CINXE.COM
Search results for: therapeutic breathing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: therapeutic breathing</title> <meta name="description" content="Search results for: therapeutic breathing"> <meta name="keywords" content="therapeutic breathing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="therapeutic breathing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="therapeutic breathing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1628</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: therapeutic breathing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1628</span> Academic Performance and Therapeutic Breathing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abha%20Gupta">Abha Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Seema%20Maira"> Seema Maira</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Sinha"> Smita Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores using breathing techniques to boost the academic performance of students and describes how teachers can foster the technique in their classrooms. The innovative study examines the differential impact of therapeutic breathing exercises, called pranayama, on students’ academic performance. The paper introduces approaches to therapeutic breathing exercises as an alternative to improve school performance, as well as the self-regulatory behavior, which is known to correlate with academic performance. The study was conducted in a school-wide pranayama program with positive outcomes. The intervention consisted of two breathing exercises, (1) deep breathing, and (2) alternate nostril breathing. It is a quantitative study spanning over a year with about 100 third graders was conducted using daily breathing exercises to investigate the impact of pranayama on academic performance. Significant cumulative gain-scores were found for students who practiced the approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=academic%20performance" title="academic performance">academic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=pranayama" title=" pranayama"> pranayama</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing" title=" therapeutic breathing"> therapeutic breathing</a>, <a href="https://publications.waset.org/abstracts/search?q=yoga" title=" yoga"> yoga</a> </p> <a href="https://publications.waset.org/abstracts/19448/academic-performance-and-therapeutic-breathing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1627</span> The Magnetized Quantum Breathing in Cylindrical Dusty Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdikian">A. Abdikian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20linear%20quantum%20hydrodynamic%20model" title="the linear quantum hydrodynamic model">the linear quantum hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20magnetized%20quantum%20breathing%20mode" title=" the magnetized quantum breathing mode"> the magnetized quantum breathing mode</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20quantum%20dispersion%20relation%20of%20rotation%20mode" title=" the quantum dispersion relation of rotation mode"> the quantum dispersion relation of rotation mode</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20structure" title=" void structure"> void structure</a> </p> <a href="https://publications.waset.org/abstracts/69938/the-magnetized-quantum-breathing-in-cylindrical-dusty-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1626</span> Training Isolated Respiration in Rehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marketa%20Kotova">Marketa Kotova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Kolarova"> Jana Kolarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludek%20Zalud"> Ludek Zalud</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Dobsak"> Petr Dobsak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A game for training of breath (TRABR) for continuous monitoring of pulmonary ventilation during the patients’ therapy focuses especially on monitoring of their ventilation processes. It is necessary to detect, monitor and differentiate abdominal and thoracic breathing during the therapy. It is a fun form of rehabilitation where the patient plays and also practicing isolated breathing. Finally the game to practice breath was designed to evaluate whether the patient uses two types of breathing or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulmonary%20ventilation" title="pulmonary ventilation">pulmonary ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=thoracic%20breathing" title=" thoracic breathing"> thoracic breathing</a>, <a href="https://publications.waset.org/abstracts/search?q=abdominal%20breathing" title=" abdominal breathing"> abdominal breathing</a>, <a href="https://publications.waset.org/abstracts/search?q=breath%20monitoring%20using%20pressure%20sensors" title=" breath monitoring using pressure sensors"> breath monitoring using pressure sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20TRABR%20TRAining%20of%20BReath%29" title=" game TRABR TRAining of BReath)"> game TRABR TRAining of BReath)</a> </p> <a href="https://publications.waset.org/abstracts/14061/training-isolated-respiration-in-rehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1625</span> Numerical Analysis of Effect of Crack Location on the Crack Breathing Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Mobarak">H. M. Mobarak</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20Wu"> Helen Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Keqin%20Xiao"> Keqin Xiao </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a three-dimensional finite element model was developed to investigate the crack breathing behavior at different