CINXE.COM

Search results for: J. Rivas

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: J. Rivas</title> <meta name="description" content="Search results for: J. Rivas"> <meta name="keywords" content="J. Rivas"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="J. Rivas" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="J. Rivas"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: J. Rivas</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Seismic Performance Point of RC Frame Buildings Using ATC-40, FEMA 356 and FEMA 440 Guidelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gram%20Y.%20Rivas%20Sanchez">Gram Y. Rivas Sanchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic design codes in the world allow the analysis of structures considering an elastic-linear behavior; however, against earthquakes, the structures exhibit non-linear behaviors that induce damage to their elements. For this reason, it is necessary to use non-linear methods to analyze these structures, being the dynamic methods that provide more reliable results but require a lot of computational costs; on the other hand, non-linear static methods do not have this disadvantage and are being used more and more. In the present work, the nonlinear static analysis (pushover) of RC frame buildings of three, five, and seven stories is carried out considering models of concentrated plasticity using plastic hinges; and the seismic performance points are determined using ATC-40, FEMA 356, and FEMA 440 guidelines. Using this last standard, the highest inelastic displacements and basal shears are obtained, providing designs that are more conservative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pushover" title="pushover">pushover</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20building" title=" RC building"> RC building</a>, <a href="https://publications.waset.org/abstracts/search?q=FEMA%20440" title=" FEMA 440"> FEMA 440</a>, <a href="https://publications.waset.org/abstracts/search?q=ATC%2040" title=" ATC 40"> ATC 40</a> </p> <a href="https://publications.waset.org/abstracts/136822/seismic-performance-point-of-rc-frame-buildings-using-atc-40-fema-356-and-fema-440-guidelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danilo%20L%C3%B3pez">Danilo López</a>, <a href="https://publications.waset.org/abstracts/search?q=Johana%20Hern%C3%A1ndez"> Johana Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Rivas"> Edwin Rivas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20user" title=" primary user"> primary user</a> </p> <a href="https://publications.waset.org/abstracts/61993/algorithm-and-software-based-on-multilayer-perceptron-neural-networks-for-estimating-channel-use-in-the-spectral-decision-stage-in-cognitive-radio-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danilo%20L%C3%B3pez">Danilo López</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Rivas"> Edwin Rivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Pedraza"> Fernando Pedraza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title=" cognitive radio"> cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20primary%20user" title=" prediction primary user"> prediction primary user</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA" title=" RNA"> RNA</a> </p> <a href="https://publications.waset.org/abstracts/63037/use-of-artificial-intelligence-based-models-to-estimate-the-use-of-a-spectral-band-in-cognitive-radio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danilo%20L%C3%B3pez">Danilo López</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Rivas"> Edwin Rivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Leyla%20L%C3%B3pez"> Leyla López</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20station" title=" base station"> base station</a>, <a href="https://publications.waset.org/abstracts/search?q=best%20effort" title=" best effort"> best effort</a>, <a href="https://publications.waset.org/abstracts/search?q=MLPNN" title=" MLPNN"> MLPNN</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time" title=" real time"> real time</a> </p> <a href="https://publications.waset.org/abstracts/62227/an-algorithm-for-determining-the-arrival-behavior-of-a-secondary-user-to-a-base-station-in-cognitive-radio-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Mohan">R. Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Jadhav"> V. Jadhav</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ahmed"> A. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Rivas"> J. Rivas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kelkar"> A. Kelkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20composite" title="cement composite">cement composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives" title=" plasticizer additives"> plasticizer additives</a> </p> <a href="https://publications.waset.org/abstracts/1528/effect-of-plasticizer-additives-on-the-mechanical-properties-of-cement-composite-a-molecular-dynamics-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Vertical Vibration Mitigation along Railway Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J%C3%BCrgen%20Keil">Jürgen Keil</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Walther"> Frank Walther</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents two innovative solutions for vertical vibration mitigation barriers including experimental and numerical investigations on the completed barriers. There is a continuing growth of exposure to noise and vibration in people´s daily lives due to the quest for more mobility and flexibility. In previous times neglected, immissions caused by vibrations can