CINXE.COM

Search results for: nanoscale

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nanoscale</title> <meta name="description" content="Search results for: nanoscale"> <meta name="keywords" content="nanoscale"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nanoscale" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nanoscale"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 38</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nanoscale</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kyoungjin%20Kim">Kyoungjin Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanoparticles" title="Nanoparticles">Nanoparticles</a>, <a href="https://publications.waset.org/search?q=Thermite%20reaction" title=" Thermite reaction"> Thermite reaction</a>, <a href="https://publications.waset.org/search?q=Combustion%20wave" title=" Combustion wave"> Combustion wave</a>, <a href="https://publications.waset.org/search?q=Numerical%20modeling." title=" Numerical modeling."> Numerical modeling.</a> </p> <a href="https://publications.waset.org/9998871/computational-modeling-of-combustion-wave-in-nanoscale-thermite-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998871/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998871/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998871/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998871/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998871/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998871/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998871/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998871/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998871/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998871/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2450</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> A Comparative Study of Electrical Transport Phenomena in Ultrathin vs. Nanoscale SOI MOSFETs Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Karsenty">A. Karsenty</a>, <a href="https://publications.waset.org/search?q=A.%20Chelly"> A. Chelly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Ultrathin (UTD) and Nanoscale (NSD) SOI-MOSFET devices, sharing a similar W/L but with a channel thickness of 46nm and 1.6nm respectively, were fabricated using a selective &ldquo;gate recessed&rdquo; process on the same silicon wafer. The electrical transport characterization at room temperature has shown a large difference between the two kinds of devices and has been interpreted in terms of a huge unexpected series resistance. Electrical characteristics of the Nanoscale device, taken in the linear region, can be analytically derived from the ultrathin device ones. A comparison of the structure and composition of the layers, using advanced techniques such as Focused Ion Beam (FIB) and High Resolution TEM (HRTEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS), contributes an explanation as to the difference of transport between the devices.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanoscale%20Devices" title="Nanoscale Devices">Nanoscale Devices</a>, <a href="https://publications.waset.org/search?q=SOI%20MOSFET" title=" SOI MOSFET"> SOI MOSFET</a>, <a href="https://publications.waset.org/search?q=Analytical%20Model" title=" Analytical Model"> Analytical Model</a>, <a href="https://publications.waset.org/search?q=Electron%20Transport." title=" Electron Transport. "> Electron Transport. </a> </p> <a href="https://publications.waset.org/17367/a-comparative-study-of-electrical-transport-phenomena-in-ultrathin-vs-nanoscale-soi-mosfets-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17367/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17367/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17367/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17367/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17367/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17367/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17367/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17367/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17367/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17367/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2001</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Combining Molecular Statics with Heat Transfer Finite Difference Method for Analysis of Nanoscale Orthogonal Cutting of Single-Crystal Silicon Temperature Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zone-Ching%20Lin">Zone-Ching Lin</a>, <a href="https://publications.waset.org/search?q=Meng-Hua%20Lin"> Meng-Hua Lin</a>, <a href="https://publications.waset.org/search?q=Ying-Chih%20Hsu"> Ying-Chih Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper uses quasi-steady molecular statics model and diamond tool to carry out simulation temperature rise of nanoscale orthogonal cutting single-crystal silicon. It further qualitatively analyzes temperature field of silicon workpiece without considering heat transfer and considering heat transfer. This paper supposes that the temperature rise of workpiece is mainly caused by two heat sources: plastic deformation heat and friction heat. Then, this paper develops a theoretical model about production of the plastic deformation heat and friction heat during nanoscale orthogonal cutting. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and calculates the temperature field in each step and makes related analysis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Quasi-steady%20molecular%20statics" title="Quasi-steady molecular statics">Quasi-steady molecular statics</a>, <a href="https://publications.waset.org/search?q=Nanoscale%20orthogonal%0D%0Acutting" title=" Nanoscale orthogonal cutting"> Nanoscale orthogonal cutting</a>, <a href="https://publications.waset.org/search?q=Finite%20difference" title=" Finite difference"> Finite difference</a>, <a href="https://publications.waset.org/search?q=Temperature." title=" Temperature."> Temperature.</a> </p> <a href="https://publications.waset.org/16429/combining-molecular-statics-with-heat-transfer-finite-difference-method-for-analysis-of-nanoscale-orthogonal-cutting-of-single-crystal-silicon-temperature-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16429/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16429/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16429/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16429/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16429/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16429/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16429/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16429/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16429/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16429/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1934</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Decolorization of Reactive Black 5 and Reactive Red 198 using Nanoscale Zerovalent Iron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Chompuchan">C. Chompuchan</a>, <a href="https://publications.waset.org/search?q=T.%20Satapanajaru"> T. Satapanajaru</a>, <a href="https://publications.waset.org/search?q=P.%20Suntornchot"> P. Suntornchot</a>, <a href="https://publications.waset.org/search?q=P.%20Pengthamkeerati"> P. Pengthamkeerati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Residual dye contents in textile dyeing wastewater have complex aromatic structures that are resistant to degrade in biological wastewater treatment. The objectives of this study were to determine the effectiveness of nanoscale zerovalent iron (NZVI) to decolorize Reactive Black 5 (RB5) and Reactive Red 198 (RR198) in synthesized wastewater and to investigate the effects of the iron particle size, iron dosage and solution pHs on the destruction of RB5 and RR198. Synthesized NZVI was confirmed by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The removal kinetic rates (kobs) of RB5 (0.0109 min-1) and RR198 (0.0111 min-1) by 0.5% NZVI were many times higher than those of microscale zerovalent iron (ZVI) (0.0007 min-1 and 0.0008 min-1, respectively). The iron dosage increment exponentially increased the removal efficiencies of both RB5 and RR198. Additionally, lowering pH from 9 to 5 increased the decolorization kinetic rates of both RB5 and RR198 by NZVI. The destruction of azo bond (N=N) in the chromophore of both reactive dyes led to decolorization of dye solutions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=decolorization" title="decolorization">decolorization</a>, <a href="https://publications.waset.org/search?q=nanoscale%20zerovalent%20iron" title=" nanoscale zerovalent iron"> nanoscale zerovalent iron</a>, <a href="https://publications.waset.org/search?q=Reactive%20Black%205" title=" Reactive Black 5"> Reactive Black 5</a>, <a href="https://publications.waset.org/search?q=Reactive%20Red%20198." title=" Reactive Red 198."> Reactive Red 198.