CINXE.COM
D-막 - 위키백과, 우리 모두의 백과사전
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="ko" dir="ltr"> <head> <meta charset="UTF-8"> <title>D-막 - 위키백과, 우리 모두의 백과사전</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )kowikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"ko", "wgMonthNames":["","1월","2월","3월","4월","5월","6월","7월","8월","9월","10월","11월","12월"],"wgRequestId":"dd6563cc-1a49-4d4e-b1e2-4fc5164a1f14","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"D-막","wgTitle":"D-막","wgCurRevisionId":37152495,"wgRevisionId":37152495,"wgArticleId":594574,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["해결되지 않은 속성이 있는 문서","CS1 - 영어 인용 (en)","인용 오류 - 오래된 변수를 사용함","CS1 - 중국어 간체 인용 (zh)","영어 표기를 포함한 문서","위키데이터 속성 P18을 사용하는 문서","위키데이터 속성 P7859를 사용하는 문서","중국어 표기를 포함한 문서","체코어 표기를 포함한 문서","끈 이론"],"wgPageViewLanguage":"ko","wgPageContentLanguage":"ko","wgPageContentModel":"wikitext","wgRelevantPageName":"D-막","wgRelevantArticleId": 594574,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ko","pageLanguageDir":"ltr","pageVariantFallbacks":"ko"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q137880","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.SectionFont":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.directcommons","ext.gadget.edittools","ext.gadget.refToolbar","ext.gadget.siteNotice", "ext.gadget.scrollUpButton","ext.gadget.strikethroughTOC","ext.gadget.switcher","ext.gadget.WikiMiniAtlas","ext.gadget.Calculator","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ko&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=ko&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ko&modules=ext.gadget.SectionFont&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=ko&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/8/88/D3-brane_et_D2-brane.PNG"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="850"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/D3-brane_et_D2-brane.PNG/800px-D3-brane_et_D2-brane.PNG"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="566"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/D3-brane_et_D2-brane.PNG/640px-D3-brane_et_D2-brane.PNG"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="453"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="D-막 - 위키백과, 우리 모두의 백과사전"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ko.m.wikipedia.org/wiki/D-%EB%A7%89"> <link rel="alternate" type="application/x-wiki" title="편집" href="/w/index.php?title=D-%EB%A7%89&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="위키백과 (ko)"> <link rel="EditURI" type="application/rsd+xml" href="//ko.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ko.wikipedia.org/wiki/D-%EB%A7%89"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ko"> <link rel="alternate" type="application/atom+xml" title="위키백과 아톰 피드" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-D-막 rootpage-D-막 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">본문으로 이동</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="사이트"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="주 메뉴" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">주 메뉴</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">주 메뉴</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">숨기기</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 둘러보기 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8" title="대문으로 가기 [z]" accesskey="z"><span>대문</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C" title="위키의 최근 바뀐 목록 [r]" accesskey="r"><span>최근 바뀜</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%ED%8F%AC%ED%84%B8:%EC%9A%94%EC%A6%98_%ED%99%94%EC%A0%9C" title="최근의 소식 알아 보기"><span>요즘 화제</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EC%9E%84%EC%9D%98%EB%AC%B8%EC%84%9C" title="무작위로 선택된 문서 불러오기 [x]" accesskey="x"><span>임의의 문서로</span></a></li> </ul> </div> </div> <div id="p-사용자_모임" class="vector-menu mw-portlet mw-portlet-사용자_모임" > <div class="vector-menu-heading"> 사용자 모임 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-projectchat" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%82%AC%EB%9E%91%EB%B0%A9"><span>사랑방</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%82%AC%EC%9A%A9%EC%9E%90_%EB%AA%A8%EC%9E%84" title="위키백과 참여자를 위한 토론/대화 공간입니다."><span>사용자 모임</span></a></li><li id="n-request" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%9A%94%EC%B2%AD"><span>관리 요청</span></a></li> </ul> </div> </div> <div id="p-편집_안내" class="vector-menu mw-portlet mw-portlet-편집_안내" > <div class="vector-menu-heading"> 편집 안내 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-helpintro" class="mw-list-item"><a href="/wiki/%EB%8F%84%EC%9B%80%EB%A7%90:%EC%86%8C%EA%B0%9C"><span>소개</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8F%84%EC%9B%80%EB%A7%90" title="도움말"><span>도움말</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A0%95%EC%B1%85%EA%B3%BC_%EC%A7%80%EC%B9%A8"><span>정책과 지침</span></a></li><li id="n-qna" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A7%88%EB%AC%B8%EB%B0%A9"><span>질문방</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="위키백과" src="/static/images/mobile/copyright/wikipedia-wordmark-ko.svg" style="width: 7.5em; height: 1.75em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-ko.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%ED%8A%B9%EC%88%98:%EA%B2%80%EC%83%89" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="위키백과 검색 [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>검색</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="위키백과 검색" aria-label="위키백과 검색" autocapitalize="sentences" title="위키백과 검색 [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="특수:검색"> </div> <button class="cdx-button cdx-search-input__end-button">검색</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="개인 도구"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="보이기"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="문서의 글꼴 크기, 폭, 색의 모습을 변경합니다" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="보이기" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">보이기</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_ko.wikipedia.org&uselang=ko" class=""><span>기부</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EA%B3%84%EC%A0%95%EB%A7%8C%EB%93%A4%EA%B8%B0&returnto=D-%EB%A7%89" title="계정을 만들고 로그인하는 것이 좋습니다. 하지만 필수는 아닙니다" class=""><span>계정 만들기</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EB%A1%9C%EA%B7%B8%EC%9D%B8&returnto=D-%EB%A7%89" title="위키백과에 로그인하면 여러가지 편리한 기능을 사용할 수 있습니다. [o]" accesskey="o" class=""><span>로그인</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="더 많은 옵션" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="개인 도구" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">개인 도구</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="사용자 메뉴" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_ko.wikipedia.org&uselang=ko"><span>기부</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EA%B3%84%EC%A0%95%EB%A7%8C%EB%93%A4%EA%B8%B0&returnto=D-%EB%A7%89" title="계정을 만들고 로그인하는 것이 좋습니다. 하지만 필수는 아닙니다"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>계정 만들기</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EB%A1%9C%EA%B7%B8%EC%9D%B8&returnto=D-%EB%A7%89" title="위키백과에 로그인하면 여러가지 편리한 기능을 사용할 수 있습니다. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>로그인</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 로그아웃한 편집자를 위한 문서 <a href="/wiki/%EB%8F%84%EC%9B%80%EB%A7%90:%EC%86%8C%EA%B0%9C" aria-label="편집에 관해 더 알아보기"><span>더 알아보기</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%82%B4%EA%B8%B0%EC%97%AC" title="이 IP 주소의 편집 목록 [y]" accesskey="y"><span>기여</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%82%B4%EC%82%AC%EC%9A%A9%EC%9E%90%ED%86%A0%EB%A1%A0" title="현재 사용하는 IP 주소에 대한 토론 문서 [n]" accesskey="n"><span>토론</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="사이트"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="목차" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">목차</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">숨기기</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">처음 위치</div> </a> </li> <li id="toc-성질" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#성질"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>성질</span> </div> </a> <button aria-controls="toc-성질-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>성질 하위섹션 토글하기</span> </button> <ul id="toc-성질-sublist" class="vector-toc-list"> <li id="toc-작용" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#작용"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>작용</span> </div> </a> <ul id="toc-작용-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-장력" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#장력"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>장력</span> </div> </a> <ul id="toc-장력-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-T-이중성" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#T-이중성"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>T-이중성</span> </div> </a> <ul id="toc-T-이중성-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-분류" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#분류"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>분류</span> </div> </a> <button aria-controls="toc-분류-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>분류 하위섹션 토글하기</span> </button> <ul id="toc-분류-sublist" class="vector-toc-list"> <li id="toc-위상_K이론_분류" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#위상_K이론_분류"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>위상 K이론 분류</span> </div> </a> <ul id="toc-위상_K이론_분류-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-M이론과의_관계" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#M이론과의_관계"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>M이론과의 관계</span> </div> </a> <ul id="toc-M이론과의_관계-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-막의_결합_상태" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#막의_결합_상태"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>막의 결합 상태</span> </div> </a> <button aria-controls="toc-막의_결합_상태-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>막의 결합 상태 하위섹션 토글하기</span> </button> <ul id="toc-막의_결합_상태-sublist" class="vector-toc-list"> <li id="toc-겹친_D-막" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#겹친_D-막"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>겹친 D-막</span> </div> </a> <ul id="toc-겹친_D-막-sublist" class="vector-toc-list"> <li id="toc-마이어스_효과" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#마이어스_효과"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.1</span> <span>마이어스 효과</span> </div> </a> <ul id="toc-마이어스_효과-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-D-막_결합_상태" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#D-막_결합_상태"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>D-막 결합 상태</span> </div> </a> <ul id="toc-D-막_결합_상태-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-(p,q)-끈" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#(p,q)-끈"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>(<i>p</i>,<i>q</i>)-끈</span> </div> </a> <ul id="toc-(p,q)-끈-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-분수_막" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#분수_막"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>분수 막</span> </div> </a> <ul id="toc-분수_막-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-역사" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#역사"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>역사</span> </div> </a> <ul id="toc-역사-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-같이_보기" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#같이_보기"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>같이 보기</span> </div> </a> <ul id="toc-같이_보기-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-각주" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#각주"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>각주</span> </div> </a> <ul id="toc-각주-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-외부_링크" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#외부_링크"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>외부 링크</span> </div> </a> <ul id="toc-외부_링크-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="목차" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="목차 토글" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">목차 토글</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">D-막</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="다른 언어로 문서를 방문합니다. 17개 언어로 읽을 수 있습니다" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-17" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">17개 언어</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/D-Brane" title="D-Brane – 독일어" lang="de" hreflang="de" data-title="D-Brane" data-language-autonym="Deutsch" data-language-local-name="독일어" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/D-brane" title="D-brane – 영어" lang="en" hreflang="en" data-title="D-brane" data-language-autonym="English" data-language-local-name="영어" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/D-brana" title="D-brana – 스페인어" lang="es" hreflang="es" data-title="D-brana" data-language-autonym="Español" data-language-local-name="스페인어" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/D-braanid" title="D-braanid – 에스토니아어" lang="et" hreflang="et" data-title="D-braanid" data-language-autonym="Eesti" data-language-local-name="에스토니아어" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/D-brane" title="D-brane – 프랑스어" lang="fr" hreflang="fr" data-title="D-brane" data-language-autonym="Français" data-language-local-name="프랑스어" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/D-brana" title="D-brana – 이탈리아어" lang="it" hreflang="it" data-title="D-brana" data-language-autonym="Italiano" data-language-local-name="이탈리아어" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/D%E3%83%96%E3%83%AC%E3%83%BC%E3%83%B3" title="Dブレーン – 일본어" lang="ja" hreflang="ja" data-title="Dブレーン" data-language-autonym="日本語" data-language-local-name="일본어" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/D-brana" title="D-brana – 라틴어" lang="la" hreflang="la" data-title="D-brana" data-language-autonym="Latina" data-language-local-name="라틴어" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/D-braan" title="D-braan – 네덜란드어" lang="nl" hreflang="nl" data-title="D-braan" data-language-autonym="Nederlands" data-language-local-name="네덜란드어" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%A1%E0%A9%80-%E0%A8%AC%E0%A8%B0%E0%A9%87%E0%A8%A8" title="ਡੀ-ਬਰੇਨ – 펀잡어" lang="pa" hreflang="pa" data-title="ਡੀ-ਬਰੇਨ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="펀잡어" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/D-brana" title="D-brana – 포르투갈어" lang="pt" hreflang="pt" data-title="D-brana" data-language-autonym="Português" data-language-local-name="포르투갈어" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/D-%D0%B1%D1%80%D0%B0%D0%BD%D0%B0" title="D-брана – 러시아어" lang="ru" hreflang="ru" data-title="D-брана" data-language-autonym="Русский" data-language-local-name="러시아어" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/D-brane" title="D-brane – Simple English" lang="en-simple" hreflang="en-simple" data-title="D-brane" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/D-br%C3%A1na" title="D-brána – 슬로바키아어" lang="sk" hreflang="sk" data-title="D-brána" data-language-autonym="Slovenčina" data-language-local-name="슬로바키아어" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/D-bran" title="D-bran – 스웨덴어" lang="sv" hreflang="sv" data-title="D-bran" data-language-autonym="Svenska" data-language-local-name="스웨덴어" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/D%E8%86%9C" title="D膜 – 