crack locations considering the effect of unbalance force. A two-disk rotor with a crack is simulated using ABAQUS. The duration of each crack status (open, closed and partially open/closed) during a full shaft rotation was examined to analyse the crack breathing behavior. Unbalanced shaft crack breathing behavior was found to be different at different crack locations. The breathing behavior of crack along the shaft length is divided into different regions depending on the unbalance force and crack location. The simulated results in this work can be further utilised to obtain the time-varying stiffness matrix of the cracked shaft element under the influence of unbalance force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20breathing" title="crack breathing">crack breathing</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20location" title=" crack location"> crack location</a>, <a href="https://publications.waset.org/abstracts/search?q=slant%20crack" title=" slant crack"> slant crack</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalance%20force" title=" unbalance force"> unbalance force</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20shaft" title=" rotating shaft"> rotating shaft</a> </p> <a href="https://publications.waset.org/abstracts/83659/numerical-analysis-of-effect-of-crack-location-on-the-crack-breathing-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1624</span> Bilateral Hemodynamic Responses on Prefrontal Cortex during Voluntary Regulated Breathing (Pranayama) Practices: A Near Infrared Spectroscopy Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Singh%20Deepeshwar">Singh Deepeshwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhas%20Vinchurkar"> Suhas Vinchurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Similar to neuroimaging findings through functional magnetic resonance imaging (fMRI) assessing regional cerebral blood oxygenation, the functional near infrared spectroscopy (fNIRS) has also been used to assess hemodynamic responses in the imaged region of the brain. The present study assessed hemodynamic responses in terms of changes in oxygenation (HbO), deoxygenation (HbR) and total hemoglobin (THb) on the prefrontal cortex (PFC), bilaterally, using fNIRS in 10 participants who performed three voluntary regulated breathing (pranayama) practices viz. (i) Left nostril breathing (LNB), (ii) Right nostril breathing (RNB); and (iii) Alternating nostril breathing (ANB) and compared with normal breathing as baseline (BS). For this, we used 64 channel NIRS system covering left and the right prefrontal cortex. The normal breathing kept as baseline (BS) measures as regressors in the investigation of hemodynamic responses when compared with LNB, RNB and ANB. In the results, we found greater oxygenation in contralateral side i.e., higher activation on the left prefrontal cortex (lPFC) during RNB, and right prefrontal cortex (rPFC) during LNB, whereas ANB showed greater deoxygenation responses on both sides of PFC. Interestingly, LNB showed increased oxygenation on ipsilateral side i.e., lPFC but not during RNB. This suggests that voluntary regulated breathing produced an immediate effect not only on contralateral but ipsilateral sides of the brain as well. In conclusion, breathing practices are tightly coupled to cerebral rhythms of alternating cerebral hemispheric activity during particular nostril breathing. These results of the specific nostril breathing do not support previous findings of contralateral hemispheric improvement while left or right nostril breathing only. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hemodynamic%20responses" title="hemodynamic responses">hemodynamic responses</a>, <a href="https://publications.waset.org/abstracts/search?q=brain" title=" brain"> brain</a>, <a href="https://publications.waset.org/abstracts/search?q=pranayama" title=" pranayama"> pranayama</a>, <a href="https://publications.waset.org/abstracts/search?q=voluntary%20regulated%20breathing%20practices" title=" voluntary regulated breathing practices"> voluntary regulated breathing practices</a>, <a href="https://publications.waset.org/abstracts/search?q=prefrontal%20cortex" title=" prefrontal cortex"> prefrontal cortex</a> </p> <a href="https://publications.waset.org/abstracts/59377/bilateral-hemodynamic-responses-on-prefrontal-cortex-during-voluntary-regulated-breathing-pranayama-practices-a-near-infrared-spectroscopy-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1623</span> Effectiveness of Breathing Training Program on Quality of Life and Depression Among Hemodialysis Patients: Quasi‐Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayfa%20Almutary">Hayfa Almutary</a>, <a href="https://publications.waset.org/abstracts/search?q=Noof%20Eid%20Al%20Shammari"> Noof Eid Al Shammari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The management of depression in patients undergoing hemodialysis remains challenging. The aim of this study was to evaluate the effectiveness of a breathing training program on quality of life and depression among patients on hemodialysis. Design: A one-group pretest-posttest quasi-experimental design was used. Methods: Data were collected from hemodialysis units at three dialysis centers. Initial baseline data were collected, and a breathing training program was implemented. The breathing training program included three types of breathing exercises. The impact of the intervention on outcomes was measured using both the Kidney Disease Quality of Life Short Version and the Beck Depression Inventory-Second Edition from the same participants. The participants were asked to perform the breathing training program three times a day for 30 days. Results: The mean age of the patients was 52.1 (SD:15.0), with nearly two-thirds of them being male (63.4%). Participants who were undergoing hemodialysis for 1–4 years constituted the largest number of the sample (46.3%), and 17.1% of participants had visited a psychiatric clinic 1-3 times. The results show that the breathing training program improved overall quality of life and reduced symptoms and problems. In addition, a significant decrease in the overall depression score was observed after implementing the intervention. Conclusions: The breathing training program is a non-pharmacological intervention that has proven visible effectiveness in hemodialysis. This study demonstrated that using breathing exercises reduced depression levels and improved quality of life. The integration of this intervention in dialysis units to manage psychological issues will offer a simple, safe, easy, and inexpensive intervention. Future research should compare the effectiveness of various breathing exercises in hemodialysis patients using longitudinal studies. Impact: As a safety precaution, nurses should initially use non-pharmacological interventions, such as a breathing training program, to treat depression in those undergoing hemodialysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breathing%20training%20program" title="breathing training program">breathing training program</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise" title=" exercise"> exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=hemodialysis" title=" hemodialysis"> hemodialysis</a> </p> <a href="https://publications.waset.org/abstracts/163327/effectiveness-of-breathing-training-program-on-quality-of-life-and-depression-among-hemodialysis-patients-quasiexperimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1622</span> Non Linear Dynamic Analysis of Cantilever Beam with Breathing Crack Using XFEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Vigneshwaran">K. Vigneshwaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Pandey"> Manoj Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, breathing crack is considered for the non linear dynamic analysis. The stiffness of the cracked beam is found out by using influence coefficients. The influence coefficients are calculated by using Castigliano’s theorem and strain energy release rate (SERR). The equation of motion of the beam was derived by using Hamilton’s principle. The stiffness and natural frequencies for the cracked beam has been calculated using XFEM and Eigen approach. It is seen that due to presence of cracks, the stiffness and natural frequency changes. The mode shapes and the FRF for the uncracked and breathing cracked cantilever beam also obtained and compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breathing%20crack" title="breathing crack">breathing crack</a>, <a href="https://publications.waset.org/abstracts/search?q=XFEM" title=" XFEM"> XFEM</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shape" title=" mode shape"> mode shape</a>, <a href="https://publications.waset.org/abstracts/search?q=FRF" title=" FRF"> FRF</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linear%20analysis" title=" non linear analysis"> non linear analysis</a> </p> <a href="https://publications.waset.org/abstracts/42956/non-linear-dynamic-analysis-of-cantilever-beam-with-breathing-crack-using-xfem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1621</span> Therapeutic Touch from Primary Care to Tertiary Care in Health Services</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Feg%C3%BCl%20Bilge">Ayşegül Bilge</a>, <a href="https://publications.waset.org/abstracts/search?q=Hacer%20Demirkol"> Hacer Demirkol</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20U%C4%9Furyol"> Merve Uğuryol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Therapeutic touch is one of the most important methods of complementary and alternative treatments. Therapeutic touch requires the sharing of universal energy. Therapeutic touch (TT) provides the interaction between the patient and the nurse. In addition, nurses can be aware of physical and mental symptoms of patients through therapeutic touch. Therapeutic touch (TT) is short-term provides the advantage for the nurse. For this reason, nurses have to be aware of the importance of therapeutic touch and they can use it from the primary care to tertiary care in nursing practices at in health field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20care%20services" title="health care services">health care services</a>, <a href="https://publications.waset.org/abstracts/search?q=complementary%20treatment" title=" complementary treatment"> complementary treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing" title=" nursing"> nursing</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20touch" title=" therapeutic touch"> therapeutic touch</a> </p> <a href="https://publications.waset.org/abstracts/48131/therapeutic-touch-from-primary-care-to-tertiary-care-in-health-services" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1620</span> Smart Oxygen Deprivation Mask: An Improved Design with Biometric Feedback</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20V.%20Bui">Kevin V. Bui</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20A.%20Claytor"> Richard A. Claytor</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20M.