CINXE.COM
About: Function composition
<!DOCTYPE html> <html prefix=" dbp: http://dbpedia.org/property/ dbo: http://dbedia.org/ontology/ dct: http://purl.org/dc/terms/ dbd: http://dbpedia.org/datatype/ og: https://ogp.me/ns# " > <!-- header --> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>About: Function composition</title> <!-- Links --> <link rel="alternate" type="application/rdf+xml" href="http://dbpedia.org/data/Function_composition.rdf" title="Structured Descriptor Document (RDF/XML format)" /> <link rel="alternate" type="text/n3" href="http://dbpedia.org/data/Function_composition.n3" title="Structured Descriptor Document (N3 format)" /> <link rel="alternate" type="text/turtle" href="http://dbpedia.org/data/Function_composition.ttl" title="Structured Descriptor Document (Turtle format)" /> <link rel="alternate" type="application/json+rdf" href="http://dbpedia.org/data/Function_composition.jrdf" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/json" href="http://dbpedia.org/data/Function_composition.json" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/atom+xml" href="http://dbpedia.org/data/Function_composition.atom" title="OData (Atom+Feed format)" /> <link rel="alternate" type="text/plain" href="http://dbpedia.org/data/Function_composition.ntriples" title="Structured Descriptor Document (N-Triples format)" /> <link rel="alternate" type="text/csv" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition%3E&format=text%2Fcsv" title="Structured Descriptor Document (CSV format)" /> <link rel="alternate" type="application/microdata+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition%3E&format=application%2Fmicrodata%2Bjson" title="Structured Descriptor Document (Microdata/JSON format)" /> <link rel="alternate" type="text/html" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition%3E&format=text%2Fhtml" title="Structured Descriptor Document (Microdata/HTML format)" /> <link rel="alternate" type="application/ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition%3E&format=application%2Fld%2Bjson" title="Structured Descriptor Document (JSON-LD format)" /> <link rel="alternate" type="text/x-html-script-ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition%3E&format=text%2Fx-html-script-ld%2Bjson" title="Structured Descriptor Document (HTML with embedded JSON-LD)" /> <link rel="alternate" type="text/x-html-script-turtle" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition%3E&format=text%2Fx-html-script-turtle" title="Structured Descriptor Document (HTML with embedded Turtle)" /> <link rel="timegate" type="text/html" href="http://dbpedia.mementodepot.org/timegate/http://dbpedia.org/page/Function_composition" title="Time Machine" /> <link rel="foaf:primarytopic" href="http://dbpedia.org/resource/Function_composition"/> <link rev="describedby" href="http://dbpedia.org/resource/Function_composition"/> <!-- /Links --> <!-- Stylesheets --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/css/bootstrap.min.css" integrity="sha512-siwe/oXMhSjGCwLn+scraPOWrJxHlUgMBMZXdPe2Tnk3I0x3ESCoLz7WZ5NTH6SZrywMY+PB1cjyqJ5jAluCOg==" crossorigin="anonymous" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap-icons/1.9.1/font/bootstrap-icons.min.css" integrity="sha512-5PV92qsds/16vyYIJo3T/As4m2d8b6oWYfoqV+vtizRB6KhF1F9kYzWzQmsO6T3z3QG2Xdhrx7FQ+5R1LiQdUA==" crossorigin="anonymous" /> <!-- link rel="stylesheet" href="/statics/css/dbpedia.css" --> <!-- /Stylesheets--> <!-- OpenGraph --> <meta property="og:title" content="Function composition" /> <meta property="og:type" content="article" /> <meta property="og:url" content="http://dbpedia.org/resource/Function_composition" /> <meta property="og:image" content="http://commons.wikimedia.org/wiki/Special:FilePath/Example_for_a_composition_of_two_functions.svg?width=300" /> <meta property="og:description" content="In mathematics, function composition is an operation ∘ that takes two functions f and g, and produces a function h = g ∘ f such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : X → Y and g : Y → Z are composed to yield a function that maps x in domain X to g(f(x)) in codomain Z.Intuitively, if z is a function of y, and y is a function of x, then z is a function of x. The resulting composite function is denoted g ∘ f : X → Z, defined by (g ∘ f )(x) = g(f(x)) for all x in X." /> <meta property="og:site_name" content="DBpedia" /> <!-- /OpenGraph--> </head> <body about="http://dbpedia.org/resource/Function_composition"> <!-- navbar --> <nav class="navbar navbar-expand-md navbar-light bg-light fixed-top align-items-center"> <div class="container-xl"> <a class="navbar-brand" href="http://wiki.dbpedia.org/about" title="About DBpedia" style="color: #2c5078"> <img class="img-fluid" src="/statics/images/dbpedia_logo_land_120.png" alt="About DBpedia" /> </a> <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#dbp-navbar" aria-controls="dbp-navbar" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="dbp-navbar"> <ul class="navbar-nav me-auto mb-2 mb-lg-0"> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownBrowse" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-eye-fill"></i> Browse using<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownBrowse"> <li class="dropdown-item"><a class="nav-link" href="/describe/?uri=http%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition">OpenLink Faceted Browser</a></li> <li class="dropdown-item"><a class="nav-link" href="http://osde.demo.openlinksw.com/#/editor?uri=http%3A%2F%2Fdbpedia.org%2Fdata%2FFunction_composition.ttl&view=statements">OpenLink Structured Data Editor</a></li> <li class="dropdown-item"><a class="nav-link" href="http://en.lodlive.it/?http%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition">LodLive Browser</a></li> <!-- li class="dropdown-item"><a class="nav-link" href="http://lodmilla.sztaki.hu/lodmilla/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition">LODmilla Browser</a></li --> </ul> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownFormats" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-file-earmark-fill"></i> Formats<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownFormats"> <li class="dropdown-item-text">RDF:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Function_composition.ntriples">N-Triples</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Function_composition.n3">N3</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Function_composition.ttl">Turtle</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Function_composition.json">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Function_composition.rdf">XML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">OData:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Function_composition.atom">Atom</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Function_composition.jsod">JSON</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Microdata:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition%3E&format=application%2Fmicrodata%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition%3E&format=text%2Fhtml">HTML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Embedded:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition%3E&format=text%2Fx-html-script-ld%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition%3E&format=text%2Fx-html-script-turtle">Turtle</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Other:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition%3E&format=text%2Fcsv">CSV</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FFunction_composition%3E&format=application%2Fld%2Bjson">JSON-LD</a></li> </ul> </li> </ul> <ul class="navbar-nav ms-auto"> <li class="nav-item"> <a class="nav-link" href="/fct/" title="Switch to /fct endpoint"><i class="bi-box-arrow-up-right"></i> Faceted Browser </a> </li> <li class="nav-item"> <a class="nav-link" href="/sparql/" title="Switch to /sparql endpoint"><i class="bi-box-arrow-up-right"></i> Sparql Endpoint </a> </li> </ul> </div> </div> </nav> <div style="margin-bottom: 60px"></div> <!-- /navbar --> <!-- page-header --> <section> <div class="container-xl"> <div class="row"> <div class="col"> <h1 id="title" class="display-6"><b>About:</b> <a href="http://dbpedia.org/resource/Function_composition">Function composition</a> </h1> </div> </div> <div class="row"> <div class="col"> <div class="text-muted"> <span class="text-nowrap">An Entity of Type: <a href="http://dbpedia.org/ontology/Software">software</a>, </span> <span class="text-nowrap">from Named Graph: <a href="http://dbpedia.org">http://dbpedia.org</a>, </span> <span class="text-nowrap">within Data Space: <a href="http://dbpedia.org">dbpedia.org</a></span> </div> </div> </div> <div class="row pt-2"> <div class="col-xs-9 col-sm-10"> <p class="lead">In mathematics, function composition is an operation ∘ that takes two functions f and g, and produces a function h = g ∘ f such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : X → Y and g : Y → Z are composed to yield a function that maps x in domain X to g(f(x)) in codomain Z.Intuitively, if z is a function of y, and y is a function of x, then z is a function of x. The resulting composite function is denoted g ∘ f : X → Z, defined by (g ∘ f )(x) = g(f(x)) for all x in X.</p> </div> <div class="col-xs-3 col-sm-2"> <a href="#" class="thumbnail"> <img src="http://commons.wikimedia.org/wiki/Special:FilePath/Example_for_a_composition_of_two_functions.svg?width=300" alt="thumbnail" class="img-fluid" /> </a> </div> </div> </div> </section> <!-- page-header --> <!-- property-table --> <section> <div class="container-xl"> <div class="row"> <div class="table-responsive"> <table class="table table-hover table-sm table-light"> <thead> <tr> <th class="col-xs-3 ">Property</th> <th class="col-xs-9 px-3">Value</th> </tr> </thead> <tbody> <tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/abstract"><small>dbo:</small>abstract</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ar" >في الرياضيات, تركيب دالتين (بالإنجليزية: Function composition) هو إخضاع نتيجة الدالة الأولى للدالة الثانية. أي أنه بالنسبة للدالتين f: X → Y و g: Y → Z, فإن تركيبهما هو حساب قيمة g ليس عندما يكون مدخلها هو x، بل عندما يكون مدخلها هو (f(x.ويعد موضوع تركيب الدوال مدخلا هاما في دراسة حساب التغيرات.</span><small> (ar)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ca" >En matemàtiques, la funció composició és l'aplicació d'una funció al resultat d'una altra. Per exemple, les funcions f: X → Y i g: Y → Z es poden compondre aplicant primer f a un argument x i llavors aplicant g al resultat.Així s'obté una funció g∘f: X → Z definida com (g∘f)(x) = g(f(x)) per a tot x de X. La notació g∘f segons alguns autors es llegeix com "f composta amb g", i segons altres autors com "composició de g amb f" En aquest aspecte ha aparegut alguna . La composició de funcions és sempre associativa. És a dir, si f, g, i h són tres funcions amb dominis i codominis adequadament triats, llavors f∘(g∘h) = (f∘g)∘h. Com que no hi ha cap distinció en l'elecció del lloc on se situen els parèntesis, es poden ometre amb seguretat.Es diu que les funcions g i f commuten entre elles si g∘f = f∘g. En general la composició de funcions no és commutativa. La commutabilitat en la composició és una propietat especial, que només es dona en funcions particulars i sovint només en circumstàncies especials. Per exemple, només quan . Un cas especial és considerar una funció i la seva inversa, que sempre commuten i la seva composició és la funció identitat. Les derivades de composicions de funcions derivables es poden calcular emprant la regla de la cadena. Derivades d'ordre superior d'aquest tipus de funcions s'obtenen per la Fórmula de Faà di Bruno.</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="el" >Η σύνθεση συνάρτησης είναι πράξη μαθηματικών συναρτήσεων και συμβολίζεται με . Στη σύνθεση συναρτήσεων η ανεξάρτητη μεταβλητή x συνδέεται με την εξαρτημένη μεταβλητή y μέσω μίας ενδιάμεσης συνάρτησης. Σύνθεση συνάρτησης της f(x) (με πεδίο ορισμού Α) με την g(x) (με πεδίο ορισμού Β) είναι μία συνάρτηση που έχει τιμή: και πεδίο ορισμού:</span><small> (el)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="de" >Der Begriff Komposition bedeutet in der Mathematik meist die Hintereinanderschaltung von Funktionen, auch als Verkettung, Verknüpfung oder Hintereinanderausführung bezeichnet. Sie wird meist mit Hilfe des Verkettungszeichens notiert. Die Darstellung einer Funktion als Verkettung zweier oder mehrerer, im Allgemeinen einfacherer Funktionen ist zum Beispiel in der Differential- und Integralrechnung wichtig, wenn es darum geht, Ableitungen mit der Kettenregel oder Integrale mit der Substitutionsregel zu berechnen. Der Begriff Komposition kann von Funktionen auf Relationen und partielle Funktionen verallgemeinert werden.</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="eo" >En matematiko, komponita funkcio, formita kiel la komponaĵo de unu funkcio sur alia, prezentas la aplikon de la antaŭa al la rezulto de la apliko de la lasta al la argumento de la komponaĵo. La funkcioj f: X → Y kaj g: Y → Z povas esti komponitaj per unue aplikado f al argumento x kaj tiam aplikado g al la rezulto.Tial oni ricevas funkcion g o f: X → Z difinitan per (g o f)(x) = g(f(x)) por ĉiuj x en X. La notacio g o f estas legata kiel "g cirklo f" aŭ "g post f" aŭ "g komponita kun f". La operacio o en tia kunteksto nomiĝas funkcia komponado.</span><small> (eo)</small></span></li> <li><span class="literal"><span property="dbo:abstract" lang="en" >In mathematics, function composition is an operation ∘ that takes two functions f and g, and produces a function h = g ∘ f such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : X → Y and g : Y → Z are composed to yield a function that maps x in domain X to g(f(x)) in codomain Z.Intuitively, if z is a function of y, and y is a function of x, then z is a function of x. The resulting composite function is denoted g ∘ f : X → Z, defined by (g ∘ f )(x) = g(f(x)) for all x in X. The notation g ∘ f is read as "g of f ", "g after f ", "g circle f ", "g round f ", "g about f ", "g composed with f ", "g following f ", "f then g", or "g on f ", or "the composition of g and f ". Intuitively, composing functions is a chaining process in which the output of function f feeds the input of function g. The composition of functions is a special case of the composition of relations, sometimes also denoted by . As a result, all properties of composition of relations are true of composition of functions, such as the property of .But composition of functions is different from multiplication of functions (if defined at all), and has some quite different properties; in particular, composition of functions is not commutative.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="eu" >Aljebra abstraktuan, funtzio konposatua bi funtzioren konposaketaren edo jarraituaren emaitza den funtzioa da. Funtzio konposatu baten bera eratzerakoan aplikatu den lehen funtzioaren iturburu-multzoa da eta irudi-multzoa aldiz, aplikatu den azken funtzioaren irudi-multzoa. Funtzio konposatuak, oro har, ez dira trukakorrak eta propietate jakin batzuk betetzen dituzte. Funtzio konposatuaren hura eratzeko erabili diren funtzio-moten araberakoa izango da.</span><small> (eu)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="es" >En álgebra abstracta, una función compuesta es una función formada por la composición o aplicación sucesiva de otras dos funciones. Para ello, se aplica sobre el argumento la función más próxima al mismo, y al resultado del cálculo anterior se le aplica finalmente la función restante. Usando la notación matemática, la función compuesta g ∘ f: X → Z expresa que (g ∘ f)(x) = g[f(x)] para todo x perteneciente a X. Se lee "f compuesta con g", "f en g", "f entonces g", "g de f" o "g círculo f".F°G= F[g(x)] queriendo decir que x pertenece a dominio de g y g(x) pertenece a F.