lead, for example, to secondary noise or damage in the adjacent buildings. Also people can feel very affected by vibrations. But unlike in new construction, in existing infrastructure and buildings action can be taken almost only on the transmission path of those vibrations. In the following two solutions were shown how vibrations on the transmission path can be mitigated. These are the jet grouting method and a new installation method (patent pending) by means of a prefabricated hollow box which is filled with vibration reducing mats and driven down to depth, are presented. The essential results of the numerical and experimental investigations on the completed wave barriers are included as well. This article is based on the results of a field test with the participation of Keller Holding, which was executed in the context of the European research project RIVAS (Railway Induced Vibration Abatement Solutions), and on a thesis done at the Technical University of Dresden with the involvement of BAUGRUND DRESDEN Ingenieurgesellschaft mbH and the Keller Holding GmbH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet%20grouting" title="jet grouting">jet grouting</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20way%20lines" title=" rail way lines"> rail way lines</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20vibration%20mitigation" title=" vertical vibration mitigation"> vertical vibration mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20reducing%20mats" title=" vibration reducing mats"> vibration reducing mats</a> </p> <a href="https://publications.waset.org/abstracts/44074/vertical-vibration-mitigation-along-railway-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Body, Sex and Culture: Gender Dissidences through Cinema</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piedad%20Lucia%20Bolivar%20Goez">Piedad Lucia Bolivar Goez</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Ignacio%20Garzon%20Luna"> Daniel Ignacio Garzon Luna</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Camila%20Balcero%20Angel"> Maria Camila Balcero Angel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Carolina%20Martinez%20Roman"> Sara Carolina Martinez Roman</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Natalia%20Polo%20Rivas"> Daniela Natalia Polo Rivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Liliana%20Rocha%20Guitierrez"> Sandra Liliana Rocha Guitierrez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article provides a critical analysis on the conception of disorders of sexual development (DSDs) within the bioethics framework. By means of analytical thought, the objective is to approach topics such as the rediscovery of the body, the reinvention of sexuality and link them to the liability that health personnel have to inform people about the options they have to decide over their health and body. The medicalization of sexed bodies in both psychosocial and anatomo-morpho-physiological dimensions from a legal standpoint were analyzed. Its also explored the gender stereotypes established by society and the role of laws in guaranteeing the right of autonomy that takes on greater relevance in DSD. Through this analysis, it was concluded that despite intersexuality having been analyzed by Colombia’s Constitutional Court, that it is stated as a fair entity, the stigmatization by society has not allowed these individuals to belong to an egalitarian context in which everyone has the same opportunities of access to the goods and services that they need. This leads individuals to hide their identity and expression of genre in order to be accepted in a set of contexts. Thus creating a vulnerability that the health system must be able to identify and in which it is necessary to intervene at a biopsychosocial level, in order to guarantee the protection of the individual within an unquestionable frame of equality and solidarity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disorders%20of%20sex%20development" title="disorders of sex development">disorders of sex development</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20identity" title=" gender identity"> gender identity</a>, <a href="https://publications.waset.org/abstracts/search?q=sexuality" title=" sexuality"> sexuality</a>, <a href="https://publications.waset.org/abstracts/search?q=transgender%20persons" title=" transgender persons"> transgender persons</a> </p> <a href="https://publications.waset.org/abstracts/106312/body-sex-and-culture-gender-dissidences-through-cinema" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Feasibility Study of Mine Tailing’s Treatment by Acidithiobacillus thiooxidans DSM 26636 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C3%B3mez-Ram%C3%ADrez">M. Gómez-Ramírez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rivas-Castillo"> A. Rivas-Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rodr%C3%ADguez-Pozos"> I. Rodríguez-Pozos</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Avalos-Zu%C3%B1iga"> R. A. Avalos-Zuñiga</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Rojas-Avelizapa"> N. G. Rojas-Avelizapa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the diverse types of pollutants produced by anthropogenic activities, metals represent a serious threat, due to their accumulation in ecosystems and their elevated toxicity. The mine tailings of abandoned mines contain high levels of metals such as arsenic (As), zinc (Zn), copper (Cu), and lead (Pb), which do not suffer any degradation process, they are accumulated in environment. Abandoned mine tailings potentially could contaminate rivers and aquifers