%20Priolo"> Elizabeth M. Priolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Weihui%20Li"> Weihui Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxygen deprivation masks operate through the use of restricting valves as a means to reduce respiratory flow where flow is inversely proportional to the resistance applied. This produces the same effect as higher altitudes where lower pressure leads to reduced respiratory flow. Both increased resistance with restricting valves and reduce the pressure of higher altitudes make breathing difficultier and force breathing muscles (diaphragm and intercostal muscles) working harder. The process exercises these muscles, improves their strength and results in overall better breathing efficiency. Currently, these oxygen deprivation masks are purely mechanical devices without any electronic sensor to monitor the breathing condition, thus not be able to provide feedback on the breathing effort nor to evaluate the lung function. That is part of the reason that these masks are mainly used for high-level athletes to mimic training in higher altitude conditions, not suitable for patients or customers. The design aims to improve the current method of oxygen deprivation mask to include a larger scope of patients and customers while providing quantitative biometric data that the current design lacks. This will be accomplished by integrating sensors into the mask’s breathing valves along with data acquisition and Bluetooth modules for signal processing and transmission. Early stages of the sensor mask will measure breathing rate as a function of changing the air pressure in the mask, with later iterations providing feedback on flow rate. Data regarding breathing rate will be prudent in determining whether training or therapy is improving breathing function and quantify this improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxygen%20deprivation%20mask" title="oxygen deprivation mask">oxygen deprivation mask</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20function" title=" lung function"> lung function</a>, <a href="https://publications.waset.org/abstracts/search?q=spirometer" title=" spirometer"> spirometer</a>, <a href="https://publications.waset.org/abstracts/search?q=Bluetooth" title=" Bluetooth"> Bluetooth</a> </p> <a href="https://publications.waset.org/abstracts/69291/smart-oxygen-deprivation-mask-an-improved-design-with-biometric-feedback" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1619</span> Effect of Hypertension Exercise and Slow Deep Breathing Combination to Blood Pressure: A Mini Research in Elderly Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prima%20Khairunisa">Prima Khairunisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Febriana%20Tri%20Kusumawati"> Febriana Tri Kusumawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Endah%20Luthfiana"> Endah Luthfiana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Hypertension in elderly, caused by cardiovascular system cannot work normally, because the valves thickened and inelastic blood vessels. It causes vasoconstriction of the blood vessels. Hypertension exercise, increase cardiovascular function and the elasticity of the blood vessels. While slow deep breathing helps the body and mind feel relax. Combination both of them will decrease the blood pressure. Objective: To know the effect of hypertension exercise and slow deep breathing combination to blood pressure in elderly. Method: The study conducted with one group pre-post test experimental design. The samples were 10 elderly both male and female in a Village in Semarang, Central Java, Indonesia. The tool was manual sphygmomanometer to measure blood pressure. Result: Based on paired t-test between hypertension exercise and slow deep breathing with systole blood pressure showed sig (2-tailed) was 0.045, while paired t-test between hypertension exercise hypertension exercise and slow deep breathing with diastole blood pressure showed sig (2-tailed) was 0,343. The changes of systole blood pressure were 127.5 mmHg, and diastole blood pressure was 80 mmHg. Systole blood pressure decreases significantly because the average of systole blood pressure before implementation was 135-160 mmHg. While diastole blood pressure was not decreased significantly. It was influenced by the average of diastole blood pressure before implementation of hypertension exercise was not too high. It was between 80- 90 mmHg. Conclusion: There was an effect of hypertension exercise and slow deep breathing combination to the blood pressure in elderly after 6 times implementations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypertension%20exercise" title="hypertension exercise">hypertension exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=slow%20deep%20breathing" title=" slow deep breathing"> slow deep breathing</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title=" blood pressure"> blood pressure</a> </p> <a href="https://publications.waset.org/abstracts/52609/effect-of-hypertension-exercise-and-slow-deep-breathing-combination-to-blood-pressure-a-mini-research-in-elderly-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1618</span> Effect of Physical and Breathing Exercises on Quality of Life and Psychophysical Status among Haemodialysis Patients: A Scoping Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noof%20Eid%20Al%20Shammari">Noof Eid Al Shammari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Living with haemodialysis (HD) can impose several physical and social restrictions on the lives of individuals. Usually, the patient has three dialysis sessions per week that each run for three to four hours. This limits the social life of patients and causes a lower quality of life, in conjunction with the fact that people with chronic kidney disease must follow strict fluid and food regimens and use multiple medications. Given these factors, patients undergoing HD generally need psychological support. Objective: This scoping review study aims to evaluate the effectiveness