중국어" lang="zh" hreflang="zh" data-title="D膜" data-language-autonym="中文" data-language-local-name="중국어" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/D-brane" title="D-brane – 광둥어" lang="yue" hreflang="yue" data-title="D-brane" data-language-autonym="粵語" data-language-local-name="광둥어" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q137880#sitelinks-wikipedia" title="언어 간 링크 편집" class="wbc-editpage">링크 편집</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="이름공간"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/D-%EB%A7%89" title="본문 보기 [c]" accesskey="c"><span>문서</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/%ED%86%A0%EB%A1%A0:D-%EB%A7%89" rel="discussion" title="문서의 내용에 대한 토론 문서 [t]" accesskey="t"><span>토론</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="언어 변종 바꾸기" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">한국어</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="보기"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/D-%EB%A7%89"><span>읽기</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=D-%EB%A7%89&action=edit" title="이 문서의 원본 코드를 편집 [e]" accesskey="e"><span>편집</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=D-%EB%A7%89&action=history" title="이 문서의 과거 편집 내역입니다. [h]" accesskey="h"><span>역사 보기</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="페이지 도구"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="도구" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">도구</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">도구</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">숨기기</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="더 많은 옵션" > <div class="vector-menu-heading"> 동작 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/D-%EB%A7%89"><span>읽기</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=D-%EB%A7%89&action=edit" title="이 문서의 원본 코드를 편집 [e]" accesskey="e"><span>편집</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=D-%EB%A7%89&action=history"><span>역사 보기</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 일반 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EA%B0%80%EB%A6%AC%ED%82%A4%EB%8A%94%EB%AC%B8%EC%84%9C/D-%EB%A7%89" title="여기를 가리키는 모든 위키 문서의 목록 [j]" accesskey="j"><span>여기를 가리키는 문서</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%A7%81%ED%81%AC%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C/D-%EB%A7%89" rel="nofollow" title="이 문서에서 링크한 문서의 최근 바뀜 [k]" accesskey="k"><span>가리키는 글의 최근 바뀜</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/위키백과:파일_올리기" title="파일 올리기 [u]" accesskey="u"><span>파일 올리기</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%ED%8A%B9%EC%88%98%EB%AC%B8%EC%84%9C" title="모든 특수 문서의 목록 [q]" accesskey="q"><span>특수 문서 목록</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=D-%EB%A7%89&oldid=37152495" title="이 문서의 이 판에 대한 고유 링크"><span>고유 링크</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=D-%EB%A7%89&action=info" title="이 문서에 대한 자세한 정보"><span>문서 정보</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%9D%B4%EB%AC%B8%EC%84%9C%EC%9D%B8%EC%9A%A9&page=D-%EB%A7%89&id=37152495&wpFormIdentifier=titleform" title="이 문서를 인용하는 방법에 대한 정보"><span>이 문서 인용하기</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:UrlShortener&url=https%3A%2F%2Fko.wikipedia.org%2Fwiki%2FD-%25EB%25A7%2589"><span>축약된 URL 얻기</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:QrCode&url=https%3A%2F%2Fko.wikipedia.org%2Fwiki%2FD-%25EB%25A7%2589"><span>QR 코드 다운로드</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> 인쇄/내보내기 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%B1%85&bookcmd=book_creator&referer=D-%EB%A7%89"><span>책 만들기</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:DownloadAsPdf&page=D-%EB%A7%89&action=show-download-screen"><span>PDF로 다운로드</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=D-%EB%A7%89&printable=yes" title="이 문서의 인쇄용 판 [p]" accesskey="p"><span>인쇄용 판</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 다른 프로젝트 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q137880" title="데이터 저장소에 연결된 항목을 가리키는 링크 [g]" accesskey="g"><span>위키데이터 항목</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="페이지 도구"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="보이기"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">보이기</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">숨기기</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">위키백과, 우리 모두의 백과사전.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ko" dir="ltr"><p><span class="nowrap"></span> </p> <style data-mw-deduplicate="TemplateStyles:r36480591">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:", ";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" / ";font-weight:normal}</style><style data-mw-deduplicate="TemplateStyles:r34311371">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:#f8f9fa;border:1px solid #aaa;padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:720px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}</style><table class="sidebar sidebar-collapse nomobile nowraplinks" style="width:"><tbody><tr><th class="sidebar-title"><a href="/wiki/%EB%81%88_%EC%9D%B4%EB%A1%A0" title="끈 이론">끈 이론</a></th></tr><tr><td class="sidebar-image"><span typeof="mw:File/Frameless"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Calabi-Yau-alternate.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Calabi-Yau-alternate.png/100px-Calabi-Yau-alternate.png" decoding="async" width="100" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Calabi-Yau-alternate.png/150px-Calabi-Yau-alternate.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Calabi-Yau-alternate.png/200px-Calabi-Yau-alternate.png 2x" data-file-width="765" data-file-height="765" /></a></span></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background: #ddf; text-align:center;"><a href="/wiki/%EB%B3%B4%EC%86%90_%EB%81%88_%EC%9D%B4%EB%A1%A0" title="보손 끈 이론">보손 끈 이론</a></div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><a href="/wiki/2%EC%B0%A8%EC%9B%90_%EB%93%B1%EA%B0%81_%EC%9E%A5%EB%A1%A0" title="2차원 등각 장론">2차원 등각 장론</a> <span style="font-weight:bold;">·</span> <a href="/wiki/BRST_%EC%96%91%EC%9E%90%ED%99%94" title="BRST 양자화">BRST 양자화</a></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background: #ddf; text-align:center;">막</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><a href="/wiki/%EB%81%88_(%EB%AC%BC%EB%A6%AC%ED%95%99)" title="끈 (물리학)">끈</a> <span style="font-weight:bold;">·</span> <a class="mw-selflink selflink">D-막</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%B2%9C-%ED%8E%98%EC%9D%B4%ED%84%B4_%EC%9D%B8%EC%9E%90" title="천-페이턴 인자">천-페이턴 인자</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%B3%B4%EB%A5%B8-%EC%9D%B8%ED%8E%A0%ED%8A%B8_%EC%9D%B4%EB%A1%A0" title="보른-인펠트 이론">보른-인펠트 이론</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%AF%B8%EB%B6%84_%ED%98%95%EC%8B%9D_%EC%A0%84%EA%B8%B0%EC%97%AD%ED%95%99" title="미분 형식 전기역학">미분 형식 전기역학</a> <span style="font-weight:bold;">·</span> <a href="/wiki/NS5-%EB%A7%89" title="NS5-막">NS5-막</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%98%A4%EB%A6%AC%EC%97%94%ED%8B%B0%ED%8F%B4%EB%93%9C" title="오리엔티폴드">오리엔티폴드</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%ED%95%98%EB%82%98%EB%8B%88-%EC%9C%84%ED%8A%BC_%EC%A0%84%EC%9D%B4" title="하나니-위튼 전이">하나니-위튼 전이</a></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background: #ddf; text-align:center;">초끈</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><a href="/wiki/%EC%B4%88%EB%8C%80%EC%B9%AD" title="초대칭">초대칭</a>  <span style="font-weight:bold;">·</span> <a href="/wiki/GSO_%EC%82%AC%EC%98%81" title="GSO 사영">GSO 사영</a>  <span style="font-weight:bold;">·</span> <a href="/w/index.php?title=%EA%B7%B8%EB%A6%B0-%EC%8A%88%EC%9B%8C%EC%B8%A0_%EC%B4%88%EB%81%88&action=edit&redlink=1" class="new" title="그린-슈워츠 초끈 (없는 문서)">그린-슈워츠 초끈</a>  <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%9E%A1%EC%A2%85_%EB%81%88_%EC%9D%B4%EB%A1%A0" title="잡종 끈 이론">잡종 끈 이론</a>  <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%9D%BC%EB%AA%BD-%EB%9D%BC%EB%AA%BD_%EC%9E%A5" title="라몽-라몽 장">라몽-라몽 장</a>  <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%BA%98%EB%B8%8C-%EB%9D%BC%EB%AA%BD_%EC%9E%A5" title="캘브-라몽 장">캘브-라몽 장</a> (<a href="/wiki/%EC%95%A1%EC%8B%9C%EC%98%A8" title="액시온">액시온</a>)</div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background: #ddf; text-align:center;"><a href="/wiki/%EC%B6%95%EC%86%8C%ED%99%94" title="축소화">축소화</a></div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><a href="/wiki/%EC%B9%BC%EB%A3%A8%EC%B0%A8-%ED%81%B4%EB%A0%88%EC%9D%B8_%EC%9D%B4%EB%A1%A0" class="mw-redirect" title="칼루차-클레인 이론">칼루차-클레인 이론</a>  <span style="font-weight:bold;">·</span> <a href="/wiki/T-%EC%9D%B4%EC%A4%91%EC%84%B1" title="T-이중성">T-이중성</a>  <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%B9%BC%EB%9D%BC%EB%B9%84-%EC%95%BC%EC%9A%B0_%EB%8B%A4%EC%96%91%EC%B2%B4" title="칼라비-야우 다양체">칼라비-야우 다양체</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EA%B1%B0%EC%9A%B8_%EB%8C%80%EC%B9%AD" title="거울 대칭">거울 대칭</a>  <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%98%A4%EB%B9%84%ED%8F%B4%EB%93%9C" title="오비폴드">오비폴드</a>  <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%BD%94%EB%8B%88%ED%8F%B4%EB%93%9C" title="코니폴드">코니폴드</a>  <span style="font-weight:bold;">·</span> <a href="/wiki/F%EC%9D%B4%EB%A1%A0" title="F이론">F이론</a>  <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%9D%BC%EB%94%94%EC%98%A8" title="라디온">라디온</a>  <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%A4%91%EB%A0%A5%EA%B4%91%EC%9E%90" title="중력광자">중력광자</a></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background: #ddf; text-align:center;"><a href="/wiki/M%EC%9D%B4%EB%A1%A0" title="M이론">M이론</a></div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><a href="/wiki/AdS/CFT_%EB%8C%80%EC%9D%91%EC%84%B1" title="AdS/CFT 대응성">AdS/CFT 대응성</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%ED%99%80%EB%A1%9C%EA%B7%B8%EB%9E%98%ED%94%BC_%EC%9B%90%EB%A6%AC" title="홀로그래피 원리">홀로그래피 원리</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%ED%96%89%EB%A0%AC_%EC%9D%B4%EB%A1%A0" title="행렬 이론">행렬 이론</a> <span style="font-weight:bold;">·</span> <a href="/wiki/S-%EC%9D%B4%EC%A4%91%EC%84%B1" title="S-이중성">S-이중성</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%ED%83%80%ED%82%A4%EC%98%A8_%EC%9D%91%EC%B6%95" title="타키온 응축">타키온 응축</a></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background: #ddf; text-align:center;"><a href="/wiki/%EC%96%91%EC%9E%90_%EC%A4%91%EB%A0%A5" title="양자 중력">양자 중력</a></div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><a href="/wiki/%EC%B4%88%EC%A4%91%EB%A0%A5" title="초중력">초중력</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%94%9C%EB%9D%BC%ED%86%A4" title="딜라톤">딜라톤</a>  <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%B8%8C%EB%9E%9C%EC%8A%A4-%EB%94%95_%EC%9D%B4%EB%A1%A0" title="브랜스-딕 이론">브랜스-딕 이론</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%B8%94%EB%9E%99%ED%99%80_%EC%97%B4%EC%97%AD%ED%95%99" title="블랙홀 열역학">블랙홀 열역학</a></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background: #ddf; text-align:center;">관련 과학자</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><a href="/wiki/%EB%8D%B0%EC%9D%B4%EB%B9%84%EB%93%9C_%EA%B7%B8%EB%A1%9C%EC%8A%A4" title="데이비드 그로스">그로스</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%A7%88%EC%9D%B4%ED%81%B4_%EB%B3%B4%EB%A6%AC%EC%8A%A4_%EA%B7%B8%EB%A6%B0" title="마이클 보리스 그린">M. 그린</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%B8%8C%EB%9D%BC%EC%9D%B4%EC%96%B8_%EA%B7%B8%EB%A6%B0" title="브라이언 그린">B. 그린</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%A7%88%EC%9D%B4%ED%81%B4_%EC%A0%9C%EC%9E%84%EC%8A%A4_%EB%8D%94%ED%94%84" title="마이클 제임스 더프">더프</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%A1%9C%EB%B2%A0%EB%A5%B4%ED%8A%80%EC%8A%A4_%EB%8D%B0%EC%9D%B4%ED%81%AC%ED%9D%90%EB%9D%BC%ED%94%84" title="로베르튀스 데이크흐라프">데이크흐라프</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%ED%94%BC%EC%97%90%EB%A5%B4_%EB%9D%BC%EB%AA%BD" title="피에르 라몽">라몽</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%A6%AC%EC%82%AC_%EB%9E%9C%EB%93%A4" title="리사 랜들">랜들</a> <span style="font-weight:bold;">·</span> <a href="/w/index.php?title=%EC%8A%A4%ED%83%A0%EB%A6%AC_%EB%A7%8C%EB%8D%B8%EC%8A%A4%ED%83%90&action=edit&redlink=1" class="new" title="스탠리 만델스탐 (없는 문서)">만델스탐</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%ED%9B%84%EC%95%88_%EB%A7%90%EB%8B%A4%EC%84%B8%EB%82%98" title="후안 말다세나">말다세나</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EA%B7%B8%EB%A0%88%EA%B3%A0%EB%A6%AC_%EC%9C%88%EC%8A%A4%EB%9F%BD_%EB%AC%B4%EC%96%B4" title="그레고리 윈스럽 무어">무어</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%BA%84%EB%9E%80_%EB%B0%94%ED%8C%8C" title="캄란 바파">바파</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EA%B0%80%EB%B8%8C%EB%A6%AC%EC%97%98%EB%A0%88_%EB%B2%A0%EB%84%A4%EC%B9%98%EC%95%84%EB%85%B8" title="가브리엘레 베네치아노">베네치아노</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%A0%88%EB%84%88%EB%93%9C_%EC%84%9C%EC%8A%A4%ED%82%A8%EB%93%9C" title="레너드 서스킨드">서스킨드</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%95%84%EC%87%BC%EC%BC%80_%EC%84%BC" title="아쇼케 센">센</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%A1%B0%EC%97%98_%EC%85%B0%EB%A5%B4%ED%81%AC" title="조엘 셰르크">셰르크</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%A1%B4_%ED%97%A8%EB%A6%AC_%EC%8A%88%EC%9B%8C%EC%B8%A0" title="존 헨리 슈워츠">슈워츠</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%95%A4%EB%93%9C%EB%A3%A8_%EC%8A%A4%ED%8A%B8%EB%A1%9C%EB%AF%BC%EC%A0%80" title="앤드루 스트로민저">스트로민저</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%8B%88%EB%A7%88_%EC%95%84%EB%A5%B4%EC%B9%B4%EB%8B%88%ED%95%98%EB%A9%94%EB%93%9C" title="니마 아르카니하메드">아르카니하메드</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%97%90%EB%93%9C%EC%9B%8C%EB%93%9C_%EC%9C%84%ED%8A%BC" title="에드워드 위튼">위튼</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%82%98%ED%83%84_%EC%9E%90%EC%9D%B4%EB%B2%A0%EB%A5%B4%EA%B7%B8" title="나탄 자이베르그">자이베르그</a> <span style="font-weight:bold;">·</span> <a href="/w/index.php?title=%ED%8F%B4_%ED%83%80%EC%9A%B4%EC%A0%A0%EB%93%9C&action=edit&redlink=1" class="new" title="폴 타운젠드 (없는 문서)">타운젠드</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%95%8C%EB%A0%89%EC%82%B0%EB%93%9C%EB%A5%B4_%EB%A7%88%EB%A5%B4%EC%BD%94%EB%B9%84%EC%B9%98_%ED%8F%B4%EB%9E%B4%EC%BD%94%ED%94%84" title="알렉산드르 마르코비치 폴랴코프">폴랴코프</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EC%A1%B0%EC%A7%80%ED%94%84_%ED%8F%B4%EC%B9%9C%EC%8A%A4%ED%82%A4" title="조지프 폴친스키">폴친스키</a> <span style="font-weight:bold;">·</span> <a href="/wiki/%EB%AF%B8%EC%B9%98%EC%98%A4_%EC%B9%B4%EC%BF%A0" title="미치오 카쿠">카쿠</a></div></div></td> </tr><tr><td class="sidebar-below hlist" style="display:block;margin-top:0.3em;"> <ul><li><a href="/wiki/%EB%81%88_%EC%9D%B4%EB%A1%A0%EC%9D%98_%EC%97%AD%EC%82%AC" title="끈 이론의 역사">역사</a></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><style data-mw-deduplicate="TemplateStyles:r34311309">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-보기"><a href="/wiki/%ED%8B%80:%EB%81%88_%EC%9D%B4%EB%A1%A0" title="틀:끈 이론"><abbr title="이 틀을 보기">v</abbr></a></li><li class="nv-토론"><a href="/w/index.php?title=%ED%8B%80%ED%86%A0%EB%A1%A0:%EB%81%88_%EC%9D%B4%EB%A1%A0&action=edit&redlink=1" class="new" title="틀토론:끈 이론 (없는 문서)"><abbr title="이 틀에 관해 토론하기">t</abbr></a></li><li class="nv-편집"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%AC%B8%EC%84%9C%ED%8E%B8%EC%A7%91/%ED%8B%80:%EB%81%88_%EC%9D%B4%EB%A1%A0" title="특수:문서편집/틀:끈 이론"><abbr title="이 틀을 편집하기">e</abbr></a></li></ul></div></td></tr></tbody></table> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:D3-brane_et_D2-brane.