</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="in" >Dalam matematika, komposisi fungsi adalah operasi yang mengambil dua fungsi dan dan menghasilkan fungsi sehingga . Fungsi pada operasi ini ke dalam hasil penerapan fungsi ke . Artinya, fungsi dan dikomposisikan untuk menghasilkan sebuah fungsi yang memetakan di ke di . Secara intuitif, jika adalah fungsi , dan adalah fungsi , maka adalah fungsi . Hasil fungsi komposisi yang dinyatakan sebagai , didefinisikan sebagai untuk semua dalam . Notasi dibaca sebagai " komposisi " atau " bundaran ". Secara intuitif, mengomposisikan fungsi-fungsi adalah proses perangkaian yang memasukkan nilai keluaran (bahasa Inggris: output) fungsi ke nilai masukan (bahasa Inggris: input) fungsi . Komposisi fungsi adalah sebuah kasus istimewa dari . Komposisi fungsi terkadang juga dinyatakan sebagai . Akibatnya, semua sifat-sifat komposisi relasi adalah benar untuk komposisi fungsi, contohnya seperti sifat asosiatif. Namun komposisi fungsi berbeda dari fungsi, dan memiliki beberapa sifat-sifat yang cukup berbeda. Penjelasan secara khususnya, komposisi fungsi tidak memiliki sifat komutatif.</span><small> (in)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="fr" >La composition de fonctions (ou composition d’applications) est, en mathématiques, un procédé qui consiste, à partir de deux fonctions, à en construire une nouvelle. Pour cela, on utilise les images de la première fonction comme arguments pour la seconde (à condition que cela ait un sens). On parle alors de fonction composée (ou d'application composée).</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ko" >수학에서 함수의 합성(函數의合成, 영어: function composition) 또는 합성 함수(合成函數, 영어: composite function)는 한 함수의 공역이 다른 함수의 정의역과 일치하는 경우, 두 함수를 이어 하나의 함수로 만드는 연산이다.</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="it" >In matematica, la composizione di funzioni è l'applicazione di una funzione al risultato di un'altra funzione. Più precisamente, una funzione tra due insiemi e associa ogni elemento di a uno di : in presenza di un'altra funzione che associa ogni elemento di a un elemento di un altro insieme , si definisce la composizione di e come la funzione che associa ogni elemento di a uno di usando prima e poi . Il simbolo Unicode dell'operatore è ∘ (U+2218).</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ja" >数学において写像あるいは函数の合成(ごうせい、英: composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t) = c(h(t)) が時刻 t における飛行機周辺の酸素濃度を記述するものとなる。</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="nl" >In de wiskunde is functiecompositie, of samenstelling, de constructie van een nieuwe functie uit twee of meer functies, door het na elkaar uitvoeren daarvan. Een tweede of volgende functie wordt toegepast op het resultaat van de voorgaande functie. Het resultaat van de samenstelling van de functies en noemt men een samengestelde functie. genoteerd als . Er geldt: In de nevenstaande figuur is dit in beeld gebracht. Daarin ziet men bijvoorbeeld dat de functie aan het origineel het beeld toevoegt. De functie beeldt het origineel 1 af op @. De samenstelling voegt dus aan het origineel het symbool @ toe: @.</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="pl" >Złożenie funkcji, superpozycja funkcji – podstawowa operacja w matematyce, polegająca na tym, że efekt kolejnego stosowania dwóch (lub więcej) funkcji (ze zbioru w zbiór), a także przekształceń, odwzorowań, transformacji, relacji dwuargumentowych, traktuje się jako wynik stosowania jednej funkcji (lub relacji) złożonej.</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="sv" >En sammansatt funktion är inom matematiken en funktion som kan bildas genom att sätta samman två funktioner. Tecknet ∘, en mittplacerad ring som uttalas "boll", används för att ange sammansatt funktion. De flesta funktioner som förekommer kan beskrivas som sammansättningar av olika funktioner.</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="ru" >Компози́ция (суперпози́ция) фу́нкций — это применение одной функции к результату другой. Композиция функций и обычно обозначается , что обозначает применение функции к результату функции , то есть .</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="pt" >Em matemática, uma função composta é criada aplicando uma função à saída, ou resultado, de uma outra função, sucessivamente. Como uma função deve possuir um domínio e contradomínio bem definidos e estamos falando de aplicar funções mais de uma vez, devemos ser precisos com relação a como estamos aplicando estas funções.</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="zh" >复合函数(英語:Function composition),又稱作合成函數,在数学中是指逐点地把一个函数作用于另一个函数的结果,所得到的第三个函数。例如,函数 f : X → Y 和 g : Y → Z 可以复合,得到从 X 中的 x 映射到 Z 中 g(f(x)) 的函数。直观来说,如果 z 是 y 的函数,y 是 x 的函数,那么 z 是 x 的函数。得到的复合函数记作 g ∘ f : X → Z,定义为对 X 中的所有 x,(g ∘ f )(x) = g(f(x))。 直观地说,复合两个函数是把两个函数链接在一起的过程,内函数的输出就是外函数的输入。 函数的复合是关系复合的一个特例,因此复合关系的所有性质也适用于函数的复合。 复合函数还有一些其他性质。</span><small> (zh)</small></span></li> <li style="display:none;"><span class="literal"><span property="dbo:abstract" lang="uk" >Компози́ція (суперпозиція) фу́нкцій (відображень) в математиці — функція, побудована з двох функцій таким чином, що результат першої функції є аргументом другої. Композиція функцій : та : будується так: аргумент з застосовується до першої функції , а її результат з застосовується як аргумент до другої функції g.</span><small> (uk)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/thumbnail"><small>dbo:</small>thumbnail</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:thumbnail" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Example_for_a_composition_of_two_functions.svg?width=300" href="http://commons.wikimedia.org/wiki/Special:FilePath/Example_for_a_composition_of_two_functions.svg?width=300"><small>wiki-commons</small>:Special:FilePath/Example_for_a_composition_of_two_functions.svg?width=300</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageExternalLink"><small>dbo:</small>wikiPageExternalLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageExternalLink nofollow" resource="http://demonstrations.wolfram.com/CompositionOfFunctions/" href="http://demonstrations.wolfram.com/CompositionOfFunctions/">http://demonstrations.wolfram.com/CompositionOfFunctions/</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageID"><small>dbo:</small>wikiPageID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageID" datatype="xsd:integer" >195947</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageLength"><small>dbo:</small>wikiPageLength</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageLength" datatype="xsd:nonNegativeInteger" >37763</span><small> (xsd:nonNegativeInteger)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageRevisionID"><small>dbo:</small>wikiPageRevisionID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageRevisionID" datatype="xsd:integer" >1110226704</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cartesian_product" href="http://dbpedia.org/resource/Cartesian_product"><small>dbr</small>:Cartesian_product</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Primitive_recursive_function" href="http://dbpedia.org/resource/Primitive_recursive_function"><small>dbr</small>:Primitive_recursive_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Row_vector" href="http://dbpedia.org/resource/Row_vector"><small>dbr</small>:Row_vector</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Schröder's_equation" href="http://dbpedia.org/resource/Schröder's_equation"><small>dbr</small>:Schröder's_equation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Multivariate_function" href="http://dbpedia.org/resource/Multivariate_function"><small>dbr</small>:Multivariate_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Benjamin_Peirce" href="http://dbpedia.org/resource/Benjamin_Peirce"><small>dbr</small>:Benjamin_Peirce</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Binary_relation" href="http://dbpedia.org/resource/Binary_relation"><small>dbr</small>:Binary_relation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Degree_symbol" href="http://dbpedia.org/resource/Degree_symbol"><small>dbr</small>:Degree_symbol</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Derivative" href="http://dbpedia.org/resource/Derivative"><small>dbr</small>:Derivative</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Algebraic_structure" href="http://dbpedia.org/resource/Algebraic_structure"><small>dbr</small>:Algebraic_structure</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Basic_concepts_in_set_theory" href="http://dbpedia.org/resource/Category:Basic_concepts_in_set_theory"><small>dbc</small>:Basic_concepts_in_set_theory</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Homomorphism" href="http://dbpedia.org/resource/Homomorphism"><small>dbr</small>:Homomorphism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Permutation" href="http://dbpedia.org/resource/Permutation"><small>dbr</small>:Permutation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dagger_category" href="http://dbpedia.org/resource/Dagger_category"><small>dbr</small>:Dagger_category</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/De_Rham_curve" href="http://dbpedia.org/resource/De_Rham_curve"><small>dbr</small>:De_Rham_curve</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Infinite_set" href="http://dbpedia.org/resource/Infinite_set"><small>dbr</small>:Infinite_set</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Combinatory_logic" href="http://dbpedia.org/resource/Combinatory_logic"><small>dbr</small>:Combinatory_logic</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutative" href="http://dbpedia.org/resource/Commutative"><small>dbr</small>:Commutative</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutative_property" href="http://dbpedia.org/resource/Commutative_property"><small>dbr</small>:Commutative_property</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mathematics" href="http://dbpedia.org/resource/Mathematics"><small>dbr</small>:Mathematics</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_(mathematics)" href="http://dbpedia.org/resource/Matrix_(mathematics)"><small>dbr</small>:Matrix_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_multiplication" href="http://dbpedia.org/resource/Matrix_multiplication"><small>dbr</small>:Matrix_multiplication</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/One-to-one_function" href="http://dbpedia.org/resource/One-to-one_function"><small>dbr</small>:One-to-one_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Operator_(mathematics)" href="http://dbpedia.org/resource/Operator_(mathematics)"><small>dbr</small>:Operator_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Operator_theory" href="http://dbpedia.org/resource/Operator_theory"><small>dbr</small>:Operator_theory</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Function_(mathematics)" href="http://dbpedia.org/resource/Function_(mathematics)"><small>dbr</small>:Function_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Functional_square_root" href="http://dbpedia.org/resource/Functional_square_root"><small>dbr</small>:Functional_square_root</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Monoid" href="http://dbpedia.org/resource/Monoid"><small>dbr</small>:Monoid</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Morphism" href="http://dbpedia.org/resource/Morphism"><small>dbr</small>:Morphism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Converse_relation" href="http://dbpedia.org/resource/Converse_relation"><small>dbr</small>:Converse_relation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Arity" href="http://dbpedia.org/resource/Arity"><small>dbr</small>:Arity</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_algebra" href="http://dbpedia.org/resource/Linear_algebra"><small>dbr</small>:Linear_algebra</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Logical_conjunction" href="http://dbpedia.org/resource/Logical_conjunction"><small>dbr</small>:Logical_conjunction</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bijective" href="http://dbpedia.org/resource/Bijective"><small>dbr</small>:Bijective</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Clone_(algebra)" href="http://dbpedia.org/resource/Clone_(algebra)"><small>dbr</small>:Clone_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Composition_of_relations" href="http://dbpedia.org/resource/Composition_of_relations"><small>dbr</small>:Composition_of_relations</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Composition_ring" href="http://dbpedia.org/resource/Composition_ring"><small>dbr</small>:Composition_ring</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Faà_di_Bruno's_formula" href="http://dbpedia.org/resource/Faà_di_Bruno's_formula"><small>dbr</small>:Faà_di_Bruno's_formula</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Function_application" href="http://dbpedia.org/resource/Function_application"><small>dbr</small>:Function_application</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Function_composition_(computer_science)" href="http://dbpedia.org/resource/Function_composition_(computer_science)"><small>dbr</small>:Function_composition_(computer_science)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Functional_decomposition" href="http://dbpedia.org/resource/Functional_decomposition"><small>dbr</small>:Functional_decomposition</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Partial_function" href="http://dbpedia.org/resource/Partial_function"><small>dbr</small>:Partial_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category_of_sets" href="http://dbpedia.org/resource/Category_of_sets"><small>dbr</small>:Category_of_sets</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Transformation_monoid" href="http://dbpedia.org/resource/Transformation_monoid"><small>dbr</small>:Transformation_monoid</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Trigonometric_functions" href="http://dbpedia.org/resource/Trigonometric_functions"><small>dbr</small>:Trigonometric_functions</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Trigonometry" href="http://dbpedia.org/resource/Trigonometry"><small>dbr</small>:Trigonometry</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tuple" href="http://dbpedia.org/resource/Tuple"><small>dbr</small>:Tuple</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Domain_of_a_function" href="http://dbpedia.org/resource/Domain_of_a_function"><small>dbr</small>:Domain_of_a_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jules_Molk" href="http://dbpedia.org/resource/Jules_Molk"><small>dbr</small>:Jules_Molk</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Additive_inverse" href="http://dbpedia.org/resource/Additive_inverse"><small>dbr</small>:Additive_inverse</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Alfred_Pringsheim" href="http://dbpedia.org/resource/Alfred_Pringsheim"><small>dbr</small>:Alfred_Pringsheim</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Functions_and_mappings" href="http://dbpedia.org/resource/Category:Functions_and_mappings"><small>dbc</small>:Functions_and_mappings</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Exponentiation" href="http://dbpedia.org/resource/Exponentiation"><small>dbr</small>:Exponentiation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Flow_(mathematics)" href="http://dbpedia.org/resource/Flow_(mathematics)"><small