of physical and breathing exercises on quality of life (QOL) and psychophysical status in patients undergoing HD. Methodology: Searches for relevant studies were performed in four databases (MEDLINE, CINAHL, Google Scholar, and PubMed) for articles published between 2011 and 2021. Out of all the searched literature, ten studies met the inclusion criteria (8 randomised controlled trials, one quasi-experimental study, and one pilot study), with a total of 588 patients. Different types of physical and breathing exercises were used (breathing, cardiopulmonary, and physical exercises). Results: All included studies in this scoping review revealed that most of the aerobic or anaerobic exercises, as well as breathing exercises, had a positive effect and significantly improved patients’ QOL, physical functioning, and psychological status. Conclusions: In this review, most of the articles demonstrated a positive effect of physical and breathing exercises on the QOL and psychophysical status of HD patients. Based on the findings of these studies, physical and breathing exercises were shown to improve muscle strength and other health-related aspects of QOL, including sexual, social, cognitive, and physical functions. However, more studies will need to be conducted with a larger sample to determine the best intervention that could be implemented and standardised in nursing care for patients undergoing HD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20exercise" title="physical exercise">physical exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=breathing%20exercises" title=" breathing exercises"> breathing exercises</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=hemodialysis" title=" hemodialysis"> hemodialysis</a> </p> <a href="https://publications.waset.org/abstracts/163153/effect-of-physical-and-breathing-exercises-on-quality-of-life-and-psychophysical-status-among-haemodialysis-patients-a-scoping-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1617</span> Ultrastrong Coupling of CdZnS/ZnS Quantum Dots and Breathing Plasmons in Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Li">Li Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Wang"> Lei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenglin%20Du"> Chenglin Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengxin%20Ren"> Mengxin Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinzheng%20Zhang"> Xinzheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Cai"> Wei Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingjun%20Xu"> Jingjun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strong coupling between excitons of quantum dots and plasmons in nanocavites can be realized at room temperature due to the strong confinement of the plasmon fields, which offers building blocks for quantum information systems or ultralow-power switches and lasers. In this work, by using cathodoluminescence, ultrastrong coupling with Rabi splitting above 1 eV between breathing plasmons in Aluminum metal-insulator-metal (MIM) cavity and excited state of CdZnS/ZnS quantum dots was reported in near-UV spectrum. Analytic analysis and full-wave electromagnetic simulations provide the evidence for the strong coupling and confirm the hybridization of the QDs exciton and LSP breathing mode. This study opens the way for new emerging applications based on strongly coupled light-matter states all over the visible region down to ultra-violet frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breathing%20mode" title="breathing mode">breathing mode</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmonics" title=" plasmonics"> plasmonics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title=" quantum dot"> quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20coupling" title=" strong coupling"> strong coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/105253/ultrastrong-coupling-of-cdznszns-quantum-dots-and-breathing-plasmons-in-aluminum-metal-insulator-metal-nanocavities-in-near-ultraviolet-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1616</span> Phase Synchronization of Skin Blood Flow Oscillations under Deep Controlled Breathing in Human</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arina%20V.%20Tankanag">Arina V. Tankanag</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennady%20V.%20Krasnikov"> Gennady V. Krasnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20K.%20Chemeris"> Nikolai K. Chemeris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of respiration-dependent oscillations in the peripheral blood flow may occur by at least two mechanisms. The first mechanism is related to the change of venous pressure due to mechanical activity of lungs. This phenomenon is known as ‘respiratory pump’ and is one of the mechanisms of venous return of blood from the peripheral vessels to the heart. The second mechanism is related to the vasomotor reflexes controlled by the respiratory modulation of the activity of centers of the vegetative nervous system. Early high phase synchronization of respiration-dependent blood flow oscillations of left and right forearm skin in healthy volunteers at rest was shown. The aim of the work was to study the effect of deep controlled breathing on the phase synchronization of skin blood flow oscillations. 