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/D3-brane_et_D2-brane.PNG/350px-D3-brane_et_D2-brane.PNG" decoding="async" width="350" height="248" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/D3-brane_et_D2-brane.PNG/525px-D3-brane_et_D2-brane.PNG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/88/D3-brane_et_D2-brane.PNG/700px-D3-brane_et_D2-brane.PNG 2x" data-file-width="1185" data-file-height="839" /></a><figcaption>D-막에 붙어 있는 끈들. 열린 끈의 끝은 항상 D-막에 붙어 있다.</figcaption></figure> <p><b>D-막</b>(D-幕, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">D-brane</span> <small>디 브레인<sup>[<a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%98%81%EC%96%B4%EC%9D%98_%ED%95%9C%EA%B8%80_%ED%91%9C%EA%B8%B0" title="위키백과:영어의 한글 표기">*</a>]</sup></small>) 또는 <b>디리클레 막</b>(Dirichlet幕, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">Dirichlet brane</span>)이란 열린 <a href="/wiki/%EB%81%88_(%EB%AC%BC%EB%A6%AC%ED%95%99)" title="끈 (물리학)">끈</a>의 끝에 붙어 있는 막(<span lang="en">brane</span>)이다.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Johnson_2-0" class="reference"><a href="#cite_note-Johnson-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> 이에 따라 열린 끈의 경계 조건이 <a href="/wiki/%EB%94%94%EB%A6%AC%ED%81%B4%EB%A0%88_%EA%B2%BD%EA%B3%84_%EC%A1%B0%EA%B1%B4" title="디리클레 경계 조건">디리클레 경계 조건</a>을 이룬다. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5885ec01d3b5670fd5f88847f32da2b3dd62f60c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.262ex; height:2.509ex;" alt="{\displaystyle p+1}"></span>차원의 D-막은 D<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-막이라 부른다. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="성질"><span id=".EC.84.B1.EC.A7.88"></span>성질</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=1" title="부분 편집: 성질"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="작용"><span id=".EC.9E.91.EC.9A.A9"></span>작용</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=2" title="부분 편집: 작용"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>D-막은 근본적으로 <a href="/wiki/%EB%82%9C%EB%B6%80-%EA%B3%A0%ED%86%A0_%EC%9E%91%EC%9A%A9" title="난부-고토 작용">난부-고토 작용</a>을 일반화한 <b>디랙 작용</b>(Dirac作用, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">Dirac action</span>)을 따른다. 일반적으로, D-막은 <a href="/wiki/%EA%B2%8C%EC%9D%B4%EC%A7%80_%EC%9D%B4%EB%A1%A0" title="게이지 이론">게이지 전하</a>를 띨 수 있다. 예를 들어 끈 이론에서의 <a href="/wiki/%EB%9D%BC%EB%AA%BD-%EB%9D%BC%EB%AA%BD_%EC%9E%A5" title="라몽-라몽 장">라몽-라몽</a> p-형식과 <a href="/wiki/%EB%94%9C%EB%9D%BC%ED%86%A4" title="딜라톤">딜라톤</a>, <a href="/wiki/%EC%A4%91%EB%A0%A5%EC%9E%90" title="중력자">중력자</a>와 상호작용한다. 이를 <a href="/wiki/%EB%B3%B4%EB%A5%B8-%EC%9D%B8%ED%8E%A0%ED%8A%B8_%EC%9D%B4%EB%A1%A0" title="보른-인펠트 이론">디랙-보른-인펠트 작용</a>으로 나타낼 수 있다.<sup id="cite_ref-Simon_14-0" class="reference"><a href="#cite_note-Simon-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> 점입자 (0-막)가 1-형식의 게이지 장과 상호작용하듯, D<i>p</i>-막은 (<i>p</i>+1)-형식 <a href="/wiki/%EB%9D%BC%EB%AA%BD-%EB%9D%BC%EB%AA%BD_%EC%9E%A5" title="라몽-라몽 장">라몽-라몽</a> 게이지 장과 상호작용한다. 이를 <a href="/wiki/%EB%AF%B8%EB%B6%84_%ED%98%95%EC%8B%9D_%EC%A0%84%EA%B8%B0%EC%97%AD%ED%95%99" title="미분 형식 전기역학">미분 형식 전기역학</a>이라고 한다. </p><p>정의에 따라, D-막은 열린 끈과 상호작용한다. D-막에 붙어 있는 열린 끈의 무질량 진동 모드의 일부는 D-막 위의 <a href="/wiki/%EA%B2%8C%EC%9D%B4%EC%A7%80_%EC%9E%A5" class="mw-redirect" title="게이지 장">게이지 장</a>을 나타내고, 나머지 무질량 모드는 D-막의 움직임을 나타낸다. 이에 따라서 D-막이 고정되지 않고, 동적인 개체라는 사실을 알 수 있다. </p> <div class="mw-heading mw-heading3"><h3 id="장력"><span id=".EC.9E.A5.EB.A0.A5"></span>장력</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=3" title="부분 편집: 장력"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>D<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-막의 <b><a href="/wiki/%EC%9E%A5%EB%A0%A5" title="장력">장력</a></b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11812d9eb5f2afd4b461d144c578d88dcc3c4d27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.417ex; height:2.843ex;" alt="{\displaystyle T_{p}}"></span>는 D-막의 에너지 밀도를 나타내는 상수다. 정확히 말하면, D-막의 에너지 밀도 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/438fec4fcc6c32607b5b4be9b0a9fa3a5aadb247" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.075ex; height:2.343ex;" alt="{\displaystyle \tau _{p}}"></span>는 다음과 같다.<sup id="cite_ref-Johnson_2-1" class="reference"><a href="#cite_note-Johnson-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:147</sup></span><sup id="cite_ref-Polchinski1_15-0" class="reference"><a href="#cite_note-Polchinski1-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:275</sup></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{p}=T_{p}\exp(-\Phi )=T_{p}g_{\text{s}}^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{p}=T_{p}\exp(-\Phi )=T_{p}g_{\text{s}}^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7297f3e1cf6194f89224a8d7f787a2f95cc0269e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.792ex; height:3.343ex;" alt="{\displaystyle \tau _{p}=T_{p}\exp(-\Phi )=T_{p}g_{\text{s}}^{-1}}"></span></dd></dl> <p>여기서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp \Phi =g_{\text{s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp \Phi =g_{\text{s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4dc4bb7df6add55dea1d3d65d21ab5413928e75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.705ex; height:2.509ex;" alt="{\displaystyle \exp \Phi =g_{\text{s}}}"></span>는 닫힌 끈 <a href="/wiki/%EA%B2%B0%ED%95%A9_%EC%83%81%EC%88%98" title="결합 상수">결합 상수</a>이다. 이는 다음과 같이 유도할 수 있다. 반지름 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span>의 <a href="/wiki/%EC%B6%95%EC%86%8C%ED%99%94" title="축소화">축소화</a>된 방향에 감긴 D<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-막을 생각하자. 그렇다면 D-막의 나머지 9차원에서 에너지 밀도는 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{p}g_{\text{s}}^{-1}2\pi R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mn>2</mn> <mi>π<!-- π --></mi> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{p}g_{\text{s}}^{-1}2\pi R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8edb96b8f5c4f01d01a91fc1e8f62e4bc3feff93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.126ex; height:3.343ex;" alt="{\displaystyle T_{p}g_{\text{s}}^{-1}2\pi R}"></span></dd></dl> <p><a href="/wiki/T-%EC%9D%B4%EC%A4%91%EC%84%B1" title="T-이중성">T-이중성</a>에 의하여, 이는 크기가 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{\text{s}}/R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{\text{s}}/R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458362659af070f578a5c1df4b0e5020c049b458" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.776ex; height:2.843ex;" alt="{\displaystyle \ell _{\text{s}}/R}"></span>로 축소화된 공간에 존재하는, 감기지 않은 D<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (p-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (p-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac90749c06d21ccfffb53161ea2ef2a9d7ef4e7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.982ex; height:2.843ex;" alt="{\displaystyle (p-1)}"></span>-막과 동등하다. (여기서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{\text{s}}={\sqrt {\alpha '}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>α<!-- α --></mi> <mo>′</mo> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{\text{s}}={\sqrt {\alpha '}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ae818f23de5654b87d7330a1fd7ba6970e57378" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.444ex; height:3.509ex;" alt="{\displaystyle \ell _{\text{s}}={\sqrt {\alpha '}}}"></span>는 레게 기울기의 제곱근이다.) 이 막의 에너지 밀도는 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {T_{p-1}}{g_{\text{s}}'}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> <mo>′</mo> </msubsup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {T_{p-1}}{g_{\text{s}}'}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/744a55fb8d5f6ace9b8c51aec0579af78599f6da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:5.353ex; height:6.176ex;" alt="{\displaystyle {\frac {T_{p-1}}{g_{\text{s}}'}}}"></span></dd></dl> <p>가 된다. 여기서, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\text{s}}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\text{s}}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f88542236db33a93793c9ed87190acfc0243d57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.989ex; height:2.509ex;" alt="{\displaystyle g_{\text{s}}'}"></span>는 T-이중 이론의 결합 상수로, 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\text{s}}'=g_{\text{s}}'R/\ell _{\text{s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> <mo>′</mo> </msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\text{s}}'=g_{\text{s}}'R/\ell _{\text{s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/054221c4ee0cdb99eb20ccfd3e1c2caa6b110e3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.853ex; height:2.843ex;" alt="{\displaystyle g_{\text{s}}'=g_{\text{s}}'R/\ell _{\text{s}}}"></span></dd></dl> <p>따라서, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{p}=T_{p-1}/(2\pi \ell _{\text{s}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{p}=T_{p-1}/(2\pi \ell _{\text{s}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/572373787549699793b8e57b557c453d5e7b1dbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.348ex; height:3.009ex;" alt="{\displaystyle T_{p}=T_{p-1}/(2\pi \ell _{\text{s}})}"></span></dd></dl> <p>임을 알 수 있다. 즉, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{p}=T_{0}(2\pi \ell _{\text{s}})^{-p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{p}=T_{0}(2\pi \ell _{\text{s}})^{-p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0fd73a85569e5e1d01be9fd62feef80f6cce7b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.418ex; height:3.176ex;" alt="{\displaystyle T_{p}=T_{0}(2\pi \ell _{\text{s}})^{-p}}"></span></dd></dl> <p>이다. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55b9e7d7b96196b5a6a26f4349caa3ac82fd67e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.412ex; height:2.509ex;" alt="{\displaystyle T_{0}}"></span>는 <a href="/wiki/%EB%B3%B4%EC%86%90_%EB%81%88_%EC%9D%B4%EB%A1%A0" title="보손 끈 이론">보손 끈 이론</a>에서는 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{0}={\frac {\pi }{256\kappa _{0}^{2}}}(2\pi \ell _{\text{s}})^{22}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mrow> <mn>256</mn> <msubsup> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{0}={\frac {\pi }{256\kappa _{0}^{2}}}(2\pi \ell _{\text{s}})^{22}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dd2d391d7d5bfb57db60dae67511364c0babda7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.257ex; height:5.843ex;" alt="{\displaystyle T_{0}={\frac {\pi }{256\kappa _{0}^{2}}}(2\pi \ell _{\text{s}})^{22}}"></span>.</dd></dl> <p>여기서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/118936f5b31aae8a7ffb08db99b00f70d4411907" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.393ex; height:2.009ex;" alt="{\displaystyle \kappa _{0}}"></span>는 끈의 <a href="/wiki/%EC%95%84%EC%9D%B8%EC%8A%88%ED%83%80%EC%9D%B8-%ED%9E%90%EB%B2%A0%EB%A5%B4%ED%8A%B8_%EC%9E%91%EC%9A%A9" title="아인슈타인-힐베르트 작용">아인슈타인-힐베르트 작용</a>에 나타나는 상수로, 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{\text{EH}}={\frac {1}{2\kappa _{0}^{2}}}\int d^{10}x\,\exp(-2\Phi ){\sqrt {-\det g}}R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>EH</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msubsup> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mi>x</mi> <mspace width="thinmathspace" /> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <mo movablelimits="true" form="prefix">det</mo> <mi>g</mi> </msqrt> </mrow> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{\text{EH}}={\frac {1}{2\kappa _{0}^{2}}}\int d^{10}x\,\exp(-2\Phi ){\sqrt {-\det g}}R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70c4db1355cc4dde73b28360cd2691bffd6d54b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:40.691ex; height:6.343ex;" alt="{\displaystyle S_{\text{EH}}={\frac {1}{2\kappa _{0}^{2}}}\int d^{10}x\,\exp(-2\Phi ){\sqrt {-\det g}}R}"></span>.</dd></dl> <p>초끈의 경우에는 다음과 같다.<sup id="cite_ref-Polchinski2_16-0" class="reference"><a href="#cite_note-Polchinski2-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:146</sup></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{0}={\frac {\sqrt {\pi }}{\kappa _{0}}}(2\pi \ell _{\text{s}})^{3}={\frac {1}{g_{\text{s}}\ell _{\text{s}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mi>π<!-- π --></mi> </msqrt> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{0}={\frac {\sqrt {\pi }}{\kappa _{0}}}(2\pi \ell _{\text{s}})^{3}={\frac {1}{g_{\text{s}}\ell _{\text{s}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d06a7459067b3a046163da24cd258c530aca50e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.596ex; height:6.343ex;" alt="{\displaystyle T_{0}={\frac {\sqrt {\pi }}{\kappa _{0}}}(2\pi \ell _{\text{s}})^{3}={\frac {1}{g_{\text{s}}\ell _{\text{s}}}}}"></span></dd></dl> <p>D-막의 장력들은 <a href="/wiki/M%EC%9D%B4%EB%A1%A0" title="M이론">M이론</a>을 통해서도 설명할 수 있다. M이론에 따라, ⅡA 끈 이론의 D2-막은 사실 <a href="/wiki/M%EC%9D%B4%EB%A1%A0" title="M이론">M이론</a>의 <a href="/wiki/M2-%EB%A7%89" class="mw-redirect" title="M2-막">M2-막</a>과 같으며, D4-막은 원에 감긴 <a href="/wiki/M5-%EB%A7%89" class="mw-redirect" title="M5-막">M5-막</a>과 같은데, 이 경우 해당 <a class="mw-selflink selflink">D-막</a>들의 장력은 <a href="/wiki/M%EC%9D%B4%EB%A1%A0" title="M이론">M이론</a>에서 계산한 M-막들의 장력과 일치한다. </p> <div class="mw-collapsible mw-collapsed toccolours"> <p><b>계산:</b> </p> <div class="mw-collapsible-content"> <p>즉, D2-막의 장력은 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{2}={\frac {1}{g_{\text{s}}\ell _{\text{s}}(2\pi \ell _{\text{s}})^{2}}}={\frac {1}{2\pi (g_{\text{s}}^{1/3}\ell _{\text{s}})^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msubsup> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{2}={\frac {1}{g_{\text{s}}\ell _{\text{s}}(2\pi \ell _{\text{s}})^{2}}}={\frac {1}{2\pi (g_{\text{s}}^{1/3}\ell _{\text{s}})^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/617a7e1d8cc10c1ffe46ce828e4f64ec719dcbc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:32.352ex; height:6.676ex;" alt="{\displaystyle T_{2}={\frac {1}{g_{\text{s}}\ell _{\text{s}}(2\pi \ell _{\text{s}})^{2}}}={\frac {1}{2\pi (g_{\text{s}}^{1/3}\ell _{\text{s}})^{2}}}}"></span></dd></dl> <p>인데, <a href="/wiki/M%EC%9D%B4%EB%A1%A0" title="M이론">M이론</a>에서 11차원 플랑크 길이는 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{\text{p}}=g_{\text{s}}^{1/3}\ell _{\text{s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>p</mtext> </mrow> </msub> <mo>=</mo> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msubsup> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{\text{p}}=g_{\text{s}}^{1/3}\ell _{\text{s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b8002887a265693b902b5b6923b52e9ec1cc4a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.881ex; height:3.676ex;" alt="{\displaystyle \ell _{\text{p}}=g_{\text{s}}^{1/3}\ell _{\text{s}}}"></span></dd></dl> <p>이므로, 이는 M2-막의 장력 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\text{M2}}={\frac {1}{2\pi \ell _{\text{p}}^{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>M2</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> <msubsup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>p</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\text{M2}}={\frac {1}{2\pi \ell _{\text{p}}^{3}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f29f6e308620dd9b32a8d38f4c9b4c59e5ae9745" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:12.464ex; height:6.176ex;" alt="{\displaystyle T_{\text{M2}}={\frac {1}{2\pi \ell _{\text{p}}^{3}}}}"></span></dd></dl> <p>과 같다. 