">y</span></code>.</p> <p>From a conceptual point of view, patterns describe structural constraints on the subject in a declarative style, ideally without any side-effects. Recall, in particular, that patterns are clearly distinct from expressions, following different objectives and semantics. Guards then enhance case blocks in a highly controlled way with arbitrary expressions (that might have side effects). Splitting the overall functionality into a static structural and a dynamically evaluated part not only helps with readability, but can also introduce dramatic potential for compiler optimizations. To keep this clear separation, guards are only supported on the level of case clauses and not for individual patterns.</p> <p><strong>Example</strong> using guards:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">sort</span><span class="p">(</span><span class="n">seq</span><span class="p">):</span> <span class="k">match</span> <span class="n">seq</span><span class="p">:</span> <span class="k">case</span><span class="w"> </span><span class="p">[]</span> <span class="o">|</span> <span class="p">[</span><span class="k">_</span><span class="p">]:</span> <span class="k">return</span> <span class="n">seq</span> <span class="k">case</span> <span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">]</span> <span class="k">if</span> <span class="n">x</span> <span class="o"><=</span> <span class="n">y</span><span class="p">:</span> <span class="k">return</span> <span class="n">seq</span> <span class="k">case</span> <span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">]:</span> <span class="k">return</span> <span class="p">[</span><span class="n">y</span><span class="p">,</span> <span class="n">x</span><span class="p">]</span> <span class="k">case</span> <span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span><span class="p">]</span> <span class="k">if</span> <span class="n">x</span> <span class="o"><=</span> <span class="n">y</span> <span class="o"><=</span> <span class="n">z</span><span class="p">:</span> <span class="k">return</span> <span class="n">seq</span> <span class="k">case</span> <span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span><span class="p">]</span> <span class="k">if</span> <span class="n">x</span> <span class="o">>=</span> <span class="n">y</span> <span class="o">>=</span> <span class="n">z</span><span class="p">:</span> <span class="k">return</span> <span class="p">[</span><span class="n">z</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">x</span><span class="p">]</span> <span class="k">case</span> <span class="p">[</span><span class="n">p</span><span class="p">,</span> <span class="o">*</span><span class="n">rest</span><span class="p">]:</span> <span class="n">a</span> <span class="o">=</span> <span class="n">sort</span><span class="p">([</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">rest</span> <span class="k">if</span> <span class="n">x</span> <span class="o"><=</span> <span class="n">p</span><span class="p">])</span> <span class="n">b</span> <span class="o">=</span> <span class="n">sort</span><span class="p">([</span><span class="n">x</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">rest</span> <span class="k">if</span> <span class="n">p</span> <span class="o"><</span> <span class="n">x</span><span class="p">])</span> <span class="k">return</span> <span class="n">a</span> <span class="o">+</span> <span class="p">[</span><span class="n">p</span><span class="p">]</span> <span class="o">+</span> <span class="n">b</span> </pre></div> </div> </section> </section> <section id="patterns"> <span id="id2"></span><h3><a class="toc-backref" href="#patterns" role="doc-backlink">Patterns</a></h3> <p>Patterns fulfill two purposes: they impose (structural) constraints on the subject and they specify which data values should be extracted from the subject and bound to variables. In iterable unpacking, which can be seen as a prototype to pattern matching in Python, there is only one <em>structural pattern</em> to express sequences while there is a rich set of <em>binding patterns</em> to assign a value to a specific variable or field. Full pattern matching differs from this in that there is more variety in structural patterns but only a minimum of binding patterns.</p> <p>Patterns differ from assignment targets (as in iterable unpacking) in two ways: they impose additional constraints on the structure of the subject, and a subject may safely fail to match a specific pattern at any point (in iterable unpacking, this constitutes an error). The latter means that pattern should avoid side effects wherever possible.</p> <p>This desire to avoid side effects is one reason why capture patterns don’t allow binding values to attributes or subscripts: if the containing pattern were to fail in a later step, it would be hard to revert such bindings.</p> <p>A cornerstone of pattern matching is the possibility of arbitrarily <em>nesting patterns</em>. The nesting allows expressing deep tree structures (for an example of nested class patterns, see the motivation section above) as well as alternatives.</p> <p>Although patterns might superficially look like expressions, it is important to keep in mind that there is a clear distinction. In fact, no pattern is or contains an expression. It is more productive to think of patterns as declarative elements similar to the formal parameters in a function definition.</p> <section id="as-patterns"> <h4><a class="toc-backref" href="#as-patterns" role="doc-backlink">AS Patterns</a></h4> <p>Patterns fall into two categories: most patterns impose a (structural) constraint that the subject needs to fulfill, whereas the capture pattern binds the subject to a name without regard for the subject’s structure or actual value. Consequently, a pattern can either express a constraint or bind a value, but not both. AS patterns fill this gap in that they allow the user to specify a general pattern as well as capture the subject in a variable.</p> <p>Typical use cases for the AS pattern include OR and Class patterns together with a binding name as in, e.g., <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">BinOp('+'|'-'</span> <span class="pre">as</span> <span class="pre">op,</span> <span class="pre">...):</span></code> or <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">[int()</span> <span class="pre">as</span> <span class="pre">first,</span> <span class="pre">int()</span> <span class="pre">as</span> <span class="pre">second]:</span></code>. The latter could be understood as saying that the subject must fulfil two distinct pattern: <code class="docutils literal notranslate"><span class="pre">[first,</span> <span class="pre">second]</span></code> as well as <code class="docutils literal notranslate"><span class="pre">[int(),</span> <span class="pre">int()]</span></code>. The AS pattern can thus be seen as a special case of an ‘and’ pattern (see OR patterns below for an additional discussion of ‘and’ patterns).</p> <p>In an earlier version, the AS pattern was devised as a ‘Walrus pattern’, written as <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">[first:=int(),</span> <span class="pre">second:=int()]</span></code>. However, using <code class="docutils literal notranslate"><span class="pre">as</span></code> offers some advantages over <code class="docutils literal notranslate"><span class="pre">:=</span></code>:</p> <ul class="simple"> <li>The walrus operator <code class="docutils literal notranslate"><span class="pre">:=</span></code> is used to capture the result of an expression on the right hand side, whereas <code class="docutils literal notranslate"><span class="pre">as</span></code> generally indicates some form of ‘processing’ as in <code class="docutils literal notranslate"><span class="pre">import</span> <span class="pre">foo</span> <span class="pre">as</span> <span class="pre">bar</span></code> or <code class="docutils literal notranslate"><span class="pre">except</span> <span class="pre">E</span> <span class="pre">as</span> <span class="pre">err:</span></code>. Indeed, the pattern <code class="docutils literal notranslate"><span class="pre">P</span> <span class="pre">as</span> <span class="pre">x</span></code> does not assign the pattern <code class="docutils literal notranslate"><span class="pre">P</span></code> to <code class="docutils literal notranslate"><span class="pre">x</span></code>, but rather the subject that successfully matches <code class="docutils literal notranslate"><span class="pre">P</span></code>.</li> <li><code class="docutils literal notranslate"><span class="pre">as</span></code> allows for a more consistent data flow from left to right (the attributes in Class patterns also follow a left-to-right data flow).</li> <li>The walrus operator looks very similar to the syntax for matching attributes in the Class pattern, potentially leading to some confusion.