>dbr</small>:Flow_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fractals" href="http://dbpedia.org/resource/Fractals"><small>dbr</small>:Fractals</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cayley's_theorem" href="http://dbpedia.org/resource/Cayley's_theorem"><small>dbr</small>:Cayley's_theorem</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hans_Heinrich_Bürmann" href="http://dbpedia.org/resource/Hans_Heinrich_Bürmann"><small>dbr</small>:Hans_Heinrich_Bürmann</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Isomorphism" href="http://dbpedia.org/resource/Isomorphism"><small>dbr</small>:Isomorphism</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Wolfram_Demonstrations_Project" href="http://dbpedia.org/resource/Wolfram_Demonstrations_Project"><small>dbr</small>:Wolfram_Demonstrations_Project</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Postfix_notation" href="http://dbpedia.org/resource/Postfix_notation"><small>dbr</small>:Postfix_notation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Random_variable" href="http://dbpedia.org/resource/Random_variable"><small>dbr</small>:Random_variable</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Regular_semigroup" href="http://dbpedia.org/resource/Regular_semigroup"><small>dbr</small>:Regular_semigroup</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Restriction_(mathematics)" href="http://dbpedia.org/resource/Restriction_(mathematics)"><small>dbr</small>:Restriction_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ring_(mathematics)" href="http://dbpedia.org/resource/Ring_(mathematics)"><small>dbr</small>:Ring_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Higher-order_function" href="http://dbpedia.org/resource/Higher-order_function"><small>dbr</small>:Higher-order_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Interval_(mathematics)" href="http://dbpedia.org/resource/Interval_(mathematics)"><small>dbr</small>:Interval_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Inverse_function" href="http://dbpedia.org/resource/Inverse_function"><small>dbr</small>:Inverse_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Iterated_function" href="http://dbpedia.org/resource/Iterated_function"><small>dbr</small>:Iterated_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/TeX" href="http://dbpedia.org/resource/TeX"><small>dbr</small>:TeX</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dynamical_systems" href="http://dbpedia.org/resource/Dynamical_systems"><small>dbr</small>:Dynamical_systems</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Binary_operations" href="http://dbpedia.org/resource/Category:Binary_operations"><small>dbc</small>:Binary_operations</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Chain_rule" href="http://dbpedia.org/resource/Chain_rule"><small>dbr</small>:Chain_rule</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Lambda_calculus" href="http://dbpedia.org/resource/Lambda_calculus"><small>dbr</small>:Lambda_calculus</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bijection" href="http://dbpedia.org/resource/Bijection"><small>dbr</small>:Bijection</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cobweb_plot" href="http://dbpedia.org/resource/Cobweb_plot"><small>dbr</small>:Cobweb_plot</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Codomain" href="http://dbpedia.org/resource/Codomain"><small>dbr</small>:Codomain</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Transformation_(function)" href="http://dbpedia.org/resource/Transformation_(function)"><small>dbr</small>:Transformation_(function)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Z_notation" href="http://dbpedia.org/resource/Z_notation"><small>dbr</small>:Z_notation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Group_theory" href="http://dbpedia.org/resource/Group_theory"><small>dbr</small>:Group_theory</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Infinite_compositions_of_analytic_functions" href="http://dbpedia.org/resource/Infinite_compositions_of_analytic_functions"><small>dbr</small>:Infinite_compositions_of_analytic_functions</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Natural_number" href="http://dbpedia.org/resource/Natural_number"><small>dbr</small>:Natural_number</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Associative" href="http://dbpedia.org/resource/Associative"><small>dbr</small>:Associative</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Operation_(mathematics)" href="http://dbpedia.org/resource/Operation_(mathematics)"><small>dbr</small>:Operation_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category_(mathematics)" href="http://dbpedia.org/resource/Category_(mathematics)"><small>dbr</small>:Category_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category_theory" href="http://dbpedia.org/resource/Category_theory"><small>dbr</small>:Category_theory</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Real_number" href="http://dbpedia.org/resource/Real_number"><small>dbr</small>:Real_number</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Medial_magma" href="http://dbpedia.org/resource/Medial_magma"><small>dbr</small>:Medial_magma</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Programming_language" href="http://dbpedia.org/resource/Programming_language"><small>dbr</small>:Programming_language</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symmetric_group" href="http://dbpedia.org/resource/Symmetric_group"><small>dbr</small>:Symmetric_group</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Existential_quantification" href="http://dbpedia.org/resource/Existential_quantification"><small>dbr</small>:Existential_quantification</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Higher_derivative" href="http://dbpedia.org/resource/Higher_derivative"><small>dbr</small>:Higher_derivative</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Subset" href="http://dbpedia.org/resource/Subset"><small>dbr</small>:Subset</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Prefix_notation" href="http://dbpedia.org/resource/Prefix_notation"><small>dbr</small>:Prefix_notation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Transformation_group" href="http://dbpedia.org/resource/Transformation_group"><small>dbr</small>:Transformation_group</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Full_transformation_semigroup" href="http://dbpedia.org/resource/Full_transformation_semigroup"><small>dbr</small>:Full_transformation_semigroup</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Functional_relation" href="http://dbpedia.org/resource/Functional_relation"><small>dbr</small>:Functional_relation</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/John_Frederick_William_Herschel" href="http://dbpedia.org/resource/John_Frederick_William_Herschel"><small>dbr</small>:John_Frederick_William_Herschel</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Onto_function" href="http://dbpedia.org/resource/Onto_function"><small>dbr</small>:Onto_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Group_generator" href="http://dbpedia.org/resource/Group_generator"><small>dbr</small>:Group_generator</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Relation_composition" href="http://dbpedia.org/resource/Relation_composition"><small>dbr</small>:Relation_composition</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Product_function" href="http://dbpedia.org/resource/Product_function"><small>dbr</small>:Product_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Projection_function" href="http://dbpedia.org/resource/Projection_function"><small>dbr</small>:Projection_function</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Wagner–Preston_theorem" href="http://dbpedia.org/resource/Wagner–Preston_theorem"><small>dbr</small>:Wagner–Preston_theorem</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/File:Absolute_value_composition.svg" href="http://dbpedia.org/resource/File:Absolute_value_composition.svg"><small>dbr</small>:File:Absolute_value_composition.svg</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/File:Academ_Example_of_similarity_with_ratio_square_root_of_2.svg" href="http://dbpedia.org/resource/File:Academ_Example_of_similarity_with_ratio_square_root_of_2.svg"><small>dbr</small>:File:Academ_Example_of_similarity_with_ratio_square_root_of_2.svg</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/File:Example_for_a_composition_of_two_functions.svg" href="http://dbpedia.org/resource/File:Example_for_a_composition_of_two_functions.svg"><small>dbr</small>:File:Example_for_a_composition_of_two_functions.svg</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/cs1Dates"><small>dbp:</small>cs1Dates</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:cs1Dates" lang="en" >y</span><small> (en)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/date"><small>dbp:</small>date</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:date" lang="en" >May 2019</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/em"><small>dbp:</small>em</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:em" datatype="xsd:double" >1.500000</span><small> (xsd:double)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/group"><small>dbp:</small>group</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:group" lang="en" >"nb"</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/id"><small>dbp:</small>id</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:id" lang="en" >p/c024260</span><small> (en)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/title"><small>dbp:</small>title</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbp:title" lang="en" >Composite function</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/wikiPageUsesTemplate"><small>dbp:</small>wikiPageUsesTemplate</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Springer" href="http://dbpedia.org/resource/Template:Springer"><small>dbt</small>:Springer</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:!" href="http://dbpedia.org/resource/Template:!"><small>dbt</small>:!</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:About" href="http://dbpedia.org/resource/Template:About"><small>dbt</small>:About</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Block_indent" href="http://dbpedia.org/resource/Template:Block_indent"><small>dbt</small>:Block_indent</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Cn" href="http://dbpedia.org/resource/Template:Cn"><small>dbt</small>:Cn</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:I_sup" href="http://dbpedia.org/resource/Template:I_sup"><small>dbt</small>:I_sup</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Main" href="http://dbpedia.org/resource/Template:Main"><small>dbt</small>:Main</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Math" href="http://dbpedia.org/resource/Template:Math"><small>dbt</small>:Math</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Mvar" href="http://dbpedia.org/resource/Template:Mvar"><small>dbt</small>:Mvar</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Redirect-distinguish" href="http://dbpedia.org/resource/Template:Redirect-distinguish"><small>dbt</small>:Redirect-distinguish</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Reflist" href="http://dbpedia.org/resource/Template:Reflist"><small>dbt</small>:Reflist</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Short_description" href="http://dbpedia.org/resource/Template:Short_description"><small>dbt</small>:Short_description</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Unichar" href="http://dbpedia.org/resource/Template:Unichar"><small>dbt</small>:Unichar</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Use_dmy_dates" href="http://dbpedia.org/resource/Template:Use_dmy_dates"><small>dbt</small>:Use_dmy_dates</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Functions" href="http://dbpedia.org/resource/Template:Functions"><small>dbt</small>:Functions</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Abs" href="http://dbpedia.org/resource/Template:Abs"><small>dbt</small>:Abs</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Void" href="http://dbpedia.org/resource/Template:Void"><small>dbt</small>:Void</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://purl.org/dc/terms/subject"><small>dct:</small>subject</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dct:subject" resource="http://dbpedia.org/resource/Category:Basic_concepts_in_set_theory" href="http://dbpedia.org/resource/Category:Basic_concepts_in_set_theory"><small>dbc</small>:Basic_concepts_in_set_theory</a></span></li> <li><span class="literal"><a class="uri" rel="dct:subject" resource="http://dbpedia.org/resource/Category:Functions_and_mappings" href="http://dbpedia.org/resource/Category:Functions_and_mappings"><small>dbc</small>:Functions_and_mappings</a></span></li> <li><span class="literal"><a class="uri" rel="dct:subject" resource="http://dbpedia.org/resource/Category:Binary_operations" href="http://dbpedia.org/resource/Category:Binary_operations"><small>dbc</small>:Binary_operations</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://purl.org/linguistics/gold/hypernym"><small>gold:</small>hypernym</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="gold:hypernym" resource="http://dbpedia.org/resource/Application" prefix="gold: http://purl.org/linguistics/gold/" href="http://dbpedia.org/resource/Application"><small>dbr</small>:Application</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"><small>rdf:</small>type</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://www.w3.org/2002/07/owl#Thing" href="http://www.w3.org/2002/07/owl#Thing"><small>owl</small>:Thing</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/ontology/Software" href="http://dbpedia.org/ontology/Software"><small>dbo</small>:Software</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/WikicatBasicConceptsInSetTheory" href="http://dbpedia.org/class/yago/WikicatBasicConceptsInSetTheory"><small>yago</small>:WikicatBasicConceptsInSetTheory</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Abstraction100002137" href="http://dbpedia.org/class/yago/Abstraction100002137"><small>yago</small>:Abstraction100002137</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Cognition100023271" href="http://dbpedia.org/class/yago/Cognition100023271"><small>yago</small>:Cognition100023271</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Concept105835747" href="http://dbpedia.org/class/yago/Concept105835747"><small>yago</small>:Concept105835747</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Content105809192" href="http://dbpedia.org/class/yago/Content105809192"><small>yago</small>:Content105809192</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Function113783816" href="http://dbpedia.org/class/yago/Function113783816"><small>yago</small>:Function113783816</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Idea105833840" href="http://dbpedia.org/class/yago/Idea105833840"><small>yago</small>:Idea105833840</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/MathematicalRelation113783581" href="http://dbpedia.org/class/yago/MathematicalRelation113783581"><small>yago</small>:MathematicalRelation113783581</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/PsychologicalFeature100023100" href="http://dbpedia.org/class/yago/PsychologicalFeature100023100"><small>yago</small>:PsychologicalFeature100023100</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Relation100031921" href="http://dbpedia.org/class/yago/Relation100031921"><small>yago</small>:Relation100031921</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/WikicatFunctionsAndMappings" href="http://dbpedia.org/class/yago/WikicatFunctionsAndMappings"><small>yago</small>:WikicatFunctionsAndMappings</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/WikicatHigher-orderFunctions" href="http://dbpedia.org/class/yago/WikicatHigher-orderFunctions"><small>yago</small>:WikicatHigher-orderFunctions</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/WikicatElementarySpecialFunctions" href="http://dbpedia.org/class/yago/WikicatElementarySpecialFunctions"><small>yago</small>:WikicatElementarySpecialFunctions</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#comment"><small>rdfs:</small>comment</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ar" >في الرياضيات, تركيب دالتين (بالإنجليزية: Function composition) هو إخضاع نتيجة الدالة الأولى للدالة الثانية. أي أنه بالنسبة للدالتين f: X → Y و g: Y → Z, فإن تركيبهما هو حساب قيمة g ليس عندما يكون مدخلها هو x، بل عندما يكون مدخلها هو (f(x.