마찬가지로, D4-막의 장력은 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{4}={\frac {1}{g_{\text{s}}\ell _{\text{s}}(2\pi \ell _{\text{s}})^{4}}}={\frac {R_{11}}{(2\pi )^{4}\ell _{\text{p}}^{6}}}=2\pi R_{11}T_{\text{M5}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <msubsup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>p</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>M5</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{4}={\frac {1}{g_{\text{s}}\ell _{\text{s}}(2\pi \ell _{\text{s}})^{4}}}={\frac {R_{11}}{(2\pi )^{4}\ell _{\text{p}}^{6}}}=2\pi R_{11}T_{\text{M5}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d5879858b40fb3ffb13480e46f055ab46b41d9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:41.953ex; height:6.176ex;" alt="{\displaystyle T_{4}={\frac {1}{g_{\text{s}}\ell _{\text{s}}(2\pi \ell _{\text{s}})^{4}}}={\frac {R_{11}}{(2\pi )^{4}\ell _{\text{p}}^{6}}}=2\pi R_{11}T_{\text{M5}}}"></span></dd></dl> <p>이다. (여기서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{11}=g_{\text{s}}\ell _{\text{s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> <msub> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>s</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{11}=g_{\text{s}}\ell _{\text{s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c9fd2b02a7bb505e2c3fdeecdc64340d228fc1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.578ex; height:2.509ex;" alt="{\displaystyle R_{11}=g_{\text{s}}\ell _{\text{s}}}"></span>는 축소화된 11번째 차원의 반지름이며, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\text{M5}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>M5</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\text{M5}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b23b1165c438cd62f672cd0870ad5796f5da0fef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.919ex; height:2.509ex;" alt="{\displaystyle T_{\text{M5}}}"></span>는 <a href="/wiki/M5-%EB%A7%89" class="mw-redirect" title="M5-막">M5-막</a>의 장력이다.) 이는 D4-막이 둘레 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi R_{11}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>π<!-- π --></mi> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi R_{11}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dac8c7385681bc238ab88fd53abaf0bca4b2b67d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.135ex; height:2.509ex;" alt="{\displaystyle 2\pi R_{11}}"></span>의 원에 감긴 <a href="/wiki/M5-%EB%A7%89" class="mw-redirect" title="M5-막">M5-막</a>이기 때문이다. </p> </div></div> <div class="mw-heading mw-heading3"><h3 id="T-이중성"><span id="T-.EC.9D.B4.EC.A4.91.EC.84.B1"></span>T-이중성</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=4" title="부분 편집: T-이중성"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>다른 막(기본 끈, <a href="/wiki/NS5-%EB%A7%89" title="NS5-막">NS5-막</a>)과 달리, D-막은 <a href="/wiki/T-%EC%9D%B4%EC%A4%91%EC%84%B1" title="T-이중성">T-이중성</a> 아래 그 차원이 바뀐다. 구체적으로, D<i>p</i>-막의 세계부피의 방향으로 축소화한 이론에 T-이중성을 가하면, D(<i>p</i>−1)-막을 얻는다. 반면, D<i>p</i>-막의 세계부피의 방향이 아닌 방향으로 축소화한 이론에 T-이중성을 가하면, D(<i>p</i>+1)-막을 얻는다. </p> <div class="mw-heading mw-heading2"><h2 id="분류"><span id=".EB.B6.84.EB.A5.98"></span>분류</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=5" title="부분 편집: 분류"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>D-막은 시공의 차원에 따라 0차원의 D(−1)-막 (또는 <b>D-<a href="/wiki/%EC%88%9C%EA%B0%84%EC%9E%90" title="순간자">순간자</a></b> <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">D-instanton</span>)부터 (초끈 이론의 경우) 10차원의 D9-막까지가 있다. (<a href="/wiki/%EB%B3%B4%EC%86%90_%EB%81%88_%EC%9D%B4%EB%A1%A0" title="보손 끈 이론">보손 끈 이론</a>에서는 물론 D25-막까지 가능하다.) </p><p>D-막들은 일반적으로 불안정하다. 그러나 끈 이론이 <a href="/wiki/%EB%9D%BC%EB%AA%BD-%EB%9D%BC%EB%AA%BD_%EC%9E%A5" title="라몽-라몽 장">라몽-라몽 장</a>을 포함하고, D-막이 해당하는 라몽-라몽 전하를 가질 경우 안정되게 된다. 이는 <a href="/wiki/%EC%B4%88%EB%8C%80%EC%B9%AD" title="초대칭">초대칭</a>의 깨짐으로도 이해할 수 있는데, 이러한 경우 D-막은 존재하는 <a href="/wiki/%EC%B4%88%EB%8C%80%EC%B9%AD" title="초대칭">초대칭</a>의 절반만을 깨게 되므로, 남은 초대칭에 의하여 안정되게 된다. 이러한 상태를 <b>BPS 상태</b>라고 한다. ⅡA종 이론에서는 홀수 차수의 <a href="/wiki/%EB%9D%BC%EB%AA%BD-%EB%9D%BC%EB%AA%BD_%EC%9E%A5" title="라몽-라몽 장">라몽-라몽 장</a>이 존재하므로, 짝수 차원의 D-막(D0, D2, D4, D6, D8)이 안정하다. ⅡB종 이론에서는 짝수 차수의 <a href="/wiki/%EB%9D%BC%EB%AA%BD-%EB%9D%BC%EB%AA%BD_%EC%9E%A5" title="라몽-라몽 장">라몽-라몽 장</a>이 존재하므로, 홀수 차수의 D-막(D(−1), D1, D3, D5, D7, D9)이 안정하다. 즉, 이 묘사에서, 안정된 D-막은 시공간의 정수 계수 코호몰로지류로서 분류되며, 해당 D-막은 코호몰로지류에 해당하는 호몰로지류를 감게 된다. 정수 계수가 등장하는 이유는 <a href="/w/index.php?title=%EB%94%94%EB%9E%99_%EC%96%91%EC%9E%90%ED%99%94_%EC%A1%B0%EA%B1%B4&action=edit&redlink=1" class="new" title="디랙 양자화 조건 (없는 문서)">디랙 양자화 조건</a> 때문이다. (사실, 이 묘사는 <a href="/wiki/%EC%9C%84%EC%83%81_K%EC%9D%B4%EB%A1%A0" title="위상 K이론">위상 K이론</a>을 통한 더 정확한 묘사의 근사에 불과하다.) </p><p><a href="/wiki/%E2%85%A0%EC%A2%85_%EB%81%88_%EC%9D%B4%EB%A1%A0" class="mw-redirect" title="Ⅰ종 끈 이론">Ⅰ종 끈 이론</a>은 ⅡB종 끈 이론에 <a href="/wiki/%EC%98%A4%EB%A6%AC%EC%97%94%ED%8B%B0%ED%8F%B4%EB%93%9C" title="오리엔티폴드">오리엔티폴드</a>를 가하여 얻을 수 있는데, 이 경우 D1 · D5 · D9-막이 안정하다. 또한, BPS가 아닌 안정한 D0-막이 존재한다.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/%EC%9E%A1%EC%A2%85_%EB%81%88_%EC%9D%B4%EB%A1%A0" title="잡종 끈 이론">잡종 끈 이론</a>에서는 열린 끈이 없으며, 따라서 D-막이 존재하지 않는다. (잡종 끈 이론을 구성하려면 오른쪽 모드와 왼쪽 모드를 다르게 잡아야 하는데, 닫힌 끈과 달리 열린 끈에서는 이 두 모드가 서로 같게 된다.) </p> <div class="mw-heading mw-heading3"><h3 id="위상_K이론_분류"><span id=".EC.9C.84.EC.83.81_K.EC.9D.B4.EB.A1.A0_.EB.B6.84.EB.A5.98"></span>위상 K이론 분류</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=6" title="부분 편집: 위상 K이론 분류"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>D-막들은 <a href="/wiki/%EC%8B%9C%EA%B3%B5%EA%B0%84" title="시공간">시공간</a> 다양체에 <a href="/wiki/%EC%9C%84%EC%83%81_K%EC%9D%B4%EB%A1%A0" title="위상 K이론">위상 K이론</a>을 적용하여 분류한다.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-BBS_24-0" class="reference"><a href="#cite_note-BBS-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:211–214</sup></span> </p><p>예를 들어, 평탄한 10차원 시공간 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{10}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{10}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/308f7901668dcbbe5a5ceb5796b0c180672816ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.554ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{10}}"></span> 위에 존재하는 ⅡB종 초끈 이론의 D<i>p</i>-막들은 콤팩트 지지 K군 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\text{c}}^{0}(\mathbb {R} ^{9-p})={\tilde {K}}^{0}(S^{9-p})={\begin{cases}\mathbb {Z} &p\equiv 1{\pmod {2}}\\0&p\equiv 0{\pmod {2}}\\\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>K</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mtd> <mtd> <mi>p</mi> <mo>≡<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>p</mi> <mo>≡<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\text{c}}^{0}(\mathbb {R} ^{9-p})={\tilde {K}}^{0}(S^{9-p})={\begin{cases}\mathbb {Z} &p\equiv 1{\pmod {2}}\\0&p\equiv 0{\pmod {2}}\\\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a8b90010586a324a8f28047409217c195b18a8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:46.957ex; height:6.176ex;" alt="{\displaystyle K_{\text{c}}^{0}(\mathbb {R} ^{9-p})={\tilde {K}}^{0}(S^{9-p})={\begin{cases}\mathbb {Z} &p\equiv 1{\pmod {2}}\\0&p\equiv 0{\pmod {2}}\\\end{cases}}}"></span></dd></dl> <p>이다. 따라서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=1,3,5,7,9}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>7</mn> <mo>,</mo> <mn>9</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=1,3,5,7,9}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3ab19ed0b65638d3b223be1b40259be902347c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:14.305ex; height:2.509ex;" alt="{\displaystyle p=1,3,5,7,9}"></span>가 존재한다. ⅡA종 초끈 이론은 반면 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {K}}^{1}(S^{9-p})={\begin{cases}\mathbb {Z} &p\equiv 0{\pmod {2}}\\0&p\equiv 1{\pmod {2}}\\\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>K</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mtd> <mtd> <mi>p</mi> <mo>≡<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>p</mi> <mo>≡<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {K}}^{1}(S^{9-p})={\begin{cases}\mathbb {Z} &p\equiv 0{\pmod {2}}\\0&p\equiv 1{\pmod {2}}\\\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/740e61db878717442ab50a74aa3a3684c7fdbae1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.063ex; height:6.176ex;" alt="{\displaystyle {\tilde {K}}^{1}(S^{9-p})={\begin{cases}\mathbb {Z} &p\equiv 0{\pmod {2}}\\0&p\equiv 1{\pmod {2}}\\\end{cases}}}"></span></dd></dl> <p>에 의하여 분류된다. 따라서, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=0,2,4,6,8}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>8</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=0,2,4,6,8}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71b510b35493b9e5ae895fd83b28c65d01b236a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:14.305ex; height:2.509ex;" alt="{\displaystyle p=0,2,4,6,8}"></span>이 존재한다. </p><p>시공간이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{10-n}\times X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>×<!-- × --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{10-n}\times X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/628245cc9723b1a407aa8d56577fef7bd69ee6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.888ex; height:3.009ex;" alt="{\displaystyle R^{10-n}\times X_{n}}"></span>의 꼴이고, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72a8564cedc659cf2f95ae68bc5de2f5207a3285" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.143ex; height:2.509ex;" alt="{\displaystyle X_{n}}"></span>이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>차원 <a href="/wiki/%EC%BD%A4%ED%8C%A9%ED%8A%B8_%EA%B3%B5%EA%B0%84" title="콤팩트 공간">콤팩트 공간</a>이라고 하자. 그렇다면 D-막은 상대 K군 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\text{c}}^{0}(\mathbb {R} ^{10-n}\times X_{n})=K^{0}(\mathbb {S} ^{10-n}\times X_{n},X_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>×<!-- × --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>×<!-- × --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\text{c}}^{0}(\mathbb {R} ^{10-n}\times X_{n})=K^{0}(\mathbb {S} ^{10-n}\times X_{n},X_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fecf1b93d02bd6611f7e9a8e2f7583e77d875f0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.409ex; height:3.176ex;" alt="{\displaystyle K_{\text{c}}^{0}(\mathbb {R} ^{10-n}\times X_{n})=K^{0}(\mathbb {S} ^{10-n}\times X_{n},X_{n})}"></span></dd></dl> <p>에 의하여 주어진다. 예를 들어, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}=S^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{n}=S^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32bef90e5d8502ef3e8b5d4e3cba1cf1c40c03ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.817ex; height:3.009ex;" alt="{\displaystyle X_{n}=S^{1}}"></span>일 경우, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\text{c}}^{0}(M\times S^{1})=K_{\text{c}}^{0}(M)\oplus K^{1}(M^{+})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>×<!-- × --></mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo>⊕<!-- ⊕ --></mo> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\text{c}}^{0}(M\times S^{1})=K_{\text{c}}^{0}(M)\oplus K^{1}(M^{+})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d56ec8555be608c9523921f90e5e520a26e8b3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.122ex; height:3.176ex;" alt="{\displaystyle K_{\text{c}}^{0}(M\times S^{1})=K_{\text{c}}^{0}(M)\oplus K^{1}(M^{+})}"></span></dd></dl> <p>이다. 여기서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\text{c}}^{0}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\text{c}}^{0}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4d6168c83ab33acd42670ba5279810ea5e0880e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.4ex; height:3.009ex;" alt="{\displaystyle K_{\text{c}}^{0}(M)}"></span>은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60796c8d0c03cf575637d3202463b214d9635880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.576ex; height:2.676ex;" alt="{\displaystyle S^{1}}"></span>에 감긴 D-막들을, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K^{1}(M^{+})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K^{1}(M^{+})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbbb1fa036397fbaa6d491bc4a56b4ebae062431" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.967ex; height:3.176ex;" alt="{\displaystyle K^{1}(M^{+})}"></span>는 감기지 않은 D-막들을 나타낸다. </p><p><a href="/wiki/%E2%85%A0%EC%A2%85_%EB%81%88_%EC%9D%B4%EB%A1%A0" class="mw-redirect" title="Ⅰ종 끈 이론">Ⅰ종 끈 이론</a>의 안정 D-막은 <a href="/wiki/%EB%B3%B5%EC%86%8C%EC%88%98_%EB%B2%A1%ED%84%B0_%EB%8B%A4%EB%B0%9C" title="복소수 벡터 다발">복소수 벡터 다발</a> 대신 실수 벡터 다발을 사용한 K<sup>O</sup>군으로 묘사된다. 즉, 평탄한 10차원 시공간 위에서 존재하는 <a href="/wiki/%E2%85%A0%EC%A2%85_%EB%81%88_%EC%9D%B4%EB%A1%A0" class="mw-redirect" title="Ⅰ종 끈 이론">Ⅰ종 끈 이론</a>의 D-막은 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {KO} _{\text{c}}^{0}(\mathbb {R} ^{9-p})=\operatorname {KO} ^{0}(\mathbb {S} ^{9-p})={\begin{cases}\mathbb {Z} &p\in \{1,5,9\}\\\mathbb {Z} /(2)&p\in \{-1,0,7,8\}\\0&p\in \{2,3,4,6\}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>KO</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>KO</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mtd> <mtd> <mi>p</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>9</mn> <mo fence="false" stretchy="false">}</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi>p</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>7</mn> <mo>,</mo> <mn>8</mn> <mo fence="false" stretchy="false">}</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>p</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>6</mn> <mo fence="false" stretchy="false">}</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {KO} _{\text{c}}^{0}(\mathbb {R} ^{9-p})=\operatorname {KO} ^{0}(\mathbb {S} ^{9-p})={\begin{cases}\mathbb {Z} &p\in \{1,5,9\}\\\mathbb {Z} /(2)&p\in \{-1,0,7,8\}\\0&p\in \{2,3,4,6\}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d52af6ef19df20f7ba462dc2fc08b241733f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:55.166ex; height:8.843ex;" alt="{\displaystyle \operatorname {KO} _{\text{c}}^{0}(\mathbb {R} ^{9-p})=\operatorname {KO} ^{0}(\mathbb {S} ^{9-p})={\begin{cases}\mathbb {Z} &p\in \{1,5,9\}\\\mathbb {Z} /(2)&p\in \{-1,0,7,8\}\\0&p\in \{2,3,4,6\}\end{cases}}}"></span></dd></dl> <p>에 대응한다. 이 가운데 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in \{1,5,9\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>9</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in \{1,5,9\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/600d5eff52a43a679c05705fb8954270993603e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:11.98ex; height:2.843ex;" alt="{\displaystyle p\in \{1,5,9\}}"></span>인 경우는 BPS D-막에 해당하며, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in \{-1,0,7,8\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>7</mn> <mo>,</mo> <mn>8</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in \{-1,0,7,8\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/905dd57adab3444760234595000bb030129236d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:15.984ex; height:2.843ex;" alt="{\displaystyle p\in \{-1,0,7,8\}}"></span>인 경우는 BPS가 아니지만 (하나만 있을 때) 안정된 D-막들이다. </p> <div class="mw-heading mw-heading3"><h3 id="M이론과의_관계"><span id="M.EC.9D.B4.EB.A1.A0.EA.B3.BC.EC.9D.98_.EA.B4.80.EA.B3.84"></span>M이론과의 관계</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=7" title="부분 편집: M이론과의 관계"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>ⅡA 종 끈 이론은 <a href="/wiki/M%EC%9D%B4%EB%A1%A0" title="M이론">M이론</a>을 원 위에 <a href="/wiki/%EC%B6%95%EC%86%8C%ED%99%94" title="축소화">축소화</a>한 것이다. 