</li> </ul> <p><strong>Example</strong> using the AS pattern:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">simplify_expr</span><span class="p">(</span><span class="n">tokens</span><span class="p">):</span> <span class="k">match</span> <span class="n">tokens</span><span class="p">:</span> <span class="k">case</span> <span class="p">[(</span><span class="s1">'('</span><span class="o">|</span><span class="s1">'['</span><span class="p">)</span> <span class="k">as</span> <span class="n">l</span><span class="p">,</span> <span class="o">*</span><span class="n">expr</span><span class="p">,</span> <span class="p">(</span><span class="s1">')'</span><span class="o">|</span><span class="s1">']'</span><span class="p">)</span> <span class="k">as</span> <span class="n">r</span><span class="p">]</span> <span class="k">if</span> <span class="p">(</span><span class="n">l</span><span class="o">+</span><span class="n">r</span><span class="p">)</span> <span class="ow">in</span> <span class="p">(</span><span class="s1">'()'</span><span class="p">,</span> <span class="s1">'[]'</span><span class="p">):</span> <span class="k">return</span> <span class="n">simplify_expr</span><span class="p">(</span><span class="n">expr</span><span class="p">)</span> <span class="k">case</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="p">(</span><span class="s1">'+'</span><span class="o">|</span><span class="s1">'-'</span><span class="p">)</span> <span class="k">as</span> <span class="n">op</span><span class="p">,</span> <span class="n">right</span><span class="p">]:</span> <span class="k">return</span> <span class="n">UnaryOp</span><span class="p">(</span><span class="n">op</span><span class="p">,</span> <span class="n">right</span><span class="p">)</span> <span class="k">case</span> <span class="p">[(</span><span class="nb">int</span><span class="p">()</span> <span class="o">|</span> <span class="nb">float</span><span class="p">()</span> <span class="k">as</span> <span class="n">left</span><span class="p">)</span> <span class="o">|</span> <span class="n">Num</span><span class="p">(</span><span class="n">left</span><span class="p">),</span> <span class="s1">'+'</span><span class="p">,</span> <span class="p">(</span><span class="nb">int</span><span class="p">()</span> <span class="o">|</span> <span class="nb">float</span><span class="p">()</span> <span class="k">as</span> <span class="n">right</span><span class="p">)</span> <span class="o">|</span> <span class="n">Num</span><span class="p">(</span><span class="n">right</span><span class="p">)]:</span> <span class="k">return</span> <span class="n">Num</span><span class="p">(</span><span class="n">left</span> <span class="o">+</span> <span class="n">right</span><span class="p">)</span> <span class="k">case</span> <span class="p">[(</span><span class="nb">int</span><span class="p">()</span> <span class="o">|</span> <span class="nb">float</span><span class="p">())</span> <span class="k">as</span> <span class="n">value</span><span class="p">]:</span> <span class="k">return</span> <span class="n">Num</span><span class="p">(</span><span class="n">value</span><span class="p">)</span> </pre></div> </div> </section> <section id="or-patterns"> <h4><a class="toc-backref" href="#or-patterns" role="doc-backlink">OR Patterns</a></h4> <p>The OR pattern allows you to combine ‘structurally equivalent’ alternatives into a new pattern, i.e. several patterns can share a common handler. If any of an OR pattern’s subpatterns matches the subject, the entire OR pattern succeeds.</p> <p>Statically typed languages prohibit the binding of names (capture patterns) inside an OR pattern because of potential conflicts concerning the types of variables. As a dynamically typed language, Python can be less restrictive here and allow capture patterns inside OR patterns. However, each subpattern must bind the same set of variables so as not to leave potentially undefined names. With two alternatives <code class="docutils literal notranslate"><span class="pre">P</span> <span class="pre">|</span> <span class="pre">Q</span></code>, this means that if <em>P</em> binds the variables <em>u</em> and <em>v</em>, <em>Q</em> must bind exactly the same variables <em>u</em> and <em>v</em>.</p> <p>There was some discussion on whether to use the bar symbol <code class="docutils literal notranslate"><span class="pre">|</span></code> or the <code class="docutils literal notranslate"><span class="pre">or</span></code> keyword to separate alternatives. The OR pattern does not fully fit the existing semantics and usage of either of these two symbols. However, <code class="docutils literal notranslate"><span class="pre">|</span></code> is the symbol of choice in all programming languages with support of the OR pattern and is used in that capacity for regular expressions in Python as well. It is also the traditional separator between alternatives in formal grammars (including Python’s). Moreover, <code class="docutils literal notranslate"><span class="pre">|</span></code> is not only used for bitwise OR, but also for set unions and dict merging (<a class="pep reference internal" href="../pep-0584/" title="PEP 584 – Add Union Operators To dict">PEP 584</a>).</p> <p>Other alternatives were considered as well, but none of these would allow OR-patterns to be nested inside other patterns:</p> <ul> <li><em>Using a comma</em>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">case</span> <span class="mi">401</span><span class="p">,</span> <span class="mi">403</span><span class="p">,</span> <span class="mi">404</span><span class="p">:</span> <span class="nb">print</span><span class="p">(</span><span class="s2">"Some HTTP error"</span><span class="p">)</span> </pre></div> </div> <p>This looks too much like a tuple – we would have to find a different way to spell tuples, and the construct would have to be parenthesized inside the argument list of a class pattern. In general, commas already have many different meanings in Python, we shouldn’t add more.</p> </li> <li><em>Using stacked cases</em>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">case</span> <span class="mi">401</span><span class="p">:</span> <span class="k">case</span> <span class="mi">403</span><span class="p">:</span> <span class="k">case</span> <span class="mi">404</span><span class="p">:</span> <span class="nb">print</span><span class="p">(</span><span class="s2">"Some HTTP error"</span><span class="p">)</span> </pre></div> </div> <p>This is how this would be done in <em>C</em>, using its fall-through semantics for cases. However, we don’t want to mislead people into thinking that match/case uses fall-through semantics (which are a common source of bugs in <em>C</em>). Also, this would be a novel indentation pattern, which might make it harder to support in IDEs and such (it would break the simple rule “add an indentation level after a line ending in a colon”). Finally, this would not support OR patterns nested inside other patterns, either.</p> </li> <li><em>Using “case in” followed by a comma-separated list</em>:<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">case</span> <span class="ow">in</span> <span class="mi">401</span><span class="p">,</span> <span class="mi">403</span><span class="p">,</span> <span class="mi">404</span><span class="p">:</span> <span class="nb">print</span><span class="p">(</span><span class="s2">"Some HTTP error"</span><span class="p">)</span> </pre></div> </div> <p>This would not work for OR patterns nested inside other patterns, like:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">case</span> <span class="n">Point</span><span class="p">(</span><span class="mi">0</span><span class="o">|</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="o">|</span><span class="mi">1</span><span class="p">):</span> <span class="nb">print</span><span class="p">(</span><span class="s2">"A corner of the unit square"</span><span class="p">)</span> </pre></div> </div> </li> </ul> <p><strong>AND and NOT Patterns</strong></p> <p>Since this proposal defines an OR-pattern (<code class="docutils literal notranslate"><span class="pre">|</span></code>) to match one of several alternates, why not also an AND-pattern (<code class="docutils literal notranslate"><span class="pre">&</span></code>) or even a NOT-pattern (<code class="docutils literal notranslate"><span class="pre">!</span></code>)? Especially given that some other languages (<code class="docutils literal notranslate"><span class="pre">F#</span></code> for example) support AND-patterns.</p> <p>However, it is not clear how useful this would be. The semantics for matching dictionaries, objects and sequences already incorporates an implicit ‘and’: all attributes and elements mentioned must be present for the match to succeed. Guard conditions can also support many of the use cases that a hypothetical ‘and’ operator would be used for.</p> <p>A negation of a match pattern using the operator <code class="docutils literal notranslate"><span class="pre">!</span></code> as a prefix would match exactly if the pattern itself does not match. For instance, <code class="docutils literal notranslate"><span class="pre">!(3</span> <span class="pre">|</span> <span class="pre">4)</span></code> would match anything except <code class="docutils literal notranslate"><span class="pre">3</span></code> or <code class="docutils literal notranslate"><span class="pre">4</span></code>. However, there is <a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/2480360.2384582">evidence from other languages</a> that this is rarely useful, and primarily used as double negation <code class="docutils literal notranslate"><span class="pre">!!</span></code> to control variable scopes and prevent variable bindings (which does not apply to Python). Other use cases are better expressed using guards.</p> <p>In the end, it was decided that this would make the syntax more complex without adding a significant benefit. It can always be added later.</p> <p><strong>Example</strong> using the OR pattern:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">simplify</span><span class="p">(</span><span class="n">expr</span><span class="p">):</span> <span class="k">match</span> <span class="n">expr</span><span class="p">:</span> <span class="k">case</span> <span class="p">(</span><span class="s1">'/'</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">):</span> <span class="k">return</span> <span class="n">expr</span> <span class="k">case</span><span class="w"> </span><span class="p">(</span><span class="s1">'*'</span><span class="o">|</span><span class="s1">'/'</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="k">_</span><span class="p">):</span> <span class="k">return</span> <span class="mi">0</span> <span class="k">case</span> <span class="p">(</span><span class="s1">'+'</span><span class="o">|</span><span class="s1">'-'</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> <span class="o">|</span> <span class="p">(</span><span class="s1">'+'</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span> <span class="o">|</span> <span class="p">(</span><span class="s1">'*'</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span> <span class="o">|</span> <span class="p">(</span><span class="s1">'*'</span><span class="o">|</span><span class="s1">'/'</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">):</span> <span class="k">return</span> <span class="n">x</span> <span class="k">return</span> <span class="n">expr</span> </pre></div> </div> </section> <section id="literal-patterns"> <span id="literal-pattern"></span><h4><a class="toc-backref" href="#literal-patterns" role="doc-backlink">Literal Patterns</a></h4> <p>Literal patterns are a convenient way for imposing constraints on the value of a subject, rather than its type or structure. They also allow you to emulate a switch statement using pattern matching.