ويعد موضوع تركيب الدوال مدخلا هاما في دراسة حساب التغيرات.</span><small> (ar)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="el" >Η σύνθεση συνάρτησης είναι πράξη μαθηματικών συναρτήσεων και συμβολίζεται με . Στη σύνθεση συναρτήσεων η ανεξάρτητη μεταβλητή x συνδέεται με την εξαρτημένη μεταβλητή y μέσω μίας ενδιάμεσης συνάρτησης. Σύνθεση συνάρτησης της f(x) (με πεδίο ορισμού Α) με την g(x) (με πεδίο ορισμού Β) είναι μία συνάρτηση που έχει τιμή: και πεδίο ορισμού:</span><small> (el)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="eo" >En matematiko, komponita funkcio, formita kiel la komponaĵo de unu funkcio sur alia, prezentas la aplikon de la antaŭa al la rezulto de la apliko de la lasta al la argumento de la komponaĵo. La funkcioj f: X → Y kaj g: Y → Z povas esti komponitaj per unue aplikado f al argumento x kaj tiam aplikado g al la rezulto.Tial oni ricevas funkcion g o f: X → Z difinitan per (g o f)(x) = g(f(x)) por ĉiuj x en X. La notacio g o f estas legata kiel "g cirklo f" aŭ "g post f" aŭ "g komponita kun f". La operacio o en tia kunteksto nomiĝas funkcia komponado.</span><small> (eo)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="eu" >Aljebra abstraktuan, funtzio konposatua bi funtzioren konposaketaren edo jarraituaren emaitza den funtzioa da. Funtzio konposatu baten bera eratzerakoan aplikatu den lehen funtzioaren iturburu-multzoa da eta irudi-multzoa aldiz, aplikatu den azken funtzioaren irudi-multzoa. Funtzio konposatuak, oro har, ez dira trukakorrak eta propietate jakin batzuk betetzen dituzte. Funtzio konposatuaren hura eratzeko erabili diren funtzio-moten araberakoa izango da.</span><small> (eu)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="es" >En álgebra abstracta, una función compuesta es una función formada por la composición o aplicación sucesiva de otras dos funciones. Para ello, se aplica sobre el argumento la función más próxima al mismo, y al resultado del cálculo anterior se le aplica finalmente la función restante. Usando la notación matemática, la función compuesta g ∘ f: X → Z expresa que (g ∘ f)(x) = g[f(x)] para todo x perteneciente a X. Se lee "f compuesta con g", "f en g", "f entonces g", "g de f" o "g círculo f".F°G= F[g(x)] queriendo decir que x pertenece a dominio de g y g(x) pertenece a F.</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="fr" >La composition de fonctions (ou composition d’applications) est, en mathématiques, un procédé qui consiste, à partir de deux fonctions, à en construire une nouvelle. Pour cela, on utilise les images de la première fonction comme arguments pour la seconde (à condition que cela ait un sens). On parle alors de fonction composée (ou d'application composée).</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ko" >수학에서 함수의 합성(函數의合成, 영어: function composition) 또는 합성 함수(合成函數, 영어: composite function)는 한 함수의 공역이 다른 함수의 정의역과 일치하는 경우, 두 함수를 이어 하나의 함수로 만드는 연산이다.</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="it" >In matematica, la composizione di funzioni è l'applicazione di una funzione al risultato di un'altra funzione. Più precisamente, una funzione tra due insiemi e associa ogni elemento di a uno di : in presenza di un'altra funzione che associa ogni elemento di a un elemento di un altro insieme , si definisce la composizione di e come la funzione che associa ogni elemento di a uno di usando prima e poi . Il simbolo Unicode dell'operatore è ∘ (U+2218).</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ja" >数学において写像あるいは函数の合成(ごうせい、英: composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t) = c(h(t)) が時刻 t における飛行機周辺の酸素濃度を記述するものとなる。</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="pl" >Złożenie funkcji, superpozycja funkcji – podstawowa operacja w matematyce, polegająca na tym, że efekt kolejnego stosowania dwóch (lub więcej) funkcji (ze zbioru w zbiór), a także przekształceń, odwzorowań, transformacji, relacji dwuargumentowych, traktuje się jako wynik stosowania jednej funkcji (lub relacji) złożonej.</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="sv" >En sammansatt funktion är inom matematiken en funktion som kan bildas genom att sätta samman två funktioner. Tecknet ∘, en mittplacerad ring som uttalas "boll", används för att ange sammansatt funktion. De flesta funktioner som förekommer kan beskrivas som sammansättningar av olika funktioner.</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ru" >Компози́ция (суперпози́ция) фу́нкций — это применение одной функции к результату другой. Композиция функций и обычно обозначается , что обозначает применение функции к результату функции , то есть .</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="pt" >Em matemática, uma função composta é criada aplicando uma função à saída, ou resultado, de uma outra função, sucessivamente. Como uma função deve possuir um domínio e contradomínio bem definidos e estamos falando de aplicar funções mais de uma vez, devemos ser precisos com relação a como estamos aplicando estas funções.</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="zh" >复合函数(英語:Function composition),又稱作合成函數,在数学中是指逐点地把一个函数作用于另一个函数的结果,所得到的第三个函数。例如,函数 f : X → Y 和 g : Y → Z 可以复合,得到从 X 中的 x 映射到 Z 中 g(f(x)) 的函数。直观来说,如果 z 是 y 的函数,y 是 x 的函数,那么 z 是 x 的函数。得到的复合函数记作 g ∘ f : X → Z,定义为对 X 中的所有 x,(g ∘ f )(x) = g(f(x))。 直观地说,复合两个函数是把两个函数链接在一起的过程,内函数的输出就是外函数的输入。 函数的复合是关系复合的一个特例,因此复合关系的所有性质也适用于函数的复合。 复合函数还有一些其他性质。</span><small> (zh)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="uk" >Компози́ція (суперпозиція) фу́нкцій (відображень) в математиці — функція, побудована з двох функцій таким чином, що результат першої функції є аргументом другої. Композиція функцій : та : будується так: аргумент з застосовується до першої функції , а її результат з застосовується як аргумент до другої функції g.</span><small> (uk)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="ca" >En matemàtiques, la funció composició és l'aplicació d'una funció al resultat d'una altra. Per exemple, les funcions f: X → Y i g: Y → Z es poden compondre aplicant primer f a un argument x i llavors aplicant g al resultat.Així s'obté una funció g∘f: X → Z definida com (g∘f)(x) = g(f(x)) per a tot x de X. La notació g∘f segons alguns autors es llegeix com "f composta amb g", i segons altres autors com "composició de g amb f" En aquest aspecte ha aparegut alguna .</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="de" >Der Begriff Komposition bedeutet in der Mathematik meist die Hintereinanderschaltung von Funktionen, auch als Verkettung, Verknüpfung oder Hintereinanderausführung bezeichnet. Sie wird meist mit Hilfe des Verkettungszeichens notiert. Die Darstellung einer Funktion als Verkettung zweier oder mehrerer, im Allgemeinen einfacherer Funktionen ist zum Beispiel in der Differential- und Integralrechnung wichtig, wenn es darum geht, Ableitungen mit der Kettenregel oder Integrale mit der Substitutionsregel zu berechnen.</span><small> (de)</small></span></li> <li><span class="literal"><span property="rdfs:comment" lang="en" >In mathematics, function composition is an operation ∘ that takes two functions f and g, and produces a function h = g ∘ f such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : X → Y and g : Y → Z are composed to yield a function that maps x in domain X to g(f(x)) in codomain Z.Intuitively, if z is a function of y, and y is a function of x, then z is a function of x. The resulting composite function is denoted g ∘ f : X → Z, defined by (g ∘ f )(x) = g(f(x)) for all x in X.</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="in" >Dalam matematika, komposisi fungsi adalah operasi yang mengambil dua fungsi dan dan menghasilkan fungsi sehingga . Fungsi pada operasi ini ke dalam hasil penerapan fungsi ke . Artinya, fungsi dan dikomposisikan untuk menghasilkan sebuah fungsi yang memetakan di ke di . Secara intuitif, jika adalah fungsi , dan adalah fungsi , maka adalah fungsi . Hasil fungsi komposisi yang dinyatakan sebagai , didefinisikan sebagai untuk semua dalam .</span><small> (in)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:comment" lang="nl" >In de wiskunde is functiecompositie, of samenstelling, de constructie van een nieuwe functie uit twee of meer functies, door het na elkaar uitvoeren daarvan. Een tweede of volgende functie wordt toegepast op het resultaat van de voorgaande functie. Het resultaat van de samenstelling van de functies en noemt men een samengestelde functie. genoteerd als . Er geldt: @.</span><small> (nl)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#label"><small>rdfs:</small>label</a> </td><td class="col-10 text-break"><ul> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ar" >تركيب الدوال</span><small> (ar)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ca" >Composició de funcions</span><small> (ca)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="cs" >Skládání funkcí</span><small> (cs)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="de" >Komposition (Mathematik)</span><small> (de)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="el" >Σύνθεση συνάρτησης</span><small> (el)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="eo" >Funkcia komponaĵo</span><small> (eo)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="es" >Función compuesta</span><small> (es)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="eu" >Funtzioen konposaketa</span><small> (eu)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="in" >Komposisi fungsi</span><small> (in)</small></span></li> <li><span class="literal"><span property="rdfs:label" lang="en" >Function composition</span><small> (en)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="fr" >Composition de fonctions</span><small> (fr)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="it" >Composizione di funzioni</span><small> (it)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ja" >写像の合成</span><small> (ja)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ko" >함수의 합성</span><small> (ko)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="pl" >Złożenie funkcji</span><small> (pl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="nl" >Functiecompositie</span><small> (nl)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="ru" >Композиция функций</span><small> (ru)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="pt" >Composição de funções</span><small> (pt)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="sv" >Sammansatt funktion</span><small> (sv)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="uk" >Композиція функцій</span><small> (uk)</small></span></li> <li style="display:none;"><span class="literal"><span property="rdfs:label" lang="zh" >复合函数</span><small> (zh)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2002/07/owl#differentFrom"><small>owl:</small>differentFrom</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="owl:differentFrom" resource="http://dbpedia.org/resource/Operator_assistance" href="http://dbpedia.org/resource/Operator_assistance"><small>dbr</small>:Operator_assistance</a></span></li> <li><span class="literal"><a class="uri" rel="owl:differentFrom" resource="http://dbpedia.org/resource/Operator_ring" href="http://dbpedia.org/resource/Operator_ring"><small>dbr</small>:Operator_ring</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2002/07/owl#sameAs"><small>owl:</small>sameAs</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://rdf.freebase.com/ns/m.01bvfb" href="http://rdf.freebase.com/ns/m.01bvfb"><small>freebase</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://rdf.freebase.com/ns/m.07yxdr" href="http://rdf.freebase.com/ns/m.07yxdr"><small>freebase</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://yago-knowledge.org/resource/Function_composition" href="http://yago-knowledge.org/resource/Function_composition"><small>yago-res</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://www.wikidata.org/entity/Q244761" href="http://www.wikidata.org/entity/Q244761"><small>wikidata</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://am.dbpedia.org/resource/ቅብብል" href="http://am.dbpedia.org/resource/ቅብብል">http://am.dbpedia.org/resource/ቅብብል</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ar.dbpedia.org/resource/تركيب_الدوال" href="http://ar.dbpedia.org/resource/تركيب_الدوال"><small>dbpedia-ar</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ast.dbpedia.org/resource/Función_compuesta" href="http://ast.dbpedia.org/resource/Función_compuesta">http://ast.dbpedia.org/resource/Función_compuesta</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://az.dbpedia.org/resource/Mürəkkəb_funksiya" href="http://az.dbpedia.org/resource/Mürəkkəb_funksiya"><small>dbpedia-az</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ba.dbpedia.org/resource/Функциялар_композицияһы" href="http://ba.dbpedia.org/resource/Функциялар_композицияһы">http://ba.dbpedia.org/resource/Функциялар_композицияһы</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://be.dbpedia.org/resource/Кампазіцыя_функцый" href="http://be.dbpedia.org/resource/Кампазіцыя_функцый"><small>dbpedia-be</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://bs.dbpedia.org/resource/Kompozicija_funkcija" href="http://bs.dbpedia.org/resource/Kompozicija_funkcija">http://bs.dbpedia.org/resource/Kompozicija_funkcija</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ca.dbpedia.org/resource/Composició_de_funcions" href="http://ca.dbpedia.org/resource/Composició_de_funcions"><small>dbpedia-ca</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://cs.dbpedia.org/resource/Skládání_funkcí" href="http://cs.dbpedia.org/resource/Skládání_funkcí"><small>dbpedia-cs</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://da.dbpedia.org/resource/Sammensat_funktion" href="http://da.dbpedia.org/resource/Sammensat_funktion"><small>dbpedia-da</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://de.dbpedia.org/resource/Komposition_(Mathematik)" href="http://de.dbpedia.org/resource/Komposition_(Mathematik)"><small>dbpedia-de</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://el.dbpedia.org/resource/Σύνθεση_συνάρτησης" href="http://el.dbpedia.org/resource/Σύνθεση_συνάρτησης"><small>dbpedia-el</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://eo.dbpedia.org/resource/Funkcia_komponaĵo" href="http://eo.dbpedia.org/resource/Funkcia_komponaĵo"><small>dbpedia-eo</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://es.dbpedia.org/resource/Función_compuesta" href="http://es.dbpedia.org/resource/Función_compuesta"><small>dbpedia-es</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://et.dbpedia.org/resource/Liitfunktsioon" href="http://et.dbpedia.org/resource/Liitfunktsioon"><small>dbpedia-et</