CINXE.COM

Document Zbl 1302.68235 - zbMATH Open

<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <title>Document Zbl 1302.68235 - zbMATH Open</title> <meta name="viewport" content="width=device-width, minimum-scale=0.1, maximum-scale=5.0"> <meta name="robots" content="noarchive, noindex"> <meta name="referrer" content="origin-when-cross-origin"> <link href="https://static.zbmath.org/contrib/bootstrap/v3.3.7/css/bootstrap.min.css" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/contrib/bootstrap/v3.3.7/css/bootstrap-theme.min.css" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/contrib/bootstrap-lightbox/v0.7.0/bootstrap-lightbox.min.css" rel="stylesheet" media="screen,print"> <link rel="stylesheet" href="https://static.zbmath.org/contrib/bootstrap-select/v1.13.14/css/bootstrap-select.min.css"> <link href="/static/css/smoothness/jquery-ui-1.10.1.custom.min.css" rel="stylesheet" media="screen"> <link href="/static/styles.css?v=20241024" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/zbMathJax/v0.1.38/zbmathjax.css" rel="stylesheet" media="screen,print"> <link rel="shortcut icon" href="/static/zbmath.ico"> <script type="application/ld+json"> { "@context": "http://schema.org", "@type": "Organization", "url": "https://zbmath.org/", "logo": "https://zbmath.org/static/zbMATH.png" } </script> </head> <body> <div id="line"></div> <span id="clear" style="cursor: pointer;">&times;</span> <div id="page"> <div id="head"> <nav id="menu" class="navbar navbar-default"> <div class="container-fluid"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#zbnav" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <a class="navbar-brand" href="#"> <img class="logo" src="/static/zbmath.gif" alt="zbMATH Open logo"> </a> </div> <div id="zbnav" class="collapse navbar-collapse"> <ul class="nav navbar-nav pages"> <li class="about"> <a href="/about/">About</a> </li> <li class="frequently-asked-questions"> <a href="/frequently-asked-questions/">FAQ</a> </li> <li class="general-help"> <a href="/general-help/">General Help</a> </li> <li class="reviewer-service"> <a href="https://zbmath.org/reviewer-service/" target="_self" >Reviewer Service</a> </li> <li> <a href="/tools-and-resources/">Tools &amp; Resources</a> </li> <li class="contact"> <a href="/contact/">Contact</a> </li> </ul> <ul class="nav navbar-nav navbar-right prefs"> <li class="preferences dropdown"> <a data-toggle="dropdown" href="#">Preferences <i class="caret"></i></a> <ul class="dropdown-menu preferences"> <li> <form id="preferences" class="navbar-form" method="post" action="/preferences/" onsubmit="return confirm('This website uses cookies for the purposes of storing preference information on your device. Do you agree to this?\n\nPlease refer to our Privacy Policy to learn more about our use of cookies.')" > <input type="hidden" name="path" value="/1302.68235?"> <span class=""> <label class="title">Search Form</label> <div class="form-group"> <input id="search-multi-line" type="radio" name="search" value="multi-line" checked> <label for="search-multi-line" class="radio">Multi-Line Search (default)</label> </div> <div class="form-group"> <input id="search-one-line" type="radio" name="search" value="one-line"> <label for="search-one-line" class="radio">One-Line Search</label> </div> </span> <span class="count"> <label class="title">Hits per Page</label> <div class="form-group"> <input id="count-10" type="radio" name="count" value="10"> <label for="count-10" class="radio">10</label> </div> <div class="form-group"> <input id="count-20" type="radio" name="count" value="20"> <label for="count-20" class="radio">20</label> </div> <div class="form-group"> <input id="count-50" type="radio" name="count" value="50"> <label for="count-50" class="radio">50</label> </div> <div class="form-group"> <input id="count-100" type="radio" name="count" value="100" checked> <label for="count-100" class="radio">100 (default)</label> </div> <div class="form-group"> <input id="count-200" type="radio" name="count" value="200"> <label for="count-200" class="radio">200</label> </div> </span> <span class="format"> <label class="title">Display Format</label> <div class="form-group"> <input id="format-mathjax" type="radio" name="format" value="mathjax" checked> <label for="format-mathjax" class="radio">MathJax (default)</label> </div> <div class="form-group"> <input id="format-amstex" type="radio" name="format" value="latex"> <label for="format-amstex" class="radio">LaTeX</label> </div> </span> <span class="ranking"> <label class="title">Documents Sorting</label> <div class="form-group"> <input id="documents-ranking-default" type="radio" name="documents_ranking" value="date" checked> <label for="documents-ranking-default" class="radio">Newest first (default)</label> </div> <div class="form-group"> <input id="documents-ranking-references" type="radio" name="documents_ranking" value="references"> <label for="documents-ranking-references" class="radio">Citations</label> </div> <div class="form-group"> <input id="documents-ranking-relevance" type="radio" name="documents_ranking" value="relevance"> <label for="documents-ranking-relevance" class="radio">Relevance</label> </div> </span> <span class="ranking"> <label class="title">Authors Sorting</label> <div class="form-group"> <input id="authors-ranking-default" type="radio" name="authors_ranking" value="alpha" checked> <label for="authors-ranking-default" class="radio">Alphabetically (default)</label> </div> <div class="form-group"> <input id="authors-ranking-references" type="radio" name="authors_ranking" value="references"> <label for="authors-ranking-references" class="radio">Citations</label> </div> </span> <span class="ranking"> <label class="title">Serials Sorting</label> <div class="form-group"> <input id="serials-ranking-default" type="radio" name="serials_ranking" value="alpha" checked> <label for="serials-ranking-default" class="radio">Alphabetically (default)</label> </div> <div class="form-group"> <input id="serials-ranking-references" type="radio" name="serials_ranking" value="references"> <label for="serials-ranking-references" class="radio">Citations</label> </div> </span> <span class="ranking"> <label class="title">Software Sorting</label> <div class="form-group"> <input id="software-ranking-default" type="radio" name="software_ranking" value="references" checked> <label for="software-ranking-default" class="radio">Citations (default)</label> </div> <div class="form-group"> <input id="software-ranking-alpha" type="radio" name="software_ranking" value="alpha"> <label for="software-ranking-alpha" class="radio">Alphabetically</label> </div> </span> <button type="submit" class="btn btn-default">OK</button> <div class="clearfix"> </form> </li> </ul> </li> </ul> </div> </div> </nav> <div id="tabs"> <h1 class="logo"> <a class="logo" href="/"> <img class="logo" src="/static/zbmath.gif" alt="zbMATH Open &mdash; the first resource for mathematics" > </a> </h1> <nav> <ul class="nav nav-tabs"> <li class="tab-documents active"> <a href="/">Documents</a> </li> <li class="tab-authors"> <a href="/authors/">Authors</a> </li> <li class="tab-serials"> <a href="/serials/">Serials</a> </li> <li class="tab-software"> <a href="/software/">Software</a> </li> <li class="tab-classification"> <a href="/classification/">Classification</a> </li> <li class="tab-formulae"> <a href="/formulae/">Formulæ</a> </li> </ul> </nav> <div class="clearfix"></div> </div> <div class="content-fixed"> <div class="content-formular"> <div style="display: none;"> <div class="row ml-0"id="multi-line-new-line" style="display: none;"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-0-f" aria-label="field"> <option data-type="input" value="any" selected>Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-0-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input"> <span class="multi-line-value" id="multi-line-type-range"><span style="padding-left: 5px;">from</span> <input name="ml-0-v1" class="form-control multi-line-input" type="text" value="" aria-label="value"> until <input name="ml-0-v2" class="form-control multi-line-input" type="text" value="" aria-label="value"></span> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-la" placeholder="use name or ISO code"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-rv" placeholder="enter name or zbMATH reviewer number"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-an" placeholder="Zbl, JFM or ERAM number"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-en" placeholder="e.g. DOI, ISBN, arXiv ID"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-sw" placeholder="use * to find all documents using software"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-br" placeholder="find documents about the life or work of a person"> <span class="multi-line-value" id="multi-line-type-multiselect-db"> <select class="multi-line-selectpicker" data-width="100%" multiple> <option value="zbl">Zbl</option> <option value="arxiv">arXiv</option> <option value="jfm">JFM</option> <option value="eram">ERAM</option> </select> <input type="hidden" class="multi-line-input" name="ml-0-v" value=""> </span> </div> <form name="documents" method="GET" action="/" autocomplete="off"> <div class="documents multi-line" style="display: none;"> <div class="forms"> <ul class="nav forms"> <li class="one-line"> <span tabindex="0" class="glyphicon glyphicon-question-sign" title="One-Line Search allows for free logical combinations of search fields" aria-label="One-Line Search allows for free logical combinations of search fields" data-placement="bottom"></span>&nbsp;<a style="display: inline-block;" href="#">One-Line Search <span class="glyphicon glyphicon-search"></span></a> </li> </ul> </div> <div class="clearfix"></div> <div class="container-fluid"> <input type="hidden" id="multi-line-ml" name="ml" value="3"> <div