CINXE.COM

Search results for: lateral-torsional coupled vibration

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: lateral-torsional coupled vibration</title> <meta name="description" content="Search results for: lateral-torsional coupled vibration"> <meta name="keywords" content="lateral-torsional coupled vibration"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="lateral-torsional coupled vibration" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="lateral-torsional coupled vibration"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2282</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: lateral-torsional coupled vibration</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2282</span> Investigation for the Mechanism of Lateral-Torsional Coupled Vibration of the Propulsion Shaft in a Ship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyungsuk%20Han">Hyungsuk Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Soohong%20Jeon"> Soohong Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Chungwon%20Lee"> Chungwon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=YongHoon%20Kim"> YongHoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a rubber mount and flexible coupling are installed on the main engine, high torsional vibration can occur. The root cause of this high torsional vibration can be attributed to the lateral-torsional coupled vibration of the shaft system. Therefore, the lateral-torsional coupled vibration is investigated numerically after approximating the shaft system to a three-degrees-of-freedom Jeffcott rotor. To verify that the high torsional vibration is caused by the lateral-torsional coupled vibration, a test unit that can simulate this lateral-torsional coupled vibration occurring in the propulsion shaft is developed. Performing a vibration test with the test unit, it can be experimentally verified that the high torsional vibration occurring in the propulsion shaft of the particular ship was caused by the lateral-torsional coupled vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeffcott%20rotor" title="Jeffcott rotor">Jeffcott rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration" title=" lateral-torsional coupled vibration"> lateral-torsional coupled vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion%20shaft" title=" propulsion shaft"> propulsion shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/107458/investigation-for-the-mechanism-of-lateral-torsional-coupled-vibration-of-the-propulsion-shaft-in-a-ship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2281</span> Vibration Absorption Strategy for Multi-Frequency Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Der%20Chyan%20Lin">Der Chyan Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin⁡(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bessel%20function" title="Bessel function">Bessel function</a>, <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title=" bandwidth"> bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20modulated%20excitation" title=" frequency modulated excitation"> frequency modulated excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20absorber" title=" vibration absorber"> vibration absorber</a> </p> <a href="https://publications.waset.org/abstracts/132303/vibration-absorption-strategy-for-multi-frequency-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2280</span> Early Installation Effect on the Machines’ Generated Vibration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maitham%20Al-Safwani">Maitham Al-Safwani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motor vibration issues were analyzed by several studies. It is generally accepted that vibration issues result from poor equipment installation. We had a water injection pump tested in the factory and exceeded the pump the vibration limit. Once the pump was brought to the site, its half-size shim plates were replaced with full-size shims plates that drastically reduced the vibration. In this study, vibration data was recorded for several similar motors run at the same and different speeds. The vibration values were recorded -for two and a half hours- and the vibration readings were analyzed to determine when the readings became consistent. This was as well supported by recording the audio noises produced by some machines seeking a relationship between changes in machine noises and machine abnormalities, such as vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration" title="vibration">vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=installation" title=" installation"> installation</a>, <a href="https://publications.waset.org/abstracts/search?q=machine" title=" machine"> machine</a> </p> <a href="https://publications.waset.org/abstracts/149998/early-installation-effect-on-the-machines-generated-vibration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2279</span> Experimental Study on the Floor Vibration Evaluation of Concrete Slab for Existing Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong-Taeg%20Lee">Yong-Taeg Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Ho%20Na"> Jun-Ho Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Hun%20Kim"> Seung-Hun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Uk%20Hong"> Seong-Uk Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damages from noise and vibration are increasing every year, most of which are noises between floors in deteriorated building caused by floor impact sound. In this study, the concrete slab measured vibration impact sound for evaluation floor vibration of deteriorated buildings that fails to satisfy with the minimum thickness. In this experimental study, the vibration scale by impact sound was calibrated and compared with ISO and AIJ standard for vibration. The results show that vibration in slab with thickness used in existing building reach human perception levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration" title="vibration">vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerometer" title=" accelerometer"> accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20slab" title=" concrete slab "> concrete slab </a> </p> <a href="https://publications.waset.org/abstracts/9440/experimental-study-on-the-floor-vibration-evaluation-of-concrete-slab-for-existing-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">643</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2278</span> Large Amplitude Vibration of Sandwich Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Abdelli">Youssef Abdelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Nasri"> Rachid Nasri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The large amplitude free vibration analysis of three-layered symmetric sandwich beams is carried out using two different approaches. The governing nonlinear partial differential equations of motion in free natural vibration are derived using Hamilton's principle. The formulation leads to two nonlinear partial differential equations that are coupled both in axial and binding deformations. In the first approach, the method of multiple scales is applied directly to the governing equation that is a nonlinear partial differential