</a> </p> <a href="https://publications.waset.org/5404/decolorization-of-reactive-black-5-and-reactive-red-198-using-nanoscale-zerovalent-iron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5404/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5404/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5404/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5404/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5404/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5404/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5404/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5404/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5404/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5404/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2305</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Nanosize Structure Phase States in the Titanium Surface Layers after Electroexplosive Carburizing and Subsequent Electron Beam Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Victor%20E.%20Gromov">Victor E. Gromov</a>, <a href="https://publications.waset.org/search?q=Evgenii%20A.%20Budovskikh"> Evgenii A. Budovskikh</a>, <a href="https://publications.waset.org/search?q=Ludmila%20P.%20Bashchenko"> Ludmila P. Bashchenko</a>, <a href="https://publications.waset.org/search?q=Yurii%20F.%20Ivanov"> Yurii F. Ivanov</a>, <a href="https://publications.waset.org/search?q=Anna%20V.%20Ionina"> Anna V. Ionina</a>, <a href="https://publications.waset.org/search?q=Nina%20A.%20Soskova"> Nina A. Soskova</a>, <a href="https://publications.waset.org/search?q=Guoyi%20Tang"> Guoyi Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The peculiarities of the nanoscale structure-phase states formed after electroexplosive carburizing and subsequent electron-beam treatment of technically pure titanium surface in different regimes are established by methods of transmission electron diffraction microscopy and physical mechanisms are discussed. Electroexplosive carburizing leads to surface layer formation (40 m thickness) with increased (in 3.5 times) microhardness. It consists of β-titanium, graphite (monocrystals 100-150 nm, polycrystals 5-10 nm, amorphous particles 3-5nm), TiC (5-10 nm), β-Ti02 (2-20nm). After electron-beam treatment additionally increasing the microhardness the surface layer consists of TiC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=nanoscale" title="nanoscale">nanoscale</a>, <a href="https://publications.waset.org/search?q=phase" title=" phase"> phase</a>, <a href="https://publications.waset.org/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/search?q=titanium" title=" titanium"> titanium</a> </p> <a href="https://publications.waset.org/191/nanosize-structure-phase-states-in-the-titanium-surface-layers-after-electroexplosive-carburizing-and-subsequent-electron-beam-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/191/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/191/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/191/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/191/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/191/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/191/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/191/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/191/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/191/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/191/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1623</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Ruthenium Based Nanoscale Contact Coatings for Magnetically Controlled MEMS Switches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sergey%20M.%20Karabanov">Sergey M. Karabanov</a>, <a href="https://publications.waset.org/search?q=Dmitry%20V.%20Suvorov"> Dmitry V. Suvorov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Magnetically controlled microelectromechanical system (MCMEMS) switches is one of the directions in the field of micropower switching technology. MCMEMS switches are a promising alternative to Hall sensors and reed switches. The most important parameter for MCMEMS is the contact resistance, which should have a minimum value and is to be stable for the entire duration of service life. The value and stability of the contact resistance is mainly determined by the contact coating material. This paper presents the research results of a contact coating based on nanoscale ruthenium films obtained by electrolytic deposition. As a result of the performed investigations, the deposition modes of ruthenium films are chosen, the regularities of the contact resistance change depending on the number of contact switching, and the coating roughness are established. It is shown that changing the coating roughness makes it possible to minimize the contact resistance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Contact%20resistance" title="Contact resistance">Contact resistance</a>, <a href="https://publications.waset.org/search?q=electrode%20coating" title=" electrode coating"> electrode coating</a>, <a href="https://publications.waset.org/search?q=electrolythic%20deposition" title=" electrolythic deposition"> electrolythic deposition</a>, <a href="https://publications.waset.org/search?q=magnetically%20controlled%20MEMS." title=" magnetically controlled MEMS. "> magnetically controlled MEMS. </a> </p> <a href="https://publications.waset.org/10010105/ruthenium-based-nanoscale-contact-coatings-for-magnetically-controlled-mems-switches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010105/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010105/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010105/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010105/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010105/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010105/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010105/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010105/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010105/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010105/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">821</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Torsional Statics of Circular Nanostructures: Numerical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.Z.%20Islam">M.Z. Islam</a>, <a href="https://publications.waset.org/search?q=C.W.%20Lim"> C.W. Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the standard finite element method, a new finite element method which is known as nonlocal finite element method (NL-FEM) is numerically implemented in this article to study the nonlocal effects for solving 1D nonlocal elastic problem. An Eringen-type nonlocal elastic model is considered. In this model, the constitutive stress-strain law is expressed interms of integral equation which governs the nonlocal material behavior. The new NL-FEM is adopted in such a way that the postulated nonlocal elastic behavior of material is captured by a finite element endowed with a set of (cross-stiffness) element itself by the other elements in mesh. An example with their analytical solutions and the relevant numerical findings for various load and boundary conditions are presented and discussed in details. It is observed from the numerical solutions that the torsional deformation angle decreases with increasing nonlocal nanoscale parameter. It is also noted that the analytical solution fails to capture the nonlocal effect in some cases where numerical solutions handle those situation effectively which prove the reliability and effectiveness of numerical techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=NL-FEM" title="NL-FEM">NL-FEM</a>, <a href="https://publications.waset.org/search?q=nonlocal%20elasticity" title=" nonlocal elasticity"> nonlocal elasticity</a>, <a href="https://publications.waset.org/search?q=nanoscale" title=" nanoscale"> nanoscale</a>, <a href="https://publications.waset.org/search?q=torsion." title=" torsion."> torsion.</a> </p> <a href="https://publications.waset.org/3271/torsional-statics-of-circular-nanostructures-numerical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3271/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3271/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3271/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3271/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3271/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3271/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3271/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3271/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3271/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3271/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1750</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Giulio%20Rosati">Giulio Rosati</a>, <a href="https://publications.waset.org/search?q=Luciano%20Sappia"> Luciano Sappia</a>, <a href="https://publications.waset.org/search?q=Rossana%20Madrid"> Rossana Madrid</a>, <a href="https://publications.waset.org/search?q=Noemi%20Rozl%C3%B2snik"> Noemi Rozlòsnik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Atomic%20force%20microscopy" title="Atomic force microscopy">Atomic force microscopy</a>, <a href="https://publications.waset.org/search?q=biosensors" title=" biosensors"> biosensors</a>, <a href="https://publications.waset.org/search?q=four-point%20probe" title=" four-point probe"> four-point probe</a>, <a href="https://publications.waset.org/search?q=nano-films" title=" nano-films"> nano-films</a>, <a href="https://publications.waset.org/search?q=PEDOT." title=" PEDOT. "> PEDOT. </a> </p> <a href="https://publications.waset.org/10008149/ironiii-tosylate-doped-pedot-and-peg-a-nanoscale-conductivity-study-of-an-electrochemical-system-with-biosensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008149/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008149/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008149/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008149/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008149/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008149/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008149/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008149/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008149/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008149/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1383</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> An AFM Approach of RBC Micro and Nanoscale Topographic Features during Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Santacruz-Gomez">K. Santacruz-Gomez</a>, <a href="https://publications.waset.org/search?q=E.