id="multi-line-row-wrapper"> <div class="row ml-1"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-1-f" aria-label="field"> <option data-type="input" value="any" selected>Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-1-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-1-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <div class="row ml-2"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-2-f" aria-label="field"> <option data-type="input" value="any">Anywhere</option> <option data-type="input" value="au" selected>Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-2-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-2-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <div class="row ml-3"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-3-f" aria-label="field"> <option data-type="input" value="any">Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti" selected>Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-3-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><div id="multi-line-plus"> <a href="#"><span class="glyphicon glyphicon-plus" aria-hidden="true"></span> add line</a> </div></div> </div> </div> <div class="row"> <div class="col-xs-12 form-inline"> <div class="form-group field checkboxes-wrapper" id="checkboxes-wrapper-test" style="visibility: hidden; position: fixed;"> <label>Document Type:</label> <div class="checkboxes"> <div class="slider"> <label title="search for Articles in Journals"> <input type="checkbox" class="form-control" value="j" checked> <span tabindex="0"><small></small></span> Journal Articles </label> </div> <div class="slider"> <label title="search for Articles in Conference Proceedings and Collected Volumes"> <input type="checkbox" class="form-control" value="a" checked> <span tabindex="0"><small></small></span> Collection Articles </label> </div> <div class="slider"> <label title="search for Monographs, Proceedings, Dissertations etc."> <input type="checkbox" class="form-control" value="b" checked> <span tabindex="0"><small></small></span> Books </label> </div> <div class="slider"> <label title="search for arXiv Preprints"> <input type="checkbox" class="form-control" value="p" checked> <span tabindex="0"><small></small></span> arXiv Preprints </label> </div> </div> </div> <div class="form-group field checkboxes-wrapper" id="checkboxes-wrapper-real"> <label>Document Type:</label> <div class="checkboxes"> <div class="slider"> <label for="dt-j" title="search for Articles in Journals"> <input type="checkbox" id="dt-j" name="dt" class="form-control" value="j" checked> <span tabindex="0"><small></small></span> Journal Articles </label> </div> <div class="slider"> <label for="dt-a" title="search for Articles in Conference Proceedings and Collected Volumes"> <input type="checkbox" id="dt-a" name="dt" class="form-control" value="a" checked> <span tabindex="0"><small></small></span> Collection Articles </label> </div> <div class="slider"> <label for="dt-b" title="search for Monographs, Proceedings, Dissertations etc."> <input type="checkbox" id="dt-b" name="dt" class="form-control" value="b" checked> <span tabindex="0"><small></small></span> Books </label> </div> <div class="slider"> <label for="dt-p" title="search for arXiv Preprints"> <input type="checkbox" id="dt-p" name="dt" class="form-control" value="p" checked> <span tabindex="0"><small></small></span> arXiv Preprints </label> </div> </div> </div> </div> </div> <div class="row"> <div class="col-xs-12 buttons"> <a tabindex="0" class="btn btn-default clear-all">Reset all <span class="glyphicon glyphicon-remove"></span></a> <div class="submit"> <button class="btn btn-default search" type="submit">Search <span class="glyphicon glyphicon-search"></span></button> </div> </div> </div> </div> </div> </form> <form class="form-inline" name="documents" method="GET" action="/"> <div class="documents one-line" style="display: block;"> <div class="forms"> <ul class="nav forms"> <li class="multi-line"><a href="#">New Multi-Line Search <span class="glyphicon glyphicon-list"></span></a></li> </ul> </div> <div id="search-row" class="input-group box"> <span> <div id="search-field"> <input class="query form-control" type="text" name="q" value="an:1302.68235" aria-label="Search for documents" placeholder="Search for documents" autocomplete="off"> </div> <div class="search-buttons input-group-btn"> <div class="btn-group"> <button class="btn btn-default search" type="submit"><span class="virtual">Search</span> <span class="glyphicon glyphicon-search" style="top: 2px;"></span></button> </div> </div> </span> <span> <div class="search-buttons input-group-btn"> <div class="btn-group"> <div class="btn-group fields"> <button class="btn btn-default dropdown-toggle" data-toggle="dropdown">Fields <i class="caret"></i></button> <ul id="fields" class="dropdown-menu pull-right"> <li><a href="#"><span class="token item">any:</span><span>&nbsp;</span>anywhere (default)</a></li> <li><a href="#"><span class="token item">ab:</span><span>&nbsp;&nbsp;</span>review text</a></li> <li><a href="#"><span class="token item">an:</span><span>&nbsp;&nbsp;</span>zbmath id</a></li> <li><a href="#"><span class="token item">any:</span><span>&nbsp;&nbsp;</span>anywhere</a></li> <li><a href="#"><span class="token item">au:</span><span>&nbsp;&nbsp;</span>contributor name</a></li> <li><a href="#"><span class="token item">br:</span><span>&nbsp;&nbsp;</span>biographic reference name</a></li> <li><a href="#"><span class="token item">cc:</span><span>&nbsp;&nbsp;</span>msc title</a></li> <li><a href="#"><span class="token item">dt:</span><span>&nbsp;&nbsp;</span>document type</a></li> <li><a href="#"><span class="token item">doi:</span><span>&nbsp;&nbsp;</span>doi</a></li> <li><a href="#"><span class="token item">en:</span><span>&nbsp;&nbsp;</span>external id</a></li> <li><a href="#"><span class="token item">la:</span><span>&nbsp;&nbsp;</span>language</a></li> <li><a href="#"><span class="token item">pu:</span><span>&nbsp;&nbsp;</span>publisher</a></li> <li><a href="#"><span class="token item">py:</span><span>&nbsp;&nbsp;</span>year</a></li> <li><a href="#"><span class="token item">rv:</span><span>&nbsp;&nbsp;</span>reviewer name</a></li> <li><a href="#"><span class="token item">so:</span><span>&nbsp;&nbsp;</span>source</a></li> <li><a href="#"><span class="token item">sw:</span><span>&nbsp;&nbsp;</span>software name</a></li> <li><a href="#"><span class="token item">ti:</span><span>&nbsp;&nbsp;</span>title</a></li> <li><a href="#"><span class="token item">ut:</span><span>&nbsp;&nbsp;</span>keyword</a></li> </ul> </div> <div class="btn-group operators"> <button class="btn btn-default dropdown-toggle" data-toggle="dropdown">Operators <i class="caret"></i></button> <ul id="operators" class="dropdown-menu pull-right"> <li><a href="#"><span class="token">a&nbsp;<span class="item">&</span>&nbsp;b&nbsp;</span><span>&nbsp;</span>logical and (default)</a></li> <li><a href="#"><span class="token">a&nbsp;<span class="item">|</span>&nbsp;b&nbsp;</span><span>&nbsp;</span>logical or</a></li> <li><a href="#"><span class="token"><span class="item">!</span>ab&nbsp;&nbsp;&nbsp;</span><span>&nbsp;</span>logical not</a></li> <li><a href="#"><span class="token">abc<span class="item">*</span>&nbsp;&nbsp;</span><span>&nbsp;</span>right wildcard</a></li> <li><a href="#"><span class="token"><span class="item">"</span>ab&nbsp;c<span class="item">"</span></span><span>&nbsp;</span>phrase</a></li> <li><a href="#"><span class="token"><span class="item">(</span>ab&nbsp;c<span class="item">)</span></span><span>&nbsp;</span>parentheses</a></li> </ul> </div> </div> </div> <div class="special"> <ul class="nav help-button"> <li class="dropdown pull-right"> <a href="#">Help <i class="caret"></i></a> </li> </ul> </div> </span> </div> <div class="help"><h2>Examples</h2> <div id="help-terms" role="table"> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Geometry">Geometry</a></span> <span class="search-explanation" role="cell" role="cell">Search for the term <em>Geometry</em> in <strong>any</strong> field. Queries are <strong>case-independent</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Funct%2A">Funct*</a></span> <span class="search-explanation" role="cell"><strong>Wildcard</strong> queries are specified by <strong><u>*</u></strong> (e.g. <em>functions</em>, <em>functorial</em>, etc.). Otherwise the search is <strong>exact</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=%22Topological+group%22">"Topological group"</a></span> <span class="search-explanation" role="cell"><strong>Phrases</strong> (multi-words) should be set in <u>"</u>straight quotation marks<u>"</u>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=au%3A+Bourbaki+%26+ti%3A+Algebra">au: Bourbaki &amp; ti: Algebra</a></span> <span class="search-explanation" role="cell">Search for <strong><u>au</u>thor</strong> and <strong><u>ti</u>tle</strong>. The <strong>and-operator &amp;</strong> is default and can be omitted.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Chebyshev+%7C+Tschebyscheff">Chebyshev | Tschebyscheff</a></span> <span class="search-explanation" role="cell">The <strong>or-operator |</strong> allows to search for <em>Chebyshev</em> or <em>Tschebyscheff</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Quasi%2A+map%2A+py%3A+1989">Quasi* map* py: 1989</a></span> <span class="search-explanation" role="cell">The resulting documents have <strong><u>p</u>ublication <u>y</u>ear</strong> <em>1989</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=so%3A+Eur%2A+J%2A+Mat%2A+Soc%2A+cc%3A+14">so: Eur* J* Mat* Soc* cc: 14</a></span> <span class="search-explanation" role="cell">Search for publications in a particular <strong><u>so</u>urce</strong> with a <strong>Mathematics Subject <u>C</u>lassification <u>c</u>ode (<u>cc</u>)</strong> in <em>14</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=%22Partial+diff%2A+eq%2A%22+%21+elliptic">"Partial diff* eq*" ! elliptic</a></span> <span class="search-explanation" role="cell">The <strong>not</strong>-operator <strong>!