이 경우, D2-막은 11차원의 <a href="/wiki/M2-%EB%A7%89" class="mw-redirect" title="M2-막">M2-막</a>에 해당하며, 마찬가지로 D4-막은 축소화 원에 감긴 <a href="/wiki/M5-%EB%A7%89" class="mw-redirect" title="M5-막">M5-막</a>에 해당한다. D0-막과 D6-막은 칼루차-클라인 들뜬 상태에 해당한다. </p> <div class="mw-heading mw-heading2"><h2 id="막의_결합_상태"><span id=".EB.A7.89.EC.9D.98_.EA.B2.B0.ED.95.A9_.EC.83.81.ED.83.9C"></span>막의 결합 상태</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=8" title="부분 편집: 막의 결합 상태"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="겹친_D-막"><span id=".EA.B2.B9.EC.B9.9C_D-.EB.A7.89"></span>겹친 D-막</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=9" title="부분 편집: 겹친 D-막"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>같은 차원의 평행한 D-막들은 (BPS 성질에 의하여) 서로 <a href="/wiki/%EC%9D%B8%EB%A0%A5%EA%B3%BC_%EC%B2%99%EB%A0%A5" title="인력과 척력">인력 및 척력</a>을 느끼지 않는다. 따라서 D-막들은 한 곳에 겹칠 수 있는데, 이 경우 열린 끈의 상태들에 <a href="/wiki/%EC%B2%9C-%ED%8E%98%EC%9D%B4%ED%84%B4_%EC%9D%B8%EC%9E%90" title="천-페이턴 인자">천-페이턴 인자</a>라는 <a href="/wiki/%EA%B5%B0%EB%A1%A0" title="군론">군론</a>적인 지수가 붙게 되며, <a href="/wiki/%EC%9C%A0%ED%9A%A8_%EC%9D%B4%EB%A1%A0" title="유효 이론">유효 이론</a>에서는 이를 비가환 게이지 대칭으로 해석할 수 있다. 즉, 일반적으로 D-막들이 겹치게 되면 그 <a href="/wiki/%EA%B2%8C%EC%9D%B4%EC%A7%80_%EC%9D%B4%EB%A1%A0" title="게이지 이론">게이지 대칭</a>이 확장되게 된다. </p> <div class="mw-heading mw-heading4"><h4 id="마이어스_효과"><span id=".EB.A7.88.EC.9D.B4.EC.96.B4.EC.8A.A4_.ED.9A.A8.EA.B3.BC"></span>마이어스 효과</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=10" title="부분 편집: 마이어스 효과"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>또한, D-막이 겹치는 경우 D-막의 위치는 더 이상 명확하지 않고, <a href="/wiki/%EB%B9%84%EA%B0%80%ED%99%98_%EA%B8%B0%ED%95%98%ED%95%99" title="비가환 기하학">비가환 기하학</a>을 따르게 된다. 특히, 특별한 경우에는 D-막들은 <a href="/wiki/%ED%8D%BC%EC%A7%80_%EA%B5%AC" title="퍼지 구">퍼지 구</a>를 이룰 수 있다. 이를 <b>마이어스 효과</b>(Myers效果, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">Myers effect</span>)라고 한다.<sup id="cite_ref-Johnson_2-2" class="reference"><a href="#cite_note-Johnson-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:314–321</sup></span><sup id="cite_ref-BBS_24-1" class="reference"><a href="#cite_note-BBS-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:241–242</sup></span><sup id="cite_ref-Myers03_25-0" class="reference"><a href="#cite_note-Myers03-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/%EB%B0%98_%EB%8D%94_%EC%8B%9C%ED%84%B0%EB%A5%B4_%EA%B3%B5%EA%B0%84" class="mw-redirect" title="반 더 시터르 공간">AdS<sub><i>p</i></sub></a>×<a href="/wiki/%EC%B4%88%EA%B5%AC" title="초구">S<sup>q</sup></a> 꼴의 공간에서, 마찬가지로 점입자가 <a href="/wiki/%EC%B4%88%EA%B5%AC" title="초구">S<sup><i>q</i>−2</sup></a> 모양의 D(<i>q</i>−2)-막으로 바뀌게 된다. 이를 <b>거대 중력자</b>(巨大重力子, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">giant graviton</span>)라고 하며, <a href="/wiki/AdS/CFT_%EB%8C%80%EC%9D%91%EC%84%B1" title="AdS/CFT 대응성">AdS/CFT 대응성</a>에서 중요한 역할을 한다.<sup id="cite_ref-Simon_14-1" class="reference"><a href="#cite_note-Simon-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:§5.9</sup></span><sup id="cite_ref-BBS_24-2" class="reference"><a href="#cite_note-BBS-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:657,660–661</sup></span><sup id="cite_ref-Myers03_25-1" class="reference"><a href="#cite_note-Myers03-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="D-막_결합_상태"><span id="D-.EB.A7.89_.EA.B2.B0.ED.95.A9_.EC.83.81.ED.83.9C"></span>D-막 결합 상태</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=11" title="부분 편집: D-막 결합 상태"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>D-막들은 특수한 경우에 안정된 D-막 결합 상태(<span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">bound state</span>)를 이룰 수 있다. 두 개의 D-막들의 배치는 일반적으로 다음과 같은 표로 나타낸다.<sup id="cite_ref-Johnson_2-3" class="reference"><a href="#cite_note-Johnson-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:251</sup></span><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><table class="wikitable" style="text-align:center"> <tbody><tr> <th>막</th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9 </th></tr> <tr> <td>D6</td> <td>—</td> <td>—</td> <td>—</td> <td>—</td> <td>—</td> <td>—</td> <td>—</td> <td>•</td> <td>•</td> <td>• </td></tr> <tr> <td>D2</td> <td>—</td> <td>—</td> <td>—</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>• </td></tr></tbody></table></dd></dl> <p>위 표는 D6-막과 D2-막의 배치를 나타낸다. 여기서 점(•)은 막이 해당하는 공간축 방향으로 뻗어 있지 않는다(점입자처럼 보인다)는 뜻이고, 줄표는 막이 해당하는 방향으로 뻗어 있다는 뜻이다. 예를 들어, 위 표에서 D6-막은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{0},x^{1},x^{2},x^{3},x^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{0},x^{1},x^{2},x^{3},x^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c77d28ada8e7a22cc5839e13f51331d03a70c1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.055ex; height:3.009ex;" alt="{\displaystyle x^{0},x^{1},x^{2},x^{3},x^{4}}"></span> 방향으로, D2-막은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{0},x^{1},x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{0},x^{1},x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bd221adc69a29f5f50beede1bb3650fd958f2ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.22ex; height:3.009ex;" alt="{\displaystyle x^{0},x^{1},x^{2}}"></span> 방향으로 뻗어 있다. </p><p>위 표에서, 10개의 방향 가운데 4개의 방향(3,4,5,6)의 경우, 두 막 중 하나는 뻗어 있지만 다른 하나는 뻗어 있지 않다. 이 수를 <b><a href="/wiki/%EC%97%AC%EC%B0%A8%EC%9B%90" title="여차원">여차원</a></b>이라고 한다. 여차원은 <a href="/wiki/T-%EC%9D%B4%EC%A4%91%EC%84%B1" title="T-이중성">T-이중성</a>에 불변이며,<sup id="cite_ref-Johnson_2-4" class="reference"><a href="#cite_note-Johnson-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:249</sup></span> 항상 짝수이다. (이는 주어진 이론에서 안정된 D-막의 차원은 항상 모두 짝수이거나 모두 홀수이기 때문이다.) 만약 <a href="/wiki/%EC%97%AC%EC%B0%A8%EC%9B%90" title="여차원">여차원</a>이 4의 배수라면 이 D-막 배열은 자동적으로 BPS가 되고, 따라서 (대부분의 경우) 안정하다.<sup id="cite_ref-Johnson_2-5" class="reference"><a href="#cite_note-Johnson-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:253</sup></span> 이 경우 결합 상태는 ¼ BPS(원래 초대칭 중 ¼만 남기고 나머지 초대칭들을 깨는 상태)다. D-막이 서로 결합하지 않는 경우에는 D-막들의 여차원이 4의 배수여야만 일부 초대칭을 보존하게 된다. 예를 들어, <a href="/wiki/%E2%85%A0%EC%A2%85_%EC%B4%88%EB%81%88_%EC%9D%B4%EB%A1%A0" class="mw-redirect" title="Ⅰ종 초끈 이론">Ⅰ종 초끈 이론</a>은 ⅡB종 초끈 이론에 시공간을 채우는 D9-막(과 <a href="/wiki/%EC%98%A4%EB%A6%AC%EC%97%94%ED%8B%B0%ED%8F%B4%EB%93%9C" title="오리엔티폴드">오리엔티폴드</a> 초평면)들을 가하여 얻는다. 이에 따라, 이 이론에서 존재할 수 있는 D-막들은 D(9−4)=D5-막과 D(9−8)=D1-막 밖에 없다. </p><p>만약 <a href="/wiki/%EC%97%AC%EC%B0%A8%EC%9B%90" title="여차원">여차원</a>이 2 또는 4인 경우, 한 막이 다른 막에 녹아 없어질 수 있다. 이 두 상태는 상당히 다르다. </p> <ul><li><a href="/wiki/%EC%97%AC%EC%B0%A8%EC%9B%90" title="여차원">여차원</a>이 2인 경우, D<i>p</i>-막에 D(<i>p</i>−2)-막이 녹아, U(1) <a href="/wiki/%EC%A0%84%EA%B8%B0%EC%84%A0%EC%86%8D" class="mw-redirect" title="전기선속">전기선속</a>으로 대체될 수 있다.<sup id="cite_ref-Johnson_2-6" class="reference"><a href="#cite_note-Johnson-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:206, §9.1</sup></span> 이 경우, D<i>p</i>-막에 U(1) 전자기장이 있으면 자동적으로 D(<i>p</i>−2)-막의 <a href="/wiki/%EB%9D%BC%EB%AA%BD-%EB%9D%BC%EB%AA%BD_%EC%9E%A5" title="라몽-라몽 장">라몽-라몽</a> 전하가 생기기 때문에, 총 라몽-라몽 전하는 보존된다. 이 경우에는 결합 상태는 하나의 D-막과 마찬가지로 ½BPS다.</li> <li><a href="/wiki/%EC%97%AC%EC%B0%A8%EC%9B%90" title="여차원">여차원</a>이 4인 경우, 2개 이상 겹쳐진 D<i>p</i>-막에 D(<i>p</i>−4)-막이 녹을 수 있다.<sup id="cite_ref-Johnson_2-7" class="reference"><a href="#cite_note-Johnson-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:208, §9.2</sup></span> D<i>p</i>-막에서, 이는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5885ec01d3b5670fd5f88847f32da2b3dd62f60c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.262ex; height:2.509ex;" alt="{\displaystyle p+1}"></span>차원 세계부피 중 (유클리드) 4차원 부분 공간에 <a href="/wiki/%EC%96%91-%EB%B0%80%EC%8A%A4_%EC%88%9C%EA%B0%84%EC%9E%90" title="양-밀스 순간자">양-밀스 순간자</a>가 존재하는 것이다. 이 경우에는 결합 상태는 ¼BPS다. 양-밀스 순간자가 존재하려면 비가환 게이지 군이 필요하므로, 이는 2개 이상 겹쳐진 D<i>p</i>-막 속에서만 가능하다.</li></ul> <p>반면, <a href="/wiki/%EC%97%AC%EC%B0%A8%EC%9B%90" title="여차원">여차원</a>이 6인 경우, 예를 들어 D6-막에 D0-막이 붙으려고 하는 경우에는, D0-막이 녹은 상태가 모든 <a href="/wiki/%EC%B4%88%EB%8C%80%EC%B9%AD" title="초대칭">초대칭</a>을 깨기 때문에 불안정하다.<sup id="cite_ref-Johnson_2-8" class="reference"><a href="#cite_note-Johnson-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:260</sup></span> </p> <div class="mw-heading mw-heading3"><h3 id="(p,q)-끈"><span id=".28p.2Cq.29-.EB.81.88"></span>(<i>p</i>,<i>q</i>)-끈</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=12" title="부분 편집: (p,q)-끈"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>ⅡB 초끈 이론에서, D1-막(D-끈)과 <a href="/wiki/%EB%81%88_(%EB%AC%BC%EB%A6%AC%ED%95%99)" title="끈 (물리학)">기본 끈</a>(F-끈)은 ⅡB 초끈 이론의 <a href="/wiki/%EB%AA%A8%EB%93%88%EB%9F%AC_%EA%B5%B0" title="모듈러 군">PSL(2,ℤ)</a> <a href="/wiki/S-%EC%9D%B4%EC%A4%91%EC%84%B1" title="S-이중성">S-이중성</a>에 대하여 2중항(doublet)으로 변환하며, 따라서 D1-막과 F-끈의 결합 상태가 존재한다.<sup id="cite_ref-Johnson_2-9" class="reference"><a href="#cite_note-Johnson-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><span class="reference" style="white-space: nowrap;"><sup>:255</sup></span><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> <i>p</i>개의 F-끈과 <i>q</i>개의 D-끈이 결합한 끈을 <b>(<i>p</i>,<i>q</i>) 끈</b>(<span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">(<i>p</i>,<i>q</i>)-string</span>)이라고 한다. 이 경우, <i>p</i>와 <i>q</i>는 <a href="/wiki/%EC%84%9C%EB%A1%9C%EC%86%8C_%EC%A0%95%EC%88%98" class="mw-redirect" title="서로소 정수">서로소</a>여야 한다. (만약 그렇지 않은 경우에는 <i>n</i>개의 (<i>p</i>/<i>n</i>, <i>q</i>/<i>n</i>)-끈으로 해체될 수 있다.) (<i>p</i>,<i>q</i>) 끈들은 ½BPS 상태이며, 이들이 보존하는 초대칭들은 원래 D-끈과 F-끈이 보존하는 초대칭들의 <a href="/wiki/%EC%84%A0%ED%98%95%EA%B2%B0%ED%95%A9" class="mw-redirect" title="선형결합">선형결합</a>이다. </p><p>마찬가지로, D5-막과 NS5-막은 <a href="/wiki/S-%EC%9D%B4%EC%A4%91%EC%84%B1" title="S-이중성">S-이중성</a>의 2중항으로 변환하며, 이에 따라서 <b>(<i>p</i>,<i>q</i>)5-막</b>(<span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">(<i>p</i>,<i>q</i>)5-brane</span>)이 존재한다. D7-막의 경우에도 마찬가지로 다양한 결합 상태가 존재하며, 이들은 <a href="/wiki/F-%EC%9D%B4%EB%A1%A0" class="mw-redirect" title="F-이론">F-이론</a>으로 분류된다. </p> <div class="mw-heading mw-heading3"><h3 id="분수_막"><span id=".EB.B6.84.EC.88.98_.EB.A7.89"></span>분수 막</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=13" title="부분 편집: 분수 막"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>D-막을 <a href="/wiki/%EC%98%A4%EB%B9%84%ED%8F%B4%EB%93%9C" title="오비폴드">오비폴드</a> 특이점에 배치할 경우, D-막은 <b>분수 막</b>(分數幕, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">fractional brane</span>)이라는 조각들로 분해된다. 구체적으로, <a href="/wiki/%EC%9C%A0%ED%81%B4%EB%A6%AC%EB%93%9C_%EA%B3%B5%EA%B0%84" title="유클리드 공간">유클리드 공간</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>의, <a href="/wiki/%EC%9C%A0%ED%95%9C%EA%B5%B0" title="유한군">유한군</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma \leq \operatorname {SO} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo>≤<!-- ≤ --></mo> <mi>SO</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma \leq \operatorname {SO} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd228638660c1064c2bd495488d02a451110128b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.856ex; height:2.843ex;" alt="{\displaystyle \Gamma \leq \operatorname {SO} (n)}"></span>의 작용에 대한 <a href="/wiki/%EC%98%A4%EB%B9%84%ED%8F%B4%EB%93%9C" title="오비폴드">오비폴드</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}/\Gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}/\Gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b63293767a5a9868bb3ff14ce11e6b8edd4cdc39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.512ex; height:2.843ex;" alt="{\displaystyle \mathbb {R} ^{n}/\Gamma }"></span>를 생각하자. 1의 D-막을 오비폴드 특이점에 배치한다고 하자. 이는 오비폴드를 가하기 이전에 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Gamma |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Gamma |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c417bf8f8d99da4c7f0f82ce92f6ba665fffb22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.746ex; height:2.843ex;" alt="{\displaystyle |\Gamma |}"></span>개의 <a href="/wiki/%EC%9B%90%EC%83%81" class="mw-disambig" title="원상">원상</a>에 해당한다. 이 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Gamma |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Gamma |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c417bf8f8d99da4c7f0f82ce92f6ba665fffb22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.746ex; height:2.843ex;" alt="{\displaystyle |\Gamma |}"></span>개의 D-막들의 천-페이턴 인자의 공간 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{|\Gamma |}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{|\Gamma |}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8dbf4d05677d86754b5146709121face814dc9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.852ex; height:2.843ex;" alt="{\displaystyle \mathbb {C} ^{|\Gamma |}}"></span>은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Γ<!-- Γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.453ex; height:2.176ex;" alt="{\displaystyle \Gamma }"></span>의 <a href="/wiki/%EA%B5%B0%EC%9D%98_%ED%91%9C%ED%98%84" title="군의 표현">표현</a>을 이룬다. 이는 일반적으로 <a href="/wiki/%EA%B8%B0%EC%95%BD_%ED%91%9C%ED%98%84" class="mw-redirect" title="기약 표현">기약 표현</a>이 아니며, 이러한 상태는 <a href="/wiki/%EA%B8%B0%EC%95%BD_%ED%91%9C%ED%98%84" class="mw-redirect" title="기약 표현">기약 표현</a>에 해당하는 상태들의 결합으로 여길 수 있다. 이러한 <a href="/wiki/%EA%B8%B0%EC%95%BD_%ED%91%9C%ED%98%84" class="mw-redirect" title="기약 표현">기약 표현</a>에 해당하는 상태를 <b>분수 막</b>이라고 한다. </p><p>가장 간단한 경우로, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma =\operatorname {Cyc} (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo>=</mo> <mi>Cyc</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma =\operatorname {Cyc} (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b2ef7d36a28f3898eb5ce1318463db26258a119" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.693ex; height:2.843ex;" alt="{\displaystyle \Gamma =\operatorname {Cyc} (n)}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>차 <a href="/wiki/%EC%88%9C%ED%99%98%EA%B5%B0" title="순환군">순환군</a>)을 생각하자. 오비폴드 점 근처에서, 오비폴드의 <a href="/wiki/%EC%9B%90%EC%83%81" class="mw-disambig" title="원상">원상</a>에 해당하는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>개의 D-막의 천-페이턴 지표의 공간 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53b4e76242764d1bca004168353c380fef25258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {C} ^{n}}"></span>은 (순환군의 <a href="/wiki/%EA%B8%B0%EC%95%BD_%ED%91%9C%ED%98%84" class="mw-redirect" title="기약 표현">기약 표현</a>은 모두 1차원이므로) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>개의 기약 표현들로 분해된다. 각 기약 표현은 (오비폴드를 가한 뒤의 관점에서) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0e10667bad240500f5044257143510127e03d69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.72ex; height:2.843ex;" alt="{\displaystyle 1/n}"></span>개의 D-막의 질량을 가지며, 따라서 분수 막을 이룬다. </p> <div class="mw-heading mw-heading2"><h2 id="역사"><span id=".EC.97.AD.EC.82.AC"></span>역사</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=14" title="부분 편집: 역사"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>워런 시걸(<span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">Warren Siegel</span>)이 1976년에 4차원 시공간을 다루기 위하여 열린 끈의 <a href="/wiki/%EB%94%94%EB%A6%AC%ED%81%B4%EB%A0%88_%EA%B2%BD%EA%B3%84_%EC%A1%B0%EA%B1%B4" title="디리클레 경계 조건">디리클레 경계 조건</a>을 고려하였다.