equation. In the second approach, we discretize the governing equation by using Galerkin's procedure and then apply the shooting method to the obtained ordinary differential equations. In order to check the validity of the solutions obtained by the two approaches, they are compared with the solutions obtained by two approaches; they are compared with the solutions obtained numerically by the finite difference method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title="finite difference method">finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20amplitude%20vibration" title=" large amplitude vibration"> large amplitude vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20scales" title=" multiple scales"> multiple scales</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20vibration" title=" nonlinear vibration"> nonlinear vibration</a> </p> <a href="https://publications.waset.org/abstracts/35464/large-amplitude-vibration-of-sandwich-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2277</span> An Analytical Study on the Vibration Reduction Method of Railway Station Using TPU</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinho%20Hur">Jinho Hur</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjung%20Shin"> Minjung Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Heekyu%20Kim"> Heekyu Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many places, new railway constructions in the city are being used to build a viaduct station to take advantage of the space below the line, for difficulty of securing railway site and disconnections of areas. The space under the viaduct has limited to use by noise and vibration. In order to use it for various purposes, reducing noise and vibration is required. The vibration reduction method for new structures is recently developed enough to use as accommodation, but the reduction method for existing structures is still far-off. In this study, it suggests vibration reduction method by filling vibration reduction material to column members which is path of structure-bone-noise from trains run. Because most of railroad stations are reinforced concrete structures. It compares vibration reduction of station applied the method and original station by FEM analysis. As a result, reduction of vibration acceleration level in bandwidth 15~30Hz can be reduced. Therefore, using this method for viaduct railroad station, vibration of station is expected to be reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure%20borne%20noise" title="structure borne noise">structure borne noise</a>, <a href="https://publications.waset.org/abstracts/search?q=TPU" title=" TPU"> TPU</a>, <a href="https://publications.waset.org/abstracts/search?q=viaduct%20rail%20station" title=" viaduct rail station"> viaduct rail station</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20reduction%20method" title=" vibration reduction method"> vibration reduction method</a> </p> <a href="https://publications.waset.org/abstracts/24122/an-analytical-study-on-the-vibration-reduction-method-of-railway-station-using-tpu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2276</span> Development of a Human Vibration Model Considering Muscles and Stiffness of Intervertebral Discs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Nam%20Jo">Young Nam Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Jeong%20Kang"> Moon Jeong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Hee%20Yoo"> Hong Hee Yoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most human vibration models have been modeled as a multibody system consisting of some rigid bodies and spring-dampers. These models are developed for certain posture and conditions. So, the models cannot be used in vibration analysis in various posture and conditions. The purpose of this study is to develop a human vibration model that represent human vibration characteristics under various conditions by employing a musculoskeletal model. To do this, the human vibration model is developed based on biomechanical models. In addition, muscle models are employed instead of spring-dampers. Activations of muscles are controlled by PD controller to maintain body posture under vertical vibration is applied. Each gain value of the controller is obtained to minimize the difference of apparent mass and acceleration transmissibility between experim ent and analysis by using an optimization method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20vibration%20analysis" title="human vibration analysis">human vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hill%20type%20muscle%20model" title=" hill type muscle model"> hill type muscle model</a>, <a href="https://publications.waset.org/abstracts/search?q=PD%20control" title=" PD control"> PD control</a>, <a href="https://publications.waset.org/abstracts/search?q=whole-body%20vibration" title=" whole-body vibration"> whole-body vibration</a> </p> <a href="https://publications.waset.org/abstracts/34177/development-of-a-human-vibration-model-considering-muscles-and-stiffness-of-intervertebral-discs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2275</span> Tuned Mass Damper Vibration Control of Pedestrian Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qinglin%20Shu">Qinglin Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the analysis of the structural vibration comfort of a domestic bridge, this paper studies the vibration reduction control principle of TMD, the derivation process of design parameter optimization and how to simulate TMD in the finite element software ANSYS. The research shows that, in view of the problem that the comfort level of a bridge exceeds the limit in individual working conditions, the vibration reduction control design of the bridge can effectively reduce the vibration of the structure by using TMD. Calculations show that when the mass ratio of TMD is 0.01, the vibration reduction rate under different working conditions is more than 90%, and the dynamic displacement of the TMD mass block is within 0.01m, indicating that the design of TMD is reasonable and safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridges" title="pedestrian bridges">pedestrian bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=human-induced%20vibration" title=" human-induced vibration"> human-induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort" title=" comfort"> comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20dampers" title=" tuned mass dampers"> tuned mass dampers</a> </p> <a href="https://publications.waset.org/abstracts/152738/tuned-mass-damper-vibration-control-of-pedestrian-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2274</span> Experimental Study on the Vibration Isolation Performance of Metal-Net Rubber Vibration Absorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Yi%20Ming">Su Yi Ming</a>, <a href="https://publications.waset.org/abstracts/search?q=Hou%20Ying"> Hou Ying</a>, <a href="https://publications.waset.org/abstracts/search?q=Zou%20Guang%20Ping"> Zou Guang Ping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-net rubber is a new dry friction damping material, compared with the traditional metal rubber, which