</strong> eliminates all results containing the word <em>elliptic</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=dt%3A+b+%26+au%3A+Hilbert">dt: b &amp; au: Hilbert</a></span> <span class="search-explanation" role="cell">The <strong><u>d</u>ocument <u>t</u>ype</strong> is set to books; alternatively: <u>j</u> for <strong>journal articles</strong>, <u>a</u> for <strong>book articles</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=py%3A+2000-2015+cc%3A+%2894A+%7C+11T%29">py: 2000-2015 cc: (94A | 11T)</a></span> <span class="search-explanation" role="cell">Number <strong>ranges</strong> are accepted. Terms can be grouped within <strong><u>(</u>parentheses<u>)</u></strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=la%3A+chinese">la: chinese</a></span> <span class="search-explanation" role="cell">Find documents in a given <strong><u>la</u>nguage</strong>. <a href="http://en.wikipedia.org/wiki/ISO_639-1">ISO 639-1</a> language codes can also be used.</span> </div> </div> <div id="help-fields"> <h2>Fields</h2> <table> <tr> <td class="nowrap padding" role="rowheader"><strong>any</strong></td> <td class="padding">anywhere</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>an</strong></td> <td class="padding">internal document identifier</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>au</strong></td> <td class="padding">author, editor</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ai</strong></td> <td class="padding">internal author identifier</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ti</strong></td> <td class="padding">title</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>la</strong></td> <td class="padding">language</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>so</strong></td> <td class="padding">source</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ab</strong></td> <td class="padding">review, abstract</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>py</strong></td> <td class="padding">publication year</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>rv</strong></td> <td class="padding">reviewer</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>cc</strong></td> <td class="padding">MSC code</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ut</strong></td> <td class="padding">uncontrolled term</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>dt</strong></td> <td class="padding" colspan="4">document type (<strong>j</strong>: journal article; <strong>b</strong>: book; <strong>a</strong>: book article)</td> </tr> </table> </div> <div id="help-operators"> <h2>Operators</h2> <table> <tr> <td class="nowrap padding" role="rowheader">a <strong>&amp;</strong> b</td> <td class="padding">logic and</td> </tr> <tr> <td class="nowrap padding" role="rowheader">a <strong>|</strong> b</td> <td class="padding">logic or</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>!</strong>ab</td> <td class="padding">logic not</td> </tr> <tr> <td class="nowrap padding" role="rowheader">abc<strong>*</strong></td> <td class="padding">right wildcard</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>"</strong>ab c<strong>"</strong></td> <td class="padding">phrase</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>(</strong>ab c<strong>)</strong></td> <td class="padding">parentheses</td> </tr> </table> </div> <p> See also our <a href="/general-help/">General Help</a>. </p></div> </div> </form> <div class="clearfix"></div> </div> <div class="content-shadow"></div> </div> </div> <div id="body"> <div id="main"> <div class="messages"> </div> <div id="documents"> <div class="content-main"> <div class="content-item"><div class="item"> <article> <div class="author"><a href="/authors/lukosevicius.mantas" title="Author Profile">Lukoševičius, Mantas</a>; <a href="/authors/jaeger.herbert" title="Author Profile">Jaeger, Herbert</a></div> <h2 class="title"> <strong>Reservoir computing approaches to recurrent neural network training.</strong> <i>(English)</i> <a class="label nowrap" href="/1302.68235">Zbl 1302.68235</a> </h2> <div class="source"> <a href="/serials/7972" title="Journal Profile">Comput. Sci. Rev.</a> <a href="/?q=in%3A336844" title="Articles in this Issue">3, No. 3, 127-149 (2009)</a>. </div> <div class="abstract">Summary: Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become a vivid research field with numerous extensions of the basic idea, including reservoir adaptation, thus broadening the initial paradigm to using different methods for training the reservoir and the readout. This review systematically surveys both current ways of generating/adapting the reservoirs and training different types of readouts. It offers a natural conceptual classification of the techniques, which transcends boundaries of the current &ldquo;brand-names&rdquo; of reservoir methods, and thus aims to help in unifying the field and providing the reader with a detailed &ldquo;map&rdquo; of it.</div> <div class="clear"></div> <br> <div class="citations"><div class="clear"><a href="/?q=rf%3A6352113">Cited in <strong>135</strong> Documents</a></div></div> <div class="classification"> <h3>MSC:</h3> <table><tr> <td> <a class="mono" href="/classification/?q=cc%3A68T05" title="MSC2020">68T05</a> </td> <td class="space"> Learning and adaptive systems in artificial intelligence </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A92B20" title="MSC2020">92B20</a> </td> <td class="space"> Neural networks for/in biological studies, artificial life and related topics </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A68-02" title="MSC2020">68-02</a> </td> <td class="space"> Research exposition (monographs, survey articles) pertaining to computer science </td> </tr></table> </div><div class="keywords"> <h3>Keywords:</h3><a href="/?q=ut%3Arecurrent+neural+networks">recurrent neural networks</a>; <a href="/?q=ut%3Areservoir+computing">reservoir computing</a></div> <div class="software"> <h3>Software:</h3><a href="/software/36450">Evolino</a>; <a href="/software/11086">darch</a></div> <!-- Modal used to show zbmath metadata in different output formats--> <div class="modal fade" id="metadataModal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">Cite</h4> </div> <div class="modal-body"> <div class="form-group"> <label for="select-output" class="control-label">Format</label> <select id="select-output" class="form-control" aria-label="Select Metadata format"></select> </div> <div class="form-group"> <label for="metadataText" class="control-label">Result</label> <textarea class="form-control" id="metadataText" rows="10" style="min-width: 100%;max-width: 100%"></textarea> </div> <div id="metadata-alert" class="alert alert-danger" role="alert" style="display: none;"> <!-- alert for connection errors etc --> </div> </div> <div class="modal-footer"> <button type="button" class="btn btn-primary" onclick="copyMetadata()">Copy to clipboard</button> <button type="button" class="btn btn-default" data-dismiss="modal">Close</button> </div> </div> </div> </div> <div class="functions clearfix"> <div class="function"> <!-- Button trigger metadata modal --> <a type="button" class="btn btn-default btn-xs pdf" data-toggle="modal" data-target="#metadataModal" data-itemtype="Zbl" data-itemname="Zbl 1302.68235" data-ciurl="/ci/06352113" data-biburl="/bibtex/06352113.bib" data-amsurl="/amsrefs/06352113.bib" data-xmlurl="/xml/06352113.xml" > Cite </a> <a class="btn btn-default btn-xs pdf" data-container="body" type="button" href="/pdf/06352113.pdf" title="Zbl 1302.68235 as PDF">Review PDF</a> </div> <div class="fulltexts"> <span class="fulltext">Full Text:</span> <a class="btn btn-default btn-xs" type="button" href="https://doi.org/10.1016/j.cosrev.2009.03.005" aria-label="DOI for “Reservoir computing approaches to recurrent neural network training”" title="10.1016/j.cosrev.2009.03.005">DOI</a> </div> <div class="sfx" style="float: right;"> </div> </div> <div class="references"> <h3>References:</h3> <table><tr> <td>[1]</td> <td class="space">Hopfield, John J., Hopfield network, Scholarpedia, 2, 5, 1977 (2007)</td> </tr><tr> <td>[2]</td> <td class="space">Hopfield, John J., Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences of the United States of America, 79, 2554-2558 (1982) &middot; <a href="/1369.92007" class="nowrap">Zbl 1369.92007</a></td> </tr><tr> <td>[3]</td> <td class="space">Hinton, Geoffrey E., Boltzmann machine, Scholarpedia, 2, 5, 1668 (2007)</td> </tr><tr> <td>[4]</td> <td class="space">Ackley, David H.; Hinton, Geoffrey E.; Sejnowski, Terrence J., A learning algorithm for Boltzmann machines, Cognitive Science, 9, 147-169 (1985)</td> </tr><tr> <td>[5]</td> <td class="space">Hinton, Geoffrey E.; Salakhutdinov, Ruslan, Reducing the dimensionality of data with neural networks, Science, 313, 5786, 504-507 (2006) &middot; <a href="/1226.68083" class="nowrap">Zbl 1226.68083</a></td> </tr><tr> <td>[6]</td> <td class="space">Taylor, Graham W.; Hinton, Geoffrey E.; Roweis, Sam, Modeling human motion using binary latent variables, (Advances in Neural Information Processing Systems 19. Advances in Neural Information Processing Systems 19, NIPS 2006 (2007), MIT Press: MIT Press Cambridge, MA), 1345-1352</td> </tr><tr> <td>[7]</td> <td class="space">Funahashi, Ken-ichi; Nakamura, Yuichi, Approximation of dynamical systems by continuous time recurrent neural networks, Neural Networks, 6, 801-806 (1993)</td> </tr><tr> <td>[8]</td> <td class="space">Kenji Doya, Bifurcations in the learning of recurrent neural networks, in: Proceedings of IEEE International Symposium on Circuits and Systems 1992, vol. 6, 1992, pp. 2777-2780; Kenji Doya, Bifurcations in the learning of recurrent neural