CINXE.COM

Search results for: piecewise constant arguments

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: piecewise constant arguments</title> <meta name="description" content="Search results for: piecewise constant arguments"> <meta name="keywords" content="piecewise constant arguments"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="piecewise constant arguments" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="piecewise constant arguments"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2363</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: piecewise constant arguments</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2363</span> Periodicity of Solutions of a Nonlinear Impulsive Differential Equation with Piecewise Constant Arguments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehtap%20Lafc%C4%B1">Mehtap Lafcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, oscillation, periodicity and convergence of solutions of linear differential equations with piecewise constant arguments have been significantly considered but there are only a few papers for impulsive differential equations with piecewise constant arguments. In this paper, a first order nonlinear impulsive differential equation with piecewise constant arguments is studied and the existence of solutions and periodic solutions of this equation are investigated by using Carvalho’s method. Finally, an example is given to illustrate these results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carvalho%27s%20method" title="Carvalho&#039;s method">Carvalho&#039;s method</a>, <a href="https://publications.waset.org/abstracts/search?q=impulsive%20differential%20equation" title=" impulsive differential equation"> impulsive differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20solution" title=" periodic solution"> periodic solution</a>, <a href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments" title=" piecewise constant arguments"> piecewise constant arguments</a> </p> <a href="https://publications.waset.org/abstracts/33745/periodicity-of-solutions-of-a-nonlinear-impulsive-differential-equation-with-piecewise-constant-arguments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2362</span> Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suparman">Suparman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piecewise%20regression" title="piecewise regression">piecewise regression</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian" title=" bayesian"> bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20jump%20MCMC" title=" reversible jump MCMC"> reversible jump MCMC</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/46201/segmentation-of-piecewise-polynomial-regression-model-by-using-reversible-jump-mcmc-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2361</span> New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suparman">Suparman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piecewise" title="piecewise">piecewise</a>, <a href="https://publications.waset.org/abstracts/search?q=moving-average%20model" title=" moving-average model"> moving-average model</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20jump%20MCMC" title=" reversible jump MCMC"> reversible jump MCMC</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20segmentation" title=" signal segmentation"> signal segmentation</a> </p> <a href="https://publications.waset.org/abstracts/53614/new-segmentation-of-piecewise-moving-average-model-by-using-reversible-jump-mcmc-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2360</span> New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suparman">Suparman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regression" title="regression">regression</a>, <a href="https://publications.waset.org/abstracts/search?q=piecewise" title=" piecewise"> piecewise</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20Jump%20MCMC" title=" reversible Jump MCMC"> reversible Jump MCMC</a> </p> <a href="https://publications.waset.org/abstracts/31651/new-segmentation-of-piecewise-linear-regression-models-using-reversible-jump-mcmc-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2359</span> Experimental and Numerical Analyses of Tehran Research Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Lashkari">A. Lashkari</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Khalafi"> H. Khalafi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Khazeminejad"> H. Khazeminejad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khakshourniya"> S. Khakshourniya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a numerical model is presented. The model is used to analyze a steady state thermo-hydraulic and reactivity insertion transient in TRR reference cores respectively. The model predictions are compared with the experiments and PARET code results. The model uses the piecewise constant and lumped parameter methods for the coupled point kinetics and thermal-hydraulics modules respectively. The advantages of the piecewise constant method are simplicity, efficiency and accuracy. A main criterion on the applicability range of this model is that the exit coolant temperature remains below the saturation temperature, i.e. no bulk boiling occurs in the core. The calculation values of power and coolant temperature, in steady state and positive reactivity insertion scenario, are in good agreement with the experiment values. However, the model is a useful tool for the transient analysis of most research reactor encountered in practice. The main objective of this work is using simple calculation methods and benchmarking them with experimental data. This model can be used for training proposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal-hydraulic" title="thermal-hydraulic">thermal-hydraulic</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20reactor" title=" research reactor"> research reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity%20insertion" title=" reactivity insertion"> reactivity insertion</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a> </p> <a href="https://publications.waset.org/abstracts/13031/experimental-and-numerical-analyses-of-tehran-research-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2358</span> Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elias%20K.%20Maragos">Elias K. Maragos</a>, <a href="https://publications.waset.org/abstracts/search?q=Petros%20E.