representing a risk for human health due to their high metal content. In an attempt to remove the metals and thereby mitigate the environmental pollution, an environmentally friendly and economical method of bioremediation has been introduced. Bioleaching has been actively studied over the last several years, and it is one of the bioremediation solutions used to treat heavy metals contained in sewage sludge, sediment and contaminated soil. <em>Acidithiobacillus thiooxidans</em>, an extremely acidophilic, chemolithoautotrophic, gram-negative, rod shaped microorganism, which is typically related to Cu mining operations (bioleaching), has been well studied for industrial applications. The sulfuric acid produced plays a major role in bioleaching. Specifically, <em>Acidithiobacillus thiooxidans</em> strain DSM 26636 has been able to leach Al, Ni, V, Fe, Mg, Si, and Ni contained in slags from coal combustion wastes. The present study reports the ability of <em>A. thiooxidans</em> DSM 26636 for the bioleaching of metals contained in two different mine tailing samples (MT1 and MT2). It was observed that Al, Fe, and Mn were removed in 36.3&plusmn;1.7, 191.2&plusmn;1.6, and 4.5&plusmn;0.2 mg/kg for MT1, and in 74.5&plusmn;0.3, 208.3&plusmn;0.5, and 20.9&plusmn;0.1 for MT2. Besides, &lt; 1.5 mg/kg of Au and Ru were also bioleached from MT1; in MT2, bioleaching of Zn was observed at 55.7&plusmn;1.3 mg/kg, besides removal of &lt; 1.5 mg/kg was observed for As, Ir, Li, and 0.6 for Os in this residue. These results show the potential of strain DSM 26636 for the bioleaching of metals that came from different mine tailings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20thiooxidans" title="A. thiooxidans">A. thiooxidans</a>, <a href="https://publications.waset.org/abstracts/search?q=bioleaching" title=" bioleaching"> bioleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20tailings" title=" mine tailings"> mine tailings</a> </p> <a href="https://publications.waset.org/abstracts/100231/feasibility-study-of-mine-tailings-treatment-by-acidithiobacillus-thiooxidans-dsm-26636" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Creative Mathematically Modelling Videos Developed by Engineering Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esther%20Cabezas-Rivas">Esther Cabezas-Rivas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ordinary differential equations (ODE) are a fundamental part of the curriculum for most engineering degrees, and students typically have difficulties in the subsequent abstract mathematical calculations. To enhance their motivation and profit that they are digital natives, we propose a teamwork project that includes the creation of a video. It should explain how to model mathematically a real-world problem transforming it into an ODE, which should then be solved using the tools learned in the lectures. This idea was indeed implemented with first-year students of a BSc in Engineering and Management during the period of online learning caused by the outbreak of COVID-19 in Spain. Each group of 4 students was assigned a different topic: model a hot water heater, search for the shortest path, design the quickest route for delivery, cooling a computer chip, the shape of the hanging cables of the Golden Gate, detecting land mines, rocket trajectories, etc. These topics should be worked out through two complementary channels: a written report describing the problem and a 10-15 min video on the subject. The report includes the following items: description of the problem to be modeled, detailed obtention of the ODE that models the problem, its complete solution, and interpretation in the context of the original problem. We report the outcomes of this teaching in context and active learning experience, including the feedback received by the students. They highlighted the encouragement of creativity and originality, which are skills that they do not typically relate to mathematics. Additionally, the video format (unlike a common presentation) has the advantage of allowing them to critically review and self-assess the recording, repeating some parts until the result is satisfactory. As a side effect, they felt more confident about their oral abilities. In short, students agreed that they had fun preparing the video. They recognized that it was tricky to combine deep mathematical contents with entertainment since, without the latter, it is impossible to engage people to view the video till the end. Despite this difficulty, after the activity, they claimed to understand better the material, and they enjoyed showing the videos to family and friends during and after the project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20learning" title="active learning">active learning</a>, <a href="https://publications.waset.org/abstracts/search?q=contextual%20teaching" title=" contextual teaching"> contextual teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=models%20in%20differential%20equations" title=" models in differential equations"> models in differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=student-produced%20videos" title=" student-produced videos"> student-produced videos</a> </p> <a href="https://publications.waset.org/abstracts/134499/creative-mathematically-modelling-videos-developed-by-engineering-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Mediterranean Diet-Driven Changes in Gut Microbiota Decrease the Infiltration of Inflammatory Myeloid Cells into the Intestinal Tissue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gema%20Go%CC%81mez-Casado">Gema Gómez-Casado</a>, <a