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://eu.dbpedia.org/resource/Funtzioen_konposaketa" href="http://eu.dbpedia.org/resource/Funtzioen_konposaketa"><small>dbpedia-eu</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fa.dbpedia.org/resource/ترکیب_تابع" href="http://fa.dbpedia.org/resource/ترکیب_تابع"><small>dbpedia-fa</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fi.dbpedia.org/resource/Yhdistetty_funktio" href="http://fi.dbpedia.org/resource/Yhdistetty_funktio"><small>dbpedia-fi</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://fr.dbpedia.org/resource/Composition_de_fonctions" href="http://fr.dbpedia.org/resource/Composition_de_fonctions"><small>dbpedia-fr</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://gl.dbpedia.org/resource/Composición_de_funcións" href="http://gl.dbpedia.org/resource/Composición_de_funcións"><small>dbpedia-gl</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://he.dbpedia.org/resource/הרכבת_פונקציות" href="http://he.dbpedia.org/resource/הרכבת_פונקציות"><small>dbpedia-he</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://hi.dbpedia.org/resource/फलनों_का_संयुक्तीकरण" href="http://hi.dbpedia.org/resource/फलनों_का_संयुक्तीकरण">http://hi.dbpedia.org/resource/फलनों_का_संयुक्तीकरण</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://hr.dbpedia.org/resource/Kompozicija_funkcija" href="http://hr.dbpedia.org/resource/Kompozicija_funkcija"><small>dbpedia-hr</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://hy.dbpedia.org/resource/Ֆունկցիայի_համադրույթ" href="http://hy.dbpedia.org/resource/Ֆունկցիայի_համադրույթ">http://hy.dbpedia.org/resource/Ֆունկցիայի_համադրույթ</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://id.dbpedia.org/resource/Komposisi_fungsi" href="http://id.dbpedia.org/resource/Komposisi_fungsi"><small>dbpedia-id</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://is.dbpedia.org/resource/Samsetning_falla" href="http://is.dbpedia.org/resource/Samsetning_falla"><small>dbpedia-is</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://it.dbpedia.org/resource/Composizione_di_funzioni" href="http://it.dbpedia.org/resource/Composizione_di_funzioni"><small>dbpedia-it</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ja.dbpedia.org/resource/写像の合成" href="http://ja.dbpedia.org/resource/写像の合成"><small>dbpedia-ja</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ko.dbpedia.org/resource/함수의_합성" href="http://ko.dbpedia.org/resource/함수의_합성"><small>dbpedia-ko</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://la.dbpedia.org/resource/Compositio_(mathematica)" href="http://la.dbpedia.org/resource/Compositio_(mathematica)"><small>dbpedia-la</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://nl.dbpedia.org/resource/Functiecompositie" href="http://nl.dbpedia.org/resource/Functiecompositie"><small>dbpedia-nl</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://pl.dbpedia.org/resource/Złożenie_funkcji" href="http://pl.dbpedia.org/resource/Złożenie_funkcji"><small>dbpedia-pl</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://pt.dbpedia.org/resource/Composição_de_funções" href="http://pt.dbpedia.org/resource/Composição_de_funções"><small>dbpedia-pt</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ru.dbpedia.org/resource/Композиция_функций" href="http://ru.dbpedia.org/resource/Композиция_функций"><small>dbpedia-ru</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://simple.dbpedia.org/resource/Function_composition" href="http://simple.dbpedia.org/resource/Function_composition"><small>dbpedia-simple</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sk.dbpedia.org/resource/Skladanie_funkcií" href="http://sk.dbpedia.org/resource/Skladanie_funkcií"><small>dbpedia-sk</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sl.dbpedia.org/resource/Kompozitum_funkcij" href="http://sl.dbpedia.org/resource/Kompozitum_funkcij"><small>dbpedia-sl</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sr.dbpedia.org/resource/Сложена_функција" href="http://sr.dbpedia.org/resource/Сложена_функција"><small>dbpedia-sr</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://sv.dbpedia.org/resource/Sammansatt_funktion" href="http://sv.dbpedia.org/resource/Sammansatt_funktion"><small>dbpedia-sv</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://ta.dbpedia.org/resource/சார்புகளின்_தொகுப்பு" href="http://ta.dbpedia.org/resource/சார்புகளின்_தொகுப்பு">http://ta.dbpedia.org/resource/சார்புகளின்_தொகுப்பு</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://tl.dbpedia.org/resource/Komposisyong_pangbunin" href="http://tl.dbpedia.org/resource/Komposisyong_pangbunin">http://tl.dbpedia.org/resource/Komposisyong_pangbunin</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://tr.dbpedia.org/resource/Bileşke_fonksiyon" href="http://tr.dbpedia.org/resource/Bileşke_fonksiyon"><small>dbpedia-tr</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://uk.dbpedia.org/resource/Композиція_функцій" href="http://uk.dbpedia.org/resource/Композиція_функцій"><small>dbpedia-uk</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://vi.dbpedia.org/resource/Hàm_hợp" href="http://vi.dbpedia.org/resource/Hàm_hợp"><small>dbpedia-vi</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://zh.dbpedia.org/resource/复合函数" href="http://zh.dbpedia.org/resource/复合函数"><small>dbpedia-zh</small>:Function composition</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="https://global.dbpedia.org/id/2Jt2K" href="https://global.dbpedia.org/id/2Jt2K">https://global.dbpedia.org/id/2Jt2K</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/ns/prov#wasDerivedFrom"><small>prov:</small>wasDerivedFrom</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="prov:wasDerivedFrom" resource="http://en.wikipedia.org/wiki/Function_composition?oldid=1110226704&ns=0" href="http://en.wikipedia.org/wiki/Function_composition?oldid=1110226704&ns=0"><small>wikipedia-en</small>:Function_composition?oldid=1110226704&ns=0</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/depiction"><small>foaf:</small>depiction</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Example_for_a_composition_of_two_functions.svg" href="http://commons.wikimedia.org/wiki/Special:FilePath/Example_for_a_composition_of_two_functions.svg"><small>wiki-commons</small>:Special:FilePath/Example_for_a_composition_of_two_functions.svg</a></span></li> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Absolute_value_composition.svg" href="http://commons.wikimedia.org/wiki/Special:FilePath/Absolute_value_composition.svg"><small>wiki-commons</small>:Special:FilePath/Absolute_value_composition.svg</a></span></li> <li><span class="literal"><a class="uri" rel="foaf:depiction" resource="http://commons.wikimedia.org/wiki/Special:FilePath/Academ_Example_of_similarity_with_ratio_square_root_of_2.svg" href="http://commons.wikimedia.org/wiki/Special:FilePath/Academ_Example_of_similarity_with_ratio_square_root_of_2.svg"><small>wiki-commons</small>:Special:FilePath/Academ_Example_of_similarity_with_ratio_square_root_of_2.svg</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/isPrimaryTopicOf"><small>foaf:</small>isPrimaryTopicOf</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:isPrimaryTopicOf" resource="http://en.wikipedia.org/wiki/Function_composition" href="http://en.wikipedia.org/wiki/Function_composition"><small>wikipedia-en</small>:Function_composition</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageDisambiguates"><small>dbo:</small>wikiPageDisambiguates</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageDisambiguates" resource="http://dbpedia.org/resource/O_(disambiguation)" href="http://dbpedia.org/resource/O_(disambiguation)"><small>dbr</small>:O_(disambiguation)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageDisambiguates" resource="http://dbpedia.org/resource/Composition" href="http://dbpedia.org/resource/Composition"><small>dbr</small>:Composition</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageRedirects"><small>dbo:</small>wikiPageRedirects</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/∘" href="http://dbpedia.org/resource/∘"><small>dbr</small>:∘</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Functional_power" href="http://dbpedia.org/resource/Functional_power"><small>dbr</small>:Functional_power</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Ring_operator" href="http://dbpedia.org/resource/Ring_operator"><small>dbr</small>:Ring_operator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Functional_composition" href="http://dbpedia.org/resource/Functional_composition"><small>dbr</small>:Functional_composition</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Generalized_composite" href="http://dbpedia.org/resource/Generalized_composite"><small>dbr</small>:Generalized_composite</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Generalized_composition" href="http://dbpedia.org/resource/Generalized_composition"><small>dbr</small>:Generalized_composition</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Compose_(mathematics)" href="http://dbpedia.org/resource/Compose_(mathematics)"><small>dbr</small>:Compose_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Composite_Function" href="http://dbpedia.org/resource/Composite_Function"><small>dbr</small>:Composite_Function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Composite_function" href="http://dbpedia.org/resource/Composite_function"><small>dbr</small>:Composite_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Composition_(functions)" href="http://dbpedia.org/resource/Composition_(functions)"><small>dbr</small>:Composition_(functions)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Composition_function" href="http://dbpedia.org/resource/Composition_function"><small>dbr</small>:Composition_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Composition_of_functions" href="http://dbpedia.org/resource/Composition_of_functions"><small>dbr</small>:Composition_of_functions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Composition_of_maps" href="http://dbpedia.org/resource/Composition_of_maps"><small>dbr</small>:Composition_of_maps</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Compound_functions" href="http://dbpedia.org/resource/Compound_functions"><small>dbr</small>:Compound_functions</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cartan–Dieudonné_theorem" href="http://dbpedia.org/resource/Cartan–Dieudonné_theorem"><small>dbr</small>:Cartan–Dieudonné_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cartesian_coordinate_system" href="http://dbpedia.org/resource/Cartesian_coordinate_system"><small>dbr</small>:Cartesian_coordinate_system</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Beckman–Quarles_theorem" href="http://dbpedia.org/resource/Beckman–Quarles_theorem"><small>dbr</small>:Beckman–Quarles_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Prime_ideal" href="http://dbpedia.org/resource/Prime_ideal"><small>dbr</small>:Prime_ideal</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Proofs_of_Fermat's_little_theorem" href="http://dbpedia.org/resource/Proofs_of_Fermat's_little_theorem"><small>dbr</small>:Proofs_of_Fermat's_little_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pushforward_(differential)" href="http://dbpedia.org/resource/Pushforward_(differential)"><small>dbr</small>:Pushforward_(differential)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quaternions_and_spatial_rotation" href="http://dbpedia.org/resource/Quaternions_and_spatial_rotation"><small>dbr</small>:Quaternions_and_spatial_rotation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Root_of_unity" href="http://dbpedia.org/resource/Root_of_unity"><small>dbr</small>:Root_of_unity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rotation_formalisms_in_three_dimensions" href="http://dbpedia.org/resource/Rotation_formalisms_in_three_dimensions"><small>dbr</small>:Rotation_formalisms_in_three_dimensions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rotation_matrix" href="http://dbpedia.org/resource/Rotation_matrix"><small>dbr</small>:Rotation_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Schuette–Nesbitt_formula" href="http://dbpedia.org/resource/Schuette–Nesbitt_formula"><small>dbr</small>:Schuette–Nesbitt_formula</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Elementary_function" href="http://dbpedia.org/resource/Elementary_function"><small>dbr</small>:Elementary_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Endomorphism_ring" href="http://dbpedia.org/resource/Endomorphism_ring"><small>dbr</small>:Endomorphism_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_XML_and_HTML_character_entity_references" href="http://dbpedia.org/resource/List_of_XML_and_HTML_character_entity_references"><small>dbr</small>:List_of_XML_and_HTML_character_entity_references</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Module_(mathematics)" href="http://dbpedia.org/resource/Module_(mathematics)"><small>dbr</small>:Module_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/One-dimensional_symmetry_group" href="http://dbpedia.org/resource/One-dimensional_symmetry_group"><small>dbr</small>:One-dimensional_symmetry_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Representation_theory" href="http://dbpedia.org/resource/Representation_theory"><small>dbr</small>:Representation_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bijection,_injection_and_surjection" href="http://dbpedia.org/resource/Bijection,_injection_and_surjection"><small>dbr</small>:Bijection,_injection_and_surjection</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bounded_variation" href="http://dbpedia.org/resource/Bounded_variation"><small>dbr</small>:Bounded_variation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bra–ket_notation" href="http://dbpedia.org/resource/Bra–ket_notation"><small>dbr</small>:Bra–ket_notation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Derivative" href="http://dbpedia.org/resource/Derivative"><small>dbr</small>:Derivative</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Deterministic_finite_automaton" href="http://dbpedia.org/resource/Deterministic_finite_automaton"><small>dbr</small>:Deterministic_finite_automaton</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Antihomomorphism" href="http://dbpedia.org/resource/Antihomomorphism"><small>dbr</small>:Antihomomorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Homography" href="http://dbpedia.org/resource/Homography"><small>dbr</small>:Homography</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_mathematical_symbols_by_subject" href="http://dbpedia.org/resource/List_of_mathematical_symbols_by_subject"><small>dbr</small>:List_of_mathematical_symbols_by_subject</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_set_identities_and_relations" href="http://dbpedia.org/resource/List_of_set_identities_and_relations"><small>dbr</small>:List_of_set_identities_and_relations</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pati–Salam_model" href="http://dbpedia.org/resource/Pati–Salam_model"><small>dbr</small>:Pati–Salam_model</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Permutation" href="http://dbpedia.org/resource/Permutation"><small>dbr</small>:Permutation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Riesz_representation_theorem" href="http://dbpedia.org/resource/Riesz_representation_theorem"><small>dbr</small>:Riesz_representation_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vector_space" href="http://dbpedia.org/resource/Vector_space"><small>dbr</small>:Vector_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vladimir_Arnold" href