%20Silva-Campa"> E. Silva-Campa</a>, <a href="https://publications.waset.org/search?q=S.%20%C3%81lvarez-Garc%C3%ADa"> S. Álvarez-García</a>, <a href="https://publications.waset.org/search?q=V.%20Mata-Haro"> V. Mata-Haro</a>, <a href="https://publications.waset.org/search?q=D.%20Soto-Puebla"> D. Soto-Puebla</a>, <a href="https://publications.waset.org/search?q=M.%20Pedroza-Montero"> M. Pedroza-Montero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Blood gamma irradiation is the only available method to prevent transfusion associated graft versus host disease (TAGVHD). However, when blood is irradiated, determine blood shelf time is crucial. Non irradiated blood have a self-time from 21 to 35 days when is preserved with anticoagulated solution and stored at 4&deg;C. During their storage, red blood cells (RBC) undergo a series of biochemical, biomechanical and molecular changes involving what is known as storage lesion (SL). SL include loss of structural integrity of RBC, decrease of 2,3-diphosphatidylglyceric acid levels, and increase of both ion potassium concentration and hemoglobin (Hb). On the other hand, Atomic force Microscopy (AFM) represents a versatile tool for a nano-scale high resolution topographic analysis in biological systems. In order to evaluate SL in irradiated and nonirradiated blood, RBC topography and morphometric parameters were obtained from an AFM XE-BIO system. Cell viability was followed using flow cytometry. Our results showed that early markers as nanoscale roughness, allow us to evaluate blood quality since other perspective.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=AFM" title="AFM">AFM</a>, <a href="https://publications.waset.org/search?q=Blood%20%CE%B3-irradiation" title=" Blood γ-irradiation"> Blood γ-irradiation</a>, <a href="https://publications.waset.org/search?q=roughness" title=" roughness"> roughness</a>, <a href="https://publications.waset.org/search?q=Storage%20lesion." title=" Storage lesion."> Storage lesion.</a> </p> <a href="https://publications.waset.org/9998969/an-afm-approach-of-rbc-micro-and-nanoscale-topographic-features-during-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998969/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998969/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998969/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998969/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998969/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998969/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998969/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998969/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998969/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998969/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2697</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Effects of Dopant Concentrations on Radiative Properties of Nanoscale Multilayer with Coherent Formulation for Visible Wavelengths</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20A.%20A.%20Oloomi">S. A. A. Oloomi </a>, <a href="https://publications.waset.org/search?q=M.%20Omidpanah"> M. Omidpanah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Semiconductor materials with coatings have a wide range of applications in MEMS and NEMS. This work uses transfermatrix method for calculating the radiative properties. Dopped silicon is used and the coherent formulation is applied. The Drude model for the optical constants of doped silicon is employed. Results showed that for the visible wavelengths, more emittance occurs in greater concentrations and the reflectance decreases as the concentration increases. In these wavelengths, transmittance is negligible. Donars and acceptors act similar in visible wavelengths. The effect of wave interference can be understood by plotting the spectral properties such as reflectance or transmittance of a thin dielectric film versus the film thickness and analyzing the oscillations of properties due to constructive and destructive interferences. But this effect has not been shown at visible wavelengths. At room temperature, the scattering process is dominated by lattice scattering for lightly doped silicon, and the impurity scattering becomes important for heavily doped silicon when the dopant concentration exceeds1018cm-3 .</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dopant%20Concentrations" title="Dopant Concentrations">Dopant Concentrations</a>, <a href="https://publications.waset.org/search?q=Radiative%20Properties" title=" Radiative Properties"> Radiative Properties</a>, <a href="https://publications.waset.org/search?q=Nanoscale%20Multilayer" title=" Nanoscale Multilayer"> Nanoscale Multilayer</a>, <a href="https://publications.waset.org/search?q=Coherent%20Formulation" title=" Coherent Formulation"> Coherent Formulation</a>, <a href="https://publications.waset.org/search?q=Visible%20Wavelengths" title=" Visible Wavelengths"> Visible Wavelengths</a> </p> <a href="https://publications.waset.org/841/effects-of-dopant-concentrations-on-radiative-properties-of-nanoscale-multilayer-with-coherent-formulation-for-visible-wavelengths" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/841/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/841/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/841/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/841/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/841/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/841/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/841/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/841/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/841/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/841/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1442</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> DNA Nanowires: A Charge Transfer Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Behnia">S. Behnia</a>, <a href="https://publications.waset.org/search?q=S.%20Fathizadeh"> S. Fathizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conductivity properties of DNA molecule is investigated in a simple, but chemically specific approach that is intimately related to the Su-Schrieffer-Heeger (SSH) model. This model is a tight-binding linear nanoscale chain. We have tried to study the electrical current flowing in DNA and investigated the characteristic I-V diagram. As a result, It is shown that there are the (quasi-) ohmic areas in I-V diagram. On the other hand, the regions with a negative differential resistance (NDR) are detectable in diagram. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Charge%20transfer%20in%20DNA" title="Charge transfer in DNA">Charge transfer in DNA</a>, <a href="https://publications.waset.org/search?q=Chaos%20theory" title=" Chaos theory"> Chaos theory</a>, <a href="https://publications.waset.org/search?q=Molecular%0D%0Aelectronics" title=" Molecular electronics"> Molecular electronics</a>, <a href="https://publications.waset.org/search?q=Negative%20Differential%20resistance." title=" Negative Differential resistance."> Negative Differential resistance.</a> </p> <a href="https://publications.waset.org/10002253/dna-nanowires-a-charge-transfer-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002253/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002253/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002253/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002253/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002253/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002253/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002253/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002253/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002253/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002253/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1846</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> 1/f Noise in Quantum-Size Heteronanostructures Based On GaAs and Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Alexey%20V.%20Klyuev">Alexey V. Klyuev</a>, <a href="https://publications.waset.org/search?q=Arkady.%20V.%20Yakimov"> Arkady. V. Yakimov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The 1/f noise investigation in nanoscale light-emitting diodes and lasers, based on GaAs and alloys, is presented here. Leakage and additional (to recombination through quantum wells and/or dots) nonlinear currents were detected and it was shown that these currents are the main source of the 1/f noise in devices studied.