has high mechanization degree, and the mechanical performance of metal-net rubber is more stable. Through the sine sweep experiment and random vibration experiment of metal-net rubber vibration isolator, the influence of several important factors such as the lines slope, relative density and wire diameter on the transfer rate, natural frequency and root-mean-square response acceleration of metal-net rubber vibration isolation system, were studied through the method of control variables. Also, several relevant change curves under different vibration levels were derived, and the effects of vibration level on the natural frequency and root-mean-square response acceleration were analyzed through the curves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-net%20rubber%20vibration%20isolator" title="metal-net rubber vibration isolator">metal-net rubber vibration isolator</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20density" title=" relative density"> relative density</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20level" title=" vibration level"> vibration level</a>, <a href="https://publications.waset.org/abstracts/search?q=wire%20diameter" title=" wire diameter"> wire diameter</a> </p> <a href="https://publications.waset.org/abstracts/52749/experimental-study-on-the-vibration-isolation-performance-of-metal-net-rubber-vibration-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2273</span> Computer Simulation Studies of Aircraft Wing Architectures on Vibration Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shengyong%20Zhang">Shengyong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Mikulich"> Mike Mikulich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vibration is a crucial limiting consideration in the analysis and design of airplane wing structures to avoid disastrous failures due to the propagation of existing cracks in the material. In this paper, we build CAD models of aircraft wings to capture the design intent with configurations. Subsequent FEA vibration analysis is performed to study the natural vibration properties and impulsive responses of the resulting user-defined wing models. This study reveals the variations of the wing’s vibration characteristics with respect to changes in its structural configurations. Integrating CAD modelling and FEA vibration analysis enables designers to improve wing architectures for implementing design requirements in the preliminary design stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20wing" title="aircraft wing">aircraft wing</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%20modelling" title=" CAD modelling"> CAD modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a> </p> <a href="https://publications.waset.org/abstracts/139170/computer-simulation-studies-of-aircraft-wing-architectures-on-vibration-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2272</span> Research on the Torsional Vibration of a Power-Split Hybrid Powertrain Equipped with a Dual Mass Flywheel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaolin%20Tang">Xiaolin Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoan%20Chen"> Xiaoan Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research described in this paper was aimed at exploring the torsional vibration characteristics of a power-split hybrid powertrain equipped with a dual mass flywheel. The dynamic equations of governing torsional vibration for this hybrid driveline are presented, and the multi-body dynamic model for the powertrain is established with the software of ADAMS. Accordingly, different parameters of dual mass flywheel are investigated by forced vibration to reduce the torsional vibration of hybrid drive train. The analysis shows that the implementation of a dual mass flywheel is an effective way to decrease the torsional vibration of the hybrid powertrain. At last, the optimal combination of parameters yielding the lowest vibration is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20mass%20flywheel" title="dual mass flywheel">dual mass flywheel</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20electric%20vehicle" title=" hybrid electric vehicle"> hybrid electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20vibration" title=" torsional vibration"> torsional vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=powertrain" title=" powertrain"> powertrain</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a> </p> <a href="https://publications.waset.org/abstracts/47396/research-on-the-torsional-vibration-of-a-power-split-hybrid-powertrain-equipped-with-a-dual-mass-flywheel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2271</span> Influence of Vibration Amplitude on Reaction Time and Drowsiness Level </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20A.%20Azizan">Mohd A. Azizan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Z.%20Zali"> Mohd Z. Zali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well established that exposure to vibration has an adverse effect on human health, comfort, and performance. However, there is little quantitative knowledge on performance combined with drowsiness level during vibration exposure. This paper reports a study investigating the influence of vibration amplitude on seated occupant reaction time and drowsiness level. Eighteen male volunteers were recruited for this experiment. Before commencing the experiment, total transmitted acceleration measured at interfaces between the seat pan and seatback to human body was adjusted to become 0.2 ms-2 r.m.s and 0.4 ms-2 r.m.s for each volunteer. Seated volunteers were exposed to Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude (low vibration amplitude and medium vibration amplitude) for 20-minutes in separate days. For the purpose of drowsiness measurement, volunteers were asked to complete 10-minutes PVT test before and after vibration exposure and rate their subjective drowsiness by giving score using Karolinska Sleepiness Scale (KSS) before vibration, every 5-minutes interval and following 20-minutes of vibration exposure. Strong evidence of drowsiness was found as there was a significant increase in reaction time and number of lapse following exposure to vibration in both conditions. However, the effect is more apparent in medium vibration amplitude. A steady increase of drowsiness level can also be observed in KSS in all volunteers. However, no significant differences were found in KSS between low vibration amplitude and medium vibration amplitude. It is concluded that exposure to vibration has an adverse effect on human alertness level and more pronounced at higher vibration amplitude. Taken together, these findings suggest a role of vibration in promoting drowsiness, especially at higher vibration amplitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drowsiness" title="drowsiness">drowsiness</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20vibration" title=" human vibration"> human vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=karolinska%20sleepiness%20scale" title=" karolinska sleepiness scale"> karolinska sleepiness scale</a>, <a href="https://publications.waset.org/abstracts/search?q=psychomotor%20vigilance%20test" title=" psychomotor