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> 그러나 열린 끈의 <a href="/wiki/%EB%94%94%EB%A6%AC%ED%81%B4%EB%A0%88_%EA%B2%BD%EA%B3%84_%EC%A1%B0%EA%B1%B4" title="디리클레 경계 조건">디리클레 경계 조건</a>은 <a href="/wiki/%EB%85%B8%EC%9D%B4%EB%A7%8C_%EA%B2%BD%EA%B3%84_%EC%A1%B0%EA%B1%B4" title="노이만 경계 조건">노이만 경계 조건</a>과 달리 일반적으로 <a href="/wiki/%EB%A1%9C%EB%9F%B0%EC%B8%A0_%EB%8C%80%EC%B9%AD" class="mw-redirect" title="로런츠 대칭">로런츠 대칭</a>을 깨므로 이 논문은 오랫동안 주목받지 못했다. </p><p>1989년에 다이진(<small><a href="/wiki/%EC%A4%91%EA%B5%AD%EC%96%B4" title="중국어">중국어</a>: </small><span lang="zh">戴瑾</span>, <small><a href="/wiki/%ED%95%9C%EC%96%B4_%EB%B3%91%EC%9D%8C" class="mw-redirect" title="한어 병음">병음</a>: </small><span lang="zh-Latn-pinyin">Dài Jǐn</span><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup>)과 로버트 리(<span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>: </span><span lang="en">Robert G. Leigh</span>), <a href="/wiki/%EC%A1%B0%EC%A7%80%ED%94%84_%ED%8F%B4%EC%B9%9C%EC%8A%A4%ED%82%A4" title="조지프 폴친스키">조지프 폴친스키</a><sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup>, 페트르 호르자바(<span style="font-size: smaller;"><a href="/wiki/%EC%B2%B4%EC%BD%94%EC%96%B4" title="체코어">체코어</a>: </span><span lang="cs">Petr Hořava</span>)<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> 가 <a href="/wiki/T-%EC%9D%B4%EC%A4%91%EC%84%B1" title="T-이중성">T-이중성</a>에 따라 <a href="/wiki/%EB%85%B8%EC%9D%B4%EB%A7%8C_%EA%B2%BD%EA%B3%84_%EC%A1%B0%EA%B1%B4" title="노이만 경계 조건">노이만 경계 조건</a>과 <a href="/wiki/%EB%94%94%EB%A6%AC%ED%81%B4%EB%A0%88_%EA%B2%BD%EA%B3%84_%EC%A1%B0%EA%B1%B4" title="디리클레 경계 조건">디리클레 경계 조건</a>이 (적어도 <a href="/wiki/%EC%B6%95%EC%86%8C%ED%99%94" title="축소화">축소화</a>한 시공에서는) 서로 동등하다는 사실을 증명하였다. 즉, 노이만 경계 조건을 가진 열린 끈을 포함한 이론은 디리클레 경계 조건도 허용해야만 한다. 같은 해에 리는 D-막이 <a href="/wiki/%EB%B3%B4%EB%A5%B8-%EC%9D%B8%ED%8E%A0%ED%8A%B8_%EC%9D%B4%EB%A1%A0" title="보른-인펠트 이론">디랙-보른-인펠트 작용</a>을 따른다는 사실을 증명하였다.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p><p>1995년에 폴친스키는 D-막이 <a href="/wiki/%EB%9D%BC%EB%AA%BD-%EB%9D%BC%EB%AA%BD_%EC%9E%A5" title="라몽-라몽 장">라몽-라몽 전하</a>로 대전되어 있고, 또한 <a href="/wiki/%EC%B4%88%EB%8C%80%EC%B9%AD" title="초대칭">초대칭</a>의 일부를 보존하여 (BPS) 안정하다는 사실을 보였다.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> 이 사실은 제2차 끈 이론 혁명의 계기가 되어 <a href="/wiki/%ED%99%80%EB%A1%9C%EA%B7%B8%EB%9E%98%ED%94%BC_%EC%9B%90%EB%A6%AC" title="홀로그래피 원리">홀로그래피 원리</a>나 <a href="/wiki/M%EC%9D%B4%EB%A1%A0" title="M이론">M이론</a>의 이중성을 이끌었다. </p> <div class="mw-heading mw-heading2"><h2 id="같이_보기"><span id=".EA.B0.99.EC.9D.B4_.EB.B3.B4.EA.B8.B0"></span>같이 보기</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=15" title="부분 편집: 같이 보기"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%EA%B2%80%EC%9D%80_%EB%A7%89" title="검은 막">검은 막</a></li> <li><a href="/wiki/%EB%81%88_%EC%9D%B4%EB%A1%A0" title="끈 이론">끈 이론</a></li> <li><a href="/wiki/%EB%B3%B4%EB%A5%B8-%EC%9D%B8%ED%8E%A0%ED%8A%B8_%EC%9D%B4%EB%A1%A0" title="보른-인펠트 이론">보른-인펠트 이론</a></li> <li><a href="/wiki/M%EC%9D%B4%EB%A1%A0" title="M이론">M이론</a></li> <li><a href="/wiki/%EB%AC%BC%EB%A6%AC%ED%95%99%EC%97%90%EC%84%9C_K%EC%9D%B4%EB%A1%A0" title="물리학에서 K이론">물리학에서 K이론</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="각주"><span id=".EA.B0.81.EC.A3.BC"></span>각주</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=16" title="부분 편집: 각주"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r35556958">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><cite class="citation journal">이필진 (2001년 11월). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190727211606/http://webzine.kps.or.kr/contents/data/webzine/webzine/14933712541.pdf">“초끈이론과 M 이론, 양면성, 그리고 D 브레인에 대하여”</a> <span style="font-size:85%;">(PDF)</span>. 《물리학과 첨단기술》 <b>10</b> (11): 9–14. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EC%9D%BC%EB%A0%A8_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 일련 번호">ISSN</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/1225-2336">1225-2336</a>. 2019년 7월 27일에 <a rel="nofollow" class="external text" href="http://webzine.kps.or.kr/contents/data/webzine/webzine/14933712541.pdf">원본 문서</a> <span style="font-size:85%;">(PDF)</span>에서 보존된 문서<span class="reference-accessdate">. 2019년 7월 27일에 확인함</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=%EB%AC%BC%EB%A6%AC%ED%95%99%EA%B3%BC+%EC%B2%A8%EB%8B%A8%EA%B8%B0%EC%88%A0&rft.atitle=%EC%B4%88%EB%81%88%EC%9D%B4%EB%A1%A0%EA%B3%BC+M+%EC%9D%B4%EB%A1%A0%2C+%EC%96%91%EB%A9%B4%EC%84%B1%2C+%EA%B7%B8%EB%A6%AC%EA%B3%A0+D+%EB%B8%8C%EB%A0%88%EC%9D%B8%EC%97%90+%EB%8C%80%ED%95%98%EC%97%AC&rft.volume=10&rft.issue=11&rft.pages=9-14&rft.date=2001-11&rft.issn=1225-2336&rft.au=%EC%9D%B4%ED%95%84%EC%A7%84&rft_id=http%3A%2F%2Fwebzine.kps.or.kr%2Fcontents%2Fdata%2Fwebzine%2Fwebzine%2F14933712541.pdf&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-Johnson-2"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Johnson_2-0">가</a></sup> <sup><a href="#cite_ref-Johnson_2-1">나</a></sup> <sup><a href="#cite_ref-Johnson_2-2">다</a></sup> <sup><a href="#cite_ref-Johnson_2-3">라</a></sup> <sup><a href="#cite_ref-Johnson_2-4">마</a></sup> <sup><a href="#cite_ref-Johnson_2-5">바</a></sup> <sup><a href="#cite_ref-Johnson_2-6">사</a></sup> <sup><a href="#cite_ref-Johnson_2-7">아</a></sup> <sup><a href="#cite_ref-Johnson_2-8">자</a></sup> <sup><a href="#cite_ref-Johnson_2-9">차</a></sup></span> <span class="reference-text"><cite class="citation book">Johnson, Clifford V. (2003). <a rel="nofollow" class="external text" href="http://www.cambridge.org/gb/knowledge/isbn/item1169323">《D-Branes》</a> (영어). Cambridge Monographs on Mathematical Physics. Cambridge University Press. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1017%2FCBO9780511606540">10.1017/CBO9780511606540</a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/9780521809122" title="특수:책찾기/9780521809122"><bdi>9780521809122</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=D-Branes&rft.pub=Cambridge+University+Press&rft.date=2003&rft_id=info%3Adoi%2F10.1017%2FCBO9780511606540&rft.isbn=9780521809122&rft.aulast=Johnson&rft.aufirst=Clifford+V.&rft_id=http%3A%2F%2Fwww.cambridge.org%2Fgb%2Fknowledge%2Fisbn%2Fitem1169323&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><cite class="citation book">Johnson, Clifford V. (2001년 10월). 〈D-brane primer〉. 《Strings, Branes And Gravity: TASI 99, Boulder, Colorado, USA, 31 May – 25 June 1999》 (영어). Singapore: World Scientific. 129-350쪽. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/0007170">hep-th/0007170</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2001sbg..conf..129J">2001sbg..conf..129J</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1142%2F9789812799630_0002">10.1142/9789812799630_0002</a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-981-02-4774-4" title="특수:책찾기/978-981-02-4774-4"><bdi>978-981-02-4774-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=D-brane+primer&rft.btitle=Strings%2C+Branes+And+Gravity%3A+TASI+99%2C+Boulder%2C+Colorado%2C+USA%2C+31+May+%E2%80%93+25+June+1999&rft.place=Singapore&rft.pages=129-350&rft.pub=World+Scientific&rft.date=2001-10&rft_id=info%3Aarxiv%2Fhep-th%2F0007170&rft_id=info%3Adoi%2F10.1142%2F9789812799630_0002&rft_id=info%3Abibcode%2F2001sbg..conf..129J&rft.isbn=978-981-02-4774-4&rft.aulast=Johnson&rft.aufirst=Clifford+V.&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/%EC%A1%B0%EC%A7%80%ED%94%84_%ED%8F%B4%EC%B9%9C%EC%8A%A4%ED%82%A4" title="조지프 폴친스키">Polchinski, Joseph</a> (1997). 〈Lectures on D-branes〉. 《Fields, Strings and Duality: TASI 96: Proceedings》 (영어). Singapore: World Scientific. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9611050">hep-th/9611050</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1996hep.th...11050P">1996hep.th...11050P</a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/9789810231446" title="특수:책찾기/9789810231446"><bdi>9789810231446</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Lectures+on+D-branes&rft.btitle=Fields%2C+Strings+and+Duality%3A+TASI+96%3A+Proceedings&rft.place=Singapore&rft.pub=World+Scientific&rft.date=1997&rft_id=info%3Aarxiv%2Fhep-th%2F9611050&rft_id=info%3Abibcode%2F1996hep.th...11050P&rft.isbn=9789810231446&rft.aulast=Polchinski&rft.aufirst=Joseph&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text"><cite class="citation book">Di Vecchia, Paolo; Liccardo, Antonella (2000). 〈D branes in string theory Ⅰ〉. 《M-Theory and Quantum Geometry》 (영어). NATO Science Series 556. Utrecht: Springer-Verlag. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9912161">hep-th/9912161</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1999hep.th...12161D">1999hep.th...12161D</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2F978-94-011-4303-5_1">10.1007/978-94-011-4303-5_1</a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-0-7923-6475-7" title="특수:책찾기/978-0-7923-6475-7"><bdi>978-0-7923-6475-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=D+branes+in+string+theory+%E2%85%A0&rft.btitle=M-Theory+and+Quantum+Geometry&rft.place=Utrecht&rft.pub=Springer-Verlag&rft.date=2000&rft_id=info%3Aarxiv%2Fhep-th%2F9912161&rft_id=info%3Adoi%2F10.1007%2F978-94-011-4303-5_1&rft_id=info%3Abibcode%2F1999hep.th...12161D&rft.isbn=978-0-7923-6475-7&rft.aulast=Di+Vecchia&rft.aufirst=Paolo&rft.au=Liccardo%2C+Antonella&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text"><cite class="citation journal">Di Vecchia, Paolo; Liccardo, Antonella (1999). “D branes in string theory Ⅱ” (영어). <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9912275">hep-th/9912275</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1999hep.th...12275D">1999hep.th...12275D</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D+branes+in+string+theory+%E2%85%A1&rft.date=1999&rft_id=info%3Aarxiv%2Fhep-th%2F9912275&rft_id=info%3Abibcode%2F1999hep.th...12275D&rft.aulast=Di+Vecchia&rft.aufirst=Paolo&rft.au=Liccardo%2C+Antonella&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a></span> <span class="reference-text"><cite class="citation journal">Johnson, Clifford V. (1997년 1월). “Introduction to D-branes, with applications”. 《Nuclear Physics B Proceedings Supplements》 (영어) <b>52</b> (1–12): 326–331. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9606196">hep-th/9606196</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1997NuPhS..52..326J">1997NuPhS..52..326J</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016%2FS0920-5632%2896%2900585-3">10.1016/S0920-5632(96)00585-3</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nuclear+Physics+B+Proceedings+Supplements&rft.atitle=Introduction+to+D-branes%2C+with+applications&rft.volume=52&rft.issue=1%E2%80%9312&rft.pages=326-331&rft.date=1997-01&rft_id=info%3Aarxiv%2Fhep-th%2F9606196&rft_id=info%3Adoi%2F10.1016%2FS0920-5632%2896%2900585-3&rft_id=info%3Abibcode%2F1997NuPhS..52..326J&rft.aulast=Johnson&rft.aufirst=Clifford+V.&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text"><cite class="citation journal">Johnson, Clifford V. (1998). “Études on D-Branes” (영어). <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9812196">hep-th/9812196</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1998hep.th...12196J">1998hep.th...12196J</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%C3%89tudes+on+D-Branes&rft.date=1998&rft_id=info%3Aarxiv%2Fhep-th%2F9812196&rft_id=info%3Abibcode%2F1998hep.th...12196J&rft.aulast=Johnson&rft.aufirst=Clifford+V.&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text"><cite class="citation journal">Polchinski, Joseph; Chaudhuri, Shyamoli; Johnson, Clifford V. (2006). “Notes on D-Branes” (영어). <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9602052">hep-th/9602052</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1996hep.th....2052P">1996hep.th....2052P</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Notes+on+D-Branes&rft.date=2006&rft_id=info%3Aarxiv%2Fhep-th%2F9602052&rft_id=info%3Abibcode%2F1996hep.th....2052P&rft.aulast=Polchinski&rft.aufirst=Joseph&rft.au=Chaudhuri%2C+Shyamoli&rft.au=Johnson%2C+Clifford+V.&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text"><cite class="citation journal">Thorlacius, Lárus (1998년 2월). “Introduction to D-Branes”. 《Nuclear Physics B Proceedings Supplements》 (영어) <b>61</b> (1–2): 86–98. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9708078">hep-th/9708078</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1998NuPhS..61...86T">1998NuPhS..61...86T</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016%2FS0920-5632%2897%2900521-5">10.1016/S0920-5632(97)00521-5</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nuclear+Physics+B+Proceedings+Supplements&rft.atitle=Introduction+to+D-Branes&rft.volume=61&rft.issue=1%E2%80%932&rft.pages=86-98&rft.date=1998-02&rft_id=info%3Aarxiv%2Fhep-th%2F9708078&rft_id=info%3Adoi%2F10.1016%2FS0920-5632%2897%2900521-5&rft_id=info%3Abibcode%2F1998NuPhS..61...86T&rft.aulast=Thorlacius&rft.aufirst=L%C3%A1rus&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><a href="#cite_ref-11">↑</a></span> <span class="reference-text"><cite class="citation book">Vancea, Ion Vasile (2002년 11월). 〈Introductory lectures on D-branes〉. 《Particles and Fields: Proceedings of the XI Jorge André Swieca Summer School, São Paulo, Brazil, 14 – 27 January 2001》 (영어). 609–658쪽. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/0109029">hep-th/0109029</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2002pafi.conf..609V">2002pafi.conf..609V</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1142%2F9789812777317_0012">10.1142/9789812777317_0012</a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-981-238-021-0" title="특수:책찾기/978-981-238-021-0"><bdi>978-981-238-021-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Introductory+lectures+on+D-branes&rft.btitle=Particles+and+Fields%3A+Proceedings+of+the+XI+Jorge+Andr%C3%A9+Swieca+Summer+School%2C+S%C3%A3o+Paulo%2C+Brazil%2C+14+%E2%80%93+27+January+2001&rft.pages=609-658&rft.date=2002-11&rft_id=info%3Aarxiv%2Fhep-th%2F0109029&rft_id=info%3Adoi%2F10.1142%2F9789812777317_0012&rft_id=info%3Abibcode%2F2002pafi.conf..609V&rft.isbn=978-981-238-021-0&rft.aulast=Vancea&rft.aufirst=Ion+Vasile&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><a href="#cite_ref-12">↑</a></span> <span class="reference-text"><cite class="citation book">Bachas, Constantin P. (1997년 6월). 〈(Half) a Lecture on D-branes〉. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221006215826/https://www.worldscientific.com/worldscibooks/10.1142/p040">《Gauge Theories, Applied Supersymmetry and Quantum Gravity Ⅱ: Proceedings of the Workshop, Imperial College, London, 5–10 July 1996》</a> (영어). Singapore: World Scientific. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9701019">hep-th/9701019</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1997hep.th....1019B">1997hep.th....1019B</a>. 2022년 10월 6일에 <a rel="nofollow" class="external text" href="http://worldscientific.com/worldscibooks/10.1142/p040">원본 문서</a>에서 보존된 문서<span class="reference-accessdate">. 2013년 1월 9일에 확인함</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=%28Half%29+a+Lecture+on+D-branes&rft.btitle=Gauge+Theories%2C+Applied+Supersymmetry+and+Quantum+Gravity+%E2%85%A1%3A+Proceedings+of+the+Workshop%2C+Imperial+College%2C+London%2C+5%E2%80%9310+July+1996&rft.place=Singapore&rft.pub=World+Scientific&rft.date=1997-06&rft_id=info%3Aarxiv%2Fhep-th%2F9701019&rft_id=info%3Abibcode%2F1997hep.th....1019B&rft.aulast=Bachas&rft.aufirst=Constantin+P.&rft_id=http%3A%2F%2Fworldscientific.com%2Fworldscibooks%2F10.1142%2Fp040&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><a href="#cite_ref-13">↑</a></span> <span class="reference-text"><cite class="citation journal">Bachas, Constantin P. (1999). “Lectures on D-branes” (영어). <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9806199">hep-th/9806199</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1998hep.th....6199B">1998hep.th....6199B</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lectures+on+D-branes&rft.date=1999&rft_id=info%3Aarxiv%2Fhep-th%2F9806199&rft_id=info%3Abibcode%2F1998hep.th....6199B&rft.aulast=Bachas&rft.aufirst=Constantin+P.