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Lasers" title="Lasers">Lasers</a>, <a href="https://publications.waset.org/search?q=light-emitting%20diodes" title=" light-emitting diodes"> light-emitting diodes</a>, <a href="https://publications.waset.org/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/search?q=quantum%20wells" title=" quantum wells"> quantum wells</a>, <a href="https://publications.waset.org/search?q=1%2Ff%20noise." title=" 1/f noise."> 1/f noise.</a> </p> <a href="https://publications.waset.org/9999798/1f-noise-in-quantum-size-heteronanostructures-based-on-gaas-and-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999798/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999798/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999798/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999798/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999798/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999798/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999798/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999798/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999798/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999798/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2086</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Investigation of Multiple Material Gate Impact on Short Channel Effects and Reliability of Nanoscale SOI MOSFETs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Paniz%20Tafakori">Paniz Tafakori</a>, <a href="https://publications.waset.org/search?q=Ali%20A.%20Orouji"> Ali A. Orouji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the features of multiple material gate silicon-on-insulator MOSFETs are presented and compared with single material gate silicon-on-insulator MOSFET structures. The results indicate that the multiple material gate structures reduce short channel effects such as drain induce barrier lowering, hot electron effect and better current characteristics in comparison with single material structures <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Short-channel%20effects%20%28SCEs%29" title="Short-channel effects (SCEs)">Short-channel effects (SCEs)</a>, <a href="https://publications.waset.org/search?q=Dual%20material%20gate%0A%28DMG%29" title=" Dual material gate (DMG)"> Dual material gate (DMG)</a>, <a href="https://publications.waset.org/search?q=Triple%20material%20gate%20%28TMG%29" title=" Triple material gate (TMG)"> Triple material gate (TMG)</a>, <a href="https://publications.waset.org/search?q=Pentamerous%20material%20gate%0A%28PMG%29." title=" Pentamerous material gate (PMG)."> Pentamerous material gate (PMG).</a> </p> <a href="https://publications.waset.org/11808/investigation-of-multiple-material-gate-impact-on-short-channel-effects-and-reliability-of-nanoscale-soi-mosfets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11808/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11808/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11808/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11808/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11808/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11808/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11808/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11808/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11808/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11808/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2006</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Local Dynamic Mechanical Properties of Native Porcine Endplate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Sepitka">J. Sepitka</a>, <a href="https://publications.waset.org/search?q=J.%20Lukes"> J. Lukes</a>, <a href="https://publications.waset.org/search?q=J.%20Reznicek"> J. Reznicek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hysitron TriboIndenterTM TI 950 system has been used for studying the local viscoelastic properties of porcine intervertebral disc end plate by means of nanoscale mechanical dynamic analysis. The specimen of an endplate was cut from fresh porcine vertebra dissected from 16 month animal. The lumbar spine motion segments were dissected and 5 millimeter thick plates of vertebral body, endplate and annulus fibrosus were prepared for nanoindentation. The surface of the sample was kept in physiological solution during nanoindentation experiment. We obtained mechanical characteristics of different areas of native endplate (endplate middle and vertebra and annulus fibrosus boundary). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=nanoindentation" title="nanoindentation">nanoindentation</a>, <a href="https://publications.waset.org/search?q=DMA" title=" DMA"> DMA</a>, <a href="https://publications.waset.org/search?q=endplate" title=" endplate"> endplate</a>, <a href="https://publications.waset.org/search?q=cartilage" title=" cartilage"> cartilage</a> </p> <a href="https://publications.waset.org/7775/local-dynamic-mechanical-properties-of-native-porcine-endplate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7775/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7775/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7775/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7775/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7775/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7775/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7775/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7775/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7775/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7775/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1838</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Simulation of High Performance Nanoscale Partially Depleted SOI n-MOSFET Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fatima%20Zohra%20Rahou">Fatima Zohra Rahou</a>, <a href="https://publications.waset.org/search?q=A.%20Guen%20Bouazza"> A. Guen Bouazza</a>, <a href="https://publications.waset.org/search?q=B.%20Bouazza"> B. Bouazza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Invention of transistor is the foundation of electronics industry. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) has been the key for the development of nanoelectronics technology. In the first part of this manuscript, we present a new generation of MOSFET transistors based on SOI (Silicon-On-Insulator) technology. It is a partially depleted Silicon-On-Insulator (PD SOI MOSFET) transistor simulated by using SILVACO software. This work was completed by the presentation of some results concerning the influence of parameters variation (channel length L and gate oxide thickness Tox) on our PDSOI n-MOSFET structure on its drain current and kink effect.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=SOI%20technology" title="SOI technology">SOI technology</a>, <a href="https://publications.waset.org/search?q=PDSOI%20MOSFET" title=" PDSOI MOSFET"> PDSOI MOSFET</a>, <a href="https://publications.waset.org/search?q=FDSOI%20MOSFET" title=" FDSOI MOSFET"> FDSOI MOSFET</a>, <a href="https://publications.waset.org/search?q=Kink%20Effect" title=" Kink Effect"> Kink Effect</a>, <a href="https://publications.waset.org/search?q=SILVACO%20TCAD." title=" SILVACO TCAD."> SILVACO TCAD.</a> </p> <a href="https://publications.waset.org/10006915/simulation-of-high-performance-nanoscale-partially-depleted-soi-n-mosfet-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006915/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006915/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006915/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006915/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006915/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006915/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006915/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006915/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006915/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006915/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">986</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> On-Chip Aging Sensor Circuit Based on Phase Locked Loop Circuit </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ararat%20Khachatryan">Ararat Khachatryan</a>, <a href="https://publications.waset.org/search?q=Davit%20Mirzoyan"> Davit Mirzoyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In sub micrometer technology, the aging phenomenon starts to have a significant impact on the reliability of integrated circuits by bringing performance degradation. For that reason, it is important to have a capability to evaluate the aging effects accurately. This paper presents an accurate aging measurement approach based on phase-locked loop (PLL) and voltage-controlled oscillator (VCO) circuit. The architecture is rejecting the circuit self-aging effect from the characteristics of PLL, which is generating the frequency without any aging phenomena affects. The aging monitor is implemented in low power 32 nm CMOS technology, and occupies a pretty small area. Aging simulation results show that the proposed aging measurement circuit improves accuracy by about 2.8% at high temperature and 19.6% at high voltage.