29 normotensive non-smoking young women (18-25 years old) of the normal constitution without diagnosed pathologies of skin, cardiovascular and respiratory systems participated in the study. For each of the participants six recording sessions were carried out: first, at the spontaneous breathing rate; and the next five, in the regimes of controlled breathing with fixed breathing depth and different rates of enforced breathing regime. The following rates of controlled breathing regime were used: 0.25, 0.16, 0.10, 0.07 and 0.05 Hz. The breathing depth amounted to 40% of the maximal chest excursion. Blood perfusion was registered by laser flowmeter LAKK-02 (LAZMA, Russia) with two identical channels (wavelength 0.63 µm; emission power, 0.5 mW). The first probe was fastened to the palmar surface of the distal phalanx of left forefinger; the second probe was attached to the external surface of the left forearm near the wrist joint. These skin zones were chosen as zones with different dominant mechanisms of vascular tonus regulation. The degree of phase synchronization of the registered signals was estimated from the value of the wavelet phase coherence. The duration of all recording was 5 min. The sampling frequency of the signals was 16 Hz. The increasing of synchronization of the respiratory-dependent skin blood flow oscillations for all controlled breathing regimes was obtained. Since the formation of respiration-dependent oscillations in the peripheral blood flow is mainly caused by the respiratory modulation of system blood pressure, the observed effects are most likely dependent on the breathing depth. It should be noted that with spontaneous breathing depth does not exceed 15% of the maximal chest excursion, while in the present study the breathing depth was 40%. Therefore it has been suggested that the observed significant increase of the phase synchronization of blood flow oscillations in our conditions is primarily due to an increase of breathing depth. This is due to the enhancement of both potential mechanisms of respiratory oscillation generation: venous pressure and sympathetic modulation of vascular tone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20controlled%20breathing" title="deep controlled breathing">deep controlled breathing</a>, <a href="https://publications.waset.org/abstracts/search?q=peripheral%20blood%20flow%20oscillations" title=" peripheral blood flow oscillations"> peripheral blood flow oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20synchronization" title=" phase synchronization"> phase synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20phase%20coherence" title=" wavelet phase coherence"> wavelet phase coherence</a> </p> <a href="https://publications.waset.org/abstracts/98130/phase-synchronization-of-skin-blood-flow-oscillations-under-deep-controlled-breathing-in-human" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1615</span> Influence of Angular Position of Unbalanced Force on Crack Breathing Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roselyn%20Zaman">Roselyn Zaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mobarak%20Hossain"> Mobarak Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new mathematical model is developed to study crack breathing behavior considering effect of angular position of unbalanced force at different crack locations. Crack breathing behavior has been determined using effectual bending angle by studying the transient change of the crack area. Different crack breathing behavior of the unbalanced shaft has been observed for different combination of angular position of unbalanced force with crack location except crack locations 0.3L and 0.8335L, where L is the total length of the shaft, where unbalanced shaft behave completely like the balanced shaft. Based on different combination of angular position of unbalanced force with crack location, the stiffness of unbalanced shaft can be divided into three regions. An unbalanced shaft is overall stiffer than a balanced shaft when angular position of unbalance force is between 90° to 270° and crack located between 0.3L and 0.8335L, and it is overall flexible when the crack located in outside this crack region. On the other hand, it is overall flexible when angular position of unbalanced force is between 0° to 90° or 270° to 360° and crack located in middle region and it is overall stiffer for outside this crack region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracked%20shaft" title="cracked shaft">cracked shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20location" title=" crack location"> crack location</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20stiffness" title=" shaft stiffness"> shaft stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalanced%20force" title=" unbalanced force"> unbalanced force</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20unbalanced%20force%20orientation" title=" and unbalanced force orientation"> and unbalanced force orientation</a> </p> <a href="https://publications.waset.org/abstracts/87582/influence-of-angular-position-of-unbalanced-force-on-crack-breathing-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1614</span> Dependence of Shaft Stiffness on the Crack Location</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Mobarak">H. M. Mobarak</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20Wu"> Helen Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunhui%20Yang"> Chunhui Yang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an analytical model is developed to study crack breathing behavior under the effect of crack location and unbalance force. Crack breathing behavior is determined using effectual bending angle by studying the transient change in closed area of the crack. The status of the crack of a balanced shaft is symmetrical about shaft rotational angle and the duration of each crack status remains unchanged. The global stiffness of the balanced shaft is independent of crack location. Different crack breathing behavior for the unbalanced shaft has been observed. The influence of crack location