</p> <p>Generally, the subject is compared to a literal pattern by means of standard equality (<code class="docutils literal notranslate"><span class="pre">x</span> <span class="pre">==</span> <span class="pre">y</span></code> in Python syntax). Consequently, the literal patterns <code class="docutils literal notranslate"><span class="pre">1.0</span></code> and <code class="docutils literal notranslate"><span class="pre">1</span></code> match exactly the same set of objects, i.e. <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">1.0:</span></code> and <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">1:</span></code> are fully interchangeable. In principle, <code class="docutils literal notranslate"><span class="pre">True</span></code> would also match the same set of objects because <code class="docutils literal notranslate"><span class="pre">True</span> <span class="pre">==</span> <span class="pre">1</span></code> holds. However, we believe that many users would be surprised finding that <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">True:</span></code> matched the subject <code class="docutils literal notranslate"><span class="pre">1.0</span></code>, resulting in some subtle bugs and convoluted workarounds. We therefore adopted the rule that the three singleton patterns <code class="docutils literal notranslate"><span class="pre">None</span></code>, <code class="docutils literal notranslate"><span class="pre">False</span></code> and <code class="docutils literal notranslate"><span class="pre">True</span></code> match by identity (<code class="docutils literal notranslate"><span class="pre">x</span> <span class="pre">is</span> <span class="pre">y</span></code> in Python syntax) rather than equality. Hence, <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">True:</span></code> will match only <code class="docutils literal notranslate"><span class="pre">True</span></code> and nothing else. Note that <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">1:</span></code> would still match <code class="docutils literal notranslate"><span class="pre">True</span></code>, though, because the literal pattern <code class="docutils literal notranslate"><span class="pre">1</span></code> works by equality and not identity.</p> <p>Early ideas to induce a hierarchy on numbers so that <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">1.0</span></code> would match both the integer <code class="docutils literal notranslate"><span class="pre">1</span></code> and the floating point number <code class="docutils literal notranslate"><span class="pre">1.0</span></code>, whereas <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">1:</span></code> would only match the integer <code class="docutils literal notranslate"><span class="pre">1</span></code> were eventually dropped in favor of the simpler and more consistent rule based on equality. Moreover, any additional checks whether the subject is an instance of <code class="docutils literal notranslate"><span class="pre">numbers.Integral</span></code> would come at a high runtime cost to introduce what would essentially be a novel idea in Python. When needed, the explicit syntax <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">int(1):</span></code> can be used.</p> <p>Recall that literal patterns are <em>not</em> expressions, but directly denote a specific value. From a pragmatic point of view, we want to allow using negative and even complex values as literal patterns, but they are not atomic literals (only unsigned real and imaginary numbers are). E.g., <code class="docutils literal notranslate"><span class="pre">-3+4j</span></code> is syntactically an expression of the form <code class="docutils literal notranslate"><span class="pre">BinOp(UnaryOp('-',</span> <span class="pre">3),</span> <span class="pre">'+',</span> <span class="pre">4j)</span></code>. Since expressions are not part of patterns, we had to add explicit syntactic support for such values without having to resort to full expressions.</p> <p>Interpolated <em>f</em>-strings, on the other hand, are not literal values, despite their appearance and can therefore not be used as literal patterns (string concatenation, however, is supported).</p> <p>Literal patterns not only occur as patterns in their own right, but also as keys in <em>mapping patterns</em>.</p> <p><strong>Range matching patterns.</strong> This would allow patterns such as <code class="docutils literal notranslate"><span class="pre">1...6</span></code>. However, there are a host of ambiguities:</p> <ul class="simple"> <li>Is the range open, half-open, or closed? (I.e. is <code class="docutils literal notranslate"><span class="pre">6</span></code> included in the above example or not?)</li> <li>Does the range match a single number, or a range object?</li> <li>Range matching is often used for character ranges (‘a’…’z’) but that won’t work in Python since there’s no character data type, just strings.</li> <li>Range matching can be a significant performance optimization if you can pre-build a jump table, but that’s not generally possible in Python due to the fact that names can be dynamically rebound.</li> </ul> <p>Rather than creating a special-case syntax for ranges, it was decided that allowing custom pattern objects (<code class="docutils literal notranslate"><span class="pre">InRange(0,</span> <span class="pre">6)</span></code>) would be more flexible and less ambiguous; however those ideas have been postponed for the time being.</p> <p><strong>Example</strong> using Literal patterns:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">simplify</span><span class="p">(</span><span class="n">expr</span><span class="p">):</span> <span class="k">match</span> <span class="n">expr</span><span class="p">:</span> <span class="k">case</span> <span class="p">(</span><span class="s1">'+'</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span> <span class="k">return</span> <span class="n">x</span> <span class="k">case</span> <span class="p">(</span><span class="s1">'+'</span> <span class="o">|</span> <span class="s1">'-'</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="mi">0</span><span class="p">):</span> <span class="k">return</span> <span class="n">x</span> <span class="k">case</span> <span class="p">(</span><span class="s1">'and'</span><span class="p">,</span> <span class="kc">True</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span> <span class="k">return</span> <span class="n">x</span> <span class="k">case</span> <span class="p">(</span><span class="s1">'and'</span><span class="p">,</span> <span class="kc">False</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span> <span class="k">return</span> <span class="kc">False</span> <span class="k">case</span> <span class="p">(</span><span class="s1">'or'</span><span class="p">,</span> <span class="kc">False</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span> <span class="k">return</span> <span class="n">x</span> <span class="k">case</span> <span class="p">(</span><span class="s1">'or'</span><span class="p">,</span> <span class="kc">True</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span> <span class="k">return</span> <span class="kc">True</span> <span class="k">case</span> <span class="p">(</span><span class="s1">'not'</span><span class="p">,</span> <span class="p">(</span><span class="s1">'not'</span><span class="p">,</span> <span class="n">x</span><span class="p">)):</span> <span class="k">return</span> <span class="n">x</span> <span class="k">return</span> <span class="n">expr</span> </pre></div> </div> </section> <section id="capture-patterns"> <span id="capture-pattern"></span><h4><a class="toc-backref" href="#capture-patterns" role="doc-backlink">Capture Patterns</a></h4> <p>Capture patterns take on the form of a name that accepts any value and binds it to a (local) variable (unless the name is declared as <code class="docutils literal notranslate"><span class="pre">nonlocal</span></code> or <code class="docutils literal notranslate"><span class="pre">global</span></code>). In that sense, a capture pattern is similar to a parameter in a function definition (when the function is called, each parameter binds the respective argument to a local variable in the function’s scope).</p> <p>A name used for a capture pattern must not coincide with another capture pattern in the same pattern. This, again, is similar to parameters, which equally require each parameter name to be unique within the list of parameters. It differs, however, from iterable unpacking assignment, where the repeated use of a variable name as target is permissible (e.g., <code class="docutils literal notranslate"><span class="pre">x,</span> <span class="pre">x</span> <span class="pre">=</span> <span class="pre">1,</span> <span class="pre">2</span></code>). The rationale for not supporting <code class="docutils literal notranslate"><span class="pre">(x,</span> <span class="pre">x)</span></code> in patterns is its ambiguous reading: it could be seen as in iterable unpacking where only the second binding to <code class="docutils literal notranslate"><span class="pre">x</span></code> survives. But it could be equally seen as expressing a tuple with two equal elements (which comes with its own issues). Should the need arise, then it is still possible to introduce support for repeated use of names later on.</p> <p>There were calls to explicitly mark capture patterns and thus identify them as binding targets. According to that idea, a capture pattern would be written as, e.g. <code class="docutils literal notranslate"><span class="pre">?x</span></code>, <code class="docutils literal notranslate"><span class="pre">$x</span></code> or <code class="docutils literal notranslate"><span class="pre">=x</span></code>. The aim of such explicit capture markers is to let an unmarked name be a value pattern (see below). However, this is based on the misconception that pattern matching was an extension of <em>switch</em> statements, placing the emphasis on fast switching based on (ordinal) values. Such a <em>switch</em> statement has indeed been proposed for Python before (see <a class="pep reference internal" href="../pep-0275/" title="PEP 275 – Switching on Multiple Values">PEP 275</a> and <a class="pep reference internal" href="../pep-3103/" title="PEP 3103 – A Switch/Case Statement">PEP 3103</a>). Pattern matching, on the other hand, builds a generalized concept of iterable unpacking. Binding values extracted from a data structure is at the very core of the concept and hence the most common use case. Explicit markers for capture patterns would thus betray the objective of the proposed pattern matching syntax and simplify a secondary use case at the expense of additional syntactic clutter for core cases.