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanoscale" title="Nanoscale">Nanoscale</a>, <a href="https://publications.waset.org/search?q=aging" title=" aging"> aging</a>, <a href="https://publications.waset.org/search?q=effect" title=" effect"> effect</a>, <a href="https://publications.waset.org/search?q=NBTI" title=" NBTI"> NBTI</a>, <a href="https://publications.waset.org/search?q=HCI." title=" HCI. "> HCI. </a> </p> <a href="https://publications.waset.org/10006573/on-chip-aging-sensor-circuit-based-on-phase-locked-loop-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006573/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006573/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006573/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006573/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006573/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006573/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006573/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006573/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006573/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006573/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1423</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Molecular Electronic Devices based on Carotenoid Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Vicente%20F.%20P.%20Aleixo">Vicente F. P. Aleixo</a>, <a href="https://publications.waset.org/search?q=Augusto%20C.%20F.%20Saraiva"> Augusto C. F. Saraiva</a>, <a href="https://publications.waset.org/search?q=Jordan%20Del%20Nero"> Jordan Del Nero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of devices in nanoscale with specific molecular rectifying function is one of the most significant goals in state-of-art technology. In this work we show by ab initio quantum mechanics calculations coupled with non-equilibrium Green function, the design of an organic two-terminal device. These molecular structures have molecular source and drain with several bridge length (from five up to 11 double bonds). Our results are consistent with significant features as a molecular rectifier and can be raised up as: (a) it can be used as bi-directional symmetrical rectifier; (b) two devices integrated in one (FET with one operational region, and Thyristor thiristor); (c) Inherent stability due small intrinsic capacitance under forward/reverse bias. We utilize a scheme for the transport mechanism based on previous properties of ¤Ç bonds type that can be successfully utilized to construct organic nanodevices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ab%20initio" title="ab initio">ab initio</a>, <a href="https://publications.waset.org/search?q=Carotenoid" title=" Carotenoid"> Carotenoid</a>, <a href="https://publications.waset.org/search?q=Charge%20Transfer" title=" Charge Transfer"> Charge Transfer</a>, <a href="https://publications.waset.org/search?q=Nanodevice" title=" Nanodevice"> Nanodevice</a> </p> <a href="https://publications.waset.org/6836/molecular-electronic-devices-based-on-carotenoid-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6836/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6836/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6836/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6836/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6836/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6836/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6836/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6836/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6836/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6836/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1624</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Multi-Functional Insect Cuticles: Informative Designs for Man-Made Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hsuan-Ming%20S%20Hu">Hsuan-Ming S Hu</a>, <a href="https://publications.waset.org/search?q=Jolanta%20A%20Watson"> Jolanta A Watson</a>, <a href="https://publications.waset.org/search?q=Bronwen%20W%20Cribb"> Bronwen W Cribb</a>, <a href="https://publications.waset.org/search?q=Gregory%20S%20Watson"> Gregory S Watson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomimicry has many potential benefits as many technologies found in nature are superior to their man-made counterparts. As technological device components approach the micro and nanoscale, surface properties such as surface adhesion and friction may need to be taken into account. Lowering surface adhesion by manipulating chemistry alone might no longer be sufficient for such components and thus physical manipulation may be required. Adhesion reduction is only one of the many surface functions displayed by micro/nano-structured cuticles of insects. Here, we present a mini review of our understanding of insect cuticle structures and the relationship between the structure dimensions and the corresponding functional mechanisms. It may be possible to introduce additional properties to material surfaces (indeed multi-functional properties) based on the design of natural surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biomimicry" title="Biomimicry">Biomimicry</a>, <a href="https://publications.waset.org/search?q=micro%2Fnanostructures" title=" micro/nanostructures"> micro/nanostructures</a>, <a href="https://publications.waset.org/search?q=self-cleaning%20surfaces" title=" self-cleaning surfaces"> self-cleaning surfaces</a>, <a href="https://publications.waset.org/search?q=superhydrophobicity" title=" superhydrophobicity"> superhydrophobicity</a> </p> <a href="https://publications.waset.org/7606/multi-functional-insect-cuticles-informative-designs-for-man-made-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7606/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7606/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7606/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7606/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7606/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7606/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7606/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7606/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7606/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7606/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1892</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Tailoring the Sharpness of Tungsten Nanotips via Laser Irradiation Enhanced Etching in KOH</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.%20D.%20Wang">D. D. Wang</a>, <a href="https://publications.waset.org/search?q=J.C.%20Lam"> J.C. Lam</a>, <a href="https://publications.waset.org/search?q=Z.%20H.%20Mai"> Z. H. Mai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlled modification of appropriate sharpness for nanotips is of paramount importance to develop novel materials and functional devices at a nanometer resolution. Herein, we present a reliable and unique strategy of laser irradiation enhanced physicochemical etching to manufacture super sharp tungsten tips with reproducible shape and dimension as well as high yields (~80%). The corresponding morphology structure evolution of tungsten tips and laser-tip interaction mechanisms were systematically investigated and discussed using field emission scanning electron microscope (SEM) and physical optics statistics method with different fluences under 532 nm laser irradiation. This work paves the way for exploring more accessible metallic tips applications with tunable apex diameter and aspect ratio, and, furthermore, facilitates the potential sharpening enhancement technique for other materials used in a variety of nanoscale devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Tungsten%20tip%20sharpening" title="Tungsten tip sharpening">Tungsten tip sharpening</a>, <a href="https://publications.waset.org/search?q=Laser%20irradiation" title=" Laser irradiation"> Laser irradiation</a>, <a href="https://publications.waset.org/search?q=Physicochemical%20etching" title=" Physicochemical etching"> Physicochemical etching</a>, <a href="https://publications.waset.org/search?q=Light-matter%20interaction." title=" Light-matter interaction."> Light-matter interaction.</a> </p> <a href="https://publications.waset.org/5318/tailoring-the-sharpness-of-tungsten-nanotips-via-laser-irradiation-enhanced-etching-in-koh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5318/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5318/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5318/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5318/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5318/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5318/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5318/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5318/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5318/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5318/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1954</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> An Approach for Modeling CMOS Gates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Spyridon%20Nikolaidis">Spyridon Nikolaidis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A modeling approach for CMOS gates is presented based on the use of the equivalent inverter. A new model for the inverter has been developed using a simplified transistor current model which incorporates the nanoscale effects for the planar technology. Parametric expressions for the output voltage are provided as well as the values of the output and supply current to be compatible with the CCS technology. The model is parametric according the input signal slew, output load, transistor widths, supply voltage, temperature and process. The transistor widths of the equivalent inverter are determined by HSPICE simulations and parametric expressions are developed for that using a fitting procedure. Results for the NAND gate shows that the proposed approach offers sufficient accuracy with an average error in propagation delay about 5%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CMOS%20gate%20modeling" title="CMOS gate modeling">CMOS gate modeling</a>, <a href="https://publications.waset.org/search?q=Inverter%20modeling" title=" Inverter modeling"> Inverter modeling</a>, <a href="https://publications.waset.org/search?q=transistor%0D%0Acurrent%20model" title=" transistor current model"> transistor current model</a>, <a href="https://publications.waset.org/search?q=timing%20model." title=" timing model."