vigilance test"> psychomotor vigilance test</a> </p> <a href="https://publications.waset.org/abstracts/66811/influence-of-vibration-amplitude-on-reaction-time-and-drowsiness-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2270</span> Free Vibration Analysis of Timoshenko Beams at Higher Modes with Central Concentrated Mass Using Coupled Displacement Field Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Meera%20Saheb">K. Meera Saheb</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Krishna%20Bhaskar"> K. Krishna Bhaskar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex structures used in many fields of engineering are made up of simple structural elements like beams, plates etc. These structural elements, sometimes carry concentrated masses at discrete points, and when subjected to severe dynamic environment tend to vibrate with large amplitudes. The frequency amplitude relationship is very much essential in determining the response of these structural elements subjected to the dynamic loads. For Timoshenko beams, the effects of shear deformation and rotary inertia are to be considered to evaluate the fundamental linear and nonlinear frequencies. A commonly used method for solving vibration problem is energy method, or a finite element analogue of the same. In the present Coupled Displacement Field method the number of undetermined coefficients is reduced to half when compared to the famous Rayleigh Ritz method, which significantly simplifies the procedure to solve the vibration problem. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. The prime objective of the present paper here is to study, in detail, the effect of a central concentrated mass on the large amplitude free vibrations of uniform shear flexible beams. Accurate closed form expressions for linear frequency parameter for uniform shear flexible beams with a central concentrated mass was developed and the results are presented in digital form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupled%20displacement%20field" title="coupled displacement field">coupled displacement field</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20equation" title=" coupling equation"> coupling equation</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20amplitude%20vibrations" title=" large amplitude vibrations"> large amplitude vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=moderately%20thick%20plates" title=" moderately thick plates"> moderately thick plates</a> </p> <a href="https://publications.waset.org/abstracts/53108/free-vibration-analysis-of-timoshenko-beams-at-higher-modes-with-central-concentrated-mass-using-coupled-displacement-field-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2269</span> A Broadband Tri-Cantilever Vibration Energy Harvester with Magnetic Oscillator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaobo%20Rui">Xiaobo Rui</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhoumo%20Zeng"> Zhoumo Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yibo%20Li"> Yibo Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel tri-cantilever energy harvester with magnetic oscillator was presented, which could convert the ambient vibration into electrical energy to power the low-power devices such as wireless sensor networks. The most common way to harvest vibration energy is based on the use of linear resonant devices such as cantilever beam, since this structure creates the highest strain for a given force. The highest efficiency will be achieved when the resonance frequency of the harvester matches the vibration frequency. The limitation of the structure is the narrow effective bandwidth. To overcome this limitation, this article introduces a broadband tri-cantilever harvester with nonlinear stiffness. This energy harvester typically consists of three thin cantilever beams vertically arranged with Neodymium Magnets ( NdFeB)magnetics at its free end and a fixed base at the other end. The three cantilevers have different resonant frequencies by designed in different thicknesses. It is obviously that a similar advantage of multiple resonant frequencies as piezoelectric cantilevers array structure is built. To achieve broadband energy harvesting, magnetic interaction is used to introduce the nonlinear system stiffness to tune the resonant frequency to match the excitation. Since the three cantilever tips are all free and the magnetic force is distance dependent, the resonant frequencies will be complexly changed with the vertical vibration of the free end. Both model and experiment are built. The electromechanically coupled lumped-parameter model is presented. An electromechanical formulation and analytical expressions for the coupled nonlinear vibration response and voltage response are given. The entire structure is fabricated and mechanically attached to a electromagnetic shaker as a vibrating body via the fixed base, in order to couple the vibrations to the cantilever. The cantilevers are bonded with piezoelectric macro-fiber composite (MFC) materials (Model: M8514P2). The size of the cantilevers is 120*20mm2 and the thicknesses are separately 1mm, 0.8mm, 0.6mm. The prototype generator has a measured performance of 160.98 mW effective electrical power and 7.93 DC output voltage via the excitation level of 10m/s2. The 130% increase in the operating bandwidth is achieved. This device is promising to support low-power devices, peer-to-peer wireless nodes, and small-scale wireless sensor networks in ambient vibration environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tri-cantilever" title="tri-cantilever">tri-cantilever</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20vibration" title=" ambient vibration"> ambient vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20oscillator" title=" magnetic oscillator"> magnetic oscillator</a> </p> <a href="https://publications.waset.org/abstracts/75661/a-broadband-tri-cantilever-vibration-energy-harvester-with-magnetic-oscillator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2268</span> Piezoelectric based Passive Vibration Control of Composite Turbine Blade using Shunt Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kouider%20Bendine">Kouider Bendine</a>, <a href="https://publications.waset.org/abstracts/search?q=Zouaoui%20Satla"> Zouaoui Satla</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukhoulda%20Farouk%20Benallel"> Boukhoulda Farouk Benallel</a>, <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang"> Shun-Qi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbine blades are subjected to a variety of loads, lead to an undesirable vibration. Such vibration can cause serious damages or even lead to a total failure of the blade. The present paper addresses the vibration control of turbine blade. The study aims to propose a passive vibration control using piezoelectric material. the passive control is effectuated by shunting an RL circuit to the piezoelectric patch in a parallel configuration. To this end, a Finite element model for the blade with the piezoelectric patch is implemented in ANSYS APDL. The model is then subjected to a harmonic frequency-based analysis for the case of control on and off. The results show that the proposed methodology was able to reduce blade vibration by 18%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20piezoelectric%20vibration%20control" title=" active piezoelectric vibration control"> active piezoelectric vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element." title=" finite element."