%20Maravelakis"> Petros E. Maravelakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dynamic%20Data%20Envelopment%20Analysis" title="Dynamic Data Envelopment Analysis">Dynamic Data Envelopment Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=DDEA" title=" DDEA"> DDEA</a>, <a href="https://publications.waset.org/abstracts/search?q=piecewise%20linear%20inputs" title=" piecewise linear inputs"> piecewise linear inputs</a>, <a href="https://publications.waset.org/abstracts/search?q=piecewise%20linear%20outputs" title=" piecewise linear outputs"> piecewise linear outputs</a> </p> <a href="https://publications.waset.org/abstracts/86963/improving-the-analytical-power-of-dynamic-dea-models-by-the-consideration-of-the-shape-of-the-distribution-of-inputsoutputs-data-a-linear-piecewise-decomposition-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2357</span> Mathematical and Numerical Analysis of a Nonlinear Cross Diffusion System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Al%20Salman">Hassan Al Salman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider a nonlinear parabolic cross diffusion model arising in applied mathematics. A fully practical piecewise linear finite element approximation of the model is studied. By using entropy-type inequalities and compactness arguments, existence of a global weak solution is proved. Providing further regularity of the solution of the model, some uniqueness results and error estimates are established. Finally, some numerical experiments are performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20diffusion%20model" title="cross diffusion model">cross diffusion model</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy-type%20inequality" title=" entropy-type inequality"> entropy-type inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20approximation" title=" finite element approximation"> finite element approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/10401/mathematical-and-numerical-analysis-of-a-nonlinear-cross-diffusion-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2356</span> Hierarchical Piecewise Linear Representation of Time Series Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vineetha%20Bettaiah">Vineetha Bettaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Heggere%20S.%20Ranganath"> Heggere S. Ranganath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction" title=" dimensionality reduction"> dimensionality reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=piecewise%20linear%20representation" title=" piecewise linear representation"> piecewise linear representation</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20representation" title=" time series representation"> time series representation</a> </p> <a href="https://publications.waset.org/abstracts/2680/hierarchical-piecewise-linear-representation-of-time-series-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2355</span> Evaluation of a Piecewise Linear Mixed-Effects Model in the Analysis of Randomized Cross-over Trial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20Mwangi">Moses Mwangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Geert%20Verbeke"> Geert Verbeke</a>, <a href="https://publications.waset.org/abstracts/search?q=Geert%20Molenberghs"> Geert Molenberghs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cross-over designs are commonly used in randomized clinical trials to estimate efficacy of a new treatment with respect to a reference treatment (placebo or standard). The main advantage of using cross-over design over conventional parallel design is its flexibility, where every subject become its own control, thereby reducing confounding effect. Jones & Kenward, discuss in detail more recent developments in the analysis of cross-over trials. We revisit the simple piecewise linear mixed-effects model, proposed by Mwangi et. al, (in press) for its first application in the analysis of cross-over trials. We compared performance of the proposed piecewise linear mixed-effects model with two commonly cited statistical models namely, (1) Grizzle model; and (2) Jones & Kenward model, used in estimation of the treatment effect, in the analysis of randomized cross-over trial. We estimate two performance measurements (mean square error (MSE) and coverage probability) for the three methods, using data simulated from the proposed piecewise linear mixed-effects model. Piecewise linear mixed-effects model yielded lowest MSE estimates compared to Grizzle and Jones & Kenward models for both small (Nobs=20) and large (Nobs=600) sample sizes. It’s coverage probability were highest compared to Grizzle and Jones & Kenward models for both small and large sample sizes. A piecewise linear mixed-effects model is a better estimator of treatment effect than its two competing estimators (Grizzle and Jones & Kenward models) in the analysis of cross-over trials. The data generating mechanism used in this paper captures two time periods for a simple 2-Treatments x 2-Periods cross-over design. Its application is extendible to more complex cross-over designs with multiple treatments and periods. In addition, it is important to note that, even for single response models, adding more random effects increases the complexity of the model and thus may be difficult or impossible to fit in some cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evaluation" title="Evaluation">Evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=Grizzle%20model" title=" Grizzle model"> Grizzle model</a>, <a href="https://publications.waset.org/abstracts/search?q=Jones%20%26%20Kenward%20model" title=" Jones &amp; Kenward model"> Jones &amp; Kenward model</a>, <a href="https://publications.waset.org/abstracts/search?q=Performance%20measures" title=" Performance measures"> Performance measures</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulation" title=" Simulation"> Simulation</a> </p> <a href="https://publications.waset.org/abstracts/123329/evaluation-of-a-piecewise-linear-mixed-effects-model-in-the-analysis-of-randomized-cross-over-trial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2354</span> New Modification Negative Stiffness Device with Constant Force-Displacement Characteristic for Seismic Protection of Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huan%20Li">Huan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianchun%20Li"> Jianchun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yancheng%20Li"> Yancheng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yu"> Yang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a seismic protection method of civil and engineering structures, weakening and damping is effective during the elastic region, while it somehow leads to the early yielding of the entire structure accompanying with large excursions and permanent deformations. Adaptive negative stiffness device is attractive for realizing yielding property without changing the stiffness of the primary structure. In this paper, a new modification negative stiffness device (MNSD) with constant force-displacement characteristic is proposed by combining a magnetic negative stiffness spring, a piecewise linear positive spring and a passive damper with a certain adaptive stiffness device. The proposed passive control MNSD preserves no effect under small excitation. When the displacement amplitude increases beyond the pre-defined yielding point, the force-displacement characteristics of the system with MNSD will keep constant. The seismic protection effect of the MNSD is evaluated by employing it to a single-degree-of-freedom system under sinusoidal excitation, and real earthquake waves. By comparative analysis, the system with MNSD performs better on reducing acceleration and displacement response under different displacement amplitudes than the scenario without it and the scenario with unmodified certain adaptive stiffness device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=negative%20stiffness" title="negative stiffness">negative stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20stiffness" title=" adaptive stiffness"> adaptive stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=weakening%20and%20yielding" title=" weakening and yielding"> weakening