> timing model.</a> </p> <a href="https://publications.waset.org/10000015/an-approach-for-modeling-cmos-gates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000015/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000015/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000015/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000015/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000015/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000015/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000015/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000015/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000015/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000015/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2027</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Reduction of Leakage Power in Digital Logic Circuits Using Stacking Technique in 45 Nanometer Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.K.%20Sharma">P.K. Sharma</a>, <a href="https://publications.waset.org/search?q=B.%20Bhargava"> B. Bhargava</a>, <a href="https://publications.waset.org/search?q=S.%20Akashe"> S. Akashe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Power dissipation due to leakage current in the digital circuits is a biggest factor which is considered specially while designing nanoscale circuits. This paper is exploring the ideas of reducing leakage current in static CMOS circuits by stacking the transistors in increasing numbers. Clearly it means that the stacking of OFF transistors in large numbers result a significant reduction in power dissipation. Increase in source voltage of NMOS transistor minimizes the leakage current. Thus stacking technique makes circuit with minimum power dissipation losses due to leakage current. Also some of digital circuits such as full adder, D flip flop and 6T SRAM have been simulated in this paper, with the application of reduction technique on &lsquo;cadence virtuoso tool&rsquo; using specter at 45nm technology with supply voltage 0.7V.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Stack" title="Stack">Stack</a>, <a href="https://publications.waset.org/search?q=6T%20SRAM%20cell" title=" 6T SRAM cell"> 6T SRAM cell</a>, <a href="https://publications.waset.org/search?q=low%20power" title=" low power"> low power</a>, <a href="https://publications.waset.org/search?q=threshold%20voltage" title=" threshold voltage"> threshold voltage</a> </p> <a href="https://publications.waset.org/17356/reduction-of-leakage-power-in-digital-logic-circuits-using-stacking-technique-in-45-nanometer-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17356/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17356/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17356/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17356/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17356/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17356/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17356/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17356/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17356/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17356/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3421</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Characterization of Lubricity of Mucins at Polymeric Surfaces for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Seunghwan%20Lee">Seunghwan Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lubricating properties of commercially available mucins originating from different animal organs, namely bovine submaxillary mucin (BSM) and porcine gastric mucin (PGM), have been characterized at polymeric surfaces for biomedical applications. Atomic force microscopy (AFM) and pin-on-disk tribometry have been employed for tribological studies at nanoscale and macroscale contacts, respectively. Polystyrene (PS) was employed to represent ‘rigid’ contacts, whereas poly(dimethylsiloxane) (PDMS) was employed to represent ‘soft contacts’. To understand the lubricating properties of mucins in correlation with the coverage on surfaces, adsorption properties of mucins onto the polymeric substrates have been characterized by means of optical waveguide light-mode spectroscopy (OWLS). Both mucins showed facile adsorption onto both polymeric substrates, but the lubricity was highly dependent upon the pH change between 2 and 7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bovine%20submaxillary%20mucin%20%28BSM%29" title="Bovine submaxillary mucin (BSM)">Bovine submaxillary mucin (BSM)</a>, <a href="https://publications.waset.org/search?q=Porcine%20Gastric%20Mucin%20%28PGM%29" title=" Porcine Gastric Mucin (PGM)"> Porcine Gastric Mucin (PGM)</a>, <a href="https://publications.waset.org/search?q=lubricity" title=" lubricity"> lubricity</a>, <a href="https://publications.waset.org/search?q=biomedical." title=" biomedical."> biomedical.</a> </p> <a href="https://publications.waset.org/1731/characterization-of-lubricity-of-mucins-at-polymeric-surfaces-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1731/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1731/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1731/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1731/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1731/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1731/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1731/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1731/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1731/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1731/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2359</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> A Novel 14 nm Extended Body FinFET for Reduced Corner Effect, Self-Heating Effect, and Increased Drain Current</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Cheng-Hsien%20Chang">Cheng-Hsien Chang</a>, <a href="https://publications.waset.org/search?q=Jyi-Tsong%20Lin"> Jyi-Tsong Lin</a>, <a href="https://publications.waset.org/search?q=Po-Hsieh%20Lin"> Po-Hsieh Lin</a>, <a href="https://publications.waset.org/search?q=Hung-Pei%20Hsu"> Hung-Pei Hsu</a>, <a href="https://publications.waset.org/search?q=Chan-Hsiang%20Chang"> Chan-Hsiang Chang</a>, <a href="https://publications.waset.org/search?q=Ming-Tsung%20Shih"> Ming-Tsung Shih</a>, <a href="https://publications.waset.org/search?q=Shih-Chuan%20Tseng"> Shih-Chuan Tseng</a>, <a href="https://publications.waset.org/search?q=Min-Yan%20Lin"> Min-Yan Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have proposed a novel FinFET with extended body under the poly gate, which is called EB-FinFET, and its characteristic is demonstrated by using three-dimensional (3-D) numerical simulation. We have analyzed and compared it with conventional FinFET. The extended body height dependence on the drain induced barrier lowering (DIBL) and subthreshold swing (S.S) have been also investigated. According to the 3-D numerical simulation, the proposed structure has a firm structure, an acceptable short channel effect (SCE), a reduced series resistance, an increased on state drain current (I on) and a large normalized I DS. Furthermore, the structure can also improve corner effect and reduce self-heating effect due to the extended body. Our results show that the EBFinFET is excellent for nanoscale device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=SOI" title="SOI">SOI</a>, <a href="https://publications.waset.org/search?q=FinFET" title=" FinFET"> FinFET</a>, <a href="https://publications.waset.org/search?q=tri-gate" title=" tri-gate"> tri-gate</a>, <a href="https://publications.waset.org/search?q=self-heating%20effect." title=" self-heating effect."> self-heating effect.