</p> <p>It has been proposed that capture patterns are not needed at all, since the equivalent effect can be obtained by combining an AS pattern with a wildcard pattern (e.g., <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">_</span> <span class="pre">as</span> <span class="pre">x</span></code> is equivalent to <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">x</span></code>). However, this would be unpleasantly verbose, especially given that we expect capture patterns to be very common.</p> <p><strong>Example</strong> using Capture patterns:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">average</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">):</span> <span class="k">match</span> <span class="n">args</span><span class="p">:</span> <span class="k">case</span> <span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">]:</span> <span class="c1"># captures the two elements of a sequence</span> <span class="k">return</span> <span class="p">(</span><span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span> <span class="k">case</span> <span class="p">[</span><span class="n">x</span><span class="p">]:</span> <span class="c1"># captures the only element of a sequence</span> <span class="k">return</span> <span class="n">x</span> <span class="k">case</span> <span class="p">[]:</span> <span class="k">return</span> <span class="mi">0</span> <span class="k">case</span> <span class="n">a</span><span class="p">:</span> <span class="c1"># captures the entire sequence</span> <span class="k">return</span> <span class="nb">sum</span><span class="p">(</span><span class="n">a</span><span class="p">)</span> <span class="o">/</span> <span class="nb">len</span><span class="p">(</span><span class="n">a</span><span class="p">)</span> </pre></div> </div> </section> <section id="wildcard-pattern"> <span id="id3"></span><h4><a class="toc-backref" href="#wildcard-pattern" role="doc-backlink">Wildcard Pattern</a></h4> <p>The wildcard pattern is a special case of a ‘capture’ pattern: it accepts any value, but does not bind it to a variable. The idea behind this rule is to support repeated use of the wildcard in patterns. While <code class="docutils literal notranslate"><span class="pre">(x,</span> <span class="pre">x)</span></code> is an error, <code class="docutils literal notranslate"><span class="pre">(_,</span> <span class="pre">_)</span></code> is legal.</p> <p>Particularly in larger (sequence) patterns, it is important to allow the pattern to concentrate on values with actual significance while ignoring anything else. Without a wildcard, it would become necessary to ‘invent’ a number of local variables, which would be bound but never used. Even when sticking to naming conventions and using e.g. <code class="docutils literal notranslate"><span class="pre">_1,</span> <span class="pre">_2,</span> <span class="pre">_3</span></code> to name irrelevant values, say, this still introduces visual clutter and can hurt performance (compare the sequence pattern <code class="docutils literal notranslate"><span class="pre">(x,</span> <span class="pre">y,</span> <span class="pre">*z)</span></code> to <code class="docutils literal notranslate"><span class="pre">(_,</span> <span class="pre">y,</span> <span class="pre">*_)</span></code>, where the <code class="docutils literal notranslate"><span class="pre">*z</span></code> forces the interpreter to copy a potentially very long sequence, whereas the second version simply compiles to code along the lines of <code class="docutils literal notranslate"><span class="pre">y</span> <span class="pre">=</span> <span class="pre">seq[1]</span></code>).</p> <p>There has been much discussion about the choice of the underscore as <code class="docutils literal notranslate"><span class="pre">_</span></code> as a wildcard pattern, i.e. making this one name non-binding. However, the underscore is already heavily used as an ‘ignore value’ marker in iterable unpacking. Since the wildcard pattern <code class="docutils literal notranslate"><span class="pre">_</span></code> never binds, this use of the underscore does not interfere with other uses such as inside the REPL or the <code class="docutils literal notranslate"><span class="pre">gettext</span></code> module.</p> <p>It has been proposed to use <code class="docutils literal notranslate"><span class="pre">...</span></code> (i.e., the ellipsis token) or <code class="docutils literal notranslate"><span class="pre">*</span></code> (star) as a wildcard. However, both these look as if an arbitrary number of items is omitted:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">case</span> <span class="p">[</span><span class="n">a</span><span class="p">,</span> <span class="o">...</span><span class="p">,</span> <span class="n">z</span><span class="p">]:</span> <span class="o">...</span> <span class="k">case</span> <span class="p">[</span><span class="n">a</span><span class="p">,</span> <span class="o">*</span><span class="p">,</span> <span class="n">z</span><span class="p">]:</span> <span class="o">...</span> </pre></div> </div> <p>Either example looks like it would match a sequence of two or more items, capturing the first and last values. While that may be the ultimate “wildcard”, it does not convey the desired semantics.</p> <p>An alternative that does not suggest an arbitrary number of items would be <code class="docutils literal notranslate"><span class="pre">?</span></code>. This is even being proposed independently from pattern matching in <a class="pep reference internal" href="../pep-0640/" title="PEP 640 – Unused variable syntax">PEP 640</a>. We feel however that using <code class="docutils literal notranslate"><span class="pre">?</span></code> as a special “assignment” target is likely more confusing to Python users than using <code class="docutils literal notranslate"><span class="pre">_</span></code>. It violates Python’s (admittedly vague) principle of using punctuation characters only in ways similar to how they are used in common English usage or in high school math, unless the usage is <em>very</em> well established in other programming languages (like, e.g., using a dot for member access).</p> <p>The question mark fails on both counts: its use in other programming languages is a grab-bag of usages only vaguely suggested by the idea of a “question”. For example, it means “any character” in shell globbing, “maybe” in regular expressions, “conditional expression” in C and many C-derived languages, “predicate function” in Scheme, “modify error handling” in Rust, “optional argument” and “optional chaining” in TypeScript (the latter meaning has also been proposed for Python by <a class="pep reference internal" href="../pep-0505/" title="PEP 505 – None-aware operators">PEP 505</a>). An as yet unnamed PEP proposes it to mark optional types, e.g. <code class="docutils literal notranslate"><span class="pre">int?</span></code>.</p> <p>Another common use of <code class="docutils literal notranslate"><span class="pre">?</span></code> in programming systems is “help”, for example, in IPython and Jupyter Notebooks and many interactive command-line utilities.</p> <p>In addition, this would put Python in a rather unique position: The underscore is as a wildcard pattern in <em>every</em> programming language with pattern matching that we could find (including <em>C#</em>, <em>Elixir</em>, <em>Erlang</em>, <em>F#</em>, <em>Grace</em>, <em>Haskell</em>, <em>Mathematica</em>, <em>OCaml</em>, <em>Ruby</em>, <em>Rust</em>, <em>Scala</em>, <em>Swift</em>, and <em>Thorn</em>). Keeping in mind that many users of Python also work with other programming languages, have prior experience when learning Python, and may move on to other languages after having learned Python, we find that such well-established standards are important and relevant with respect to readability and learnability. In our view, concerns that this wildcard means that a regular name received special treatment are not strong enough to introduce syntax that would make Python special.</p> <p><em>Else blocks.</em> A case block without a guard whose pattern is a single wildcard (i.e., <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">_:</span></code>) accepts any subject without binding it to a variable or performing any other operation. It is thus semantically equivalent to <code class="docutils literal notranslate"><span class="pre">else:</span></code>, if it were supported. However, adding such an else block to the match statement syntax would not remove the need for the wildcard pattern in other contexts. Another argument against this is that there would be two plausible indentation levels for an else block: aligned with <code class="docutils literal notranslate"><span class="pre">case</span></code> or aligned with <code class="docutils literal notranslate"><span class="pre">match</span></code>. The authors have found it quite contentious which indentation level to prefer.