href="https://publications.waset.org/abstracts/search?q=Alba%20Rodri%CC%81guez-Mun%CC%83oz"> Alba Rodríguez-Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginia%20Mela-Rivas"> Virginia Mela-Rivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Kompella"> Pallavi Kompella</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Jose%CC%81%20Tinahones-Maduen%CC%83a"> Francisco José Tinahones-Madueña</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Moreno-Indias"> Isabel Moreno-Indias</a>, <a href="https://publications.waset.org/abstracts/search?q=Almudena%20Ortega-Go%CC%81mez"> Almudena Ortega-Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obesity is a high-priority health problem worldwide due to its high prevalence. The proportion of obese and overweight subjects in industrialized countries exceeds half of the population in most cases. Beyond the metabolic problem, obesity boosts inflammation levels in the organism. The gut microbiota, considered an organ by itself, controls a high variety of processes at a systemic level. In fact, the microbiota interacts closely with the immune system, being crucial in determining the maturation state of neutrophils, key effectors of the innate immune response. It is known that changes in the diet exert strong effects on the variety and activity of the gut microbiota. The effect that those changes have on the axis microbiota-immune response is an unexplored field. In this study, 10 patients with obesity (weight 114,3 ± 14,5Kg, BMI 40,47±3,66) followed a Mediterranean-hypocaloric diet for 3 months, reducing their initial weight by 12,71 ± 3%. A transplant of microbiota from these patients before and after the diet was performed into wild type “germ-free” mice (n=10/group), treated with antibiotics. Six weeks after the transplant, mice were euthanized, and the presence of cells from the innate immune system were analysed in different organs (bone marrow, blood, spleen, visceral adipose tissue, and intestine) by flow cytometry. No differences were observed in the number of myeloid cells in bone marrow, blood, spleen, or visceral adipose tissue of mice transplanted with patient’s microbiota before and after following the Mediterranean diet. However, the intestine of mice that received post-diet microbiota presented a marked decrease in the number of neutrophils (whose presence is associated with tissue inflammation), as well as macrophages. In line with these findings, intestine monocytes from mice with post-diet microbiota showed a less inflammatory profile (lower Ly6Gˡᵒʷ proportion of cells). These results point toward a decrease in the inflammatory state of the intestinal tissue, derived from changes in the gut microbiota, which occurred after a 3-month Mediterranean diet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obesity" title="obesity">obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediterranean%20diet" title=" Mediterranean diet"> Mediterranean diet</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20system" title=" immune system"> immune system</a> </p> <a href="https://publications.waset.org/abstracts/157501/mediterranean-diet-driven-changes-in-gut-microbiota-decrease-the-infiltration-of-inflammatory-myeloid-cells-into-the-intestinal-tissue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Bioleaching of Metals Contained in Spent Catalysts by Acidithiobacillus thiooxidans DSM 26636</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrea%20M.%20Rivas-Castillo">Andrea M. Rivas-Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Marlenne%20G%C3%B3mez-Ramirez"> Marlenne Gómez-Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Isela%20Rodr%C3%ADguez-Pozos"> Isela Rodríguez-Pozos</a>, <a href="https://publications.waset.org/abstracts/search?q=Norma%20G.%20Rojas-Avelizapa"> Norma G. Rojas-Avelizapa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spent catalysts are considered as hazardous residues of major concern, mainly due to the simultaneous presence of several metals in elevated concentrations. Although hydrometallurgical, pyrometallurgical and chelating agent methods are available to remove and recover some metals contained in spent catalysts; these procedures generate potentially hazardous wastes and the emission of harmful gases. Thus, biotechnological treatments are currently gaining importance to avoid the negative impacts of chemical technologies. To this end, diverse microorganisms have been used to assess the removal of metals from spent catalysts, comprising bacteria, archaea and fungi, whose resistance and metal uptake capabilities differ depending on the microorganism tested. Acidophilic sulfur oxidizing bacteria have been used to investigate the biotreatment and extraction of valuable metals from spent catalysts, namely <em>Acidithiobacillus thiooxidans</em> and <em>Acidithiobacillus</em> <em>ferroxidans</em>, as they present the ability to produce leaching agents such as sulfuric acid and sulfur oxidation intermediates. In the present work, the ability of <em>A. thiooxidans</em> DSM 26636 for the bioleaching of metals contained in five different spent catalysts was assessed by growing the culture in modified Starkey mineral medium (with elemental sulfur at 1%, w/v), and 1% (w/v) pulp density of each residue for up to 21 days at 30 &deg;C and 150 rpm. Sulfur-oxidizing activity was periodically evaluated by determining sulfate concentration in the supernatants according to the NMX-k-436-1977 method. The production of sulfuric acid was assessed in the supernatants as well, by a titration procedure using NaOH 0.5 M with bromothymol blue as acid-base indicator, and by measuring pH using a digital potentiometer. On