</a> </p> <a href="https://publications.waset.org/11685/a-novel-14-nm-extended-body-finfet-for-reduced-corner-effect-self-heating-effect-and-increased-drain-current" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11685/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11685/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11685/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11685/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11685/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11685/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11685/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11685/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11685/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11685/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2801</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite – A Molecular Dynamics Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Mohan">R. Mohan</a>, <a href="https://publications.waset.org/search?q=V.%20Jadhav"> V. Jadhav</a>, <a href="https://publications.waset.org/search?q=A.%20Ahmed"> A. Ahmed</a>, <a href="https://publications.waset.org/search?q=J.%20Rivas"> J. Rivas</a>, <a href="https://publications.waset.org/search?q=A.%20Kelkar"> A. Kelkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular / nanoscale models is demonstrated.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cement%20composite" title="Cement composite">Cement composite</a>, <a href="https://publications.waset.org/search?q=Mechanical%20Properties" title=" Mechanical Properties"> Mechanical Properties</a>, <a href="https://publications.waset.org/search?q=Molecular%20Dynamics" title=" Molecular Dynamics"> Molecular Dynamics</a>, <a href="https://publications.waset.org/search?q=Plasticizer%20additives." title=" Plasticizer additives."> Plasticizer additives.</a> </p> <a href="https://publications.waset.org/9997342/effect-of-plasticizer-additives-on-the-mechanical-properties-of-cement-composite-a-molecular-dynamics-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997342/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997342/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997342/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997342/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997342/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997342/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997342/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997342/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997342/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997342/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2568</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> A Novel Source/Drain-to-Gate Non-overlap MOSFET to Reduce Gate Leakage Current in Nano Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ashwani%20K.%20Rana">Ashwani K. Rana</a>, <a href="https://publications.waset.org/search?q=Narottam%20Chand"> Narottam Chand</a>, <a href="https://publications.waset.org/search?q=Vinod%20Kapoor"> Vinod Kapoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, gate leakage current has been mitigated by the use of novel nanoscale MOSFET with Source/Drain-to-Gate Non-overlapped and high-k spacer structure for the first time. A compact analytical model has been developed to study the gate leakage behaviour of proposed MOSFET structure. The result obtained has found good agreement with the Sentaurus Simulation. Fringing gate electric field through the dielectric spacer induces inversion layer in the non-overlap region to act as extended S/D region. It is found that optimal Source/Drain-to-Gate Non-overlapped and high-k spacer structure has reduced the gate leakage current to great extent as compared to those of an overlapped structure. Further, the proposed structure had improved off current, subthreshold slope and DIBL characteristic. It is concluded that this structure solves the problem of high leakage current without introducing the extra series resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gate%20tunneling%20current" title="Gate tunneling current">Gate tunneling current</a>, <a href="https://publications.waset.org/search?q=analytical%20model" title=" analytical model"> analytical model</a>, <a href="https://publications.waset.org/search?q=spacer%0Adielectrics" title=" spacer dielectrics"> spacer dielectrics</a>, <a href="https://publications.waset.org/search?q=DIBL" title=" DIBL"> DIBL</a>, <a href="https://publications.waset.org/search?q=subthreshold%20slope." title=" subthreshold slope."> subthreshold slope.</a> </p> <a href="https://publications.waset.org/3314/a-novel-sourcedrain-to-gate-non-overlap-mosfet-to-reduce-gate-leakage-current-in-nano-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3314/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3314/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3314/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3314/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3314/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3314/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3314/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3314/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3314/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3314/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2606</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Finite Element Modeling of two-dimensional Nanoscale Structures with Surface Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Weifeng%20Wang">Weifeng Wang</a>, <a href="https://publications.waset.org/search?q=Xianwei%20Zeng"> Xianwei Zeng</a>, <a href="https://publications.waset.org/search?q=Jianping%20Ding"> Jianping Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials have attracted considerable attention during the last two decades, due to their unusual electrical, mechanical and other physical properties as compared with their bulky counterparts. The mechanical properties of nanostructured materials show strong size dependency, which has been explained within the framework of continuum mechanics by including the effects of surface stress. The size-dependent deformations of two-dimensional nanosized structures with surface effects are investigated in the paper by the finite element method. Truss element is used to evaluate the contribution of surface stress to the total potential energy and the Gurtin and Murdoch surface stress model is implemented with ANSYS through its user programmable features. The proposed approach is used to investigate size-dependent stress concentration around a nanosized circular hole and the size-dependent effective moduli of nanoporous materials. Numerical results are compared with available analytical results to validate the proposed modeling approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanomaterials" title="Nanomaterials">Nanomaterials</a>, <a href="https://publications.waset.org/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/search?q=sizedependency" title=" sizedependency"> sizedependency</a>, <a href="https://publications.waset.org/search?q=surface%20stress" title=" surface stress"> surface stress</a> </p> <a href="https://publications.waset.org/1354/finite-element-modeling-of-two-dimensional-nanoscale-structures-with-surface-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1354/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1354/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1354/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1354/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1354/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1354/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1354/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1354/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1354/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1354/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2782</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> A Comparison Study of Electrical Characteristics in Conventional Multiple-gate Silicon Nanowire Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fatemeh%20Karimi">Fatemeh Karimi</a>, <a href="https://publications.waset.org/search?q=Morteza%20Fathipour"> Morteza Fathipour</a>, <a href="https://publications.waset.org/search?q=Hamdam%20Ghanatian"> Hamdam Ghanatian</a>, <a href="https://publications.waset.org/search?q=Vala%20Fathipour"> Vala Fathipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper electrical characteristics of various kinds of multiple-gate silicon nanowire transistors (SNWT) with the channel length equal to 7 nm are compared. A fully ballistic quantum mechanical transport approach based on NEGF was employed to analyses electrical characteristics of rectangular and cylindrical silicon nanowire transistors as well as a Double gate MOS FET. A double gate, triple gate, and gate all around nano wires were studied to investigate the impact of increasing the number of gates on the control of the short channel effect which is important in nanoscale devices. Also in the case of triple gate rectangular SNWT inserting extra gates on the bottom of device can improve the application of device. The results indicate that by using gate all around structures short channel effects such as DIBL, subthreshold swing and delay reduces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=SNWT%20%28silicon%20nanowire%20transistor%29" title="SNWT (silicon nanowire transistor)">SNWT (silicon nanowire transistor)</a>, <a href="https://publications.waset.org/search?q=non%20equilibriumGreen%27s%20function%20%28NEGF%29" title=" non equilibriumGreen&#039;s function (NEGF)"> non equilibriumGreen&#039;s function (NEGF)</a>, <a href="https://publications.waset.org/search?q=double%20gate%20%28DG%29" title=" double gate (DG)"> double gate (DG)</a>, <a href="https://publications.waset.org/search?q=triple%20gate%20%28TG%29" title=" triple gate (TG)"> triple gate (TG)</a>, <a href="https://publications.waset.org/search?q=multiple%20gate" title="multiple gate">multiple gate</a>, <a href="https://publications.waset.org/search?q=cylindrical%20nano%20wire%20%28CW%29" title=" cylindrical nano wire (CW)"> cylindrical nano wire (CW)</a>, <a href="https://publications.waset.org/search?q=rectangular%20nano%20wire%28RW%29" title=" rectangular nano wire(RW)"> rectangular nano wire(RW)</a>, <a href="https://publications.waset.org/search?q=Poisson_%20Schr%C3%B6dinger%20solver" title=" Poisson_ Schrödinger solver"> Poisson_ Schrödinger solver</a>, <a href="https://publications.waset.org/search?q=drain%20induced%20barrier%20lowering%28DIBL%29." title=" drain induced barrier lowering(DIBL)."