and yielding</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20force-displacement%20characteristic" title=" constant force-displacement characteristic"> constant force-displacement characteristic</a> </p> <a href="https://publications.waset.org/abstracts/125646/new-modification-negative-stiffness-device-with-constant-force-displacement-characteristic-for-seismic-protection-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2353</span> A Study of the Use of Arguments in Nominalizations as Instanciations of Grammatical Metaphors Finished in -TION in Academic Texts of Native Speakers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giovana%20Perini-Loureiro">Giovana Perini-Loureiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research was to identify whether the nominalizations terminating in -TION in the academic discourse of native English speakers contain the arguments required by their input verbs. In the perspective of functional linguistics, ideational metaphors, with nominalization as their most pervasive realization, are lexically dense, and therefore frequent in formal texts. Ideational metaphors allow the academic genre to instantiate objectification, de-personalization, and the ability to construct a chain of arguments. The valence of those nouns present in nominalizations tends to maintain the same elements of the valence from its original verbs, but these arguments are not always expressed. The initial hypothesis was that these arguments would also be present alongside the nominalizations, through anaphora or cataphora. In this study, a qualitative analysis of the occurrences of the five more frequent nominalized terminations in -TION in academic texts was accomplished, and thus a verification of the occurrences of the arguments required by the original verbs. The assembling of the concordance lines was done through COCA (Corpus of Contemporary American English). After identifying the five most frequent nominalizations (attention, action, participation, instruction, intervention), the concordance lines were selected at random to be analyzed, assuring the representativeness and reliability of the sample. It was possible to verify, in all the analyzed instances, the presence of arguments. In most instances, the arguments were not expressed, but recoverable, either in the context or in the shared knowledge among the interactants. It was concluded that the realizations of the arguments which were not expressed alongside the nominalizations are part of a continuum, starting from the immediate context with anaphora and cataphora; up to a knowledge shared outside the text, such as specific area knowledge. The study also has implications for the teaching of academic writing, especially with regards to the impact of nominalizations on the thematic and informational flow of the text. Grammatical metaphors are essential to academic writing, hence acknowledging the occurrence of its arguments is paramount to achieve linguistic awareness and the writing prestige required by the academy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corpus" title="corpus">corpus</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20linguistics" title=" functional linguistics"> functional linguistics</a>, <a href="https://publications.waset.org/abstracts/search?q=grammatical%20metaphors" title=" grammatical metaphors"> grammatical metaphors</a>, <a href="https://publications.waset.org/abstracts/search?q=nominalizations" title=" nominalizations"> nominalizations</a>, <a href="https://publications.waset.org/abstracts/search?q=academic%20English" title=" academic English"> academic English</a> </p> <a href="https://publications.waset.org/abstracts/88528/a-study-of-the-use-of-arguments-in-nominalizations-as-instanciations-of-grammatical-metaphors-finished-in-tion-in-academic-texts-of-native-speakers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2352</span> Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khaing">M. Khaing</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Tkacheva"> A. V. Tkacheva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young&#39;s modulus, Poisson&#39;s ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature%20stresses" title="temperature stresses">temperature stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishlinsky-Ivlev%20condition" title=" Ishlinsky-Ivlev condition"> Ishlinsky-Ivlev condition</a>, <a href="https://publications.waset.org/abstracts/search?q=plate" title=" plate"> plate</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20heating" title=" annular heating"> annular heating</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20moduli" title=" elastic moduli"> elastic moduli</a> </p> <a href="https://publications.waset.org/abstracts/86523/calculation-of-the-thermal-stresses-in-an-elastoplastic-plate-heated-by-local-heat-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2351</span> Argumentation Frameworks and Theories of Judging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Anand%20Knowlton">Sonia Anand Knowlton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rise of artificial intelligence, computer science is becoming increasingly integrated in virtually every area of life. Of course, the law is no exception. Through argumentation frameworks (AFs), computer scientists have used abstract algebra to structure the legal reasoning process in a way that allows conclusions to be drawn from a formalized system of arguments. In AFs, arguments compete against each other for logical success and are related to one another through the binary operation of the attack. The prevailing arguments make up the preferred extension of the given argumentation framework, telling us what set of arguments must be accepted from a logical standpoint. There have been several developments of AFs since its original conception in the early 90’s in efforts to make them more aligned with the human reasoning process. Generally, these developments have sought to add nuance to the factors that influence the logical success of competing arguments (e.g., giving an argument more logical strength based on the underlying value it promotes). The most cogent development was that of the Extended Argumentation Framework (EAF), in which attacks can themselves be attacked by other arguments, and the promotion of different competing values can be formalized within the system. This article applies the logical structure of EAFs to current theoretical understandings of judicial reasoning to contribute to theories of judging and to the evolution of AFs simultaneously. The argument is that the main limitation of EAFs, when applied to judicial reasoning, is that they require judges to themselves assign values to different arguments and then lexically order these values to determine the given framework’s preferred extension. Drawing on John Rawls’ Theory of Justice, the examination that follows is whether values are lexical and commensurable to this extent. The analysis that follows then suggests a potential extension of the EAF system with an approach that formalizes different “planes of attack” for competing arguments that promote lexically ordered values. This article concludes with a summary of how these insights contribute to theories of judging and of legal reasoning more broadly, specifically