</p> <p><strong>Example</strong> using the Wildcard pattern:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">is_closed</span><span class="p">(</span><span class="n">sequence</span><span class="p">):</span> <span class="k">match</span> <span class="n">sequence</span><span class="p">:</span> <span class="k">case</span><span class="w"> </span><span class="p">[</span><span class="k">_</span><span class="p">]:</span> <span class="c1"># any sequence with a single element</span> <span class="k">return</span> <span class="kc">True</span> <span class="k">case</span><span class="w"> </span><span class="p">[</span><span class="n">start</span><span class="p">,</span> <span class="o">*</span><span class="k">_</span><span class="p">,</span> <span class="n">end</span><span class="p">]:</span> <span class="c1"># a sequence with at least two elements</span> <span class="k">return</span> <span class="n">start</span> <span class="o">==</span> <span class="n">end</span> <span class="k">case</span><span class="w"> </span><span class="k">_</span><span class="p">:</span> <span class="c1"># anything</span> <span class="k">return</span> <span class="kc">False</span> </pre></div> </div> </section> <section id="value-patterns"> <span id="value-pattern"></span><h4><a class="toc-backref" href="#value-patterns" role="doc-backlink">Value Patterns</a></h4> <p>It is good programming style to use named constants for parametric values or to clarify the meaning of particular values. Clearly, it would be preferable to write <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">(HttpStatus.OK,</span> <span class="pre">body):</span></code> over <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">(200,</span> <span class="pre">body):</span></code>, for example. The main issue that arises here is how to distinguish capture patterns (variable bindings) from value patterns. The general discussion surrounding this issue has brought forward a plethora of options, which we cannot all fully list here.</p> <p>Strictly speaking, value patterns are not really necessary, but could be implemented using guards, i.e. <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">(status,</span> <span class="pre">body)</span> <span class="pre">if</span> <span class="pre">status</span> <span class="pre">==</span> <span class="pre">HttpStatus.OK:</span></code>. Nonetheless, the convenience of value patterns is unquestioned and obvious.</p> <p>The observation that constants tend to be written in uppercase letters or collected in enumeration-like namespaces suggests possible rules to discern constants syntactically. However, the idea of using upper- vs. lowercase as a marker has been met with scepticism since there is no similar precedence in core Python (although it is common in other languages). We therefore only adopted the rule that any dotted name (i.e., attribute access) is to be interpreted as a value pattern, for example <code class="docutils literal notranslate"><span class="pre">HttpStatus.OK</span></code> above. This precludes, in particular, local variables and global variables defined in the current module from acting as constants.</p> <p>A proposed rule to use a leading dot (e.g. <code class="docutils literal notranslate"><span class="pre">.CONSTANT</span></code>) for that purpose was criticised because it was felt that the dot would not be a visible-enough marker for that purpose. Partly inspired by forms found in other programming languages, a number of different markers/sigils were proposed (such as <code class="docutils literal notranslate"><span class="pre">^CONSTANT</span></code>, <code class="docutils literal notranslate"><span class="pre">$CONSTANT</span></code>, <code class="docutils literal notranslate"><span class="pre">==CONSTANT</span></code>, <code class="docutils literal notranslate"><span class="pre">CONSTANT?</span></code>, or the word enclosed in backticks), although there was no obvious or natural choice. The current proposal therefore leaves the discussion and possible introduction of such a ‘constant’ marker for a future PEP.</p> <p>Distinguishing the semantics of names based on whether it is a global variable (i.e. the compiler would treat global variables as constants rather than capture patterns) leads to various issues. The addition or alteration of a global variable in the module could have unintended side effects on patterns. Moreover, pattern matching could not be used directly inside a module’s scope because all variables would be global, making capture patterns impossible.</p> <p><strong>Example</strong> using the Value pattern:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">handle_reply</span><span class="p">(</span><span class="n">reply</span><span class="p">):</span> <span class="k">match</span> <span class="n">reply</span><span class="p">:</span> <span class="k">case</span> <span class="p">(</span><span class="n">HttpStatus</span><span class="o">.</span><span class="n">OK</span><span class="p">,</span> <span class="n">MimeType</span><span class="o">.</span><span class="n">TEXT</span><span class="p">,</span> <span class="n">body</span><span class="p">):</span> <span class="n">process_text</span><span class="p">(</span><span class="n">body</span><span class="p">)</span> <span class="k">case</span> <span class="p">(</span><span class="n">HttpStatus</span><span class="o">.</span><span class="n">OK</span><span class="p">,</span> <span class="n">MimeType</span><span class="o">.</span><span class="n">APPL_ZIP</span><span class="p">,</span> <span class="n">body</span><span class="p">):</span> <span class="n">text</span> <span class="o">=</span> <span class="n">deflate</span><span class="p">(</span><span class="n">body</span><span class="p">)</span> <span class="n">process_text</span><span class="p">(</span><span class="n">text</span><span class="p">)</span> <span class="k">case</span> <span class="p">(</span><span class="n">HttpStatus</span><span class="o">.</span><span class="n">MOVED_PERMANENTLY</span><span class="p">,</span> <span class="n">new_URI</span><span class="p">):</span> <span class="n">resend_request</span><span class="p">(</span><span class="n">new_URI</span><span class="p">)</span> <span class="k">case</span> <span class="p">(</span><span class="n">HttpStatus</span><span class="o">.</span><span class="n">NOT_FOUND</span><span class="p">):</span> <span class="k">raise</span> <span class="n">ResourceNotFound</span><span class="p">()</span> </pre></div> </div> </section> <section id="group-patterns"> <h4><a class="toc-backref" href="#group-patterns" role="doc-backlink">Group Patterns</a></h4> <p>Allowing users to explicitly specify the grouping is particularly helpful in case of OR patterns.</p> </section> <section id="sequence-patterns"> <span id="sequence-pattern"></span><h4><a class="toc-backref" href="#sequence-patterns" role="doc-backlink">Sequence Patterns</a></h4> <p>Sequence patterns follow as closely as possible the already established syntax and semantics of iterable unpacking. Of course, subpatterns take the place of assignment targets (variables, attributes and subscript). Moreover, the sequence pattern only matches a carefully selected set of possible subjects, whereas iterable unpacking can be applied to any iterable.</p> <ul class="simple"> <li>As in iterable unpacking, we do not distinguish between ‘tuple’ and ‘list’ notation. <code class="docutils literal notranslate"><span class="pre">[a,</span> <span class="pre">b,</span> <span class="pre">c]</span></code>, <code class="docutils literal notranslate"><span class="pre">(a,</span> <span class="pre">b,</span> <span class="pre">c)</span></code> and <code class="docutils literal notranslate"><span class="pre">a,</span> <span class="pre">b,</span> <span class="pre">c</span></code> are all equivalent. While this means we have a redundant notation and checking specifically for lists or tuples requires more effort (e.g. <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">list([a,</span> <span class="pre">b,</span> <span class="pre">c])</span></code>), we mimic iterable unpacking as much as possible.</li> <li>A starred pattern will capture a sub-sequence of arbitrary length, again mirroring iterable unpacking. Only one starred item may be present in any sequence pattern. In theory, patterns such as <code class="docutils literal notranslate"><span class="pre">(*_,</span> <span class="pre">3,</span> <span class="pre">*_)</span></code> could be understood as expressing any sequence containing the value <code class="docutils literal notranslate"><span class="pre">3</span></code>. In practice, however, this would only work for a very narrow set of use cases and lead to inefficient backtracking or even ambiguities otherwise.</li> <li>The sequence pattern does <em>not</em> iterate through an iterable subject. All elements are accessed through subscripting and slicing, and the subject must be an instance of <code class="docutils literal notranslate"><span class="pre">collections.abc.Sequence</span></code>. This includes, of course, lists and tuples, but excludes e.g. sets and dictionaries. While it would include strings and bytes, we make an exception for these (see below).</li> </ul> <p>A sequence pattern cannot just iterate through any iterable object. The consumption of elements from the iteration would have to be undone if the overall pattern fails, which is not feasible.</p> <p>To identify sequences we cannot rely on <code class="docutils literal notranslate"><span class="pre">len()</span></code> and subscripting and slicing alone, because sequences share these protocols with mappings (e.g. <code class="docutils literal notranslate"><span class="pre">dict</span></code>) in this regard. It would be surprising if a sequence pattern also matched a dictionaries or other objects implementing the mapping protocol (i.e. <code class="docutils literal notranslate"><span class="pre">__getitem__</span></code>). The interpreter therefore performs an instance check to ensure that the subject in question really is a sequence (of known type). (As an optimization of the most common case, if the subject is exactly a list or a tuple, the instance check can be skipped.)</p> <p>String and bytes objects have a dual nature: they are both ‘atomic’ objects in their own right, as well as sequences (with a strongly recursive nature in that a string is a sequence of strings). The typical behavior and use cases for strings and bytes are different enough from those of tuples and lists to warrant a clear distinction. It is in fact often unintuitive and unintended that strings pass for sequences, as evidenced by regular questions and complaints. Strings and bytes are therefore not matched by a sequence pattern, limiting the sequence pattern to a very specific understanding of ‘sequence’. The built-in <code class="docutils literal notranslate"><span class="pre">bytearray</span></code> type, being a mutable version of <code class="docutils literal notranslate"><span class="pre">bytes</span></code>, also deserves an exception; but we don’t intend to enumerate all other types that may be used to represent bytes (e.g. some, but not all, instances of <code class="docutils literal notranslate"><span class="pre">memoryview</span></code> and <code class="docutils literal notranslate"><span class="pre">array.array</span></code>).