&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-Simon-14"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Simon_14-0">가</a></sup> <sup><a href="#cite_ref-Simon_14-1">나</a></sup></span> <span class="reference-text"><cite class="citation journal">Simón, Joan (2012). “Brane effective actions, kappa-symmetry and applications”. 《Living Reviews in Relativity》 (영어) <b>15</b>: 3. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/1110.2422">1110.2422</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.12942%2Flrr-2012-3">10.12942/lrr-2012-3</a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EC%9D%BC%EB%A0%A8_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 일련 번호">ISSN</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/1433-8351">1433-8351</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Living+Reviews+in+Relativity&rft.atitle=Brane+effective+actions%2C+kappa-symmetry+and+applications&rft.volume=15&rft.pages=3&rft.date=2012&rft_id=info%3Aarxiv%2F1110.2422&rft.issn=1433-8351&rft_id=info%3Adoi%2F10.12942%2Flrr-2012-3&rft.aulast=Sim%C3%B3n&rft.aufirst=Joan&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-Polchinski1-15"><span class="mw-cite-backlink"><a href="#cite_ref-Polchinski1_15-0">↑</a></span> <span class="reference-text"><cite class="citation book">Polchinski, Joseph (1998). <a rel="nofollow" class="external text" href="https://archive.org/stream/PolchinskiJ.StringTheory.Vol.2.SuperstringTheoryAndBeyond/Polchinski_J._String_theory._Vol._1._An_introduction_to_the_bosonic_string">《String theory. Volume 1: an introduction to the bosonic string》</a> (영어). Cambridge University Press. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1017%2FCBO9780511816079">10.1017/CBO9780511816079</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=String+theory.+Volume+1%3A+an+introduction+to+the+bosonic+string&rft.pub=Cambridge+University+Press&rft.date=1998&rft_id=info%3Adoi%2F10.1017%2FCBO9780511816079&rft.aulast=Polchinski&rft.aufirst=Joseph&rft_id=https%3A%2F%2Farchive.org%2Fstream%2FPolchinskiJ.StringTheory.Vol.2.SuperstringTheoryAndBeyond%2FPolchinski_J._String_theory._Vol._1._An_introduction_to_the_bosonic_string&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-Polchinski2-16"><span class="mw-cite-backlink"><a href="#cite_ref-Polchinski2_16-0">↑</a></span> <span class="reference-text"><cite class="citation book">Polchinski, Joseph (1998). <a rel="nofollow" class="external text" href="https://archive.org/details/PolchinskiJ.StringTheory.Vol.2.SuperstringTheoryAndBeyond">《String theory. Volume 2: superstring theory and beyond》</a> (영어). Cambridge University Press. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1017%2FCBO9780511618123">10.1017/CBO9780511618123</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=String+theory.+Volume+2%3A+superstring+theory+and+beyond&rft.pub=Cambridge+University+Press&rft.date=1998&rft_id=info%3Adoi%2F10.1017%2FCBO9780511618123&rft.aulast=Polchinski&rft.aufirst=Joseph&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2FPolchinskiJ.StringTheory.Vol.2.SuperstringTheoryAndBeyond&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><a href="#cite_ref-17">↑</a></span> <span class="reference-text"><cite class="citation journal"><a href="/wiki/%EC%95%84%EC%87%BC%EC%BC%80_%EC%84%BC" title="아쇼케 센">Sen, Ashoke</a> (1998). “SO(32) spinors of Type Ⅰ and other solitons on brane–antibrane pair”. 《Journal of High Energy Physics》 (영어) <b>9809</b>: 023. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9808141">hep-th/9808141</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088%2F1126-6708%2F1998%2F09%2F023">10.1088/1126-6708/1998/09/023</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=SO%2832%29+spinors+of+Type+%E2%85%A0+and+other+solitons+on+brane%E2%80%93antibrane+pair&rft.volume=9809&rft.pages=023&rft.date=1998&rft_id=info%3Aarxiv%2Fhep-th%2F9808141&rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F1998%2F09%2F023&rft.aulast=Sen&rft.aufirst=Ashoke&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><a href="#cite_ref-18">↑</a></span> <span class="reference-text"><cite class="citation journal"><a href="/wiki/%EC%95%84%EC%87%BC%EC%BC%80_%EC%84%BC" title="아쇼케 센">Sen, Ashoke</a>. “Type Ⅰ D-particle and its interactions”. 《Journal of High Energy Physics》 (영어) <b>9810</b>: 021. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9809111">hep-th/9809111</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088%2F1126-6708%2F1998%2F10%2F021">10.1088/1126-6708/1998/10/021</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=Type+%E2%85%A0+D-particle+and+its+interactions&rft.volume=9810&rft.pages=021&rft_id=info%3Aarxiv%2Fhep-th%2F9809111&rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F1998%2F10%2F021&rft.aulast=Sen&rft.aufirst=Ashoke&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><a href="#cite_ref-19">↑</a></span> <span class="reference-text"><cite class="citation journal"><a href="/wiki/%EC%97%90%EB%93%9C%EC%9B%8C%EB%93%9C_%EC%9C%84%ED%8A%BC" title="에드워드 위튼">Witten, Edward</a> (1998). “<i>D</i>-branes and K-theory”. 《Journal of High Energy Physics》 (영어) <b>9812</b>: 019. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9810188">hep-th/9810188</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088%2F1126-6708%2F1998%2F12%2F019">10.1088/1126-6708/1998/12/019</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=D-branes+and+K-theory&rft.volume=9812&rft.pages=019&rft.date=1998&rft_id=info%3Aarxiv%2Fhep-th%2F9810188&rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F1998%2F12%2F019&rft.aulast=Witten&rft.aufirst=Edward&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><a href="#cite_ref-20">↑</a></span> <span class="reference-text"><cite class="citation journal">Olsen, Kasper; Szabo, Richard J. (1999). “Constructing D-branes from <i>K</i>-theory”. 《Advances in Theoretical and Mathematical Physics》 (영어) <b>3</b>: 889–1025. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9907140">hep-th/9907140</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1999hep.th....7140O">1999hep.th....7140O</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advances+in+Theoretical+and+Mathematical+Physics&rft.atitle=Constructing+D-branes+from+K-theory&rft.volume=3&rft.pages=889-1025&rft.date=1999&rft_id=info%3Aarxiv%2Fhep-th%2F9907140&rft_id=info%3Abibcode%2F1999hep.th....7140O&rft.aulast=Olsen&rft.aufirst=Kasper&rft.au=Szabo%2C+Richard+J.&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><a href="#cite_ref-21">↑</a></span> <span class="reference-text"><cite class="citation journal"><a href="/wiki/%EC%97%90%EB%93%9C%EC%9B%8C%EB%93%9C_%EC%9C%84%ED%8A%BC" title="에드워드 위튼">Witten, Edward</a> (2001). “Overview of <i>K</i>-theory applied to strings”. 《International Journal of Modern Physics A》 (영어) <b>16</b> (5): 693–706. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/0007175">hep-th/0007175</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2001IJMPA..16..693W">2001IJMPA..16..693W</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1142%2FS0217751X01003822">10.1142/S0217751X01003822</a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EC%9D%BC%EB%A0%A8_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 일련 번호">ISSN</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/0217-751X">0217-751X</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Modern+Physics+A&rft.atitle=Overview+of+K-theory+applied+to+strings&rft.volume=16&rft.issue=5&rft.pages=693-706&rft.date=2001&rft_id=info%3Aarxiv%2Fhep-th%2F0007175&rft.issn=0217-751X&rft_id=info%3Adoi%2F10.1142%2FS0217751X01003822&rft_id=info%3Abibcode%2F2001IJMPA..16..693W&rft.aulast=Witten&rft.aufirst=Edward&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><a href="#cite_ref-22">↑</a></span> <span class="reference-text"><cite class="citation journal">Evslin, Jarah (2006). “What does(n’t) <i>K</i>-theory classify?” (영어). <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/0610328">hep-th/0610328</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2006hep.th...10328E">2006hep.th...10328E</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+does%28n%E2%80%99t%29+K-theory+classify%3F&rft.date=2006&rft_id=info%3Aarxiv%2Fhep-th%2F0610328&rft_id=info%3Abibcode%2F2006hep.th...10328E&rft.aulast=Evslin&rft.aufirst=Jarah&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><a href="#cite_ref-23">↑</a></span> <span class="reference-text"><cite class="citation journal">Szabo, Richard J. (2008). “D-branes and bivariant <i>K</i>-theory” (영어). <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/0809.3029">0809.3029</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2008arXiv0809.3029S">2008arXiv0809.3029S</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D-branes+and+bivariant+K-theory&rft.date=2008&rft_id=info%3Aarxiv%2F0809.3029&rft_id=info%3Abibcode%2F2008arXiv0809.3029S&rft.aulast=Szabo&rft.aufirst=Richard+J.&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-BBS-24"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-BBS_24-0">가</a></sup> <sup><a href="#cite_ref-BBS_24-1">나</a></sup> <sup><a href="#cite_ref-BBS_24-2">다</a></sup></span> <span class="reference-text"><cite class="citation book">Becker, Katrin; Becker, Melanie; John H., Schwarz (2006년 12월). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150118104448/http://theory.caltech.edu/~stringbook/">《String Theory and M-Theory: A Modern Introduction》</a> (영어). Cambridge University Press. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2007stmt.book.....B">2007stmt.book.....B</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.2277%2F0511254865">10.2277/0511254865</a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a> <a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-0511254864" title="특수:책찾기/978-0511254864"><bdi>978-0511254864</bdi></a>. 2015년 1월 18일에 <a rel="nofollow" class="external text" href="http://theory.caltech.edu/~stringbook/">원본 문서</a>에서 보존된 문서<span class="reference-accessdate">. 2013년 6월 10일에 확인함</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=String+Theory+and+M-Theory%3A+A+Modern+Introduction&rft.pub=Cambridge+University+Press&rft.date=2006-12&rft_id=info%3Adoi%2F10.2277%2F0511254865&rft_id=info%3Abibcode%2F2007stmt.book.....B&rft.isbn=978-0511254864&rft.aulast=Becker&rft.aufirst=Katrin&rft.au=Becker%2C+Melanie&rft.au=John+H.%2C+Schwarz&rft_id=http%3A%2F%2Ftheory.caltech.edu%2F~stringbook%2F&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span> <span style="display:none;font-size:100%" class="error citation-comment">더 이상 지원되지 않는 변수를 사용함 (<a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%9D%B8%EC%9A%A9_%EC%98%A4%EB%A5%98_%EB%8F%84%EC%9B%80%EB%A7%90#deprecated_params" title="위키백과:인용 오류 도움말">도움말</a>)</span></span> </li> <li id="cite_note-Myers03-25"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Myers03_25-0">가</a></sup> <sup><a href="#cite_ref-Myers03_25-1">나</a></sup></span> <span class="reference-text"><cite class="citation journal">Myers, Robert C. “Non-Abelian phenomena on D-branes”. 《Classical and Quantum Gravity》 (영어) <b>20</b> (12): S347–S372. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/0303072">hep-th/0303072</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2003CQGra..20S.347M">2003CQGra..20S.347M</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088%2F0264-9381%2F20%2F12%2F302">10.1088/0264-9381/20/12/302</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Classical+and+Quantum+Gravity&rft.atitle=Non-Abelian+phenomena+on+D-branes&rft.volume=20&rft.issue=12&rft.pages=S347-S372&rft_id=info%3Aarxiv%2Fhep-th%2F0303072&rft_id=info%3Adoi%2F10.1088%2F0264-9381%2F20%2F12%2F302&rft_id=info%3Abibcode%2F2003CQGra..20S.347M&rft.aulast=Myers&rft.aufirst=Robert+C.&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><a href="#cite_ref-26">↑</a></span> <span class="reference-text"><cite class="citation journal">Myers, Robert C. (2000년 2월 17일). “Dielectric-branes”. 《Journal of High Energy Physics》 (영어) <b>1999</b> (12): 22. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9910053">hep-th/9910053</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1999JHEP...12..022M">1999JHEP...12..022M</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088%2F1126-6708%2F1999%2F12%2F022">10.1088/1126-6708/1999/12/022</a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EC%9D%BC%EB%A0%A8_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 일련 번호">ISSN</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/1126-6708">1126-6708</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=Dielectric-branes&rft.volume=1999&rft.issue=12&rft.pages=22&rft.date=2000-02-17&rft_id=info%3Aarxiv%2Fhep-th%2F9910053&rft.issn=1126-6708&rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F1999%2F12%2F022&rft_id=info%3Abibcode%2F1999JHEP...12..022M&rft.aulast=Myers&rft.aufirst=Robert+C.&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><a href="#cite_ref-27">↑</a></span> <span class="reference-text"><cite class="citation journal">McGreevy, John; Leonard, Susskind; Toumbas, Nicolaos (2000년 6월). “Invasion of the giant gravitons from anti-de Sitter space”. 《Journal of High Energy Physics》 (영어) <b>2000</b> (6): 8. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/0003075">hep-th/0003075</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2000JHEP...06..008M">2000JHEP...06..008M</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088%2F1126-6708%2F2000%2F06%2F008">10.1088/1126-6708/2000/06/008</a>. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EC%9D%BC%EB%A0%A8_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 일련 번호">ISSN</a> <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/1126-6708">1126-6708</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=Invasion+of+the+giant+gravitons+from+anti-de+Sitter+space&rft.volume=2000&rft.issue=6&rft.pages=8&rft.date=2000-06&rft_id=info%3Aarxiv%2Fhep-th%2F0003075&rft.issn=1126-6708&rft_id=info%3Adoi%2F10.1088%2F1126-6708%2F2000%2F06%2F008&rft_id=info%3Abibcode%2F2000JHEP...06..008M&rft.aulast=McGreevy&rft.aufirst=John&rft.au=Leonard%2C+Susskind&rft.au=Toumbas%2C+Nicolaos&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><a href="#cite_ref-28">↑</a></span> <span class="reference-text"><cite class="citation journal">Johnson, Clifford V. (1997년 12월 15일). <a rel="nofollow" class="external text" href="http://arxiv.org/html/hep-th/9802001v1/Rutherford.html">“Putting string duality to work”</a>. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9802001">hep-th/9802001</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1998hep.th....2001J">1998hep.th....2001J</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Putting+string+duality+to+work&rft.date=1997-12-15&rft_id=info%3Aarxiv%2Fhep-th%2F9802001&rft_id=info%3Abibcode%2F1998hep.th....2001J&rft.aulast=Johnson&rft.aufirst=Clifford+V.&rft_id=http%3A%2F%2Farxiv.org%2Fhtml%2Fhep-th%2F9802001v1%2FRutherford.html&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><a href="#cite_ref-29">↑</a></span> <span class="reference-text"><cite class="citation journal"><a href="/wiki/%EC%A1%B4_%ED%97%A8%EB%A6%AC_%EC%8A%88%EC%9B%8C%EC%B8%A0" title="존 헨리 슈워츠">Schwarz, John H.