in indeterminate cases where judges must turn to value-based approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20science" title="computer science">computer science</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics" title=" mathematics"> mathematics</a>, <a href="https://publications.waset.org/abstracts/search?q=law" title=" law"> law</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20theory" title=" legal theory"> legal theory</a>, <a href="https://publications.waset.org/abstracts/search?q=judging" title=" judging"> judging</a> </p> <a href="https://publications.waset.org/abstracts/173672/argumentation-frameworks-and-theories-of-judging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2350</span> Value-Based Argumentation Frameworks and Judicial Moral Reasoning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Anand%20Knowlton">Sonia Anand Knowlton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the use of Artificial Intelligence is becoming increasingly integrated in virtually every area of life, the need and interest to logically formalize the law and judicial reasoning is growing tremendously. The study of argumentation frameworks (AFs) provides promise in this respect. AF’s provide a way of structuring human reasoning using a formal system of non-monotonic logic. P.M. Dung first introduced this framework and demonstrated that certain arguments must prevail and certain arguments must perish based on whether they are logically “attacked” by other arguments. Dung labelled the set of prevailing arguments as the “preferred extension” of the given argumentation framework. Trevor Bench-Capon’s Value-based Argumentation Frameworks extended Dung’s AF system by allowing arguments to derive their force from the promotion of “preferred” values. In VAF systems, the success of an attack from argument A to argument B (i.e., the triumph of argument A) requires that argument B does not promote a value that is preferred to argument A. There has been thorough discussion of the application of VAFs to the law within the computer science literature, mainly demonstrating that legal cases can be effectively mapped out using VAFs. This article analyses VAFs from a jurisprudential standpoint to provide a philosophical and theoretical analysis of what VAFs tell the legal community about the judicial reasoning, specifically distinguishing between legal and moral reasoning. It highlights the limitations of using VAFs to account for judicial moral reasoning in theory and in practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonmonotonic%20logic" title="nonmonotonic logic">nonmonotonic logic</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20formalization" title=" legal formalization"> legal formalization</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20science" title=" computer science"> computer science</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=morality" title=" morality"> morality</a> </p> <a href="https://publications.waset.org/abstracts/172011/value-based-argumentation-frameworks-and-judicial-moral-reasoning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2349</span> The Impact of Task Type and Group Size on Dialogue Argumentation between Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Soledad%20Peralta">Nadia Soledad Peralta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within the framework of socio-cognitive interaction, argumentation is understood as a psychological process that supports and induces reasoning and learning. Most authors emphasize the great potential of argumentation to negotiate with contradictions and complex decisions. So argumentation is a target for researchers who highlight the importance of social and cognitive processes in learning. In the context of social interaction among university students, different types of arguments are analyzed according to group size (dyads and triads) and the type of task (reading of frequency tables, causal explanation of physical phenomena, the decision regarding moral dilemma situations, and causal explanation of social phenomena). Eighty-nine first-year social sciences students of the National University of Rosario participated. Two groups were formed from the results of a pre-test that ensured the heterogeneity of points of view between participants. Group 1 consisted of 56 participants (performance in dyads, total: 28), and group 2 was formed of 33 participants (performance in triads, total: 11). A quasi-experimental design was performed in which effects of the two variables (group size and type of task) on the argumentation were analyzed. Three types of argumentation are described: authentic dialogical argumentative resolutions, individualistic argumentative resolutions, and non-argumentative resolutions. The results indicate that individualistic arguments prevail in dyads. That is, although people express their own arguments, there is no authentic argumentative interaction. Given that, there are few reciprocal evaluations and counter-arguments in dyads. By contrast, the authentically dialogical argument prevails in triads, showing constant feedback between participants’ points of view. It was observed that, in general, the type of task generates specific types of argumentative interactions. However, it is possible to emphasize that the authentically dialogic arguments predominate in the logical tasks, whereas the individualists or pseudo-dialogical are more frequent in opinion tasks. Nerveless, these relationships between task type and argumentative mode are best clarified in an interactive analysis based on group size. Finally, it is important to stress the value of dialogical argumentation in educational domains. Argumentative function not only allows a metacognitive reflection about their own point of view but also allows people to benefit from exchanging points of view in interactive contexts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sociocognitive%20interaction" title="sociocognitive interaction">sociocognitive interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=argumentation" title=" argumentation"> argumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20students" title=" university students"> university students</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20of%20the%20grup" title=" size of the grup"> size of the grup</a> </p> <a href="https://publications.waset.org/abstracts/156851/the-impact-of-task-type-and-group-size-on-dialogue-argumentation-between-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2348</span> Logic of the Prospect Theory: The Decision Making Process of the First Gulf War and the Crimean Annexation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhengyang%20Ma">Zhengyang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyao%20Li"> Zhiyao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiayi%20Zhang"> Jiayi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article examines the prospect theory’s arguments about decision-making through two case studies, the First Gulf War and Russia’s annexation of Crimea. The article uses the methods of comparative case analysis and process tracing to investigate the prospect theory’s fundamental arguments. Through evidence derived from existing primary and secondary sources, this paper argues that both former U.S. President Bush and Russian President Putin viewed their situations as a domain of loss and made risky decisions to prevent further deterioration, which attests the arguments of the prospect theory. After the two case studies, this article also discusses how the prospect theory could be used in analyzing the decision-making process that led to the current Russia-Ukraine War. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20prospect%20theory" title="the prospect theory">the prospect theory</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20relations" title=" international relations"> international relations</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20first%20gulf%20war" title=" the first gulf war"> the first gulf war</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20crimea%20crisis" title=" the crimea crisis"> the crimea crisis</a> </p> <a href="https://publications.waset.org/abstracts/155416/logic-of-the-prospect-theory-the-decision-making-process-of-the-first-gulf-war-and-the-crimean-annexation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2347</span> Explanation and Temporality in International Relations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alasdair%20Stanton">Alasdair Stanton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> What makes for a good explanation? Twenty years after Wendt’s important treatment of constitution and causation, non-causal explanations (sometimes referred to as ‘understanding’, or ‘descriptive inference’) have become, if not mainstream, at least accepted within International Relations. This article proceeds in two parts: firstly, it examines closely Wendt’s constitutional claims, and while it agrees there is a difference between causal and constitutional, rejects the view that constitutional explanations lack temporality. In fact, this author concludes that a constitutional argument is only possible if it relies upon a more foundational, causal argument. Secondly, through theoretical analysis of the constitutional argument, this research seeks to delineate temporal and non-temporal ways of explaining within International Relations. This article concludes that while the constitutional explanation, like other logical arguments, including comparative, and counter-factual, are not truly non-causal explanations, they are not bound as tightly to the ‘real world’ as temporal arguments such as cause-effect, process tracing, or even interpretivist accounts. However, like mathematical models, non-temporal arguments should aim for empirical testability as well as internal consistency. This work aims to give clear theoretical grounding to those authors using non-temporal arguments, but also to encourage them, and their positivist critics, to engage in thoroughgoing empirical tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20explanation" title="causal explanation">causal explanation</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutional%20understanding" title=" constitutional understanding"> constitutional understanding</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical" title=" empirical"> empirical</a>, <a href="https://publications.waset.org/abstracts/search?q=temporality" title=" temporality"> temporality</a> </p> <a href="https://publications.waset.org/abstracts/86936/explanation-and-temporality-in-international-relations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2346</span> Spinoza, Law and Gender Equality in Politics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debora%20Caetano%20Dahas">Debora Caetano Dahas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In ‘Ethics’ and in ‘A Political Treatise’ Spinoza presents his very influential take on natural law and the principles that guide his philosophical work and observations. Spinoza’s ideas about rationalization, God, and ethical behavior are undeniably relevant to many debates in the field of legal theory. In addition, it is important to note that Spinoza's takes on body, mind, and imagination played an important role in building a certain way of understanding the female figure in western societies and of their differences in regards to the male figure. It is important to emphasize that the constant and insistent presentation of women as inferior and irrational beings corroborates the institutionalization of discriminatory public policies and practices legitimized by the legal system that cooperates with the aggravation of gender inequalities. Therefore, his arguments in relation to women and their nature have been highly criticized, especially by feminist theorists during the second half of the 21st century. The questioning of this traditional philosophy –often phallocentric– and its way of describing women as irrational and less capable than men, as well as the attempt to reformulate postulates and concepts, takes place in such a way as to create a deconstruction of classical concepts. Some of the arguments developed by Spinoza, however, can serve as a basis for elucidating in what way and to what extent the social and political construction of the feminine identity served as a basis for gender inequality. Thus, based on to the observations elaborated by Moira Gantes, the present research addresses the relationship between Spinoza and the feminist demands in the juridical and political spheres, elaborating arguments that corroborate the convergence between his philosophy and feminist critical theory. Finally, this research aims to discuss how the feminists' critics of Spinoza’s writings have deconstructed and rehabilitated his principles and, in doing so, can further help to illustrate the importance of his philosophy –and, consequently, of his notes on Natural Law– in understanding gender equality as a vital part of the effective implementation of democratic debate and inclusive political participation and representation. In doing so, philosophical and legal arguments based on the feminist re-reading of Spinoza’s principles are presented and then used to explain the controversial political reform in Brazil, especially in regards to the applicability of the legislative act known as Law n. 9.504/1997 which establishes that at least 30% of legislative seats must be occupied by women. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20law" title="natural law">natural law</a>, <a href="https://publications.waset.org/abstracts/search?q=feminism" title=" feminism"> feminism</a>, <a href="https://publications.waset.org/abstracts/search?q=politics" title=" politics"> politics</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20equality" title=" gender equality"> gender equality</a> </p> <a href="https://publications.waset.org/abstracts/98722/spinoza-law-and-gender-equality-in-politics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2345</span> Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linyu%20Wang">Linyu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiahui%20Ma"> Jiahui Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhong%20Xiang"> Jianhong Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanyu%20Jiang"> Hanyu Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title="compressed sensing">compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy%20algorithm" title=" greedy algorithm"> greedy algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square%20method" title=" least