="http://dbpedia.org/resource/Vladimir_Arnold"><small>dbr</small>:Vladimir_Arnold</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/De_Rham_curve" href="http://dbpedia.org/resource/De_Rham_curve"><small>dbr</small>:De_Rham_curve</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/∘" href="http://dbpedia.org/resource/∘"><small>dbr</small>:∘</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Double_groupoid" href="http://dbpedia.org/resource/Double_groupoid"><small>dbr</small>:Double_groupoid</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dyadic_rational" href="http://dbpedia.org/resource/Dyadic_rational"><small>dbr</small>:Dyadic_rational</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Infinite-dimensional_holomorphy" href="http://dbpedia.org/resource/Infinite-dimensional_holomorphy"><small>dbr</small>:Infinite-dimensional_holomorphy</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Integral_curve" href="http://dbpedia.org/resource/Integral_curve"><small>dbr</small>:Integral_curve</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Inverse_consistency" href="http://dbpedia.org/resource/Inverse_consistency"><small>dbr</small>:Inverse_consistency</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Inverse_function_rule" href="http://dbpedia.org/resource/Inverse_function_rule"><small>dbr</small>:Inverse_function_rule</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Kähler_differential" href="http://dbpedia.org/resource/Kähler_differential"><small>dbr</small>:Kähler_differential</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Operator_algebra" href="http://dbpedia.org/resource/Operator_algebra"><small>dbr</small>:Operator_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Semigroup_action" href="http://dbpedia.org/resource/Semigroup_action"><small>dbr</small>:Semigroup_action</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_programming_languages_by_type" href="http://dbpedia.org/resource/List_of_programming_languages_by_type"><small>dbr</small>:List_of_programming_languages_by_type</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Order_isomorphism" href="http://dbpedia.org/resource/Order_isomorphism"><small>dbr</small>:Order_isomorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symbolic_integration" href="http://dbpedia.org/resource/Symbolic_integration"><small>dbr</small>:Symbolic_integration</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Post's_lattice" href="http://dbpedia.org/resource/Post's_lattice"><small>dbr</small>:Post's_lattice</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Typographic_approximation" href="http://dbpedia.org/resource/Typographic_approximation"><small>dbr</small>:Typographic_approximation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Commutative_property" href="http://dbpedia.org/resource/Commutative_property"><small>dbr</small>:Commutative_property</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Compact-open_topology" href="http://dbpedia.org/resource/Compact-open_topology"><small>dbr</small>:Compact-open_topology</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Computable_function" href="http://dbpedia.org/resource/Computable_function"><small>dbr</small>:Computable_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Continuous_function" href="http://dbpedia.org/resource/Continuous_function"><small>dbr</small>:Continuous_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Correlation_(projective_geometry)" href="http://dbpedia.org/resource/Correlation_(projective_geometry)"><small>dbr</small>:Correlation_(projective_geometry)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Analytic_function" href="http://dbpedia.org/resource/Analytic_function"><small>dbr</small>:Analytic_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_(mathematics)" href="http://dbpedia.org/resource/Matrix_(mathematics)"><small>dbr</small>:Matrix_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_multiplication" href="http://dbpedia.org/resource/Matrix_multiplication"><small>dbr</small>:Matrix_multiplication</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Chemical_graph_generator" href="http://dbpedia.org/resource/Chemical_graph_generator"><small>dbr</small>:Chemical_graph_generator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Generating_function_transformation" href="http://dbpedia.org/resource/Generating_function_transformation"><small>dbr</small>:Generating_function_transformation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/O_(disambiguation)" href="http://dbpedia.org/resource/O_(disambiguation)"><small>dbr</small>:O_(disambiguation)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ornstein–Uhlenbeck_operator" href="http://dbpedia.org/resource/Ornstein–Uhlenbeck_operator"><small>dbr</small>:Ornstein–Uhlenbeck_operator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Residuated_mapping" href="http://dbpedia.org/resource/Residuated_mapping"><small>dbr</small>:Residuated_mapping</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Zero_element" href="http://dbpedia.org/resource/Zero_element"><small>dbr</small>:Zero_element</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pseudocompact_space" href="http://dbpedia.org/resource/Pseudocompact_space"><small>dbr</small>:Pseudocompact_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quotient_(universal_algebra)" href="http://dbpedia.org/resource/Quotient_(universal_algebra)"><small>dbr</small>:Quotient_(universal_algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Church–Turing_thesis" href="http://dbpedia.org/resource/Church–Turing_thesis"><small>dbr</small>:Church–Turing_thesis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Endomorphism" href="http://dbpedia.org/resource/Endomorphism"><small>dbr</small>:Endomorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Full_stop" href="http://dbpedia.org/resource/Full_stop"><small>dbr</small>:Full_stop</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Function_of_several_real_variables" href="http://dbpedia.org/resource/Function_of_several_real_variables"><small>dbr</small>:Function_of_several_real_variables</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Functional_power" href="http://dbpedia.org/resource/Functional_power"><small>dbr</small>:Functional_power</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Functional_square_root" href="http://dbpedia.org/resource/Functional_square_root"><small>dbr</small>:Functional_square_root</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Galilean_transformation" href="http://dbpedia.org/resource/Galilean_transformation"><small>dbr</small>:Galilean_transformation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Galois_connection" href="http://dbpedia.org/resource/Galois_connection"><small>dbr</small>:Galois_connection</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Generalized_continued_fraction" href="http://dbpedia.org/resource/Generalized_continued_fraction"><small>dbr</small>:Generalized_continued_fraction</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Givens_rotation" href="http://dbpedia.org/resource/Givens_rotation"><small>dbr</small>:Givens_rotation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_calculus" href="http://dbpedia.org/resource/Glossary_of_calculus"><small>dbr</small>:Glossary_of_calculus</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_engineering:_M–Z" href="http://dbpedia.org/resource/Glossary_of_engineering:_M–Z"><small>dbr</small>:Glossary_of_engineering:_M–Z</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_group_theory" href="http://dbpedia.org/resource/Glossary_of_group_theory"><small>dbr</small>:Glossary_of_group_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_mathematical_symbols" href="http://dbpedia.org/resource/Glossary_of_mathematical_symbols"><small>dbr</small>:Glossary_of_mathematical_symbols</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_ring_theory" href="http://dbpedia.org/resource/Glossary_of_ring_theory"><small>dbr</small>:Glossary_of_ring_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_set_theory" href="http://dbpedia.org/resource/Glossary_of_set_theory"><small>dbr</small>:Glossary_of_set_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gradient_theorem" href="http://dbpedia.org/resource/Gradient_theorem"><small>dbr</small>:Gradient_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Minkowski's_question-mark_function" href="http://dbpedia.org/resource/Minkowski's_question-mark_function"><small>dbr</small>:Minkowski's_question-mark_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Modular_group" href="http://dbpedia.org/resource/Modular_group"><small>dbr</small>:Modular_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Monad_(functional_programming)" href="http://dbpedia.org/resource/Monad_(functional_programming)"><small>dbr</small>:Monad_(functional_programming)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Monoid" href="http://dbpedia.org/resource/Monoid"><small>dbr</small>:Monoid</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Morphism" href="http://dbpedia.org/resource/Morphism"><small>dbr</small>:Morphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Möbius_transformation" href="http://dbpedia.org/resource/Möbius_transformation"><small>dbr</small>:Möbius_transformation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Concatenative_programming_language" href="http://dbpedia.org/resource/Concatenative_programming_language"><small>dbr</small>:Concatenative_programming_language</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Conformal_map" href="http://dbpedia.org/resource/Conformal_map"><small>dbr</small>:Conformal_map</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Constrained_optimization" href="http://dbpedia.org/resource/Constrained_optimization"><small>dbr</small>:Constrained_optimization</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Conway_chained_arrow_notation" href="http://dbpedia.org/resource/Conway_chained_arrow_notation"><small>dbr</small>:Conway_chained_arrow_notation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Corestriction" href="http://dbpedia.org/resource/Corestriction"><small>dbr</small>:Corestriction</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/The_Prisoner_of_Benda" href="http://dbpedia.org/resource/The_Prisoner_of_Benda"><small>dbr</small>:The_Prisoner_of_Benda</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Equinumerosity" href="http://dbpedia.org/resource/Equinumerosity"><small>dbr</small>:Equinumerosity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Equivalence_class" href="http://dbpedia.org/resource/Equivalence_class"><small>dbr</small>:Equivalence_class</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Order_embedding" href="http://dbpedia.org/resource/Order_embedding"><small>dbr</small>:Order_embedding</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pushforward_measure" href="http://dbpedia.org/resource/Pushforward_measure"><small>dbr</small>:Pushforward_measure</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basis_(universal_algebra)" href="http://dbpedia.org/resource/Basis_(universal_algebra)"><small>dbr</small>:Basis_(universal_algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Leibniz_integral_rule" href="http://dbpedia.org/resource/Leibniz_integral_rule"><small>dbr</small>:Leibniz_integral_rule</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_algebra" href="http://dbpedia.org/resource/Linear_algebra"><small>dbr</small>:Linear_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Logic_optimization" href="http://dbpedia.org/resource/Logic_optimization"><small>dbr</small>:Logic_optimization</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Caesar_cipher" href="http://dbpedia.org/resource/Caesar_cipher"><small>dbr</small>:Caesar_cipher</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Similarity_(geometry)" href="http://dbpedia.org/resource/Similarity_(geometry)"><small>dbr</small>:Similarity_(geometry)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Singular_value_decomposition" href="http://dbpedia.org/resource/Singular_value_decomposition"><small>dbr</small>:Singular_value_decomposition</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Subnet_(mathematics)" href="http://dbpedia.org/resource/Subnet_(mathematics)"><small>dbr</small>:Subnet_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Subscript_and_superscript" href="http://dbpedia.org/resource/Subscript_and_superscript"><small>dbr</small>:Subscript_and_superscript</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Collineation" href="http://dbpedia.org/resource/Collineation"><small>dbr</small>:Collineation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Composition_of_relations" href="http://dbpedia.org/resource/Composition_of_relations"><small>dbr</small>:Composition_of_relations</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Composition_operator" href="http://dbpedia.org/resource/Composition_operator"><small>dbr</small>:Composition_operator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Zero_divisor" href="http://dbpedia.org/resource/Zero_divisor"><small>dbr</small>:Zero_divisor</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fréchet_derivative" href="http://dbpedia.org/resource/Fréchet_derivative"><small>dbr</small>:Fréchet_derivative</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Function_application" href="http://dbpedia.org/resource/Function_application"><small>dbr</small>:Function_application</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Function_composition_(computer_science)" href="http://dbpedia.org/resource/Function_composition_(computer_science)"><small>dbr</small>:Function_composition_(computer_science)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Function_model" href="http://dbpedia.org/resource/Function_model"><small>dbr</small>:Function_model</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Functional_decomposition" href="http://dbpedia.org/resource/Functional_decomposition"><small>dbr</small>:Functional_decomposition</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Functional_predicate" href="http://dbpedia.org/resource/Functional_predicate"><small>dbr</small>:Functional_predicate</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Functor" href="http://dbpedia.org/resource/Functor"><small>dbr</small>:Functor</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Half-exponential_function" href="http://dbpedia.org/resource/Half-exponential_function"><small>dbr</small>:Half-exponential_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Identity_element" href="http://dbpedia.org/resource/Identity_element"><small>dbr</small>:Identity_element</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pentagram_map" href="http://dbpedia.org/resource/Pentagram_map"><small>dbr</small>:Pentagram_map</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Permuted_congruential_generator" href="http://dbpedia.org/resource/Permuted_congruential_generator"><small>dbr</small>:Permuted_congruential_generator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Pincherle_derivative" href="http://dbpedia.org/resource/Pincherle_derivative"><small>dbr</small>:Pincherle_derivative</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Positive-real_function" href="http://dbpedia.org/resource/Positive-real_function"><small>dbr</small>:Positive-real_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Precalculus" href="http://dbpedia.org/resource/Precalculus"><small>dbr</small>:Precalculus</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/P′′" href="http://dbpedia.org/resource