the other hand, Inductively Coupled Plasma - Optical Emission Spectrometry was used to analyze metal removal from the five different spent catalysts by <em>A. thiooxidans</em> DSM 26636. Results obtained show that, as could be expected, sulfuric acid production is directly related to the diminish of pH, and also to highest metal removal efficiencies. It was observed that Al and Fe are recurrently removed from refinery spent catalysts regardless of their origin and previous usage, although these removals may vary from 9.5 &plusmn; 2.2 to 439 &plusmn; 3.9 mg/kg for Al, and from 7.13 &plusmn; 0.31 to 368.4 &plusmn; 47.8 mg/kg for Fe, depending on the spent catalyst proven. Besides, bioleaching of metals like Mg, Ni, and Si was also obtained from automotive spent catalysts, which removals were of up to 66 &plusmn; 2.2, 6.2&plusmn;0.07, and 100&plusmn;2.4, respectively. Hence, the data presented here exhibit the potential of <em>A. thiooxidans</em> DSM 26636 for the simultaneous bioleaching of metals contained in spent catalysts from diverse provenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioleaching" title="bioleaching">bioleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20removal" title=" metal removal"> metal removal</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20catalysts" title=" spent catalysts"> spent catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=Acidithiobacillus%20thiooxidans" title=" Acidithiobacillus thiooxidans"> Acidithiobacillus thiooxidans</a> </p> <a href="https://publications.waset.org/abstracts/99618/bioleaching-of-metals-contained-in-spent-catalysts-by-acidithiobacillus-thiooxidans-dsm-26636" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Material Chemistry Level Deformation and Failure in Cementitious Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20V.%20Mohan">Ram V. Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Rivas-Murillo"> John Rivas-Murillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mohamed"> Ahmed Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Wayne%20D.%20Hodo"> Wayne D. Hodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cementitious%20materials" title="cementitious materials">cementitious materials</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20chemistry%20modeling" title=" material chemistry modeling"> material chemistry modeling</a> </p> <a href="https://publications.waset.org/abstracts/24900/material-chemistry-level-deformation-and-failure-in-cementitious-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Superparamagnetic Sensor with Lateral Flow Immunoassays as Platforms for Biomarker Quantification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Salvador">M. Salvador</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Martinez-Garcia"> J. C. Martinez-Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Moyano"> A. Moyano</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Blanco-Lopez"> M. C. Blanco-Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rivas"> M. Rivas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosensors play a crucial role in the detection of molecules nowadays due to their advantages of user-friendliness, high selectivity, the analysis in real time and in-situ applications. Among them, Lateral Flow Immunoassays (LFIAs) are presented among technologies for point-of-care bioassays with outstanding characteristics such as affordability, portability and low-cost. They have been widely used for the detection of a vast range of biomarkers, which do not only include proteins but also nucleic acids and even whole cells. Although the LFIA has traditionally been a positive/negative test, tremendous efforts are being done to add to the method the quantifying capability based on the combination of suitable labels and a proper sensor. One of the most successful approaches involves the use of magnetic sensors for detection of magnetic labels. Bringing together the required characteristics mentioned before, our research group has developed a biosensor to detect biomolecules. Superparamagnetic nanoparticles (SPNPs) together with LFIAs play the fundamental roles. SPMNPs are detected by their interaction with a high-frequency current flowing on a printed micro track. By means of the instant and proportional variation of the impedance of this track provoked by the presence of the SPNPs, quantitative and rapid measurement of the number of particles can be obtained. This way of detection requires no external magnetic field application, which reduces the device complexity. On the other hand, the major limitations of LFIAs are that they are only qualitative or semiquantitative when traditional gold or latex nanoparticles are used as color labels. Moreover, the necessity of always-constant ambient conditions to get reproducible results, the exclusive detection of the nanoparticles on the surface of the membrane, and the short durability of the signal are drawbacks that can be advantageously overcome with the design of magnetically labeled LFIAs. The approach followed was to coat the SPIONs with a specific monoclonal antibody which targets the protein under consideration by chemical bonds. Then, a sandwich-type immunoassay was prepared by printing onto the nitrocellulose membrane strip a second antibody against a different epitope of the protein (test line) and an IgG antibody (control line). When the sample flows along the strip, the SPION-labeled proteins are immobilized at the test line, which provides magnetic signal as described before. Preliminary results using this practical combination for the detection and quantification