square method"> least square method</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20reconstruction" title=" adaptive reconstruction"> adaptive reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/161616/sparse-signal-restoration-algorithm-based-on-piecewise-adaptive-backtracking-orthogonal-least-squares" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2344</span> Teaching and Learning Dialectical Relationship between Thermodynamic Equilibrium and Reaction Rate Constant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Anwar">Mohammad Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Waliullah"> Shah Waliullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of science and technology in the present era has an urgent demand for the training of thinking of undergraduates. This requirement actively promotes research and teaching of basic theories, beneficial to the career development of students. This study clarified the dialectical relation between the thermodynamic equilibrium constant and reaction rate constant through the contrast thinking method. Findings reveal that both the isobaric Van't Hoff equation and the Arrhenius equation had four similar forms, and the change in the trend of both constants showed a similar law. By the derivation of the formation rate constant of the product (KY) and the consumption rate constant of the reactant (KA), the ratio of both constants at the end state indicated the nature of the equilibrium state in agreement with that of the thermodynamic equilibrium constant (K^θ (T)). This study has thus presented that the thermodynamic equilibrium constant contained the characteristics of microscopic dynamics based on the analysis of the reaction mechanism, and both constants are organically connected and unified. The reaction enthalpy and activation energy are closely related to each other with the same connotation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20equilibrium%20constant" title="thermodynamic equilibrium constant">thermodynamic equilibrium constant</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20rate%20constant" title=" reaction rate constant"> reaction rate constant</a>, <a href="https://publications.waset.org/abstracts/search?q=PBL%20teaching" title=" PBL teaching"> PBL teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=dialectical%20relation" title=" dialectical relation"> dialectical relation</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20thinking" title=" innovative thinking"> innovative thinking</a> </p> <a href="https://publications.waset.org/abstracts/161693/teaching-and-learning-dialectical-relationship-between-thermodynamic-equilibrium-and-reaction-rate-constant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2343</span> Tga Analysis on the Decomposition of Active Material of Aquilaria Malaccencis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurshafika%20Adira%20Bt%20Audi%20Ashraf">Nurshafika Adira Bt Audi Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Habsah%20Alwi"> Habsah Alwi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes the series of analysis conducted after the use of Vacuum far Infra Red. Parameter including the constant drying temperature at 40°C with pressure difference (-400 bar, -500 bar and -600 bar) and constant drying pressure at -400 bar with difference temperature (40°C, 50°C and 60°C). The dried leaves with constant temperature and constant pressure is compared with the fresh leaves via several analysis including TGA, FTIR and Chromameter. Results indicated that the fresh leaves shows three degradation stages while temperature constant shows four stages of degradation and at constant pressure of -400 bar, five stages of degradation is shown. However, at the temperature constant with pressure -500 bar, five degradation stages are identified and at constant pressure with temperature 40°C, three stage of degradation is presence. It is assumed that it is due to the difference size of the sample as the particle size is decrease, the peak temperature shown in TG curves is also decrease which lead to the rapid ignition. Based on the FTIR analysis, fresh leaves gives the high presence of O-H and C=O group where both of the constant parameters give the absence of those due to the drying effects. In color analysis, the constant drying parameters (pressure and temperature) both shows that as the temperature increases, the average total of color change is also increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromameter" title="chromameter">chromameter</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaccum%20far%20infrared%20dying" title=" Vaccum far infrared dying "> Vaccum far infrared dying </a> </p> <a href="https://publications.waset.org/abstracts/34517/tga-analysis-on-the-decomposition-of-active-material-of-aquilaria-malaccencis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2342</span> Pulse Generator with Constant Pulse Width</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rozita%20Borhan">Rozita Borhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanif%20Che%20Lah"> Hanif Che Lah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wee%20Leong%20Son"> Wee Leong Son</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is about method to produce a stable and accurate constant output pulse width regardless of the amplitude, period and pulse width variation of the input signal source. The pulse generated is usually being used in numerous applications as the reference input source to other circuits in the system. Therefore, it is crucial to produce a clean and constant pulse width to make sure the system is working accurately as expected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amplitude" title="amplitude">amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=Constant%20Pulse%20Width" title=" Constant Pulse Width"> Constant Pulse Width</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20divider" title=" frequency divider"> frequency divider</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20generator" title=" pulse generator"> pulse generator</a> </p> <a href="https://publications.waset.org/abstracts/12784/pulse-generator-with-constant-pulse-width" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2341</span> Bulk Viscous Bianchi Type V Cosmological Model with Time Dependent Gravitational Constant and Cosmological Constant in General Relativity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reena%20Behal">Reena Behal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Shukla"> D. P. Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate Bulk Viscous Bianchi Type V Cosmological Model with Time dependent gravitational constant and cosmological constant in general Relativity by assuming ξ(t)=ξ_(0 ) p^m where ξ_(0 ) and m are constants. We also assume a variation law for Hubble parameter as H(R) = a (R^(-n)+1), where a>0, n>1 being constant. Two universe models were obtained, and their physical behavior has been discussed. When n=1 the Universe starts from singular state whereas when n=0 the cosmology follows a no singular state. The presence of bulk viscosity increase matter density’s value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bulk%20Viscous%20Bianchi%20Type%20V%20Cosmological%20Model" title="Bulk Viscous Bianchi Type V Cosmological Model">Bulk Viscous Bianchi Type V Cosmological Model</a>, <a href="https://publications.waset.org/abstracts/search?q=hubble%20constants" title=" hubble constants"> hubble constants</a>, <a href="https://publications.waset.org/abstracts/search?q=gravitational%20constant" title=" gravitational constant"> gravitational constant</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmological%20constants" title=" cosmological constants"> cosmological constants</a> </p> <a href="https://publications.waset.org/abstracts/78768/bulk-viscous-bianchi-type-v-cosmological-model-with-time-dependent-gravitational-constant-and-cosmological-constant-in-general-relativity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2340</span> Electrodermal Activity Measurement Using Constant Current AC Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Chacha">Cristian Chacha</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Asiain"> David Asiain</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20Ponce%20de%20Le%C3%B3n"> Jesús Ponce de León</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ram%C3%B3n%20Beltr%C3%A1n"> José Ramón Beltrán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work explores and characterizes the behavior of the AFE AD5941 in impedance measurement using an embedded algorithm with a constant current AC source. The main aim of this research is to improve the exact measurement of impedance values for their application in EDA-focused wearable devices. Through comprehensive study and characterization, it has been observed that employing a measurement sequence with a constant current source produces results with increased dispersion but higher accuracy. As a result, this approach leads to a more accurate system for impedance measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EDA" title="EDA">EDA</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20current%20AC%20source" title=" constant current AC source"> constant current AC source</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable" title=" wearable"> wearable</a>, <a href="https://publications.waset.org/abstracts/search?q=precision" title=" precision"> precision</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance" title=" impedance"> impedance</a> </p> <a href="https://publications.waset.org/abstracts/168848/electrodermal-activity-measurement-using-constant-current-ac-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2339</span> The Faithful Extension of Constant Height and Constant Width Between Finite Posets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walied%20Hazim%20Sharif">Walied Hazim Sharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of faithful extension with the condition of keeping constant height h and constant width w, i.e. for h w -inextensibility, seems more interesting than the brute extension of finite poset (partially ordered set). We shall investigate some theorems of hw-inextensive and hw-exrensive posets that can be used to formulate the faithful extension problem. A theorem in its general form of hw-inextensive posets is given to implement the presented theorems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=faithful%20extension" title="faithful extension">faithful extension</a>, <a href="https://publications.waset.org/abstracts/search?q=poset" title=" poset"> poset</a>, <a href="https://publications.waset.org/abstracts/search?q=extension" title=" extension"> extension</a>, <a href="https://publications.waset.org/abstracts/search?q=inextension" title=" inextension"> inextension</a>, <a href="https://publications.waset.org/abstracts/search?q=height" title=" height"> height</a>, <a href="https://publications.waset.org/abstracts/search?q=width" title=" width"> width</a>, <a href="https://publications.waset.org/abstracts/search?q=hw-extensive" title=" hw-extensive"> hw-extensive</a>, <a href="https://publications.waset.org/abstracts/search?q=hw-inextensive" title=" hw-inextensive "> hw-inextensive </a> </p> <a href="https://publications.waset.org/abstracts/21281/the-faithful-extension-of-constant-height-and-constant-width-between-finite-posets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2338</span> Fallacies of Argumentation in Modern American Political Discourse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarine%20Avetisyan">Zarine Avetisyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of speech production and transmission naturally implies the occurrence of certain defective assumptions and erroneous formulations which may be both spontaneous, caused by haste, carelessness, etc., or deliberate. Whether deliberate or not, fallacies always act by way of “faux pas”. In the latter case, we deal with fake or deceptive arguments which are the focus of the given paper. The paper departs from the assumption that fallacies are arguments that prove nothing. Additionally and more importantly, political discourse becomes the main domain for scholarly “cultivation” while pinning down fallacies. The fallacy of telling the truth but deliberately omitting important key details in order to falsify the larger picture called “the half truth” captures special attention in the given paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=break%20in%20the%20information%20chain" title="break in the information chain">break in the information chain</a>, <a href="https://publications.waset.org/abstracts/search?q=fallacy" title=" fallacy"> fallacy</a>, <a href="https://publications.waset.org/abstracts/search?q=half%20truth" title=" half truth"> half truth</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20discourse" title=" political discourse"> political discourse</a> </p> <a href="https://publications.waset.org/abstracts/47350/fallacies-of-argumentation-in-modern-american-political-discourse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2337</span> Faithful Extension of Constant Height and Constant Width between Finite Posets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walied%20Hazim%20Sharif">Walied Hazim Sharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of faithful extension with the condition of keeping constant height h and constant width w, i.e. for hw-inextensibility, seems more interesting than the brute extension of finite poset (partially ordered set). We shall investigate some theorems of hw-inextensive and hw-extensive posets that can be used to formulate the faithful extension problem. A theorem in its general form of hw-inextensive posets are given to implement the presented theorems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=faithful%20extension" title="faithful extension">faithful extension</a>, <a href="https://publications.waset.org/abstracts/search?q=poset" title=" poset"> poset</a>, <a href="https://publications.waset.org/abstracts/search?q=extension" title=" extension"> extension</a>, <a href="https://publications.waset.org/abstracts/search?q=inextension" title=" inextension"> inextension</a>, <a href="https://publications.waset.org/abstracts/search?q=height" title=" height"> height</a>, <a href="https://publications.waset.org/abstracts/search?q=width" title=" width"> width</a>, <a href="https://publications.waset.org/abstracts/search?q=hw-extensive" title=" hw-extensive"> hw-extensive</a>, <a