> drain induced barrier lowering(DIBL).</a> </p> <a href="https://publications.waset.org/497/a-comparison-study-of-electrical-characteristics-in-conventional-multiple-gate-silicon-nanowire-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/497/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/497/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/497/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/497/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/497/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/497/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/497/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/497/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/497/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/497/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2081</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Analysis of Performance of 3T1D Dynamic Random-Access Memory Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nawang%20Chhunid">Nawang Chhunid</a>, <a href="https://publications.waset.org/search?q=Gagnesh%20Kumar"> Gagnesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On-chip memories consume a significant portion of the overall die space and power in modern microprocessors. On-chip caches depend on Static Random-Access Memory (SRAM) cells and scaling of technology occurring as per Moore’s law. Unfortunately, the scaling is affecting stability, performance, and leakage power which will become major problems for future SRAMs in aggressive nanoscale technologies due to increasing device mismatch and variations. 3T1D Dynamic Random-Access Memory (DRAM) cell is a non-destructive read DRAM cell with three transistors and a gated diode. In 3T1D DRAM cell gated diode (D1) acts as a storage device and also as an amplifier, which leads to fast read access. Due to its high tolerance to process variation, high density, and low cost of memory as compared to 6T SRAM cell, it is universally used by the advanced microprocessor for on chip data and program memory. In the present paper, it has been shown that 3T1D DRAM cell can perform better in terms of fast read access as compared to 6T, 4T, 3T SRAM cells, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=DRAM%20cell" title="DRAM cell">DRAM cell</a>, <a href="https://publications.waset.org/search?q=read%20access%20time" title=" read access time"> read access time</a>, <a href="https://publications.waset.org/search?q=tanner%20EDA%20tool%20write%20access%20time%20and%20retention%20time" title=" tanner EDA tool write access time and retention time"> tanner EDA tool write access time and retention time</a>, <a href="https://publications.waset.org/search?q=average%20power%20dissipation." title=" average power dissipation."> average power dissipation.</a> </p> <a href="https://publications.waset.org/10004936/analysis-of-performance-of-3t1d-dynamic-random-access-memory-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004936/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004936/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004936/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004936/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004936/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004936/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004936/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004936/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004936/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004936/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1340</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Lab Activities for Introducing Nanoscience to Teachers and Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Riam%20Abu-Much">Riam Abu-Much</a>, <a href="https://publications.waset.org/search?q=Muhamad%20Hugerat"> Muhamad Hugerat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Nanoscience has become one of the main science fields in the world; its importance is reflected in both society and industry; therefore, it is very important to intensify educational programs among teachers and students that aim to introduce &quot;Nano Concepts&quot; to them. Two different lab activities were developed for demonstrating the importance of nanoscale materials using unique points of view. In the first, electrical conductive films made of silver nanoparticles were fabricated. The silver nanoparticles were protected against aggregation using electrical conductive polypyrrole, which acts also as conductive bridge between them. The experiments show a simpler way for fabricating conductive thin film than the much more complicated and costly conventional method. In the second part, the participants could produce emulsions of liposome structures using Phosphatidylcholine as a surfactant, and following by minimizing the size of it from micro-scale to nanometer scale (400 nm), using simple apparatus called Mini-Extruder, in that way the participants could realize the change in solution transparency, and the effect of Tyndall when the size of the liposomes is reduced. Freshmen students from the Academic Arab College for Education in Haifa, Israel, who are studying to become science teachers, participated in this lab activity as part of the course &quot;Chemistry in the Lab&quot;. These experiments are appropriate for teachers, high school and college students.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Case%20study" title="Case study">Case study</a>, <a href="https://publications.waset.org/search?q=colloid" title=" colloid"> colloid</a>, <a href="https://publications.waset.org/search?q=emulsion" title=" emulsion"> emulsion</a>, <a href="https://publications.waset.org/search?q=liposome" title=" liposome"> liposome</a>, <a href="https://publications.waset.org/search?q=surfactant." title=" surfactant."> surfactant.</a> </p> <a href="https://publications.waset.org/10006990/lab-activities-for-introducing-nanoscience-to-teachers-and-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006990/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006990/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006990/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006990/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006990/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006990/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006990/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006990/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006990/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006990/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">947</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Production of Energetic Nanomaterials by Spray Flash Evaporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Martin%20Klaum%C3%BCnzer">Martin Klaumünzer</a>, <a href="https://publications.waset.org/search?q=Jakob%20H%C3%BCbner"> Jakob Hübner</a>, <a href="https://publications.waset.org/search?q=Denis%20Spitzer"> Denis Spitzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Continuous%20synthesis" title="Continuous synthesis">Continuous synthesis</a>, <a href="https://publications.waset.org/search?q=energetic%20material" title=" energetic material"> energetic material</a>, <a href="https://publications.waset.org/search?q=nanoscale" title=" nanoscale"> nanoscale</a>, <a href="https://publications.waset.org/search?q=nanothermite" title=" nanothermite"> nanothermite</a>, <a href="https://publications.waset.org/search?q=nanoexplosive." title=" nanoexplosive."> nanoexplosive.</a> </p> <a href="https://publications.waset.org/10005350/production-of-energetic-nanomaterials-by-spray-flash-evaporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005350/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005350/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005350/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005350/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005350/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005350/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005350/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005350/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005350/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005350/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1438</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=nanoscale&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=nanoscale&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10