> finite element.</a>, <a href="https://publications.waset.org/abstracts/search?q=shunt%20circuit" title=" shunt circuit"> shunt circuit</a> </p> <a href="https://publications.waset.org/abstracts/165603/piezoelectric-based-passive-vibration-control-of-composite-turbine-blade-using-shunt-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2267</span> Excitation Experiments of a Cone Loudspeaker and Vibration-Acoustic Analysis Using FEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hu">Y. Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Zhao"> X. Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yamaguchi"> T. Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sasajima"> M. Sasajima</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Koike"> Y. Koike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To focus on the vibration mode of a cone loudspeaker, which acts as an electroacoustic transducer, excitation experiments were performed using two types of loudspeaker units: one employing an impulse hammer and the other a sweep signal. The on-axis sound pressure frequency properties of the loudspeaker were evaluated, and the characteristic properties of the loudspeakers were successfully determined in both excitation experiments. Moreover, under conditions identical to the experiment conditions, a coupled analysis of the vibration-acoustics of the cone loudspeaker was performed using an acoustic analysis software program that considers the impact of damping caused by air viscosity. The result of sound pressure frequency properties with the numerical analysis are the most closely match that measured in the excitation experiments over a wide range of frequency bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anechoic%20room" title="anechoic room">anechoic room</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20hammer" title=" impulse hammer"> impulse hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=loudspeaker" title=" loudspeaker"> loudspeaker</a>, <a href="https://publications.waset.org/abstracts/search?q=reverberation%20room" title=" reverberation room"> reverberation room</a>, <a href="https://publications.waset.org/abstracts/search?q=sweep%20signal" title=" sweep signal"> sweep signal</a> </p> <a href="https://publications.waset.org/abstracts/39427/excitation-experiments-of-a-cone-loudspeaker-and-vibration-acoustic-analysis-using-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2266</span> Fuzzy Sliding Mode Control of a Flexible Structure for Vibration Suppression Using MFC Actuator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinsiang%20Shaw">Jinsiang Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Chieh%20Tseng"> Shih-Chieh Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper use a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to suppress the disturbance. A fuzzy sliding mode controller is developed and applied to this system. Experimental results illustrate that the controller and MFC actuator are very effective in attenuating the structural vibration near the first resonant freuqency. Furthermore, this controller is shown to outperform the traditional skyhook controller, with nearly 90% of the vibration suppressed at the first resonant frequency of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuzzy%20sliding%20mode%20controller" title="Fuzzy sliding mode controller">Fuzzy sliding mode controller</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-fiber-composite%20actuator" title=" macro-fiber-composite actuator"> macro-fiber-composite actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=skyhook%20controller" title=" skyhook controller"> skyhook controller</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20suppression" title=" vibration suppression"> vibration suppression</a> </p> <a href="https://publications.waset.org/abstracts/25138/fuzzy-sliding-mode-control-of-a-flexible-structure-for-vibration-suppression-using-mfc-actuator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2265</span> Vibration Control of a Flexible Structure Using MFC Actuator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinsiang%20Shaw">Jinsiang Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeng-Jie%20Huang"> Jeng-Jie Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper employs a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to reject the disturbance. A notch filter with an adaptive tuning algorithm, the leaky filtered-X least mean square algorithm (leaky FXLMS algorithm), is developed and applied to the system. Experimental results show that the controller and MFC actuator was very effective in attenuating the structural vibration. Furthermore, this notch filter controller was compared with the traditional skyhook controller. It was found that its performance was better, with over 88% vibration suppression near the first resonant frequency of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=macro-fiber%20composite" title="macro-fiber composite">macro-fiber composite</a>, <a href="https://publications.waset.org/abstracts/search?q=notch%20filter" title=" notch filter"> notch filter</a>, <a href="https://publications.waset.org/abstracts/search?q=skyhook%20controller" title=" skyhook controller"> skyhook controller</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20suppression" title=" vibration suppression"> vibration suppression</a> </p> <a href="https://publications.waset.org/abstracts/7710/vibration-control-of-a-flexible-structure-using-mfc-actuator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2264</span> Effects of Long Term Whole Body Vibration Training on Lipid Profile of Young Men </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farshad%20Ghazalian">Farshad Ghazalian</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Hakemi"> Laleh Hakemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lotfali%20Pourkazemi"> Lotfali Pourkazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Ameri"> Maryam Ameri</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hossein%20Alavi"> Seyed Hossein Alavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The use of whole body vibration (WBV) as an exercise method has rapidly increased over the last decade. The aim of this study was to evaluate long term effects of different amplitudes of whole body vibration training with progressive frequencies on lipid profile of young healthy men. Materials and methods: Thirty three healthy male students were divided randomly in three groups: high amplitude vibration group (n=11), low amplitude vibration group (n=11), and control group (n=11). The vibration training consisted of 5 week whole-body vibration 3 times a week with amplitudes 4 and 2 mm and progressive frequencies from 25 Hz with increments of 5 Hz weekly. Concentrations