href="https://publications.waset.org/abstracts/search?q=hw-inextensive" title=" hw-inextensive"> hw-inextensive</a> </p> <a href="https://publications.waset.org/abstracts/12144/faithful-extension-of-constant-height-and-constant-width-between-finite-posets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2336</span> A Deterministic Approach for Solving the Hull and White Interest Rate Model with Jump Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong-Ming%20Chen">Hong-Ming Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work considers the resolution of the Hull and White interest rate model with the jump process. A deterministic process is adopted to model the random behavior of interest rate variation as deterministic perturbations, which is depending on the time t. The Brownian motion and jumps uncertainty are denoted as the integral functions piecewise constant function w(t) and point function θ(t). It shows that the interest rate function and the yield function of the Hull and White interest rate model with jump process can be obtained by solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed for solving the resulting optimization problem. The method is calibrated for the U.S. treasury securities at 3-month data and is used to analyze several effects on interest rate prices, including interest rate variability, and the negative correlation between stock returns and interest rates. The numerical results illustrate that our approach essentially generates the yield functions with minimal fitting errors and small oscillation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=interest%20rate%20model" title=" interest rate model"> interest rate model</a>, <a href="https://publications.waset.org/abstracts/search?q=jump%20process" title=" jump process"> jump process</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic" title=" deterministic"> deterministic</a> </p> <a href="https://publications.waset.org/abstracts/95426/a-deterministic-approach-for-solving-the-hull-and-white-interest-rate-model-with-jump-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2335</span> A Geometric Interpolation Scheme in Overset Meshes for the Piecewise Linear Interface Calculation Volume of Fluid Method in Multiphase Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanni%20Chang">Yanni Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dezhi%20Dai"> Dezhi Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Y.%20Tong"> Albert Y. Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piecewise linear interface calculation (PLIC) schemes are widely used in the volume-of-fluid (VOF) method to capture interfaces in numerical simulations of multiphase flows. Dynamic overset meshes can be especially useful in applications involving component motions and complex geometric shapes. In the present study, the VOF value of an acceptor cell is evaluated in a geometric way that transfers the fraction field between the meshes precisely with reconstructed interfaces from the corresponding donor elements. The acceptor cell value is evaluated by using a weighted average of its donors for most of the overset interpolation schemes for continuous flow variables. The weighting factors are obtained by different algebraic methods. Unlike the continuous flow variables, the VOF equation is a step function near the interfaces, which ranges from zero to unity rapidly. A geometric interpolation scheme of the VOF field in overset meshes for the PLIC-VOF method has been proposed in the paper. It has been tested successfully in quadrilateral/hexahedral overset meshes by employing several VOF advection tests with imposed solenoidal velocity fields. The proposed algorithm has been shown to yield higher accuracy in mass conservation and interface reconstruction compared with three other algebraic ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interpolation%20scheme" title="interpolation scheme">interpolation scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flows" title=" multiphase flows"> multiphase flows</a>, <a href="https://publications.waset.org/abstracts/search?q=overset%20meshes" title=" overset meshes"> overset meshes</a>, <a href="https://publications.waset.org/abstracts/search?q=PLIC-VOF%20method" title=" PLIC-VOF method"> PLIC-VOF method</a> </p> <a href="https://publications.waset.org/abstracts/113095/a-geometric-interpolation-scheme-in-overset-meshes-for-the-piecewise-linear-interface-calculation-volume-of-fluid-method-in-multiphase-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2334</span> A Low-Cost Experimental Approach for Teaching Energy Quantization: Determining the Planck Constant with Arduino and Led</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gast%C3%A3o%20Soares%20Ximenes%20de%20Oliveira">Gastão Soares Ximenes de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Richar%20Nicol%C3%A1s%20Dur%C3%A1n"> Richar Nicolás Durán</a>, <a href="https://publications.waset.org/abstracts/search?q=Romeo%20Micah%20Szmoski"> Romeo Micah Szmoski</a>, <a href="https://publications.waset.org/abstracts/search?q=Eloiza%20Aparecida%20Avila%20de%20Matos"> Eloiza Aparecida Avila de Matos</a>, <a href="https://publications.waset.org/abstracts/search?q=Elano%20Gustavo%20Rein"> Elano Gustavo Rein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article aims to present an experimental method to determine Planck's constant by calculating the cutting potential V₀ from LEDs with different wavelengths. The experiment is designed using Arduino as a central tool in order to make the experimental activity more engaging and attractive for students with the use of digital technologies. From the characteristic curves of each LED, graphical analysis was used to obtain the cutting potential, and knowing the corresponding wavelength, it was possible to calculate Planck's constant. This constant was also obtained from the linear adjustment of the cutting potential graph by the frequency of each LED. Given the relevance of Planck's constant in physics, it is believed that this experiment can offer teachers the opportunity to approach concepts from modern physics, such as the quantization of energy, in a more accessible and applied way in the classroom. This will not only enrich students' understanding of the fundamental nature of matter but also encourage deeper engagement with the principles of quantum physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physics%20teaching" title="physics teaching">physics teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20technology" title=" educational technology"> educational technology</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20physics" title=" modern physics"> modern physics</a>, <a href="https://publications.waset.org/abstracts/search?q=Planck%20constant" title=" Planck constant"> Planck constant</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino" title=" Arduino"> Arduino</a> </p> <a href="https://publications.waset.org/abstracts/173953/a-low-cost-experimental-approach-for-teaching-energy-quantization-determining-the-planck-constant-with-arduino-and-led" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments&amp;page=78">78</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments&amp;page=79">79</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piecewise%20constant%20arguments&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10