</p> </section> <section id="mapping-patterns"> <span id="mapping-pattern"></span><h4><a class="toc-backref" href="#mapping-patterns" role="doc-backlink">Mapping Patterns</a></h4> <p>Dictionaries or mappings in general are one of the most important and most widely used data structures in Python. In contrast to sequences, mappings are built for fast direct access to arbitrary elements identified by a key. In most cases an element is retrieved from a dictionary by a known key without regard for any ordering or other key-value pairs stored in the same dictionary. Particularly common are string keys.</p> <p>The mapping pattern reflects the common usage of dictionary lookup: it allows the user to extract some values from a mapping by means of constant/known keys and have the values match given subpatterns. Extra keys in the subject are ignored even if <code class="docutils literal notranslate"><span class="pre">**rest</span></code> is not present. This is different from sequence patterns, where extra items will cause a match to fail. But mappings are actually different from sequences: they have natural structural sub-typing behavior, i.e., passing a dictionary with extra keys somewhere will likely just work. Should it be necessary to impose an upper bound on the mapping and ensure that no additional keys are present, then the usual double-star-pattern <code class="docutils literal notranslate"><span class="pre">**rest</span></code> can be used. The special case <code class="docutils literal notranslate"><span class="pre">**_</span></code> with a wildcard, however, is not supported as it would not have any effect, but might lead to an incorrect understanding of the mapping pattern’s semantics.</p> <p>To avoid overly expensive matching algorithms, keys must be literals or value patterns.</p> <p>There is a subtle reason for using <code class="docutils literal notranslate"><span class="pre">get(key,</span> <span class="pre">default)</span></code> instead of <code class="docutils literal notranslate"><span class="pre">__getitem__(key)</span></code> followed by a check for <code class="docutils literal notranslate"><span class="pre">AttributeError</span></code>: if the subject happens to be a <code class="docutils literal notranslate"><span class="pre">defaultdict</span></code>, calling <code class="docutils literal notranslate"><span class="pre">__getitem__</span></code> for a non-existent key would add the key. Using <code class="docutils literal notranslate"><span class="pre">get()</span></code> avoids this unexpected side effect.</p> <p><strong>Example</strong> using the Mapping pattern:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">change_red_to_blue</span><span class="p">(</span><span class="n">json_obj</span><span class="p">):</span> <span class="k">match</span> <span class="n">json_obj</span><span class="p">:</span> <span class="k">case</span> <span class="p">{</span> <span class="s1">'color'</span><span class="p">:</span> <span class="p">(</span><span class="s1">'red'</span> <span class="o">|</span> <span class="s1">'#FF0000'</span><span class="p">)</span> <span class="p">}:</span> <span class="n">json_obj</span><span class="p">[</span><span class="s1">'color'</span><span class="p">]</span> <span class="o">=</span> <span class="s1">'blue'</span> <span class="k">case</span> <span class="p">{</span> <span class="s1">'children'</span><span class="p">:</span> <span class="n">children</span> <span class="p">}:</span> <span class="k">for</span> <span class="n">child</span> <span class="ow">in</span> <span class="n">children</span><span class="p">:</span> <span class="n">change_red_to_blue</span><span class="p">(</span><span class="n">child</span><span class="p">)</span> </pre></div> </div> </section> <section id="class-patterns"> <span id="class-pattern"></span><h4><a class="toc-backref" href="#class-patterns" role="doc-backlink">Class Patterns</a></h4> <p>Class patterns fulfill two purposes: checking whether a given subject is indeed an instance of a specific class, and extracting data from specific attributes of the subject. Anecdotal evidence revealed that <code class="docutils literal notranslate"><span class="pre">isinstance()</span></code> is one of the most often used functions in Python in terms of static occurrences in programs. Such instance checks typically precede a subsequent access to information stored in the object, or a possible manipulation thereof. A typical pattern might be along the lines of:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">traverse_tree</span><span class="p">(</span><span class="n">node</span><span class="p">):</span> <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">node</span><span class="p">,</span> <span class="n">Node</span><span class="p">):</span> <span class="n">traverse_tree</span><span class="p">(</span><span class="n">node</span><span class="o">.</span><span class="n">left</span><span class="p">)</span> <span class="n">traverse_tree</span><span class="p">(</span><span class="n">node</span><span class="o">.</span><span class="n">right</span><span class="p">)</span> <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">node</span><span class="p">,</span> <span class="n">Leaf</span><span class="p">):</span> <span class="nb">print</span><span class="p">(</span><span class="n">node</span><span class="o">.</span><span class="n">value</span><span class="p">)</span> </pre></div> </div> <p>In many cases class patterns occur nested, as in the example given in the motivation:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">if</span> <span class="p">(</span><span class="nb">isinstance</span><span class="p">(</span><span class="n">node</span><span class="p">,</span> <span class="n">BinOp</span><span class="p">)</span> <span class="ow">and</span> <span class="n">node</span><span class="o">.</span><span class="n">op</span> <span class="o">==</span> <span class="s2">"+"</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">node</span><span class="o">.</span><span class="n">right</span><span class="p">,</span> <span class="n">BinOp</span><span class="p">)</span> <span class="ow">and</span> <span class="n">node</span><span class="o">.</span><span class="n">right</span><span class="o">.</span><span class="n">op</span> <span class="o">==</span> <span class="s2">"*"</span><span class="p">):</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">c</span> <span class="o">=</span> <span class="n">node</span><span class="o">.</span><span class="n">left</span><span class="p">,</span> <span class="n">node</span><span class="o">.</span><span class="n">right</span><span class="o">.</span><span class="n">left</span><span class="p">,</span> <span class="n">node</span><span class="o">.</span><span class="n">right</span><span class="o">.</span><span class="n">right</span> <span class="c1"># Handle a + b*c</span> </pre></div> </div> <p>The class pattern lets you concisely specify both an instance check and relevant attributes (with possible further constraints). It is thereby very tempting to write, e.g., <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">Node(left,</span> <span class="pre">right):</span></code> in the first case above and <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">Leaf(value):</span></code> in the second. While this indeed works well for languages with strict algebraic data types, it is problematic with the structure of Python objects.</p> <p>When dealing with general Python objects, we face a potentially very large number of unordered attributes: an instance of <code class="docutils literal notranslate"><span class="pre">Node</span></code> contains a large number of attributes (most of which are ‘special methods’ such as <code class="docutils literal notranslate"><span class="pre">__repr__</span></code>). Moreover, the interpreter cannot reliably deduce the ordering of attributes. For an object that represents a circle, say, there is no inherently obvious ordering of the attributes <code class="docutils literal notranslate"><span class="pre">x</span></code>, <code class="docutils literal notranslate"><span class="pre">y</span></code> and <code class="docutils literal notranslate"><span class="pre">radius</span></code>.</p> <p>We envision two possibilities for dealing with this issue: either explicitly name the attributes of interest, or provide an additional mapping that tells the interpreter which attributes to extract and in which order. Both approaches are supported. Moreover, explicitly naming the attributes of interest lets you further specify the required structure of an object; if an object lacks an attribute specified by the pattern, the match fails.</p> <ul> <li>Attributes that are explicitly named pick up the syntax of named arguments. If an object of class <code class="docutils literal notranslate"><span class="pre">Node</span></code> has two attributes <code class="docutils literal notranslate"><span class="pre">left</span></code> and <code class="docutils literal notranslate"><span class="pre">right</span></code> as above, the pattern <code class="docutils literal notranslate"><span class="pre">Node(left=x,</span> <span class="pre">right=y)</span></code> will extract the values of both attributes and assign them to <code class="docutils literal notranslate"><span class="pre">x</span></code> and <code class="docutils literal notranslate"><span class="pre">y</span></code>, respectively. The data flow from left to right seems unusual, but is in line with mapping patterns and has precedents such as assignments via <code class="docutils literal notranslate"><span class="pre">as</span></code> in <em>with</em>- or <em>import</em>-statements (and indeed AS patterns).<p>Naming the attributes in question explicitly will be mostly used for more complex cases where the positional form (below) is insufficient.