networks, in: Proceedings of IEEE International Symposium on Circuits and Systems 1992, vol. 6, 1992, pp. 2777-2780</td> </tr><tr> <td>[9]</td> <td class="space">Bengio, Yoshua; Simard, Patrice; Frasconi, Paolo, Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural Networks, 5, 2, 157-166 (1994)</td> </tr><tr> <td>[10]</td> <td class="space">Gers, Felix A.; Schmidhuber, Jürgen; Cummins, Fred A., Learning to forget: Continual prediction with LSTM, Neural Computation, 12, 10, 2451-2471 (2000)</td> </tr><tr> <td>[11]</td> <td class="space">Maass, Wolfgang; Natschläger, Thomas; Markram, Henry, Real-time computing without stable states: A new framework for neural computation based on perturbations, Neural Computation, 14, 11, 2531-2560 (2002) &middot; <a href="/1057.68618" class="nowrap">Zbl 1057.68618</a></td> </tr><tr> <td>[12]</td> <td class="space">Herbert Jaeger, The &ldquo;echo state&rdquo; approach to analysing and training recurrent neural networks, Technical Report GMD Report 148, German National Research Center for Information Technology, 2001; Herbert Jaeger, The &ldquo;echo state&rdquo; approach to analysing and training recurrent neural networks, Technical Report GMD Report 148, German National Research Center for Information Technology, 2001</td> </tr><tr> <td>[13]</td> <td class="space">Dominey, Peter F., Complex sensory-motor sequence learning based on recurrent state representation and reinforcement learning, Biological Cybernetics, 73, 265-274 (1995) &middot; <a href="/0828.92003" class="nowrap">Zbl 0828.92003</a></td> </tr><tr> <td>[14]</td> <td class="space">Jochen J. Steil, Backpropagation-decorrelation: Recurrent learning with O(N) complexity, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2004, IJCNN 2004, vol. 2, 2004, pp. 843-848; Jochen J. Steil, Backpropagation-decorrelation: Recurrent learning with O(N) complexity, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2004, IJCNN 2004, vol. 2, 2004, pp. 843-848</td> </tr><tr> <td>[15]</td> <td class="space">Jaeger, Herbert; Maass, Wolfgang; Príncipe, José C., Special issue on echo state networks and liquid state machines — Editorial, Neural Networks, 20, 3, 287-289 (2007)</td> </tr><tr> <td>[16]</td> <td class="space">Jaeger, Herbert, Echo state network, Scholarpedia, 2, 9, 2330 (2007)</td> </tr><tr> <td>[17]</td> <td class="space">Jaeger, Herbert; Haas, Harald, Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication, Science, 78-80 (2004)</td> </tr><tr> <td>[18]</td> <td class="space">Jaeger, Herbert; Lukoševičius, Mantas; Popovici, Dan; Siewert, Udo, Optimization and applications of echo state networks with leaky-integrator neurons, Neural Networks, 20, 3, 335-352 (2007) &middot; <a href="/1132.68554" class="nowrap">Zbl 1132.68554</a></td> </tr><tr> <td>[19]</td> <td class="space">David Verstraeten, Benjamin Schrauwen, Dirk Stroobandt, Reservoir-based techniques for speech recognition, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2006, IJCNN 2006, 2006 pp. 1050-1053; David Verstraeten, Benjamin Schrauwen, Dirk Stroobandt, Reservoir-based techniques for speech recognition, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2006, IJCNN 2006, 2006 pp. 1050-1053</td> </tr><tr> <td>[20]</td> <td class="space">Maass, Wolfgang; Natschläger, Thomas; Markram, Henry, A model for real-time computation in generic neural microcircuits, (Advances in Neural Information Processing Systems 15. Advances in Neural Information Processing Systems 15, NIPS 2002 (2003), MIT Press: MIT Press Cambridge, MA), 213-220 &middot; <a href="/1057.68618" class="nowrap">Zbl 1057.68618</a></td> </tr><tr> <td>[21]</td> <td class="space">Maass, Wolfgang; Joshi, Prashant; Sontag, Eduardo D., Principles of real-time computing with feedback applied to cortical microcircuit models, (Advances in Neural Information Processing Systems 18 (2006), MIT Press: MIT Press Cambridge, MA), 835-842</td> </tr><tr> <td>[22]</td> <td class="space">Buonomano, Dean V.; Merzenich, Michael M., Temporal information transformed into a spatial code by a neural network with realistic properties, Science, 267, 1028-1030 (1995)</td> </tr><tr> <td>[23]</td> <td class="space">Haeusler, Stefan; Maass, Wolfgang, A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models, Cerebral Cortex, 17, 1, 149-162 (2007)</td> </tr><tr> <td>[24]</td> <td class="space">Karmarkar, Uma R.; Buonomano, Dean V., Timing in the absence of clocks: Encoding time in neural network states, Neuron, 53, 3, 427-438 (2007)</td> </tr><tr> <td>[25]</td> <td class="space">Stanley, Garrett B.; Li, Fei F.; Dan, Yang, Reconstruction of natural scenes from ensemble responses in the lateral genicualate nucleus, Journal of Neuroscience, 19, 18, 8036-8042 (1999)</td> </tr><tr> <td>[26]</td> <td class="space">Nikolić, Danko; Haeusler, Stefan; Singer, Wolf; Maass, Wolfgang, Temporal dynamics of information content carried by neurons in the primary visual cortex, (Advances in Neural Information Processing Systems 19. Advances in Neural Information Processing Systems 19, NIPS 2006 (2007), MIT Press: MIT Press Cambridge, MA), 1041-1048</td> </tr><tr> <td>[27]</td> <td class="space">Kistler, Werner M.; Zeeuw, Chris I. De, Dynamical working memory and timed responses: The role of reverberating loops in the olivo-cerebellar system, Neural Computation, 14, 2597-2626 (2002) &middot; <a href="/1026.92010" class="nowrap">Zbl 1026.92010</a></td> </tr><tr> <td>[28]</td> <td class="space">Yamazaki, Tadashi; Tanaka, Shigeru, The cerebellum as a liquid state machine, Neural Networks, 20, 3, 290-297 (2007) &middot; <a href="/1132.68611" class="nowrap">Zbl 1132.68611</a></td> </tr><tr> <td>[29]</td> <td class="space">Dominey, Peter F.; Hoen, Michel; Blanc, Jean-Marc; Lelekov-Boissard, Taïssia, Neurological basis of language and sequential cognition: Evidence from simulation, aphasia, and ERP studies, Brain and Language, 86, 207-225 (2003)</td> </tr><tr> <td>[30]</td> <td class="space">Blanc, Jean-Marc; Dominey, Peter F., Identification of prosodic attitudes by atemporal recurrent network, Cognitive Brain Research, 17, 693-699 (2003)</td> </tr><tr> <td>[31]</td> <td class="space">Dominey, Peter F.; Hoen, Michel; Inui, Toshio, A neurolinguistic model of grammatical construction processing, Journal of Cognitive Neuroscience, 18, 12, 2088-2107 (2006)</td> </tr><tr> <td>[32]</td> <td class="space">French, Robert M., Catastrophic interference in connectionist networks, (Nadel, L., Encyclopedia of Cognitive Science, Volume 1 (2003), Nature Publishing Group), 431-435</td> </tr><tr> <td>[33]</td> <td class="space">Takens, Floris, Detecting strange attractors in turbulence, (Proceedings of a Symposium on Dynamical Systems and Turbulence. Proceedings of a Symposium on Dynamical Systems and Turbulence, LNM, vol. 898 (1981), Springer), 366-381 &middot; <a href="/0513.58032" class="nowrap">Zbl 0513.58032</a></td> </tr><tr> <td>[34]</td> <td class="space">Williams, Ronald J.; Zipser, David, A learning algorithm for continually running fully recurrent neural networks, Neural Computation, 1, 270-280 (1989)</td> </tr><tr> <td>[35]</td> <td class="space">Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J., Learning internal representations by error propagation, (Neurocomputing: Foundations of research (1988), MIT Press: MIT Press Cambridge, MA, USA), 673-695</td> </tr><tr> <td>[36]</td> <td class="space">Werbos, Paul J., Backpropagation through time: What it does and how to do it, Proceedings of the IEEE, 78, 10, 1550-1560 (1990)</td> </tr><tr> <td>[37]</td> <td class="space">Atiya, Amir F.; Parlos, Alexander G., New results on recurrent network training: Unifying the algorithms and accelerating convergence, IEEE Transactions on Neural Networks, 11, 3, 697-709 (2000)</td> </tr><tr> <td>[38]</td> <td class="space">Puškorius, Gintaras V.; Feldkamp, Lee A., Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks, IEEE Transactions on Neural Networks, 5, 2, 279-297 (1994)</td> </tr><tr> <td>[39]</td> <td class="space">Ma, Sheng; Ji, Chuanyi, Fast training of recurrent networks based on the EM algorithm, IEEE Transactions on Neural Networks, 9, 1, 11-26 (1998)</td> </tr><tr> <td>[40]</td> <td class="space">Hochreiter, Sepp; Schmidhuber, Jürgen, Long short-term memory, Neural Computation, 9, 8, 1735-1780 (1997)</td> </tr><tr> <td>[41]</td> <td class="space">Herbert Jaeger, Short term memory in echo state networks, Technical Report GMD Report 152, German National Research Center for Information Technology, 2002; Herbert Jaeger, Short term memory in echo state networks, Technical Report GMD Report 152, German National Research Center for Information Technology, 2002</td> </tr><tr> <td>[42]</td> <td class="space">Herbert Jaeger, Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the &ldquo;echo state network&rdquo; approach, Technical Report GMD Report 159, German National Research Center for Information Technology, 2002; Herbert Jaeger, Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the &ldquo;echo state network&rdquo; approach, Technical Report GMD Report 159, German National Research Center for Information Technology, 2002</td> </tr><tr> <td>[43]</td> <td class="space">Jaeger, Herbert, Adaptive nonlinear system identification with echo state networks, (Advances in Neural Information Processing Systems 15 (2003), MIT Press: MIT Press Cambridge, MA), 593-600</td> </tr><tr> <td>[44]</td> <td class="space">Natschläger, Thomas; Markram, Henry; Maass, Wolfgang, Computer models and analysis tools for neural microcircuits, (Kötter, R., A Practical Guide to Neuroscience Databases and Associated Tools (2002), Kluver Academic Publishers: Kluver Academic Publishers Boston), (chapter 9) &middot; <a href="/1057.68618" class="nowrap">Zbl 1057.68618</a></td> </tr><tr> <td>[45]</td> <td class="space">Maass, Wolfgang; Natschläger, Thomas; Markram, Henry, Computational