TG, HDL, LDL, cholesterol, and VLDL before and after 5 weeks of training were measured in plasma samples. Statistical analysis was done using one way analysis of variance. P<0.05 was considered statistically significant. Results: The most important result of the present study is finding no favorable changes of 5-week vibration training with different amplitudes on blood lipid profiles. Discussion and conclusions: It was emphasized that in vibration training there should be a relationship between intensity and volume of exercise and lipid responses in order to improve blood lipoprotein profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=long%20term" title="long term">long term</a>, <a href="https://publications.waset.org/abstracts/search?q=body" title=" body"> body</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20training" title=" vibration training"> vibration training</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid "> lipid </a> </p> <a href="https://publications.waset.org/abstracts/8026/effects-of-long-term-whole-body-vibration-training-on-lipid-profile-of-young-men" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2263</span> Three Dimensional Vibration Analysis of Carbon Nanotubes Embedded in Elastic Medium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shaban">M. Shaban</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alibeigloo"> A. Alibeigloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies free vibration behavior of single-walled carbon nanotubes (SWCNTs) embedded on elastic medium based on three-dimensional theory of elasticity. To accounting the size effect of carbon nanotubes, nonlocal theory is adopted to shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. The surrounding medium is modeled as two-parameter elastic foundation. By using Fourier series expansion in axial and circumferential direction, the set of coupled governing equations are reduced to the ordinary differential equations in thickness direction. Then, the state-space method as an efficient and accurate method is used to solve the resulting equations analytically. Comprehensive parametric studies are carried out to show the influences of the nonlocal parameter, radial and shear elastic stiffness, thickness-to-radius ratio and radius-to-length ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded" title=" embedded"> embedded</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal" title=" nonlocal"> nonlocal</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration "> free vibration </a> </p> <a href="https://publications.waset.org/abstracts/10246/three-dimensional-vibration-analysis-of-carbon-nanotubes-embedded-in-elastic-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2262</span> Design and Development of the Force Plate for the Study of Driving-Point Biodynamic Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar">Vikas Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20H.%20Saran"> V. H. Saran</a>, <a href="https://publications.waset.org/abstracts/search?q=Arpit%20Mathur"> Arpit Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=Avik%20Kathuria"> Avik Kathuria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evaluation of biodynamic responses of the human body to whole body vibration exposure is necessary to quantify the exposure effects. A force plate model has been designed with the help of CAD software, which was investigated by performing the modal, stress and strain analysis using finite element approach in the software. The results of the modal, stress and strain analysis were under the limits for measurements of biodynamic responses to whole body vibration. The physical model of the force plate was manufactured and fixed to the vibration simulator and further used in the experimentation for the evaluation of apparent mass responses of the ten recruited subjects standing in an erect posture exposed to vertical whole body vibration. The platform was excited with sinusoidal vibration at vibration magnitude: 1.0 and 1.5 m/s2 rms at different frequency of 2, 3, 4, 5, 6, 8, 10, 12.5, 16 and 20 Hz. The results of magnitude of normalised apparent mass have shown the trend observed in the many past studies. The peak in the normalised apparent mass has been observed at 4 & 5 Hz frequency of vertical whole body vibration. The nonlinearity with respect to vibration magnitude has been also observed in the normalised apparent mass responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whole%20body%20vibration" title="whole body vibration">whole body vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20mass" title=" apparent mass"> apparent mass</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20plate" title=" force plate"> force plate</a> </p> <a href="https://publications.waset.org/abstracts/35435/design-and-development-of-the-force-plate-for-the-study-of-driving-point-biodynamic-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2261</span> Effects of Humidity and Silica Sand Particles on Vibration Generation by Friction Materials of Automotive Brake System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20M.%20Makrahy">Mostafa M. Makrahy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouby%20M.%20Ghazaly"> Nouby M. Ghazaly</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20T.%20Abd%20el-Jaber"> G. T. Abd el-Jaber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental study of vibration generated by friction materials of an automotive disc brake system using brake test rig. Effects of silica sand particles which are available on the road surface as an environmental condition with a size varied from 150 &mu;m to 600 &mu;m are evaluated. Also, the vibration of the brake disc is examined against the friction material in humidity environment conditions under variable rotational speed. The experimental results showed that the silica sand particles have significant contribution on the value of vibration amplitude which enhances with increasing the size of silica sand particles at different speed conditions. Also, it is noticed that the friction material is sensitive to humidity and the vibration magnitude increases under wet testing conditions. Moreover, it can be reported that with increasing the applied pressure and rotational speed of the braking system, the vibration amplitudes decrease for all cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disc%20brake%20vibration" title="disc brake vibration">disc brake vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=friction-induced%20vibration" title=" friction-induced vibration"> friction-induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20sand%20particles" title=" silica sand particles"> silica sand particles</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20operational%20and%20environmental%20conditions" title=" brake operational and environmental conditions"> brake operational and environmental conditions</a> </p> <a href="https://publications.waset.org/abstracts/101846/effects-of-humidity-and-silica-sand-particles-on-vibration-generation-by-friction-materials-of-automotive-brake-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2260</span> Vibration-Based