</p> </li> <li>The class field <code class="docutils literal notranslate"><span class="pre">__match_args__</span></code> specifies a number of attributes together with their ordering, allowing class patterns to rely on positional sub-patterns without having to explicitly name the attributes in question. This is particularly handy for smaller objects or instances of data classes, where the attributes of interest are rather obvious and often have a well-defined ordering. In a way, <code class="docutils literal notranslate"><span class="pre">__match_args__</span></code> is similar to the declaration of formal parameters, which allows calling functions with positional arguments rather than naming all the parameters.<p>This is a class attribute, because it needs to be looked up on the class named in the class pattern, not on the subject instance.</p> </li> </ul> <p>The syntax of class patterns is based on the idea that de-construction mirrors the syntax of construction. This is already the case in virtually any Python construct, be assignment targets, function definitions or iterable unpacking. In all these cases, we find that the syntax for sending and that for receiving ‘data’ are virtually identical.</p> <ul class="simple"> <li>Assignment targets such as variables, attributes and subscripts: <code class="docutils literal notranslate"><span class="pre">foo.bar[2]</span> <span class="pre">=</span> <span class="pre">foo.bar[3]</span></code>;</li> <li>Function definitions: a function defined with <code class="docutils literal notranslate"><span class="pre">def</span> <span class="pre">foo(x,</span> <span class="pre">y,</span> <span class="pre">z=6)</span></code> is called as, e.g., <code class="docutils literal notranslate"><span class="pre">foo(123,</span> <span class="pre">y=45)</span></code>, where the actual arguments provided at the call site are matched against the formal parameters at the definition site;</li> <li>Iterable unpacking: <code class="docutils literal notranslate"><span class="pre">a,</span> <span class="pre">b</span> <span class="pre">=</span> <span class="pre">b,</span> <span class="pre">a</span></code> or <code class="docutils literal notranslate"><span class="pre">[a,</span> <span class="pre">b]</span> <span class="pre">=</span> <span class="pre">[b,</span> <span class="pre">a]</span></code> or <code class="docutils literal notranslate"><span class="pre">(a,</span> <span class="pre">b)</span> <span class="pre">=</span> <span class="pre">(b,</span> <span class="pre">a)</span></code>, just to name a few equivalent possibilities.</li> </ul> <p>Using the same syntax for reading and writing, l- and r-values, or construction and de-construction is widely accepted for its benefits in thinking about data, its flow and manipulation. This equally extends to the explicit construction of instances, where class patterns <code class="docutils literal notranslate"><span class="pre">C(p,</span> <span class="pre">q)</span></code> deliberately mirror the syntax of creating instances.</p> <p>The special case for the built-in classes <code class="docutils literal notranslate"><span class="pre">bool</span></code>, <code class="docutils literal notranslate"><span class="pre">bytearray</span></code> etc. (where e.g. <code class="docutils literal notranslate"><span class="pre">str(x)</span></code> captures the subject value in <code class="docutils literal notranslate"><span class="pre">x</span></code>) can be emulated by a user-defined class as follows:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">MyClass</span><span class="p">:</span> <span class="n">__match_args__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"__myself__"</span><span class="p">]</span> <span class="n">__myself__</span> <span class="o">=</span> <span class="nb">property</span><span class="p">(</span><span class="k">lambda</span> <span class="bp">self</span><span class="p">:</span> <span class="bp">self</span><span class="p">)</span> </pre></div> </div> <p><strong>Type annotations for pattern variables.</strong> The proposal was to combine patterns with type annotations:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">match</span> <span class="n">x</span><span class="p">:</span> <span class="k">case</span> <span class="p">[</span><span class="n">a</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="nb">str</span><span class="p">]:</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"An int </span><span class="si">{</span><span class="n">a</span><span class="si">}</span><span class="s2"> and a string </span><span class="si">{</span><span class="n">b</span><span class="si">}</span><span class="s2">:"</span><span class="p">)</span> <span class="k">case</span> <span class="p">[</span><span class="n">a</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">b</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">c</span><span class="p">:</span> <span class="nb">int</span><span class="p">]:</span> <span class="nb">print</span><span class="p">(</span><span class="s2">"Three ints"</span><span class="p">,</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span> <span class="o">...</span> </pre></div> </div> <p>This idea has a lot of problems. For one, the colon can only be used inside of brackets or parentheses, otherwise the syntax becomes ambiguous. And because Python disallows <code class="docutils literal notranslate"><span class="pre">isinstance()</span></code> checks on generic types, type annotations containing generics will not work as expected.</p> </section> </section> </section> <section id="history-and-context"> <h2><a class="toc-backref" href="#history-and-context" role="doc-backlink">History and Context</a></h2> <p>Pattern matching emerged in the late 1970s in the form of tuple unpacking and as a means to handle recursive data structures such as linked lists or trees (object-oriented languages usually use the visitor pattern for handling recursive data structures). The early proponents of pattern matching organised structured data in ‘tagged tuples’ rather than <code class="docutils literal notranslate"><span class="pre">struct</span></code> as in <em>C</em> or the objects introduced later. A node in a binary tree would, for instance, be a tuple with two elements for the left and right branches, respectively, and a <code class="docutils literal notranslate"><span class="pre">Node</span></code> tag, written as <code class="docutils literal notranslate"><span class="pre">Node(left,</span> <span class="pre">right)</span></code>. In Python we would probably put the tag inside the tuple as <code class="docutils literal notranslate"><span class="pre">('Node',</span> <span class="pre">left,</span> <span class="pre">right)</span></code> or define a data class <code class="docutils literal notranslate"><span class="pre">Node</span></code> to achieve the same effect.</p> <p>Using modern syntax, a depth-first tree traversal would then be written as follows:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">traverse</span><span class="p">(</span><span class="n">node</span><span class="p">):</span> <span class="k">match</span> <span class="n">node</span><span class="p">:</span> <span class="k">case</span> <span class="n">Node</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">):</span> <span class="n">traverse</span><span class="p">(</span><span class="n">left</span><span class="p">)</span> <span class="n">traverse</span><span class="p">(</span><span class="n">right</span><span class="p">)</span> <span class="k">case</span> <span class="n">Leaf</span><span class="p">(</span><span class="n">value</span><span class="p">):</span> <span class="n">handle</span><span class="p">(</span><span class="n">value</span><span class="p">)</span> </pre></div> </div> <p>The notion of handling recursive data structures with pattern matching immediately gave rise to the idea of handling more general recursive ‘patterns’ (i.e. recursion beyond recursive data structures) with pattern matching. Pattern matching would thus also be used to define recursive functions such as:</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">fib</span><span class="p">(</span><span class="n">arg</span><span class="p">):</span> <span class="k">match</span> <span class="n">arg</span><span class="p">:</span> <span class="k">case</span> <span class="mi">0</span><span class="p">:</span> <span class="k">return</span> <span class="mi">1</span> <span class="k">case</span> <span class="mi">1</span><span class="p">:</span> <span class="k">return</span> <span class="mi">1</span> <span class="k">case</span> <span class="n">n</span><span class="p">:</span> <span class="k">return</span> <span class="n">fib</span><span class="p">(</span><span class="n">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">fib</span><span class="p">(</span><span class="n">n</span><span class="o">-</span><span class="mi">2</span><span class="p">)</span> </pre></div> </div> <p>As pattern matching was repeatedly integrated into new and emerging programming languages, its syntax slightly evolved and expanded. The two first cases in the <code class="docutils literal notranslate"><span class="pre">fib</span></code> example above could be written more succinctly as <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">0</span> <span class="pre">|</span> <span class="pre">1:</span></code> with <code class="docutils literal notranslate"><span class="pre">|</span></code> denoting alternative patterns. Moreover, the underscore <code class="docutils literal notranslate"><span class="pre">_</span></code> was widely adopted as a wildcard, a filler where neither the structure nor value of parts of a pattern were of substance. Since the underscore is already frequently used in equivalent capacity in Python’s iterable unpacking (e.g., <code class="docutils literal notranslate"><span class="pre">_,</span> <span class="pre">_,</span> <span class="pre">third,</span> <span class="pre">_*</span> <span class="pre">=</span> <span class="pre">something</span></code>) we kept these universal standards.