models for generic cortical microcircuits, (Feng, J., Computational Neuroscience: A Comprehensive Approach (2002), CRC-Press) &middot; <a href="/1057.68618" class="nowrap">Zbl 1057.68618</a></td> </tr><tr> <td>[46]</td> <td class="space">Schmidhuber, Jürgen; Wierstra, Daan; Gagliolo, Matteo; Gomez, Faustino J., Training recurrent networks by Evolino, Neural Computation, 19, 3, 757-779 (2007) &middot; <a href="/1127.68085" class="nowrap">Zbl 1127.68085</a></td> </tr><tr> <td>[47]</td> <td class="space">Schiller, Ulf D.; Steil, Jochen J., Analyzing the weight dynamics of recurrent learning algorithms, Neurocomputing, 63C, 5-23 (2005)</td> </tr><tr> <td>[48]</td> <td class="space">Steil, Jochen J., Memory in backpropagation-decorrelation O(N) efficient online recurrent learning, (Proceedings of the 15th International Conference on Artificial Neural Networks. Proceedings of the 15th International Conference on Artificial Neural Networks, LNCS, vol. 3697 (2005), Springer), 649-654, (chapter 9)</td> </tr><tr> <td>[49]</td> <td class="space">Felix R. Reinhart, Jochen J. Steil, Recurrent neural autoassociative learning of forward and inverse kinematics for movement generation of the redundant PA-10 robot, in: Proceedings of the ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems, LAB-RS, vol. 1, 2008, 35-40; Felix R. Reinhart, Jochen J. Steil, Recurrent neural autoassociative learning of forward and inverse kinematics for movement generation of the redundant PA-10 robot, in: Proceedings of the ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems, LAB-RS, vol. 1, 2008, 35-40</td> </tr><tr> <td>[50]</td> <td class="space">Dominey, Peter F.; Ramus, Franck, Neural network processing of natural language: I. Sensitivity to serial, temporal and abstract structure of language in the infant, Language and Cognitive Processes, 15, 1, 87-127 (2000)</td> </tr><tr> <td>[51]</td> <td class="space">Dominey, Peter F., From sensorimotor sequence to grammatical construction: Evidence from simulation and neurophysiology, Adaptive Behaviour, 13, 4, 347-361 (2005)</td> </tr><tr> <td>[52]</td> <td class="space">Se Wang, Xiao-Jian Yang, Cheng-Jian Wei, Harnessing non-linearity by sigmoid-wavelet hybrid echo state networks (SWHESN), in: The 6th World Congress on Intelligent Control and Automation, WCICA 2006, 1, 2006, pp. 3014-3018; Se Wang, Xiao-Jian Yang, Cheng-Jian Wei, Harnessing non-linearity by sigmoid-wavelet hybrid echo state networks (SWHESN), in: The 6th World Congress on Intelligent Control and Automation, WCICA 2006, 1, 2006, pp. 3014-3018</td> </tr><tr> <td>[53]</td> <td class="space">David Verstraeten, Benjamin Schrauwen, Dirk Stroobandt, Reservoir computing with stochastic bitstream neurons, in: Proceedings of the 16th Annual ProRISC Workshop, Veldhoven, The Netherlands, November 2005, pp. 454-459; David Verstraeten, Benjamin Schrauwen, Dirk Stroobandt, Reservoir computing with stochastic bitstream neurons, in: Proceedings of the 16th Annual ProRISC Workshop, Veldhoven, The Netherlands, November 2005, pp. 454-459</td> </tr><tr> <td>[54]</td> <td class="space">Schürmann, Felix; Meier, Karlheinz; Schemmel, Johannes, Edge of chaos computation in mixed-mode VLSI - A hard liquid, (Advances in Neural Information Processing Systems 17 (2005), MIT Press: MIT Press Cambridge, MA), 1201-1208</td> </tr><tr> <td>[55]</td> <td class="space">Schrauwen, Benjamin; Wardermann, Marion; Verstraeten, David; Steil, Jochen J.; Stroobandt, Dirk, Improving reservoirs using intrinsic plasticity, Neurocomputing, 71, 1159-1171 (2008)</td> </tr><tr> <td>[56]</td> <td class="space">Vandoorne, Kristof; Dierckx, Wouter; Schrauwen, Benjamin; Verstraeten, David; Baets, Roel; Bienstman, Peter; Campenhout, Jan&nbsp;Van, Toward optical signal processing using photonic reservoir computing, Optics Express, 16, 15, 11182-11192 (2008)</td> </tr><tr> <td>[57]</td> <td class="space">Fernando, Chrisantha; Sojakka, Sampsa, Pattern recognition in a bucket, (Proceedings of the 7th European Conference on Advances in Artificial Life. Proceedings of the 7th European Conference on Advances in Artificial Life, ECAL 2003. Proceedings of the 7th European Conference on Advances in Artificial Life. Proceedings of the 7th European Conference on Advances in Artificial Life, ECAL 2003, LNCS, vol. 2801 (2003), Springer), 588-597</td> </tr><tr> <td>[58]</td> <td class="space">Ben Jones, Dov Stekelo, Jon Rowe, Chrisantha Fernando, Is there a liquid state machine in the bacterium Escherichia coli?, in: Proceedings of the 1st IEEE Symposium on Artificial Life, ALIFE 2007, 1-5 April 2007, pp. 187-191; Ben Jones, Dov Stekelo, Jon Rowe, Chrisantha Fernando, Is there a liquid state machine in the bacterium Escherichia coli?, in: Proceedings of the 1st IEEE Symposium on Artificial Life, ALIFE 2007, 1-5 April 2007, pp. 187-191</td> </tr><tr> <td>[59]</td> <td class="space">Verstraeten, David; Schrauwen, Benjamin; D’Haene, Michiel; Stroobandt, Dirk, An experimental unification of reservoir computing methods, Neural Networks, 20, 3, 391-403 (2007) &middot; <a href="/1132.68605" class="nowrap">Zbl 1132.68605</a></td> </tr><tr> <td>[60]</td> <td class="space">Benjamin Schrauwen, David Verstraeten, Jan Van Campenhout, An overview of reservoir computing: Theory, applications and implementations, in: Proceedings of the 15th European Symposium on Artificial Neural Networks, ESANN 2007, 2007, pp. 471-482; Benjamin Schrauwen, David Verstraeten, Jan Van Campenhout, An overview of reservoir computing: Theory, applications and implementations, in: Proceedings of the 15th European Symposium on Artificial Neural Networks, ESANN 2007, 2007, pp. 471-482</td> </tr><tr> <td>[61]</td> <td class="space">Mantas Lukoševičius, Herbert Jaeger, Overview of reservoir recipes, Technical Report No. 11, Jacobs University Bremen, 2007; Mantas Lukoševičius, Herbert Jaeger, Overview of reservoir recipes, Technical Report No. 11, Jacobs University Bremen, 2007</td> </tr><tr> <td>[62]</td> <td class="space">David H. Wolpert, The supervised learning no-free-lunch theorems, in: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications, WSC 2006, 2001, pp. 25-42; David H. Wolpert, The supervised learning no-free-lunch theorems, in: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications, WSC 2006, 2001, pp. 25-42</td> </tr><tr> <td>[63]</td> <td class="space">Buehner, Michael; Young, Peter, A tighter bound for the echo state property, IEEE Transactions on Neural Networks, 17, 3, 820-824 (2006)</td> </tr><tr> <td>[64]</td> <td class="space">Watts, Duncan J.; Strogatz, Steven&nbsp;H., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442 (1998) &middot; <a href="/1368.05139" class="nowrap">Zbl 1368.05139</a></td> </tr><tr> <td>[65]</td> <td class="space">Barabasi, Albert-Laszlo; Albert, Reka, Emergence of scaling in random networks, Science, 286, 509 (1999) &middot; <a href="/1226.05223" class="nowrap">Zbl 1226.05223</a></td> </tr><tr> <td>[66]</td> <td class="space">Kaiser, Marcus; Hilgetag, Claus&nbsp;C., Spatial growth of real-world networks, Physical Review E, 69, 036103 (2004)</td> </tr><tr> <td>[67]</td> <td class="space">Benjamin Liebald, Exploration of effects of different network topologies on the ESN signal crosscorrelation matrix spectrum, Bachelor’s Thesis, Jacobs University Bremen, 2004 http://www.eecs.jacobs-university.de/archive/bsc-2004/liebald.pdf; Benjamin Liebald, Exploration of effects of different network topologies on the ESN signal crosscorrelation matrix spectrum, Bachelor’s Thesis, Jacobs University Bremen, 2004 http://www.eecs.jacobs-university.de/archive/bsc-2004/liebald.pdf</td> </tr><tr> <td>[68]</td> <td class="space">Jiang, Fei; Berry, Hugues; Schoenauer, Marc, Supervised and evolutionary learning of echo state networks., (Proceedings of 10th International Conference on Parallel Problem Solving from Nature. Proceedings of 10th International Conference on Parallel Problem Solving from Nature, PPSN 2008. Proceedings of 10th International Conference on Parallel Problem Solving from Nature. Proceedings of 10th International Conference on Parallel Problem Solving from Nature, PPSN 2008, LNCS, vol. 5199 (2008), Springer), 215-224</td> </tr><tr> <td>[69]</td> <td class="space">Maass, Wolfgang; Natschläger, Thomas; Markram, Henry, Computational models for generic cortical microcircuits, (Computational Neuroscience: A Comprehensive Approach (2004), Chapman &amp; Hall/CRC), 575-605</td> </tr><tr> <td>[70]</td> <td class="space">Verstraeten, David; Schrauwen, Benjamin; Stroobandt, Dirk; Campenhout, Jan&nbsp;Van, Isolated word recognition with the liquid state machine: A case study, Information Processing Letters, 95, 6, 521-528 (2005) &middot; <a href="/1184.68257" class="nowrap">Zbl 1184.68257</a></td> </tr><tr> <td>[71]</td> <td class="space">Michal Čerňanský, Matej Makula, Feed-forward echo state networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, IJCNN 2005, vol. 3, 2005, pp. 1479-1482; Michal Čerňanský, Matej Makula, Feed-forward echo state networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, IJCNN 2005, vol. 3, 2005, pp. 1479-1482</td> </tr><tr> <td>[72]</td> <td class="space">Fette, Georg; Eggert, Julian, Short term memory and pattern matching with simple echo state network, (Proceedings of the 15th International Conference on Artificial Neural Networks. Proceedings of the 15th International Conference on Artificial Neural Networks, ICANN 2005. Proceedings of the 15th International Conference on Artificial Neural Networks. Proceedings of the 15th International Conference on Artificial Neural Networks, ICANN 2005, LNCS, vol. 3696 (2005), Springer), 13-18</td> </tr><tr> <td>[73]</td> <td class="space">David Verstraeten, Benjamin Schrauwen, Dirk Stroobandt, Adapting reservoirs to get Gaussian distributions, in: Proceedings of the 15th European Symposium on