of the Prostatic-Specific Antigen (PSA) shows the validity and consistency of the technique in the clinical range, where a PSA level of 4.0 ng/mL is the established upper normal limit. Moreover, a LOD of 0.25 ng/mL was calculated with a confident level of 3 according to the IUPAC Gold Book definition. Its versatility has also been proved with the detection of other biomolecules such as troponin I (cardiac injury biomarker) or histamine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20flow%20immunoassays" title=" lateral flow immunoassays"> lateral flow immunoassays</a>, <a href="https://publications.waset.org/abstracts/search?q=point-of-care%20devices" title=" point-of-care devices"> point-of-care devices</a>, <a href="https://publications.waset.org/abstracts/search?q=superparamagnetic%20nanoparticles" title=" superparamagnetic nanoparticles"> superparamagnetic nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/87868/superparamagnetic-sensor-with-lateral-flow-immunoassays-as-platforms-for-biomarker-quantification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Middle School as a Developmental Context for Emergent Citizenship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Casta%20Guillaume">Casta Guillaume</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Jagers"> Robert Jagers</a>, <a href="https://publications.waset.org/abstracts/search?q=Deborah%20Rivas-Drake"> Deborah Rivas-Drake </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Civically engaged youth are critical to maintaining and/or improving the functioning of local, national and global communities and their institutions. The present study investigated how school climate and academic beliefs (academic self-efficacy and school belonging) may inform emergent civic behaviors (emergent citizenship) among self-identified middle school youth of color (African American, Multiracial or Mixed, Latino, Asian American or Pacific Islander, Native American, and other). Study aims: 1) Understand whether and how school climate is associated with civic engagement behaviors, directly and indirectly, by fostering a positive sense of connection to the school and/or engendering feelings of self-efficacy in the academic domain. Accordingly, we examined 2) The association of youths’ sense of school connection and academic self-efficacy with their personally responsible and participatory civic behaviors in school and community contexts—both concurrently and longitudinally. Data from two subsamples of a larger study of social/emotional development among middle school students were used for longitudinal and cross sectional analysis. The cross-sectional sample included 324 6th-8th grade students, of which 43% identified as African American, 20% identified as Multiracial or Mixed, 18% identified as Latino, 12% identified as Asian American or Pacific Islander, 6% identified as Other, and 1% identified as Native American. The age of the sample ranged from 11 – 15 (M = 12.33, SD = .97). For the longitudinal test of our mediation model, we drew on data from the 6th and 7th grade cohorts only (n =232); the ethnic and racial diversity of this longitudinal subsample was virtually identical to that of the cross-sectional sample. For both the cross-sectional and longitudinal analyses, full information maximum likelihood was used to deal with missing data. Fit indices were inspected to determine if they met the recommended thresholds of RMSEA below .05 and CFI and TLI values of at least .90. To determine if particular mediation pathways were significant, the bias-corrected bootstrap confidence intervals for each indirect pathway were inspected. Fit indices for the latent variable mediation model using the cross-sectional data suggest that the hypothesized model fit the observed data well (CFI = .93; TLI =. 92; RMSEA = .05, 90% CI = [.04, .06]). In the model, students’ perceptions of school climate were significantly and positively associated with greater feelings of school connectedness, which were in turn significantly and positively associated with civic engagement. In addition, school climate was significantly and positively associated with greater academic self-efficacy, but academic self-efficacy was not significantly associated with civic engagement. Tests of mediation indicated there was one significant indirect pathway between school climate and civic engagement behavior. There was an indirect association between school climate and civic engagement via its association with sense of school connectedness, indirect association estimate = .17 [95% CI: .08, .32]. The aforementioned indirect association via school connectedness accounted for 50% (.17/.34) of the total effect. Partial support was found for the prediction that students’ perceptions of a positive school climate are linked to civic engagement in part through their role in students’ sense of connection to school. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=civic%20engagement" title="civic engagement">civic engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20adolescence" title=" early adolescence"> early adolescence</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20climate" title=" school climate"> school climate</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20belonging" title=" school belonging"> school belonging</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental%20niche" title=" developmental niche "> developmental niche </a> </p> <a href="https://publications.waset.org/abstracts/31154/middle-school-as-a-developmental-context-for-emergent-citizenship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10