</a> (2013년 7월). “Multicharge superstrings” (영어). <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/1307.5795">1307.5795</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2013arXiv1307.5795S">2013arXiv1307.5795S</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multicharge+superstrings&rft.date=2013-07&rft_id=info%3Aarxiv%2F1307.5795&rft_id=info%3Abibcode%2F2013arXiv1307.5795S&rft.aulast=Schwarz&rft.aufirst=John+H.&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><a href="#cite_ref-30">↑</a></span> <span class="reference-text"><cite class="citation journal">Siegel, Warren (1976년 6월 28일). “Strings with dimension-dependent intercept”. 《Nuclear Physics B》 (영어) <b>109</b> (2): 244–254. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1976NuPhB.109..244S">1976NuPhB.109..244S</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016%2F0550-3213%2876%2990204-2">10.1016/0550-3213(76)90204-2</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nuclear+Physics+B&rft.atitle=Strings+with+dimension-dependent+intercept&rft.volume=109&rft.issue=2&rft.pages=244-254&rft.date=1976-06-28&rft_id=info%3Adoi%2F10.1016%2F0550-3213%2876%2990204-2&rft_id=info%3Abibcode%2F1976NuPhB.109..244S&rft.aulast=Siegel&rft.aufirst=Warren&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><a href="#cite_ref-31">↑</a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304114847/http://www.dgkp.gov.cn/UploadFile/2011/10/19//15130511396789538.doc">“2011旅美科协高科技项目洽谈会项目简介”</a> (중국어 간체). 2011. 2쪽. 2016년 3월 4일에 <a rel="nofollow" class="external text" href="http://www.dgkp.gov.cn/UploadFile/2011/10/19//15130511396789538.doc">원본 문서</a>에서 보존된 문서<span class="reference-accessdate">. 2013년 1월 22일에 확인함</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=2011%E6%97%85%E7%BE%8E%E7%A7%91%E5%8D%8F%E9%AB%98%E7%A7%91%E6%8A%80%E9%A1%B9%E7%9B%AE%E6%B4%BD%E8%B0%88%E4%BC%9A%E9%A1%B9%E7%9B%AE%E7%AE%80%E4%BB%8B&rft.pages=2&rft.date=2011&rft_id=http%3A%2F%2Fwww.dgkp.gov.cn%2FUploadFile%2F2011%2F10%2F19%2F%2F15130511396789538.doc&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><a href="#cite_ref-32">↑</a></span> <span class="reference-text"><cite class="citation journal">Dai, Jin; Leigh, Robert G.; Polchinski, Joseph (1989년 10월 20일). “New connections between string theories”. 《Modern Physics Letters A》 (영어) <b>4</b> (21): 2073–2083. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1989MPLA....4.2073D">1989MPLA....4.2073D</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1142%2FS0217732389002331">10.1142/S0217732389002331</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Modern+Physics+Letters+A&rft.atitle=New+connections+between+string+theories&rft.volume=4&rft.issue=21&rft.pages=2073-2083&rft.date=1989-10-20&rft_id=info%3Adoi%2F10.1142%2FS0217732389002331&rft_id=info%3Abibcode%2F1989MPLA....4.2073D&rft.aulast=Dai&rft.aufirst=Jin&rft.au=Leigh%2C+Robert+G.&rft.au=Polchinski%2C+Joseph&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><a href="#cite_ref-33">↑</a></span> <span class="reference-text"><cite class="citation journal">Hořava, Petr (1989년 11월 9일). “Background duality of open string models”. 《<span lang="en">Physics Letters B</span>》 (영어) <b>231</b> (3): 251–257. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1989PhLB..231..251H">1989PhLB..231..251H</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016%2F0370-2693%2889%2990209-8">10.1016/0370-2693(89)90209-8</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=%3Cspan+lang%3D%22en%22+xml%3Alang%3D%22en%22%3EPhysics+Letters+B%3C%2Fspan%3ED-%EB%A7%89&rft.atitle=Background+duality+of+open+string+models&rft.volume=231&rft.issue=3&rft.pages=251-257&rft.date=1989-11-09&rft_id=info%3Adoi%2F10.1016%2F0370-2693%2889%2990209-8&rft_id=info%3Abibcode%2F1989PhLB..231..251H&rft.aulast=Ho%C5%99ava&rft.aufirst=Petr&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><a href="#cite_ref-34">↑</a></span> <span class="reference-text"><cite class="citation journal">Leigh, Robert G. (1989년 12월 30일). “Dirac–Born–Infeld action From Dirichlet <i>σ</i>-model”. 《Modern Physics Letters A》 (영어) <b>4</b> (28): 2767. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1989MPLA....4.2767L">1989MPLA....4.2767L</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1142%2FS0217732389003099">10.1142/S0217732389003099</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Modern+Physics+Letters+A&rft.atitle=Dirac%E2%80%93Born%E2%80%93Infeld+action+From+Dirichlet+%CF%83-model&rft.volume=4&rft.issue=28&rft.pages=2767&rft.date=1989-12-30&rft_id=info%3Adoi%2F10.1142%2FS0217732389003099&rft_id=info%3Abibcode%2F1989MPLA....4.2767L&rft.aulast=Leigh&rft.aufirst=Robert+G.&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><a href="#cite_ref-35">↑</a></span> <span class="reference-text"><cite class="citation journal"><a href="/wiki/%EC%A1%B0%EC%A7%80%ED%94%84_%ED%8F%B4%EC%B9%9C%EC%8A%A4%ED%82%A4" title="조지프 폴친스키">Polchinski, Joseph</a> (1995년 12월 25일). “Dirichlet branes and Ramond-Ramond charges”. 《Physical Review Letters》 (영어) <b>75</b> (26): 4724–4727. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="//arxiv.org/abs/hep-th/9510017">hep-th/9510017</a>. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1995PhRvL..75.4724P">1995PhRvL..75.4724P</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1103%2FPhysRevLett.75.4724">10.1103/PhysRevLett.75.4724</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Dirichlet+branes+and+Ramond-Ramond+charges&rft.volume=75&rft.issue=26&rft.pages=4724-4727&rft.date=1995-12-25&rft_id=info%3Aarxiv%2Fhep-th%2F9510017&rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.75.4724&rft_id=info%3Abibcode%2F1995PhRvL..75.4724P&rft.aulast=Polchinski&rft.aufirst=Joseph&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="외부_링크"><span id=".EC.99.B8.EB.B6.80_.EB.A7.81.ED.81.AC"></span>외부 링크</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D-%EB%A7%89&action=edit&section=17" title="부분 편집: 외부 링크"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D-brane">“D-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/fractional+D-brane">“Fractional D-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=Fractional+D-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2Ffractional%2BD-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/permutation+D-brane">“Permutation D-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=Permutation+D-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2Fpermutation%2BD-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D-brane+geometry">“D-brane geometry”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D-brane+geometry&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD-brane%2Bgeometry&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/anti+D-brane">“Anti D-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=Anti+D-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2Fanti%2BD-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/Myers+effect">“Myers effect”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=Myers+effect&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FMyers%2Beffect&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D%28-2%29-brane">“D(-2)-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D%28-2%29-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD%2528-2%2529-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D%28-1%29-brane">“D(-1)-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D%28-1%29-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD%2528-1%2529-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D0-brane">“D0-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D0-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD0-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D1-brane">“D1-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D1-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD1-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D2-brane">“D2-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D2-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD2-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D3-brane">“D3-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D3-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD3-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D4-brane">“D4-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D4-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD4-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D5-brane">“D5-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D5-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD5-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D6-brane">“D6-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D6-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD6-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D7-brane">“D7-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D7-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD7-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D8-brane">“D8-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D8-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD8-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D9-brane">“D9-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D9-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD9-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/D25-brane">“D25-brane”</a>. 《nLab》 (영어).</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=nLab&rft.atitle=D25-brane&rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2FD25-brane&rfr_id=info%3Asid%2Fko.wikipedia.org%3AD-%EB%A7%89" class="Z3988"><span style="display:none;"> </span></span></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐697b7966c5‐c9fsj Cached time: 20241126151245 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.660 seconds Real time usage: 1.012 seconds Preprocessor visited node count: 4721/1000000 Post‐expand include size: 136249/2097152 bytes Template argument size: 1901/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 1/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 66122/5000000 bytes Lua time usage: 0.304/10.000 seconds Lua memory usage: 4725181/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 650.660 1 -total 38.47% 250.316 1 틀:각주 24.02% 156.288 25 틀:저널_인용 21.95% 142.795 1 틀:위키데이터_속성_추적 17.79% 115.724 1 틀:끈_이론 14.44% 93.927 1 틀:접이식_사이드바 10.35% 67.340 20 틀:웹_인용 9.26% 60.226 19 틀:Nlab 6.12% 39.816 9 틀:서적_인용 5.58% 36.286 13 틀:Llang --> <!-- Saved in parser cache with key kowiki:pcache:594574:|#|:idhash:canonical and timestamp 20241126151245 and revision id 37152495. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">원본 주소 "<a dir="ltr" href="https://ko.wikipedia.org/w/index.php?title=D-막&oldid=37152495">https://ko.wikipedia.org/w/index.php?title=D-막&oldid=37152495</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%B6%84%EB%A5%98" title="특수:분류">분류</a>: <ul><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EB%81%88_%EC%9D%B4%EB%A1%A0" title="분류:끈 이론">끈 이론</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">숨은 분류: <ul><li><a href="/wiki/%EB%B6%84%EB%A5%98:%ED%95%B4%EA%B2%B0%EB%90%98%EC%A7%80_%EC%95%8A%EC%9D%80_%EC%86%8D%EC%84%B1%EC%9D%B4_%EC%9E%88%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:해결되지 않은 속성이 있는 문서">해결되지 않은 속성이 있는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:CS1_-_%EC%98%81%EC%96%B4_%EC%9D%B8%EC%9A%A9_(en)" title="분류:CS1 - 영어 인용 (en)">CS1 - 영어 인용 (en)</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9D%B8%EC%9A%A9_%EC%98%A4%EB%A5%98_-_%EC%98%A4%EB%9E%98%EB%90%9C_%EB%B3%80%EC%88%98%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%A8" title="분류:인용 오류 - 오래된 변수를 사용함">인용 오류 - 오래된 변수를 사용함</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:CS1_-_%EC%A4%91%EA%B5%AD%EC%96%B4_%EA%B0%84%EC%B2%B4_%EC%9D%B8%EC%9A%A9_(zh)" title="분류:CS1 - 중국어 간체 인용 (zh)">CS1 - 중국어 간체 인용 (zh)</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%98%81%EC%96%B4_%ED%91%9C%EA%B8%B0%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EB%AC%B8%EC%84%9C" title="분류:영어 표기를 포함한 문서">영어 표기를 포함한 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P18%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P18을 사용하는 문서">위키데이터 속성 P18을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P7859%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P7859를 사용하는 문서">위키데이터 속성 P7859를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%A4%91%EA%B5%AD%EC%96%B4_%ED%91%9C%EA%B8%B0%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EB%AC%B8%EC%84%9C" title="분류:중국어 표기를 포함한 문서">중국어 표기를 포함한 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%B2%B4%EC%BD%94%EC%96%B4_%ED%91%9C%EA%B8%B0%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EB%AC%B8%EC%84%9C" title="분류:체코어 표기를 포함한 문서">체코어 표기를 포함한 문서</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 이 문서는 2024년 5월 18일 (토) 18:52에 마지막으로 편집되었습니다.</li> <li id="footer-info-copyright">모든 문서는 <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.ko">크리에이티브 커먼즈 저작자표시-동일조건변경허락 4.0</a>에 따라 사용할 수 있으며, 추가적인 조건이 적용될 수 있습니다. 자세한 내용은 <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/ko">이용 약관</a>을 참고하십시오.<br />Wikipedia®는 미국 및 다른 국가에 등록되어 있는 <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org">Wikimedia Foundation, Inc.</a> 소유의 등록 상표입니다.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">개인정보처리방침</a></li> <li id="footer-places-about"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%86%8C%EA%B0%9C">위키백과 소개</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%A9%B4%EC%B1%85_%EC%A1%B0%ED%95%AD">면책 조항</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">행동 강령</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">개발자</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ko.wikipedia.org">통계</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">쿠키 정책</a></li> <li id="footer-places-mobileview"><a href="//ko.m.wikipedia.org/w/index.php?title=D-%EB%A7%89&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">모바일 보기</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-78f4c97c5d-ts5vn","wgBackendResponseTime":132,"wgPageParseReport":{"limitreport":{"cputime":"0.660","walltime":"1.012","ppvisitednodes":{"value":4721,"limit":1000000},"postexpandincludesize":{"value":136249,"limit":2097152},"templateargumentsize":{"value":1901,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":66122,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 650.660 1 -total"," 38.47% 250.316 1 틀:각주"," 24.02% 156.288 25 틀:저널_인용"," 21.95% 142.795 1 틀:위키데이터_속성_추적"," 17.79% 115.724 1 틀:끈_이론"," 14.44% 93.927 1 틀:접이식_사이드바"," 10.35% 67.340 20 틀:웹_인용"," 9.26% 60.226 19 틀:Nlab"," 6.12% 39.816 9 틀:서적_인용"," 5.58% 36.286 13 틀:Llang"]},"scribunto":{"limitreport-timeusage":{"value":"0.304","limit":"10.000"},"limitreport-memusage":{"value":4725181,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-697b7966c5-c9fsj","timestamp":"20241126151245","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"D-\ub9c9","url":"https:\/\/ko.wikipedia.org\/wiki\/D-%EB%A7%89","sameAs":"http:\/\/www.wikidata.org\/entity\/Q137880","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q137880","author":{"@type":"Organization","name":"\uc704\ud0a4\ubbf8\ub514\uc5b4 \ud504\ub85c\uc81d\ud2b8 \uae30\uc5ec\uc790"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2011-01-20T11:13:56Z","dateModified":"2024-05-18T09:52:41Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/8\/88\/D3-brane_et_D2-brane.PNG","headline":"\ub048 \uc774\ub860\uc5d0\uc11c, \uc5f4\ub9b0 \ub048\uc758 \ub05d\uc774 \ubd99\uc744 \uc218 \uc788\ub294 \ub9c9"}</script> </body> </html>