Artificial Neural Networks, ESANN 2007, 2007, pp. 495-500; David Verstraeten, Benjamin Schrauwen, Dirk Stroobandt, Adapting reservoirs to get Gaussian distributions, in: Proceedings of the 15th European Symposium on Artificial Neural Networks, ESANN 2007, 2007, pp. 495-500</td> </tr><tr> <td>[74]</td> <td class="space">Carlos Lourenço, Dynamical reservoir properties as network effects, in: Proceedings of the 14th European Symposium on Artificial Neural Networks, ESANN 2006, 2006, pp. 503-508; Carlos Lourenço, Dynamical reservoir properties as network effects, in: Proceedings of the 14th European Symposium on Artificial Neural Networks, ESANN 2006, 2006, pp. 503-508</td> </tr><tr> <td>[75]</td> <td class="space">Keith Bush, Batsukh Tsendjav, Improving the richness of echo state features using next ascent local search, in: Proceedings of the Artificial Neural Networks In Engineering Conference, St. Louis, MO, 2005, pp. 227-232; Keith Bush, Batsukh Tsendjav, Improving the richness of echo state features using next ascent local search, in: Proceedings of the Artificial Neural Networks In Engineering Conference, St. Louis, MO, 2005, pp. 227-232</td> </tr><tr> <td>[76]</td> <td class="space">Hajnal, Márton&nbsp;Albert; Lőrincz, András, Critical echo state networks, (Proceedings of the 16th International Conference on Artificial Neural Networks. Proceedings of the 16th International Conference on Artificial Neural Networks, LNCS, vol. 4131 (2006), Springer), 658-667</td> </tr><tr> <td>[77]</td> <td class="space">Xue, Yanbo; Yang, Le; Haykin, Simon, Decoupled echo state networks with lateral inhibition, Neural Networks, 20, 3, 365-376 (2007) &middot; <a href="/1132.68610" class="nowrap">Zbl 1132.68610</a></td> </tr><tr> <td>[78]</td> <td class="space">Mantas Lukoševičius, Echo state networks with trained feedbacks, Technical Report No. 4, Jacobs University Bremen, 2007; Mantas Lukoševičius, Echo state networks with trained feedbacks, Technical Report No. 4, Jacobs University Bremen, 2007</td> </tr><tr> <td>[79]</td> <td class="space">Danil V. Prokhorov, Lee A. Feldkamp, Ivan Yu. Tyukin, Adaptive behavior with fixed weights in RNN: An overview, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2002, IJCNN 2002, 2002, pp. 2018-2023; Danil V. Prokhorov, Lee A. Feldkamp, Ivan Yu. Tyukin, Adaptive behavior with fixed weights in RNN: An overview, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2002, IJCNN 2002, 2002, pp. 2018-2023</td> </tr><tr> <td>[80]</td> <td class="space">Mohamed Oubbati, Paul Levi, Michael Schanz, Meta-learning for adaptive identification of non-linear dynamical systems, in: Proceedings of the IEEE International Joint Symposium on Intelligent Control, June 2005, pp. 473-478; Mohamed Oubbati, Paul Levi, Michael Schanz, Meta-learning for adaptive identification of non-linear dynamical systems, in: Proceedings of the IEEE International Joint Symposium on Intelligent Control, June 2005, pp. 473-478</td> </tr><tr> <td>[81]</td> <td class="space">Mantas Lukoševičius, Dan Popovici, Herbert Jaeger, Udo Siewert, Time warping invariant echo state networks, Technical Report No. 2, Jacobs University Bremen, 2006; Mantas Lukoševičius, Dan Popovici, Herbert Jaeger, Udo Siewert, Time warping invariant echo state networks, Technical Report No. 2, Jacobs University Bremen, 2006</td> </tr><tr> <td>[82]</td> <td class="space">Schrauwen, Benjamin; Defour, Jeroen; Verstraeten, David; Campenhout, Jan M. Van, The introduction of time-scales in reservoir computing, applied to isolated digits recognition, (Proceedings of the 17th International Conference on Artificial Neural Networks. Proceedings of the 17th International Conference on Artificial Neural Networks, LNCS, vol. 4668 (2007), Springer), 471-479</td> </tr><tr> <td>[83]</td> <td class="space">Udo Siewert, Welf Wustlich, Echo-state networks with band-pass neurons: Towards generic time-scale-independent reservoir structures, Internal Status Report, PLANET intelligent systems GmbH, 2007. Available online at http://snn.elis.ugent.be/; Udo Siewert, Welf Wustlich, Echo-state networks with band-pass neurons: Towards generic time-scale-independent reservoir structures, Internal Status Report, PLANET intelligent systems GmbH, 2007. Available online at http://snn.elis.ugent.be/</td> </tr><tr> <td>[84]</td> <td class="space">Georg Holzmann, Echo state networks with filter neurons and a delay&amp;sum readout, Internal Status Report, Graz University of Technology, 2007. Available online at http://grh.mur.at/data/misc.html; Georg Holzmann, Echo state networks with filter neurons and a delay&amp;sum readout, Internal Status Report, Graz University of Technology, 2007. Available online at http://grh.mur.at/data/misc.html</td> </tr><tr> <td>[85]</td> <td class="space">Francis wyffels, Benjamin Schrauwen, David Verstraeten, Stroobandt Dirk, Band-pass reservoir computing, in: Z. Hou, and N. Zhang (Eds.), Proceedings of the IEEE International Joint Conference on Neural Networks, 2008, IJCNN 2008, Hong Kong, 2008, pp. 3204-3209; Francis wyffels, Benjamin Schrauwen, David Verstraeten, Stroobandt Dirk, Band-pass reservoir computing, in: Z. Hou, and N. Zhang (Eds.), Proceedings of the IEEE International Joint Conference on Neural Networks, 2008, IJCNN 2008, Hong Kong, 2008, pp. 3204-3209</td> </tr><tr> <td>[86]</td> <td class="space">Hihi, Salah El; Bengio, Yoshua, Hierarchical recurrent neural networks for long-term dependencies, (Advances in Neural Information Processing Systems 8 (1996), MIT Press: MIT Press Cambridge, MA), 493-499</td> </tr><tr> <td>[87]</td> <td class="space">Bertschinger, Nils; Natschläger, Thomas, Real-time computation at the edge of chaos in recurrent neural networks, Neural Computation, 16, 7, 1413-1436 (2004) &middot; <a href="/1102.68530" class="nowrap">Zbl 1102.68530</a></td> </tr><tr> <td>[88]</td> <td class="space">Benjamin Schrauwen, Lars Buesing, Robert Legenstein, On computational power and the order-chaos phase transition in reservoir computing, in: Advances in Neural Information Processing Systems 21, NIPS 2008, 2009, pp. 1425-1432; Benjamin Schrauwen, Lars Buesing, Robert Legenstein, On computational power and the order-chaos phase transition in reservoir computing, in: Advances in Neural Information Processing Systems 21, NIPS 2008, 2009, pp. 1425-1432</td> </tr><tr> <td>[89]</td> <td class="space">Maass, Wolfgang; Legenstein, Robert A.; Bertschinger, Nils, Methods for estimating the computational power and generalization capability of neural microcircuits, (Advances in Neural Information Processing Systems 17. Advances in Neural Information Processing Systems 17, NIPS 2004 (2005), MIT Press: MIT Press Cambridge, MA), 865-872</td> </tr><tr> <td>[90]</td> <td class="space">Legenstein, Robert A.; Maass, Wolfgang, Edge of chaos and prediction of computational performance for neural circuit models, Neural Networks, 20, 3, 323-334 (2007) &middot; <a href="/1132.68568" class="nowrap">Zbl 1132.68568</a></td> </tr><tr> <td>[91]</td> <td class="space">Farhang-Boroujeny, Behrouz, Adaptive Filters: Theory and Applications (1998), Wiley</td> </tr><tr> <td>[92]</td> <td class="space">Herbert Jaeger, Reservoir riddles: suggestions for echo state network research, Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, IJCNN 2005, vol. 3, 2005, pp. 1460-1462; Herbert Jaeger, Reservoir riddles: suggestions for echo state network research, Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, IJCNN 2005, vol. 3, 2005, pp. 1460-1462</td> </tr><tr> <td>[93]</td> <td class="space">Jochen Triesch, A gradient rule for the plasticity of a neuron’s intrinsic excitability, in: Proceedings of the 13th European Symposium on Artificial Neural Networks, ESANN 2005, 2005, pp. 65-70; Jochen Triesch, A gradient rule for the plasticity of a neuron’s intrinsic excitability, in: Proceedings of the 13th European Symposium on Artificial Neural Networks, ESANN 2005, 2005, pp. 65-70</td> </tr><tr> <td>[94]</td> <td class="space">Mitchell, Melanie; Crutchfield, James P.; Hraber, Peter T., Dynamics, computation, and the &ldquo;edge of chaos&rdquo;: A re-examination, (Cowan, G.; Pines, D.; Melzner, D., Complexity: Metaphors, Models, and Reality (1994), Addison-Wesley: Addison-Wesley Reading, MA), 497-513</td> </tr><tr> <td>[95]</td> <td class="space">Legenstein, Robert; Maass, Wolfgang, What makes a dynamical system computationally powerful?, (Haykin, S.; Príncipe, J.; Sejnowski, T.; McWhirter, J., New Directions in Statistical Signal Processing: From Systems to Brain (2007), MIT Press), 127-154</td> </tr><tr> <td>[96]</td> <td class="space">Mustafa C. Ozturk, José C. Príncipe, Computing with transiently stable states, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, IJCNN 2005, vol. 3, 2005, pp. 1467-1472; Mustafa C. Ozturk, José C. Príncipe, Computing with transiently stable states, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, IJCNN 2005, vol. 3, 2005, pp. 1467-1472</td> </tr><tr> <td>[97]</td> <td class="space">Hebb, Donald O., The Organization of Behavior: A Neuropsychological Theory (1949), Wiley: Wiley New York</td> </tr><tr> <td>[98]</td> <td class="space">Štefan Babinec; Pospíchal, Jiří, Improving the prediction accuracy of echo state neural networks by anti-Oja’s learning, (Proceedings of the 17th International Conference on Artificial Neural Networks. Proceedings of the 17th International Conference on Artificial Neural Networks, LNCS, vol. 4668 (2007), Springer), 19-28 &middot; <a href="/1399.68080" class="nowrap">Zbl 1399.68080</a></td> </tr><tr> <td>[99]</td> <td class="space">Markram, Henry; Wang, Yun; Tsodyks, Misha, Differential signaling via the same axon of neocortical pyramidal neurons, Proceedings of National Academy of Sciences USA, 95, 9, 5323-5328 (1998)</td> </tr><tr> <td>[100]</td> <td class="space">David Norton, Dan Ventura, Preparing