Monitoring of Tensioning Stay Cables of an Extradosed Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Chung%20Chen">Chun-Chung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Han%20Lee"> Bo-Han Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Sung"> Yu-Chi Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the status of tensioning force of stay cables is a significant issue for the assessment of structural safety of extradosed bridges. Moreover, it is known that there is a high correlation between the existing tension force and the vibration frequencies of cables. This paper presents the characteristic of frequencies of stay cables of a field extradosed bridge by using vibration-based monitoring methods. The vibration frequencies of each stay cables were measured in stages from the beginning to the completion of bridge construction. The result shows that the vibration frequency variation trend of different lengths of cables at each measured stage is different. The observed feature can help the application of the bridge long-term monitoring system and contribute to the assessment of bridge safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration-based%20method" title="vibration-based method">vibration-based method</a>, <a href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges" title=" extradosed bridges"> extradosed bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20health%20monitoring" title=" bridge health monitoring"> bridge health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20stay%20cables" title=" bridge stay cables"> bridge stay cables</a> </p> <a href="https://publications.waset.org/abstracts/105500/vibration-based-monitoring-of-tensioning-stay-cables-of-an-extradosed-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2259</span> Study on the Dynamic Characteristics Change of Welded Beam Due to Vibration Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Bae">S. H. Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20Cho"> D. W. Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20Jeong"> W. B. Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Cho"> J. R. Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fatigue fracture of an aluminum welded structure is a phenomenon frequently occurring from pores in a weld. In order to grasp the state of the welded structure in operation in real time, the acceleration signal of the structure is measured. At this time, the vibration characteristic of the signal according to the fatigue load is an important parameter of the state diagnosis. This paper was an experimental study on the variation of vibration characteristics of welded beams with vibration aging (especially bending vibration). First simple beams were produced according to welding conditions. Each beam was vibrated and measured beam's PSD (power spectral density) according to the degree of aging. Also, modal testing was conducted to compare the transfer functions of welded beams. Testing result shows that the natural frequencies of the beam changed with the vibration aging due to the change of stiffness in welding part and its stiffness was estimated by the finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20testing" title="modal testing">modal testing</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20aging" title=" vibration aging"> vibration aging</a>, <a href="https://publications.waset.org/abstracts/search?q=welded%20structure" title=" welded structure"> welded structure</a> </p> <a href="https://publications.waset.org/abstracts/79035/study-on-the-dynamic-characteristics-change-of-welded-beam-due-to-vibration-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2258</span> Vibration Signals of Small Vertical Axis Wind Turbines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aqoul%20H.%20H.%20Alanezy">Aqoul H. H. Alanezy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Abdelsalam"> Ali M. Abdelsalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouby%20M.%20Ghazaly"> Nouby M. Ghazaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, progress has been made in increasing the renewable energy share in the power sector particularly in the wind. The experimental study conducted in this paper aims to investigate the effects of number of blades and inflow wind speed on vibration signals of a vertical axis Savonius type wind turbine. The operation of the model of Savonius type wind turbine is conducted to compare two, three and four blades wind turbines to show vibration amplitudes related with wind speed. It is found that the increase of the number of blades leads to decrease of the vibration magnitude. Furthermore, inflow wind speed has reduced effect on the vibration level for higher number of blades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savonius%20type%20wind%20turbine" title="Savonius type wind turbine">Savonius type wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20blades" title=" number of blades"> number of blades</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20signals" title=" vibration signals "> vibration signals </a> </p> <a href="https://publications.waset.org/abstracts/106098/vibration-signals-of-small-vertical-axis-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2257</span> Comparison of Loosely Coupled and Tightly Coupled INS/GNSS Architecture for Guided Rocket Navigation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Purwoko">Rahmat Purwoko</a>, <a href="https://publications.waset.org/abstracts/search?q=Bambang%20Riyanto%20Trilaksono"> Bambang Riyanto Trilaksono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper gives comparison of INS/GNSS architecture namely Loosely Coupled and Tightly Coupled using Hardware in the Loop Simulation in Guided Missile RKX-200 rocket model. INS/GNSS Tightly Coupled architecture requires pseudo-range, pseudo-range rate, and position and velocity of each satellite in constellation from GPS (Global Positioning System) measurement. The Loosely Coupled architecture use estimated position and velocity from GNSS receiver. INS/GNSS architecture also requires angular rate and specific force measurement from IMU (Inertial Measurement Unit). Loosely Coupled arhitecture designed using 15 states Kalman Filter and Tightly Coupled designed using 17 states Kalman Filter. Integration algorithm calculation using ECEF frame. Navigation System implemented Zedboard All Programmable SoC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kalman%20filter" title="kalman filter">kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=loosely%20coupled" title=" loosely coupled"> loosely coupled</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20system" title=" navigation system"> navigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=tightly%20coupled" title=" tightly coupled"> tightly coupled</a> </p> <a href="https://publications.waset.org/abstracts/57097/comparison-of-loosely-coupled-and-tightly-coupled-insgnss-architecture-for-guided-rocket-navigation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2256</span> Load Maximization of Two-Link Flexible Manipulator Using Suppression Vibration with Piezoelectric