/P′′"><small>dbr</small>:P′′</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Substitution_(algebra)" href="http://dbpedia.org/resource/Substitution_(algebra)"><small>dbr</small>:Substitution_(algebra)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symmetry_group" href="http://dbpedia.org/resource/Symmetry_group"><small>dbr</small>:Symmetry_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mapping_cylinder" href="http://dbpedia.org/resource/Mapping_cylinder"><small>dbr</small>:Mapping_cylinder</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mathematics,_Form_and_Function" href="http://dbpedia.org/resource/Mathematics,_Form_and_Function"><small>dbr</small>:Mathematics,_Form_and_Function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mathieu_groupoid" href="http://dbpedia.org/resource/Mathieu_groupoid"><small>dbr</small>:Mathieu_groupoid</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Matrix_coefficient" href="http://dbpedia.org/resource/Matrix_coefficient"><small>dbr</small>:Matrix_coefficient</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Schutzenberger_group" href="http://dbpedia.org/resource/Schutzenberger_group"><small>dbr</small>:Schutzenberger_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Automorphism" href="http://dbpedia.org/resource/Automorphism"><small>dbr</small>:Automorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Backpropagation" href="http://dbpedia.org/resource/Backpropagation"><small>dbr</small>:Backpropagation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Banach–Alaoglu_theorem" href="http://dbpedia.org/resource/Banach–Alaoglu_theorem"><small>dbr</small>:Banach–Alaoglu_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Additive_polynomial" href="http://dbpedia.org/resource/Additive_polynomial"><small>dbr</small>:Additive_polynomial</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category_of_manifolds" href="http://dbpedia.org/resource/Category_of_manifolds"><small>dbr</small>:Category_of_manifolds</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category_of_sets" href="http://dbpedia.org/resource/Category_of_sets"><small>dbr</small>:Category_of_sets</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cauchy–Riemann_equations" href="http://dbpedia.org/resource/Cauchy–Riemann_equations"><small>dbr</small>:Cauchy–Riemann_equations</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tree_transducer" href="http://dbpedia.org/resource/Tree_transducer"><small>dbr</small>:Tree_transducer</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Trigonometric_functions" href="http://dbpedia.org/resource/Trigonometric_functions"><small>dbr</small>:Trigonometric_functions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Wallpaper_group" href="http://dbpedia.org/resource/Wallpaper_group"><small>dbr</small>:Wallpaper_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Weak_ordering" href="http://dbpedia.org/resource/Weak_ordering"><small>dbr</small>:Weak_ordering</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Dual_(category_theory)" href="http://dbpedia.org/resource/Dual_(category_theory)"><small>dbr</small>:Dual_(category_theory)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fuzzy_set" href="http://dbpedia.org/resource/Fuzzy_set"><small>dbr</small>:Fuzzy_set</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Galois_group" href="http://dbpedia.org/resource/Galois_group"><small>dbr</small>:Galois_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glaeser's_composition_theorem" href="http://dbpedia.org/resource/Glaeser's_composition_theorem"><small>dbr</small>:Glaeser's_composition_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Haar_measure" href="http://dbpedia.org/resource/Haar_measure"><small>dbr</small>:Haar_measure</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Jet_group" href="http://dbpedia.org/resource/Jet_group"><small>dbr</small>:Jet_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Juxtaposition" href="http://dbpedia.org/resource/Juxtaposition"><small>dbr</small>:Juxtaposition</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Line_integral" href="http://dbpedia.org/resource/Line_integral"><small>dbr</small>:Line_integral</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linear_complex_structure" href="http://dbpedia.org/resource/Linear_complex_structure"><small>dbr</small>:Linear_complex_structure</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Linearised_polynomial" href="http://dbpedia.org/resource/Linearised_polynomial"><small>dbr</small>:Linearised_polynomial</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Liouvillian_function" href="http://dbpedia.org/resource/Liouvillian_function"><small>dbr</small>:Liouvillian_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Local_homeomorphism" href="http://dbpedia.org/resource/Local_homeomorphism"><small>dbr</small>:Local_homeomorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Locally_decodable_code" href="http://dbpedia.org/resource/Locally_decodable_code"><small>dbr</small>:Locally_decodable_code</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Logarithmically_convex_function" href="http://dbpedia.org/resource/Logarithmically_convex_function"><small>dbr</small>:Logarithmically_convex_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Misiurewicz_point" href="http://dbpedia.org/resource/Misiurewicz_point"><small>dbr</small>:Misiurewicz_point</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Radonifying_function" href="http://dbpedia.org/resource/Radonifying_function"><small>dbr</small>:Radonifying_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Semigroup" href="http://dbpedia.org/resource/Semigroup"><small>dbr</small>:Semigroup</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Semiautomaton" href="http://dbpedia.org/resource/Semiautomaton"><small>dbr</small>:Semiautomaton</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/3D_rotation_group" href="http://dbpedia.org/resource/3D_rotation_group"><small>dbr</small>:3D_rotation_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Additive_inverse" href="http://dbpedia.org/resource/Additive_inverse"><small>dbr</small>:Additive_inverse</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Affine_transformation" href="http://dbpedia.org/resource/Affine_transformation"><small>dbr</small>:Affine_transformation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cyclic_permutation" href="http://dbpedia.org/resource/Cyclic_permutation"><small>dbr</small>:Cyclic_permutation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Duality_(mathematics)" href="http://dbpedia.org/resource/Duality_(mathematics)"><small>dbr</small>:Duality_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Equivalence_relation" href="http://dbpedia.org/resource/Equivalence_relation"><small>dbr</small>:Equivalence_relation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Euclidean_space" href="http://dbpedia.org/resource/Euclidean_space"><small>dbr</small>:Euclidean_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Even_and_odd_functions" href="http://dbpedia.org/resource/Even_and_odd_functions"><small>dbr</small>:Even_and_odd_functions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Exponentiation" href="http://dbpedia.org/resource/Exponentiation"><small>dbr</small>:Exponentiation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/FAUST_(programming_language)" href="http://dbpedia.org/resource/FAUST_(programming_language)"><small>dbr</small>:FAUST_(programming_language)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Filters_in_topology" href="http://dbpedia.org/resource/Filters_in_topology"><small>dbr</small>:Filters_in_topology</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Finite_field" href="http://dbpedia.org/resource/Finite_field"><small>dbr</small>:Finite_field</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fractional_calculus" href="http://dbpedia.org/resource/Fractional_calculus"><small>dbr</small>:Fractional_calculus</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Notation_for_differentiation" href="http://dbpedia.org/resource/Notation_for_differentiation"><small>dbr</small>:Notation_for_differentiation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Partially_ordered_set" href="http://dbpedia.org/resource/Partially_ordered_set"><small>dbr</small>:Partially_ordered_set</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Carleman_matrix" href="http://dbpedia.org/resource/Carleman_matrix"><small>dbr</small>:Carleman_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cayley's_theorem" href="http://dbpedia.org/resource/Cayley's_theorem"><small>dbr</small>:Cayley's_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Church_encoding" href="http://dbpedia.org/resource/Church_encoding"><small>dbr</small>:Church_encoding</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Difference_list" href="http://dbpedia.org/resource/Difference_list"><small>dbr</small>:Difference_list</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Differential_operator" href="http://dbpedia.org/resource/Differential_operator"><small>dbr</small>:Differential_operator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fourier_inversion_theorem" href="http://dbpedia.org/resource/Fourier_inversion_theorem"><small>dbr</small>:Fourier_inversion_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Frame_bundle" href="http://dbpedia.org/resource/Frame_bundle"><small>dbr</small>:Frame_bundle</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glossary_of_order_theory" href="http://dbpedia.org/resource/Glossary_of_order_theory"><small>dbr</small>:Glossary_of_order_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Graded_category" href="http://dbpedia.org/resource/Graded_category"><small>dbr</small>:Graded_category</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Graph_automorphism" href="http://dbpedia.org/resource/Graph_automorphism"><small>dbr</small>:Graph_automorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hans_Heinrich_Bürmann" href="http://dbpedia.org/resource/Hans_Heinrich_Bürmann"><small>dbr</small>:Hans_Heinrich_Bürmann</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hilbert's_arithmetic_of_ends" href="http://dbpedia.org/resource/Hilbert's_arithmetic_of_ends"><small>dbr</small>:Hilbert's_arithmetic_of_ends</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hilbert's_thirteenth_problem" href="http://dbpedia.org/resource/Hilbert's_thirteenth_problem"><small>dbr</small>:Hilbert's_thirteenth_problem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Isometry_group" href="http://dbpedia.org/resource/Isometry_group"><small>dbr</small>:Isometry_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Iterated_function_system" href="http://dbpedia.org/resource/Iterated_function_system"><small>dbr</small>:Iterated_function_system</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Joy_(programming_language)" href="http://dbpedia.org/resource/Joy_(programming_language)"><small>dbr</small>:Joy_(programming_language)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Kolmogorov–Arnold_representation_theorem" href="http://dbpedia.org/resource/Kolmogorov–Arnold_representation_theorem"><small>dbr</small>:Kolmogorov–Arnold_representation_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_Italian_inventions_and_discoveries" href="http://dbpedia.org/resource/List_of_Italian_inventions_and_discoveries"><small>dbr</small>:List_of_Italian_inventions_and_discoveries</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Projection_(mathematics)" href="http://dbpedia.org/resource/Projection_(mathematics)"><small>dbr</small>:Projection_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rademacher_complexity" href="http://dbpedia.org/resource/Rademacher_complexity"><small>dbr</small>:Rademacher_complexity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ramification_group" href="http://dbpedia.org/resource/Ramification_group"><small>dbr</small>:Ramification_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Random_variable" href="http://dbpedia.org/resource/Random_variable"><small>dbr</small>:Random_variable</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Restriction_(mathematics)" href="http://dbpedia.org/resource/Restriction_(mathematics)"><small>dbr</small>:Restriction_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gremlin_(query_language)" href="http://dbpedia.org/resource/Gremlin_(query_language)"><small>dbr</small>:Gremlin_(query_language)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Group_(mathematics)" href="http://dbpedia.org/resource/Group_(mathematics)"><small>dbr</small>:Group_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Grötzsch's_theorem" href="http://dbpedia.org/resource/Grötzsch's_theorem"><small>dbr</small>:Grötzsch's_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Inverse_element" href="http://dbpedia.org/resource/Inverse_element"><small>dbr</small>:Inverse_element</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Inverse_function" href="http://dbpedia.org/resource/Inverse_function"><small>dbr</small>:Inverse_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Involution_(mathematics)" href="http://dbpedia.org/resource/Involution_(mathematics)"><small>dbr</small>:Involution_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Isometry" href="http://dbpedia.org/resource/Isometry"><small>dbr</small>:Isometry</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Iterated_function" href="http://dbpedia.org/resource/Iterated_function"><small>dbr</small>:Iterated_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Counting" href="http://dbpedia.org/resource/Counting"><small>dbr</small>:Counting</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hylomorphism_(computer_science)" href="http://dbpedia.org/resource/Hylomorphism_(computer_science)"><small>dbr</small>:Hylomorphism_(computer_science)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hyperbolic_motion" href="http://dbpedia.org/resource/Hyperbolic_motion"><small>dbr</small>:Hyperbolic_motion</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Weakly_measurable_function" href="http://dbpedia.org/resource/Weakly_measurable_function"><small>dbr</small>:Weakly_measurable_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Associative_property" href="http://dbpedia.org/resource/Associative_property"><small>dbr</small>:Associative_property</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/At_sign" href="http://dbpedia.org/resource/At_sign"><small>dbr</small>:At_sign</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ackermann_function" href="http://dbpedia.org/resource/Ackermann_function"><small>dbr</small>:Ackermann_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Affine_geometry" href="http://dbpedia.org/resource/Affine_geometry"><small>dbr</small>:Affine_geometry</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Chain_rule" href="http://dbpedia.org/resource/Chain_rule"><small>dbr</small>:Chain_rule</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Change_of_basis" href="http://dbpedia.org/resource/Change_of_basis"><small>dbr</small>:Change_of_basis</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Charles_Babbage" href="http://dbpedia.org/resource/Charles_Babbage"><small>dbr</small>:Charles_Babbage</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bijection" href="http://dbpedia.org/resource/Bijection"><small>dbr</small>:Bijection</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/SuperCollider" href="http://dbpedia.org/resource/SuperCollider"><small>dbr</small>:SuperCollider</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