more effective liquid state machines using Hebbian learning, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2006, IJCNN 2006, 2006, pp. 4243-4248; David Norton, Dan Ventura, Preparing more effective liquid state machines using Hebbian learning, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2006, IJCNN 2006, 2006, pp. 4243-4248</td> </tr><tr> <td>[101]</td> <td class="space">Paugam-Moisy, Hélène; Martinez, Regis; Bengio, Samy, Delay learning and polychronization for reservoir computing, Neurocomputing, 71, 7-9, 1143-1158 (2008)</td> </tr><tr> <td>[102]</td> <td class="space">Baddeley, Roland; Abbott, Larry F.; Booth, Michael C. A.; Sengpeil, Frank; Freeman, Toby; Wakeman, Edward A.; Rolls, Edmund T., Responses of neurons in primary and inferior temporal visual cortices to natural scenes, Proceedings of the Royal Society of London B, 264, 1775-1783 (1997)</td> </tr><tr> <td>[103]</td> <td class="space">Stemmler, Martin; Koch, Christof, How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate, Nature Neuroscience, 2, 6, 521-527 (1999)</td> </tr><tr> <td>[104]</td> <td class="space">Triesch, Jochen, Synergies between intrinsic and synaptic plasticity in individual model neurons, (Advances in Neural Information Processing Systems 17 (2005), MIT Press: MIT Press Cambridge, MA), 1417-1424 &middot; <a href="/1118.68128" class="nowrap">Zbl 1118.68128</a></td> </tr><tr> <td>[105]</td> <td class="space">Bell, Anthony J.; Sejnowski, Terrence J., An information-maximization approach to blind separation and blind deconvolution, Neural Computation, 7, 6, 1129-1159 (1995)</td> </tr><tr> <td>[106]</td> <td class="space">Steil, Jochen J., Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning, Neural Networks, 20, 3, 353-364 (2007) &middot; <a href="/1132.68594" class="nowrap">Zbl 1132.68594</a></td> </tr><tr> <td>[107]</td> <td class="space">Marion Wardermann, Jochen J. Steil, Intrinsic plasticity for reservoir learning algorithms, in: Proceedings of the 15th European Symposium on Artificial Neural Networks, ESANN 2007, 2007, pp. 513-518; Marion Wardermann, Jochen J. Steil, Intrinsic plasticity for reservoir learning algorithms, in: Proceedings of the 15th European Symposium on Artificial Neural Networks, ESANN 2007, 2007, pp. 513-518</td> </tr><tr> <td>[108]</td> <td class="space">Jochen J. Steil, Several ways to solve the MSO problem, in: Proceedings of the 15th European Symposium on Artificial Neural Networks, ESANN 2007, 2007, pp. 489-494; Jochen J. Steil, Several ways to solve the MSO problem, in: Proceedings of the 15th European Symposium on Artificial Neural Networks, ESANN 2007, 2007, pp. 489-494</td> </tr><tr> <td>[109]</td> <td class="space">Joschka Boedecker, Oliver Obst, Norbert Michael Mayer, Minoru Asada, Studies on reservoir initialization and dynamics shaping in echo state networks, in: Proceedings of the 17th European Symposium on Artificial Neural Networks, ESANN 2009, 2009 (in press); Joschka Boedecker, Oliver Obst, Norbert Michael Mayer, Minoru Asada, Studies on reservoir initialization and dynamics shaping in echo state networks, in: Proceedings of the 17th European Symposium on Artificial Neural Networks, ESANN 2009, 2009 (in press)</td> </tr><tr> <td>[110]</td> <td class="space">Tishby, Naftali; Pereira, Fernando&nbsp;C.; Bialek, William, The information bottleneck method, (Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing (1999)), 368-377</td> </tr><tr> <td>[111]</td> <td class="space">Toyoizumi, Taro; Pfister, Jean-Pascal; Aihara, Kazuyuki; Gerstner, Wulfram, Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission, Proceedings of National Academy of Sciences USA, 102, 5239-5244 (2005)</td> </tr><tr> <td>[112]</td> <td class="space">Klampfl, Stefan; Legenstein, Robert; Maass, Wolfgang, Information bottleneck optimization and independent component extraction with spiking neurons, (Advances in Neural Information Processing Systems 19. Advances in Neural Information Processing Systems 19, ICANN 2007 (2007), MIT Press: MIT Press Cambridge, MA), 713-720 &middot; <a href="/1157.92302" class="nowrap">Zbl 1157.92302</a></td> </tr><tr> <td>[113]</td> <td class="space">Klampfl, Stefan; Legenstein, Robert; Maass, Wolfgang, Spiking neurons can learn to solve information bottleneck problems and to extract independent components, Neural Computation, 21, 4, 911-959 (2008) &middot; <a href="/1157.92302" class="nowrap">Zbl 1157.92302</a></td> </tr><tr> <td>[114]</td> <td class="space">Buesing, Lars; Maass, Wolfgang, Simplified rules and theoretical analysis for information bottleneck optimization and PCA with spiking neurons, (Advances in Neural Information Processing Systems 20 (2008), MIT Press: MIT Press Cambridge, MA), 193-200</td> </tr><tr> <td>[115]</td> <td class="space">Triesch, Jochen, Synergies between intrinsic and synaptic plasticity mechanisms, Neural Computation, 19, 4, 885-909 (2007) &middot; <a href="/1118.68128" class="nowrap">Zbl 1118.68128</a></td> </tr><tr> <td>[116]</td> <td class="space">Butko, Nicholas J.; Triesch, Jochen, Learning sensory representations with intrinsic plasticity, Neurocomputing, 70, 1130-1138 (2007)</td> </tr><tr> <td>[117]</td> <td class="space">Lazar, Andreea; Pipa, Gordon; Triesch, Jochen, Fading memory and time series prediction in recurrent networks with different forms of plasticity, Neural Networks, 20, 3, 312-322 (2007) &middot; <a href="/1132.68567" class="nowrap">Zbl 1132.68567</a></td> </tr><tr> <td>[118]</td> <td class="space">Norbert M. Mayer, Matthew Browne, Echo state networks and self-prediction, in: Revised Selected Papers of Biologically Inspired Approaches to Advanced Information Technology, BioADIT 2004, 2004, pp. 40-48; Norbert M. Mayer, Matthew Browne, Echo state networks and self-prediction, in: Revised Selected Papers of Biologically Inspired Approaches to Advanced Information Technology, BioADIT 2004, 2004, pp. 40-48</td> </tr><tr> <td>[119]</td> <td class="space">Ozturk, Mustafa C.; Xu, Dongming; Príncipe, José C., Analysis and design of echo state networks, Neural Computation, 19, 1, 111-138 (2007) &middot; <a href="/1125.68102" class="nowrap">Zbl 1125.68102</a></td> </tr><tr> <td>[120]</td> <td class="space">Kautz, William H., Transient synthesis in the time domain, IRE Transactions on Circuit Theory, 1, 3, 29-39 (1954)</td> </tr><tr> <td>[121]</td> <td class="space">Kazuo Ishii, Tijn van der Zant, Vlatko Bečanović, Paul Plöger, Identification of motion with echo state network, in: Proceedings of the OCEANS 2004 MTS/IEEE-TECHNO-OCEAN 2004 Conference, vol. 3, 2004, pp. 1205-1210; Kazuo Ishii, Tijn van der Zant, Vlatko Bečanović, Paul Plöger, Identification of motion with echo state network, in: Proceedings of the OCEANS 2004 MTS/IEEE-TECHNO-OCEAN 2004 Conference, vol. 3, 2004, pp. 1205-1210</td> </tr><tr> <td>[122]</td> <td class="space">Holland, John H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology Control and Artificial Intelligence (1992), MIT Press: MIT Press Cambridge, MA, USA</td> </tr><tr> <td>[123]</td> <td class="space">Rad, Ali Ajdari; Jalili, Mahdi; Hasler, Martin, Reservoir optimization in recurrent neural networks using Kronecker kernels, (Proceedings of IEEE International Symposium on Circuits and Systems 2008 (2008), IEEE), 868-871 &middot; <a href="/1213.68503" class="nowrap">Zbl 1213.68503</a></td> </tr><tr> <td>[124]</td> <td class="space">Xavier Dutoit, Hendrik Van Brussel, Marnix Nutti, A first attempt of reservoir pruning for classification problems, in: Proceedings of the 15th European Symposium on Artificial Neural Networks, ESANN 2007, 2007, pp. 507-512; Xavier Dutoit, Hendrik Van Brussel, Marnix Nutti, A first attempt of reservoir pruning for classification problems, in: Proceedings of the 15th European Symposium on Artificial Neural Networks, ESANN 2007, 2007, pp. 507-512</td> </tr><tr> <td>[125]</td> <td class="space">Maass, Wolfgang; Joshi, Prashant; Sontag, Eduardo D., Computational aspects of feedback in neural circuits, PLoS Computational Biology, 3, 1, e165+ (2007)</td> </tr><tr> <td>[126]</td> <td class="space">Legenstein, Robert; Pecevski, Dejan; Maass, Wolfgang, Theoretical analysis of learning with reward-modulated spike-timing-dependent plasticity, (Advances in Neural Information Processing Systems 20. Advances in Neural Information Processing Systems 20, NIPS 2007 (2008), MIT Press: MIT Press Cambridge, MA), 881-888</td> </tr><tr> <td>[127]</td> <td class="space">Legenstein, Robert; Pecevski, Dejan; Maass, Wolfgang, A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback, PLoS Computational Biology, 4, 10, e1000180 (2008)</td> </tr><tr> <td>[128]</td> <td class="space">A˚ke Björck, Numerical Method for Least Squares Problems (1996), SIAM: SIAM Philadelphia, PA, USA &middot; <a href="/0847.65023" class="nowrap">Zbl 0847.65023</a></td> </tr><tr> <td>[129]</td> <td class="space">Andrew Carnell, Daniel Richardson, Linear algebra for time series of spikes, in: Proceedings of the 13th European Symposium on Artificial Neural Networks, ESANN 2005, 2005, pp. 363-368; Andrew Carnell, Daniel Richardson, Linear algebra for time series of spikes, in: Proceedings of the 13th European Symposium on Artificial Neural Networks, ESANN 2005, 2005, pp. 363-368</td> </tr><tr> <td>[130]</td> <td class="space">Ali U. Küçükemre, Echo state networks for adaptive filtering, University of Applied Sciences Bohn-Rhein-Sieg, Germany, April 2006. http://www.faculty.jacobs-university.de/hjaeger/pubs/Kucukemre.pdf; Ali U. Küçükemre, Echo state networks for adaptive filtering, University of Applied Sciences Bohn-Rhein-Sieg, Germany, April 2006. http://www.faculty.jacobs-university.de/hjaeger/pubs/Kucukemre.pdf</td> </tr><tr> <td>[131]</td> <td class="space">Shi, Zhinwei; Han, Min, Support vector echo-state machine for chaotic time-series prediction, IEEE Transactions on Neural Networks, 18, 2, 