Transducer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Heidari">Hamidreza Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Malmir%20Nasab"> Abdollah Malmir Nasab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the energy equations of a two-link flexible manipulator were extracted using the Euler-Bernoulli beam hypotheses. Applying Assumed mode and considering some finite degrees of freedom, we could obtain dynamic motions of each manipulator using Euler-Lagrange equations. Using its claws, the robots can carry a certain load with the ached control of vibrations for robot flexible links during the travelling path using the piezoceramics transducer; dynamic load carrying capacity increase. The traveling path of flexible robot claw has been taken from that of equivalent rigid manipulator and coupled; therefore to avoid the role of Euler-Bernoulli beam assumptions and linear strains, material and physical characteristics selection of robot cause deflection of link ends not exceed 5% of link length. To do so, the maximum load carrying capacity of robot is calculated at the horizontal plan. The increasing of robot load carrying capacity with vibration control is 53%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20link" title="flexible link">flexible link</a>, <a href="https://publications.waset.org/abstracts/search?q=DLCC" title=" DLCC"> DLCC</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20control%20vibration" title=" active control vibration"> active control vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=assumed%20mode%20method" title=" assumed mode method"> assumed mode method</a> </p> <a href="https://publications.waset.org/abstracts/54871/load-maximization-of-two-link-flexible-manipulator-using-suppression-vibration-with-piezoelectric-transducer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2255</span> Adoption of Noise and Vibration Management Tools for Major Infrastructure Projects in Sydney, Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Morris">Adrian Morris</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodney%20Phillips"> Rodney Phillips</a>, <a href="https://publications.waset.org/abstracts/search?q=Mattia%20Tabacchi"> Mattia Tabacchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Minimizing construction noise and vibration impacts is a key challenge for major infrastructure projects in urban environments. Before commencing construction works, Construction Noise and Vibration Management Plan (CNVMP) and Construction Noise and Vibration Impact Statements (CNVIS) are required to be prepared and submitted to the relevant government authorities for review and approval. However, the assessment of potential impacts from work activities at pre-approval stage may be inaccurate as works methodology and scheduling are yet to be determined. In response, noise and vibration management tools have been developed to refine and supplement the CNVIS as works progress. These tools have been successfully implemented in major infrastructure projects allowing contractors to plan and assess construction works in a cost effective and timely manner. As a result, noise and vibration management tools have been incorporated into management plans and are increasingly required by regulators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise%20management" title="noise management">noise management</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20noise" title=" environmental noise"> environmental noise</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20projects" title=" infrastructure projects"> infrastructure projects</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20effective" title=" cost effective"> cost effective</a> </p> <a href="https://publications.waset.org/abstracts/154101/adoption-of-noise-and-vibration-management-tools-for-major-infrastructure-projects-in-sydney-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2254</span> The Effect of Tip Parameters on Vibration Modes of Atomic Force Microscope Cantilever</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Shekarzadeh">Mehdi Shekarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Taghipour%20Birgani"> Pejman Taghipour Birgani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of mass and height of tip on the flexural vibration modes of an atomic force microscope (AFM) rectangular cantilever is analyzed. A closed-form expression for the sensitivity of vibration modes is derived using the relationship between the resonant frequency and contact stiffness of cantilever and sample. Each mode has a different sensitivity to variations in surface stiffness. This sensitivity directly controls the image resolution. It is obtained an AFM cantilever is more sensitive when the mass of tip is lower and the first mode is the most sensitive mode. Also, the effect of changes of tip height on the flexural sensitivity is negligible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscope" title="atomic force microscope">atomic force microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=AFM" title=" AFM"> AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20vibration" title=" flexural vibration"> flexural vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=cantilever" title=" cantilever"> cantilever</a> </p> <a href="https://publications.waset.org/abstracts/32866/the-effect-of-tip-parameters-on-vibration-modes-of-atomic-force-microscope-cantilever" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2253</span> Application of Fuzzy Approach to the Vibration Fault Diagnosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Khelil">Jalel Khelil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve reliability of Gas Turbine machine especially its generator equipment, a fault diagnosis system based on fuzzy approach is proposed. Three various methods namely K-NN (K-nearest neighbors), F-KNN (Fuzzy K-nearest neighbors) and FNM (Fuzzy nearest mean) are adopted to provide the measurement of relative strength of vibration defaults. Both applications consist of two major steps: Feature extraction and default classification. 09 statistical features are extracted from vibration signals. 03 different classes are used in this study which describes vibrations condition: Normal, unbalance defect, and misalignment defect. The use of the fuzzy approaches and the classification results are discussed. Results show that these approaches yield high successful rates of vibration default classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title="fault diagnosis">fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20classification%20k-nearest%20neighbor" title=" fuzzy classification k-nearest neighbor"> fuzzy classification k-nearest neighbor</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration "> vibration </a> </p> <a href="https://publications.waset.org/abstracts/3115/application-of-fuzzy-approach-to-the-vibration-fault-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration&amp;page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration&amp;page=77">77</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lateral-torsional%20coupled%20vibration&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10