Surjective_function" href="http://dbpedia.org/resource/Surjective_function"><small>dbr</small>:Surjective_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symmetry_in_mathematics" href="http://dbpedia.org/resource/Symmetry_in_mathematics"><small>dbr</small>:Symmetry_in_mathematics</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symmetry_of_second_derivatives" href="http://dbpedia.org/resource/Symmetry_of_second_derivatives"><small>dbr</small>:Symmetry_of_second_derivatives</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Codomain" href="http://dbpedia.org/resource/Codomain"><small>dbr</small>:Codomain</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Coercive_function" href="http://dbpedia.org/resource/Coercive_function"><small>dbr</small>:Coercive_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Homeomorphism_group" href="http://dbpedia.org/resource/Homeomorphism_group"><small>dbr</small>:Homeomorphism_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Homotopy" href="http://dbpedia.org/resource/Homotopy"><small>dbr</small>:Homotopy</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/J_operator" href="http://dbpedia.org/resource/J_operator"><small>dbr</small>:J_operator</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Toda_bracket" href="http://dbpedia.org/resource/Toda_bracket"><small>dbr</small>:Toda_bracket</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Transformation_(function)" href="http://dbpedia.org/resource/Transformation_(function)"><small>dbr</small>:Transformation_(function)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Transformation_matrix" href="http://dbpedia.org/resource/Transformation_matrix"><small>dbr</small>:Transformation_matrix</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Translation_operator_(quantum_mechanics)" href="http://dbpedia.org/resource/Translation_operator_(quantum_mechanics)"><small>dbr</small>:Translation_operator_(quantum_mechanics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mixtilinear_incircles_of_a_triangle" href="http://dbpedia.org/resource/Mixtilinear_incircles_of_a_triangle"><small>dbr</small>:Mixtilinear_incircles_of_a_triangle</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Module_homomorphism" href="http://dbpedia.org/resource/Module_homomorphism"><small>dbr</small>:Module_homomorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Differentiable_manifold" href="http://dbpedia.org/resource/Differentiable_manifold"><small>dbr</small>:Differentiable_manifold</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Discrete_Fourier_transform" href="http://dbpedia.org/resource/Discrete_Fourier_transform"><small>dbr</small>:Discrete_Fourier_transform</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Arrow_(computer_science)" href="http://dbpedia.org/resource/Arrow_(computer_science)"><small>dbr</small>:Arrow_(computer_science)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Automorphism_group" href="http://dbpedia.org/resource/Automorphism_group"><small>dbr</small>:Automorphism_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/B,_C,_K,_W_system" href="http://dbpedia.org/resource/B,_C,_K,_W_system"><small>dbr</small>:B,_C,_K,_W_system</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Boolean_algebra" href="http://dbpedia.org/resource/Boolean_algebra"><small>dbr</small>:Boolean_algebra</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Boolean_algebra_(structure)" href="http://dbpedia.org/resource/Boolean_algebra_(structure)"><small>dbr</small>:Boolean_algebra_(structure)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Bootstrap_curriculum" href="http://dbpedia.org/resource/Bootstrap_curriculum"><small>dbr</small>:Bootstrap_curriculum</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/CAR_and_CDR" href="http://dbpedia.org/resource/CAR_and_CDR"><small>dbr</small>:CAR_and_CDR</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial" href="http://dbpedia.org/resource/Polynomial"><small>dbr</small>:Polynomial</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial_ring" href="http://dbpedia.org/resource/Polynomial_ring"><small>dbr</small>:Polynomial_ring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Softmax_function" href="http://dbpedia.org/resource/Softmax_function"><small>dbr</small>:Softmax_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Squeeze_mapping" href="http://dbpedia.org/resource/Squeeze_mapping"><small>dbr</small>:Squeeze_mapping</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Field_trace" href="http://dbpedia.org/resource/Field_trace"><small>dbr</small>:Field_trace</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Filled_Julia_set" href="http://dbpedia.org/resource/Filled_Julia_set"><small>dbr</small>:Filled_Julia_set</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Free_abelian_group" href="http://dbpedia.org/resource/Free_abelian_group"><small>dbr</small>:Free_abelian_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Group_isomorphism" href="http://dbpedia.org/resource/Group_isomorphism"><small>dbr</small>:Group_isomorphism</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Groupoid" href="http://dbpedia.org/resource/Groupoid"><small>dbr</small>:Groupoid</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Grzegorczyk_hierarchy" href="http://dbpedia.org/resource/Grzegorczyk_hierarchy"><small>dbr</small>:Grzegorczyk_hierarchy</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Huge_cardinal" href="http://dbpedia.org/resource/Huge_cardinal"><small>dbr</small>:Huge_cardinal</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Idempotence" href="http://dbpedia.org/resource/Idempotence"><small>dbr</small>:Idempotence</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Identity_function" href="http://dbpedia.org/resource/Identity_function"><small>dbr</small>:Identity_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Infinite_compositions_of_analytic_functions" href="http://dbpedia.org/resource/Infinite_compositions_of_analytic_functions"><small>dbr</small>:Infinite_compositions_of_analytic_functions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Integral_test_for_convergence" href="http://dbpedia.org/resource/Integral_test_for_convergence"><small>dbr</small>:Integral_test_for_convergence</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Integration_by_substitution" href="http://dbpedia.org/resource/Integration_by_substitution"><small>dbr</small>:Integration_by_substitution</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Net_(mathematics)" href="http://dbpedia.org/resource/Net_(mathematics)"><small>dbr</small>:Net_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Open_and_closed_maps" href="http://dbpedia.org/resource/Open_and_closed_maps"><small>dbr</small>:Open_and_closed_maps</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Operation_(mathematics)" href="http://dbpedia.org/resource/Operation_(mathematics)"><small>dbr</small>:Operation_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Orthogonal_group" href="http://dbpedia.org/resource/Orthogonal_group"><small>dbr</small>:Orthogonal_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cantor's_diagonal_argument" href="http://dbpedia.org/resource/Cantor's_diagonal_argument"><small>dbr</small>:Cantor's_diagonal_argument</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cantor_set" href="http://dbpedia.org/resource/Cantor_set"><small>dbr</small>:Cantor_set</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category_(mathematics)" href="http://dbpedia.org/resource/Category_(mathematics)"><small>dbr</small>:Category_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category_of_metric_spaces" href="http://dbpedia.org/resource/Category_of_metric_spaces"><small>dbr</small>:Category_of_metric_spaces</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category_of_preordered_sets" href="http://dbpedia.org/resource/Category_of_preordered_sets"><small>dbr</small>:Category_of_preordered_sets</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category_of_representations" href="http://dbpedia.org/resource/Category_of_representations"><small>dbr</small>:Category_of_representations</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category_of_topological_spaces" href="http://dbpedia.org/resource/Category_of_topological_spaces"><small>dbr</small>:Category_of_topological_spaces</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category_of_topological_vector_spaces" href="http://dbpedia.org/resource/Category_of_topological_vector_spaces"><small>dbr</small>:Category_of_topological_vector_spaces</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category_theory" href="http://dbpedia.org/resource/Category_theory"><small>dbr</small>:Category_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Real_coordinate_space" href="http://dbpedia.org/resource/Real_coordinate_space"><small>dbr</small>:Real_coordinate_space</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Change_of_rings" href="http://dbpedia.org/resource/Change_of_rings"><small>dbr</small>:Change_of_rings</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Semidirect_product" href="http://dbpedia.org/resource/Semidirect_product"><small>dbr</small>:Semidirect_product</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Semiring" href="http://dbpedia.org/resource/Semiring"><small>dbr</small>:Semiring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Sequence_covering_map" href="http://dbpedia.org/resource/Sequence_covering_map"><small>dbr</small>:Sequence_covering_map</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rotation_(mathematics)" href="http://dbpedia.org/resource/Rotation_(mathematics)"><small>dbr</small>:Rotation_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Sheaf_(mathematics)" href="http://dbpedia.org/resource/Sheaf_(mathematics)"><small>dbr</small>:Sheaf_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Near-semiring" href="http://dbpedia.org/resource/Near-semiring"><small>dbr</small>:Near-semiring</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Nevanlinna_function" href="http://dbpedia.org/resource/Nevanlinna_function"><small>dbr</small>:Nevanlinna_function</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Nielsen–Thurston_classification" href="http://dbpedia.org/resource/Nielsen–Thurston_classification"><small>dbr</small>:Nielsen–Thurston_classification</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Euclidean_group" href="http://dbpedia.org/resource/Euclidean_group"><small>dbr</small>:Euclidean_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Euclidean_plane_isometry" href="http://dbpedia.org/resource/Euclidean_plane_isometry"><small>dbr</small>:Euclidean_plane_isometry</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Composition" href="http://dbpedia.org/resource/Composition"><small>dbr</small>:Composition</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Implementation_of_mathematics_in_set_theory" href="http://dbpedia.org/resource/Implementation_of_mathematics_in_set_theory"><small>dbr</small>:Implementation_of_mathematics_in_set_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_types_of_functions" href="http://dbpedia.org/resource/List_of_types_of_functions"><small>dbr</small>:List_of_types_of_functions</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symmetric_group" href="http://dbpedia.org/resource/Symmetric_group"><small>dbr</small>:Symmetric_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Rubik's_Cube_group" href="http://dbpedia.org/resource/Rubik's_Cube_group"><small>dbr</small>:Rubik's_Cube_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tarski's_axiomatization_of_the_reals" href="http://dbpedia.org/resource/Tarski's_axiomatization_of_the_reals"><small>dbr</small>:Tarski's_axiomatization_of_the_reals</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Examples_of_groups" href="http://dbpedia.org/resource/Examples_of_groups"><small>dbr</small>:Examples_of_groups</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Finite_group" href="http://dbpedia.org/resource/Finite_group"><small>dbr</small>:Finite_group</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Richardson's_theorem" href="http://dbpedia.org/resource/Richardson's_theorem"><small>dbr</small>:Richardson's_theorem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Transformation_geometry" href="http://dbpedia.org/resource/Transformation_geometry"><small>dbr</small>:Transformation_geometry</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Morse–Kelley_set_theory" href="http://dbpedia.org/resource/Morse–Kelley_set_theory"><small>dbr</small>:Morse–Kelley_set_theory</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Mountain_climbing_problem" href="http://dbpedia.org/resource/Mountain_climbing_problem"><small>dbr</small>:Mountain_climbing_problem</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Procrustes_transformation" href="http://dbpedia.org/resource/Procrustes_transformation"><small>dbr</small>:Procrustes_transformation</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Planar_projection" href="http://dbpedia.org/resource/Planar_projection"><small>dbr</small>:Planar_projection</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial-time_counting_reduction" href="http://dbpedia.org/resource/Polynomial-time_counting_reduction"><small>dbr</small>:Polynomial-time_counting_reduction</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial_creativity" href="http://dbpedia.org/resource/Polynomial_creativity"><small>dbr</small>:Polynomial_creativity</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial_decomposition" href="http://dbpedia.org/resource/Polynomial_decomposition"><small>dbr</small>:Polynomial_decomposition</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://xmlns.com/foaf/0.1/primaryTopic"><small>foaf:</small>primaryTopic</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="foaf:primaryTopic" resource="http://en.wikipedia.org/wiki/Function_composition" href="http://en.wikipedia.org/wiki/Function_composition"><small>wikipedia-en</small>:Function_composition</a></span></li> </ul></td></tr> </tbody> </table> </div> </div> </div> </section> <!-- property-table --> <!-- footer --> <section> <div class="container-xl"> <div class="text-center p-4 bg-light"> <a href="https://virtuoso.openlinksw.com/" title="OpenLink Virtuoso"><img class="powered_by" src="/statics/images/virt_power_no_border.png" alt="Powered by OpenLink Virtuoso"/></a>    <a href="http://linkeddata.org/"><img alt="This material is Open Knowledge" src="/statics/images/LoDLogo.gif"/></a>     <a href="http://dbpedia.org/sparql"><img alt="W3C Semantic Web Technology" src="/statics/images/sw-sparql-blue.png"/></a>     <a href="https://opendefinition.org/"><img alt="This material is Open Knowledge" src="/statics/images/od_80x15_red_green.png"/></a>    <span style="display:none;" about="" resource="http://www.w3.org/TR/rdfa-syntax" rel="dc:conformsTo"> <a href="https://validator.w3.org/check?uri=referer"> <img src="https://www.w3.org/Icons/valid-xhtml-rdfa" alt="Valid XHTML + RDFa" /> </a> </span> <br /> <small class="text-muted"> This content was extracted from <a href="http://en.wikipedia.org/wiki/Function_composition">Wikipedia</a> and is licensed under the <a href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a> </small> </div> </div> </section> <!-- #footer --> <!-- scripts --> <script src="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/js/bootstrap.bundle.min.js" integrity="sha512-1TK4hjCY5+E9H3r5+05bEGbKGyK506WaDPfPe1s/ihwRjr6OtL43zJLzOFQ+/zciONEd+sp7LwrfOCnyukPSsg==" crossorigin="anonymous"> </script> </body> </html>