</p> <p>It is noteworthy that the concept of pattern matching has always been closely linked to the concept of functions. The different case clauses have always been considered as something like semi-independent functions where pattern variables take on the role of parameters. This becomes most apparent when pattern matching is written as an overloaded function, along the lines of (Standard ML):</p> <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">fun</span> <span class="n">fib</span> <span class="mi">0</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">|</span> <span class="n">fib</span> <span class="mi">1</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">|</span> <span class="n">fib</span> <span class="n">n</span> <span class="o">=</span> <span class="n">fib</span> <span class="p">(</span><span class="n">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">fib</span> <span class="p">(</span><span class="n">n</span><span class="o">-</span><span class="mi">2</span><span class="p">)</span> </pre></div> </div> <p>Even though such a strict separation of case clauses into independent functions does not apply in Python, we find that patterns share many syntactic rules with parameters, such as binding arguments to unqualified names only or that variable/parameter names must not be repeated for a particular pattern/function.</p> <p>With its emphasis on abstraction and encapsulation, object-oriented programming posed a serious challenge to pattern matching. In short: in object-oriented programming, we can no longer view objects as tagged tuples. The arguments passed into the constructor do not necessarily specify the attributes or fields of the objects. Moreover, there is no longer a strict ordering of an object’s fields and some of the fields might be private and thus inaccessible. And on top of this, the given object might actually be an instance of a subclass with slightly different structure.</p> <p>To address this challenge, patterns became increasingly independent of the original tuple constructors. In a pattern like <code class="docutils literal notranslate"><span class="pre">Node(left,</span> <span class="pre">right)</span></code>, <code class="docutils literal notranslate"><span class="pre">Node</span></code> is no longer a passive tag, but rather a function that can actively check for any given object whether it has the right structure and extract a <code class="docutils literal notranslate"><span class="pre">left</span></code> and <code class="docutils literal notranslate"><span class="pre">right</span></code> field. In other words: the <code class="docutils literal notranslate"><span class="pre">Node</span></code>-tag becomes a function that transforms an object into a tuple or returns some failure indicator if it is not possible.</p> <p>In Python, we simply use <code class="docutils literal notranslate"><span class="pre">isinstance()</span></code> together with the <code class="docutils literal notranslate"><span class="pre">__match_args__</span></code> field of a class to check whether an object has the correct structure and then transform some of its attributes into a tuple. For the <code class="docutils literal notranslate"><span class="pre">Node</span></code> example above, for instance, we would have <code class="docutils literal notranslate"><span class="pre">__match_args__</span> <span class="pre">=</span> <span class="pre">('left',</span> <span class="pre">'right')</span></code> to indicate that these two attributes should be extracted to form the tuple. That is, <code class="docutils literal notranslate"><span class="pre">case</span> <span class="pre">Node(x,</span> <span class="pre">y)</span></code> would first check whether a given object is an instance of <code class="docutils literal notranslate"><span class="pre">Node</span></code> and then assign <code class="docutils literal notranslate"><span class="pre">left</span></code> to <code class="docutils literal notranslate"><span class="pre">x</span></code> and <code class="docutils literal notranslate"><span class="pre">right</span></code> to <code class="docutils literal notranslate"><span class="pre">y</span></code>, respectively.</p> <p>Paying tribute to Python’s dynamic nature with ‘duck typing’, however, we also added a more direct way to specify the presence of, or constraints on specific attributes. Instead of <code class="docutils literal notranslate"><span class="pre">Node(x,</span> <span class="pre">y)</span></code> you could also write <code class="docutils literal notranslate"><span class="pre">object(left=x,</span> <span class="pre">right=y)</span></code>, effectively eliminating the <code class="docutils literal notranslate"><span class="pre">isinstance()</span></code> check and thus supporting any object with <code class="docutils literal notranslate"><span class="pre">left</span></code> and <code class="docutils literal notranslate"><span class="pre">right</span></code> attributes. Or you would combine these ideas to write <code class="docutils literal notranslate"><span class="pre">Node(right=y)</span></code> so as to require an instance of <code class="docutils literal notranslate"><span class="pre">Node</span></code> but only extract the value of the <code class="docutils literal notranslate"><span class="pre">right</span></code> attribute.</p> </section> <section id="backwards-compatibility"> <h2><a class="toc-backref" href="#backwards-compatibility" role="doc-backlink">Backwards Compatibility</a></h2> <p>Through its use of “soft keywords” and the new PEG parser (<a class="pep reference internal" href="../pep-0617/" title="PEP 617 – New PEG parser for CPython">PEP 617</a>), the proposal remains fully backwards compatible. However, 3rd party tooling that uses a LL(1) parser to parse Python source code may be forced to switch parser technology to be able to support those same features.</p> </section> <section id="security-implications"> <h2><a class="toc-backref" href="#security-implications" role="doc-backlink">Security Implications</a></h2> <p>We do not expect any security implications from this language feature.</p> </section> <section id="reference-implementation"> <h2><a class="toc-backref" href="#reference-implementation" role="doc-backlink">Reference Implementation</a></h2> <p>A <a class="reference external" href="https://github.com/brandtbucher/cpython/tree/patma">feature-complete CPython implementation</a> is available on GitHub.</p> <p>An <a class="reference external" href="https://mybinder.org/v2/gh/gvanrossum/patma/master?urlpath=lab/tree/playground-622.ipynb">interactive playground</a> based on the above implementation was created using Binder <a class="footnote-reference brackets" href="#id7" id="id4">[2]</a> and Jupyter <a class="footnote-reference brackets" href="#id8" id="id5">[3]</a>.</p> </section> <section id="references"> <h2><a class="toc-backref" href="#references" role="doc-backlink">References</a></h2> <aside class="footnote-list brackets"> <aside class="footnote brackets" id="id6" role="doc-footnote"> <dt class="label" id="id6">[<a href="#id1">1</a>]</dt> <dd>Kohn et al., Dynamic Pattern Matching with Python <a class="reference external" href="https://gvanrossum.github.io/docs/PyPatternMatching.pdf">https://gvanrossum.github.io/docs/PyPatternMatching.pdf</a></aside> <aside class="footnote brackets" id="id7" role="doc-footnote"> <dt class="label" id="id7">[<a href="#id4">2</a>]</dt> <dd>Binder <a class="reference external" href="https://mybinder.org">https://mybinder.org</a></aside> <aside class="footnote brackets" id="id8" role="doc-footnote"> <dt class="label" id="id8">[<a href="#id5">3</a>]</dt> <dd>Jupyter <a class="reference external" href="https://jupyter.org">https://jupyter.org</a></aside> </aside> </section> <section id="copyright"> <h2><a class="toc-backref" href="#copyright" role="doc-backlink">Copyright</a></h2> <p>This document is placed in the public domain or under the CC0-1.0-Universal license, whichever is more permissive.</p> </section> </section> <hr class="docutils" /> <p>Source: <a class="reference external" href="https://github.com/python/peps/blob/main/peps/pep-0635.rst">https://github.com/python/peps/blob/main/peps/pep-0635.rst</a></p> <p>Last modified: <a class="reference external" href="https://github.com/python/peps/commits/main/peps/pep-0635.rst">2024-07-24 22:56:04 GMT</a></p> </article> <nav id="pep-sidebar"> <h2>Contents</h2> <ul> <li><a class="reference internal" href="#abstract">Abstract</a></li> <li><a class="reference internal" href="#motivation">Motivation</a><ul> <li><a class="reference internal" href="#pattern-matching-and-oo">Pattern Matching and OO</a></li> <li><a class="reference internal" href="#patterns-and-functional-style">Patterns and Functional Style</a></li> </ul> </li> <li><a class="reference internal" href="#rationale">Rationale</a><ul> <li><a class="reference internal" href="#overview-and-terminology">Overview and Terminology</a></li> <li><a class="reference internal" href="#the-match-statement">The Match Statement</a><ul> <li><a class="reference internal" href="#match-semantics">Match Semantics</a></li> <li><a class="reference internal" href="#guards">Guards</a></li> </ul> </li> <li><a class="reference internal" href="#patterns">Patterns</a><ul> <li><a class="reference internal" href="#as-patterns">AS Patterns</a></li> <li><a class="reference internal" href="#or-patterns">OR Patterns</a></li> <li><a class="reference internal" href="#literal-patterns">Literal Patterns</a></li> <li><a class="reference internal" href="#capture-patterns">Capture Patterns</a></li> <li><a class="reference internal" href="#wildcard-pattern">Wildcard Pattern</a></li> <li><a class="reference internal" href="#value-patterns">Value Patterns</a></li> <li><a class="reference internal" href="#group-patterns">Group Patterns</a></li> <li><a class="reference internal" href="#sequence-patterns">Sequence Patterns</a></li> <li><a class="reference internal" href="#mapping-patterns">Mapping Patterns</a></li> <li><a class="reference internal" href="#class-patterns">Class Patterns</a></li> </ul> </li> </ul> </li> <li><a class="reference internal" href="#history-and-context">History and Context</a></li> <li><a class="reference internal" href="#backwards-compatibility">Backwards Compatibility</a></li> <li><a class="reference internal" href="#security-implications">Security Implications</a></li> <li><a class="reference internal" href="#reference-implementation">Reference Implementation</a></li> <li><a class="reference internal" href="#references">References</a></li> <li><a class="reference internal" href="#copyright">Copyright</a></li> </ul> <br> <a id="source" href="https://github.com/python/peps/blob/main/peps/pep-0635.rst">Page Source (GitHub)</a> </nav> </section> <script src="../_static/colour_scheme.js"></script> <script src="../_static/wrap_tables.js"></script> <script src="../_static/sticky_banner.js"></script> </body> </html>