359-372 (2007)</td> </tr><tr> <td>[132]</td> <td class="space">Jürgen Schmidhuber, Matteo Gagliolo, Daan Wierstra, Faustino J. Gomez, Evolino for recurrent support vector machines. Technical Report, 2006; Jürgen Schmidhuber, Matteo Gagliolo, Daan Wierstra, Faustino J. Gomez, Evolino for recurrent support vector machines. Technical Report, 2006 &middot; <a href="/1127.68085" class="nowrap">Zbl 1127.68085</a></td> </tr><tr> <td>[133]</td> <td class="space">Schrauwen, Benjamin; Campenhout, Jan&nbsp;Van, Linking non-binned spike train kernels to several existing spike train metrics, (Verleysen, M., Proceedings of the 14th European Symposium on Artificial Neural Networks. Proceedings of the 14th European Symposium on Artificial Neural Networks, ESANN 2006 (2006), d-side publications: d-side publications Evere), 41-46</td> </tr><tr> <td>[134]</td> <td class="space">Jochen J. Steil, Stability of backpropagation-decorrelation efficient O(N) recurrent learning, in: Proceedings of the 13th European Symposium on Artificial Neural Networks, ESANN 2005, 2005, pp. 43-48; Jochen J. Steil, Stability of backpropagation-decorrelation efficient O(N) recurrent learning, in: Proceedings of the 13th European Symposium on Artificial Neural Networks, ESANN 2005, 2005, pp. 43-48</td> </tr><tr> <td>[135]</td> <td class="space">wyffels, Francis; Schrauwen, Benjamin; Stroobandt, Dirk, Stable output feedback in reservoir computing using ridge regression, (Proceedings of the 18th International Conference on Artificial Neural Networks. Proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008. Proceedings of the 18th International Conference on Artificial Neural Networks. Proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, LNCS, vol. 5163 (2008), Springer), 808-817</td> </tr><tr> <td>[136]</td> <td class="space">Xavier Dutoit, Benjamin Schrauwen, Jan Van Campenhout, Dirk Stroobandt, Hendrik Van Brussel, Marnix Nuttin, Pruning and regularization in reservoir computing: A first insight, in: Proceedings of the 16th European Symposium on Artificial Neural Networks, ESANN 2008, 2008, pp. 1-6; Xavier Dutoit, Benjamin Schrauwen, Jan Van Campenhout, Dirk Stroobandt, Hendrik Van Brussel, Marnix Nuttin, Pruning and regularization in reservoir computing: A first insight, in: Proceedings of the 16th European Symposium on Artificial Neural Networks, ESANN 2008, 2008, pp. 1-6</td> </tr><tr> <td>[137]</td> <td class="space">Joe Tebelskis, Ph.D. Thesis, Speech Recognition using Neural Networks, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1995; Joe Tebelskis, Ph.D. Thesis, Speech Recognition using Neural Networks, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1995</td> </tr><tr> <td>[138]</td> <td class="space">Skowronski, Mark D.; Harris, John G., Automatic speech recognition using a predictive echo state network classifier, Neural Networks, 20, 3, 414-423 (2007) &middot; <a href="/1132.68663" class="nowrap">Zbl 1132.68663</a></td> </tr><tr> <td>[139]</td> <td class="space">Dongming Xu, Jing Lan, José C. Príncipe, Direct adaptive control: An echo state network and genetic algorithm approach, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, IJCNN 2005, vol. 3, 2005, pp. 1483-1486; Dongming Xu, Jing Lan, José C. Príncipe, Direct adaptive control: An echo state network and genetic algorithm approach, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, IJCNN 2005, vol. 3, 2005, pp. 1483-1486</td> </tr><tr> <td>[140]</td> <td class="space">Devert, Alexandre; Bredeche, Nicolas; Schoenauer, Marc, Unsupervised learning of echo state networks: a case study in artificial embryogeny, (Proceedings of the 8th International Conference on Artificial Evolution. Proceedings of the 8th International Conference on Artificial Evolution, LNCS, vol. 4926 (2008), Springer), 278-290</td> </tr><tr> <td>[141]</td> <td class="space">Jiang, Fei; Berry, Hugues; Schoenauer, Marc, Unsupervised learning of echo state networks: Balancing the double pole, (Proceedings of the 10th Genetic and Evolutionary Computation Conference (2008), ACM), 869-870</td> </tr><tr> <td>[142]</td> <td class="space">Keith Bush, Charles Anderson, Modeling reward functions for incomplete state representations via echo state networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, IJCNN 2005, vol. 5, 2005, pp. 2995-3000; Keith Bush, Charles Anderson, Modeling reward functions for incomplete state representations via echo state networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, IJCNN 2005, vol. 5, 2005, pp. 2995-3000</td> </tr><tr> <td>[143]</td> <td class="space">Štefan Babinec; Pospíchal, Jiří, Merging echo state and feedforward neural networks for time series forecasting, (Proceedings of the 16th International Conference on Artificial Neural Networks. Proceedings of the 16th International Conference on Artificial Neural Networks, LNCS, vol. 4131 (2006), Springer), 367-375 &middot; <a href="/1399.68080" class="nowrap">Zbl 1399.68080</a></td> </tr><tr> <td>[144]</td> <td class="space">Ozturk, Mustafa C.; Príncipe, José C., An associative memory readout for ESNs with applications to dynamical pattern recognition, Neural Networks, 20, 3, 377-390 (2007) &middot; <a href="/1132.68654" class="nowrap">Zbl 1132.68654</a></td> </tr><tr> <td>[145]</td> <td class="space">Mark Embrechts, Luis Alexandre, Jonathan Linton, Reservoir computing for static pattern recognition, in: Proceedings of the 17th European Symposium on Artificial Neural Networks, ESANN 2009, 2009 (in press); Mark Embrechts, Luis Alexandre, Jonathan Linton, Reservoir computing for static pattern recognition, in: Proceedings of the 17th European Symposium on Artificial Neural Networks, ESANN 2009, 2009 (in press)</td> </tr><tr> <td>[146]</td> <td class="space">Felix R. Reinhart, Jochen J. Steil, Attractor-based computation with reservoirs for online learning of inverse kinematics, in: Proceedings of the 17th European Symposium on Artificial Neural Networks, ESANN 2009, 2009 (in press); Felix R. Reinhart, Jochen J. Steil, Attractor-based computation with reservoirs for online learning of inverse kinematics, in: Proceedings of the 17th European Symposium on Artificial Neural Networks, ESANN 2009, 2009 (in press)</td> </tr><tr> <td>[147]</td> <td class="space">Keith Bush, Charles Anderson, Exploiting iso-error pathways in the N, k-plane to improve echo state network performance, 2006; Keith Bush, Charles Anderson, Exploiting iso-error pathways in the N, k-plane to improve echo state network performance, 2006</td> </tr><tr> <td>[148]</td> <td class="space">Bengio, Yoshua; LeCun, Yann, Scaling learning algorithms toward AI, (Bottou, L.; Chapelle, O.; DeCoste, D.; Weston, J., Large Scale Kernel Machines (2007), MIT Press: MIT Press Cambridge, MA)</td> </tr><tr> <td>[149]</td> <td class="space">Herbert Jaeger, Discovering multiscale dynamical features with hierarchical echo state networks, Technical Report No. 9, Jacobs University Bremen, 2007; Herbert Jaeger, Discovering multiscale dynamical features with hierarchical echo state networks, Technical Report No. 9, Jacobs University Bremen, 2007</td> </tr></table> <div class="reference_disclaimer"> This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH&nbsp;Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching. </div> </div></article> </div></div> </div> </div> <div class="clearfix"></div> </div> </div> <div id="foot"><div class="copyright"> &copy; 2025 <a target="fiz" href="https://www.fiz-karlsruhe.de/en">FIZ Karlsruhe GmbH</a> <a href="/privacy-policy/">Privacy Policy</a> <a href="/legal-notices/">Legal Notices</a> <a href="/terms-conditions/">Terms &amp; Conditions</a> <div class="info"> <ul class="nav"> <li class="mastodon"> <a href="https://mathstodon.xyz/@zbMATH" target="_blank" class="no-new-tab-icon"> <img src="/static/mastodon.png" title="zbMATH at Mathstodon (opens in new tab)" alt="Mastodon logo"> </a> </li> </ul> </div> </div> <div class="clearfix" style="height: 0px;"></div> </div> </div> <script src="https://static.zbmath.org/contrib/jquery/1.9.1/jquery.min.js"></script> <script src="https://static.zbmath.org/contrib/jquery-caret/1.5.2/jquery.caret.min.js"></script> <script src="/static/js/jquery-ui-1.10.1.custom.min.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap/v3.3.7zb1/js/bootstrap.min.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap-lightbox/v0.7.0/bootstrap-lightbox.min.js"></script> <script src="https://static.zbmath.org/contrib/retina/unknown/retina.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap-select/v1.13.14/js/bootstrap-select.min.js"></script> <script> var SCRIPT_ROOT = ""; </script> <script src="/static/scripts.js?v=20240926"> </script> <script src="https://static.zbmath.org/contrib/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { preferredFont: "TeX", availableFonts: [ "STIX", "TeX" ], linebreaks: { automatic: true }, EqnChunk: (MathJax.Hub.Browser.isMobile ? 10 : 50) }, tex2jax: { processEscapes: true, ignoreClass: "tex2jax_ignore|dno" }, TeX: { Macros: { Aut: "\\operatorname{Aut}", Hom: "\\operatorname{Hom}" }, noUndefined: { attributes: { mathcolor: "#039", //"red", mathbackground: "white", //"#FFEEEE", mathsize: "90%" } } }, messageStyle: "none" }); </script> <script type="text/javascript"> $(document).ready(function() { $("#MathInput").stop(true, true).keyup(function() { $.ajax({ url: "/mwsq/", type: "POST", data: { query : $("#MathInput").val() }, dataType: "text" }) .done(function(xml) { $("#MathPreview").html(xml); $(window).resize(); }); }); var press = jQuery.Event("keyup"); press.ctrlKey = false; press.which = 40; $("#MathInput").trigger(press); }); </script> <div id="new_tab_icon" style="display: none">&nbsp;<span class="glyphicon glyphicon-new-window" aria-hidden="true"></span><span class="sr-only">(opens in new tab)</span></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10