on the unbalanced shaft stiffness can be divided into three regions. When the crack is located between 0.3L and 0.8335L, where L is the total length of the shaft, the unbalanced shaft is less stiff and when located outside this region it is stiffer than the balanced shaft. It was also found that unbalanced shaft stiffness has a maximum value with a crack at 0.1946L, a minimum value at 0.8053L and same value as balanced shaft at 0.3L and 0.8335L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracked%20shaft" title="cracked shaft">cracked shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20location" title=" crack location"> crack location</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20stiffness" title=" shaft stiffness"> shaft stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalanced%20force" title=" unbalanced force"> unbalanced force</a> </p> <a href="https://publications.waset.org/abstracts/58562/dependence-of-shaft-stiffness-on-the-crack-location" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1613</span> Sewage Induced Behavioural Responses in an Air-Breathing Fish, Pangasius pangasius</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasikala%20Govindaraj">Sasikala Govindaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Palanisamy"> P. Palanisamy</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Natarajan"> G. M. Natarajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Domestic sewage poses major threats to the aquatic environment in third world countries due to lack of technical and economic sources which can have significant impacts on fish. The tolerance limits to toxicants found in domestic effluents vary among species and their integrative effects may lead to reproductive failure and reduction of survival and growth of the more sensitive fish species. The mechanism of action of toxic substances upon various concentrations of sewage was taken aiming to evaluate locomotory, physiological, neurological and morbidity response of fish. The rapid biomonitoring assessment technique for qualitative evaluation of various industrial pollutants, behavioral responses of an air-breathing fish Pangasius pangasius were used as biomarkers for water quality assessment. The present investigation concluded that sewage is highly toxic to the fish and severely affects their physiology and behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-breathing%20organs" title="air-breathing organs">air-breathing organs</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral" title=" behavioral"> behavioral</a>, <a href="https://publications.waset.org/abstracts/search?q=locomotory" title=" locomotory"> locomotory</a>, <a href="https://publications.waset.org/abstracts/search?q=morbidity" title=" morbidity"> morbidity</a>, <a href="https://publications.waset.org/abstracts/search?q=neurological" title=" neurological"> neurological</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological" title=" physiological"> physiological</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage" title=" sewage"> sewage</a> </p> <a href="https://publications.waset.org/abstracts/69385/sewage-induced-behavioural-responses-in-an-air-breathing-fish-pangasius-pangasius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1612</span> Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20Jen%20Wang">Yi Jen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Ju%20%20Chen"> Yu Ju Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous%20function" title="autonomic nervous function">autonomic nervous function</a>, <a href="https://publications.waset.org/abstracts/search?q=HRV%20biofeedback" title=" HRV biofeedback"> HRV biofeedback</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability" title=" heart rate variability"> heart rate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=slow%20breathing" title=" slow breathing"> slow breathing</a> </p> <a href="https://publications.waset.org/abstracts/139670/comparison-of-the-effect-of-heart-rate-variability-biofeedback-and-slow-breathing-training-on-promoting-autonomic-nervous-function-related-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1611</span> Increase of Completion Rate of Nursing Care during Therapeutic Hypothermia in Critical Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Jiun%20Chou">Yi-Jiun Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Hsuan%20Li"> Ying-Hsuan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Jung%20Liu"> Yi-Jung Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-Yu%20Chiang"> Hsin-Yu Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsuan-Ching%20Wang"> Hsuan-Ching Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Patients received therapeutic hypothermia (TH) after resuscitation from cardiac arrest are more dependent on continue and intensive nursing care. It involves many difficult steps, especially achieving target body temperature. To our best knowledge, there is no consensus or recommended standards on nursing practice of TH. Aim: The aim of this study is to increase the completion rate of nursing care at therapeutic hypothermia. Methods: We took five measures: (1) Amendment of nursing standards of therapeutic hypothermia; (2) Amendment of TH checklist items to nursing records; (3) Establishment of monitor procedure; (4) Design each period of TH care reminder cards; (5) Providing in-service training sections of TH for ICU nursing staff. Outcomes: The completion rate of nursing care at therapeutic hypothermia increased from 78.1% to 89.3%. Conclusion: The project team not only increased the completion rate but also improved patient safety and quality of care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20hypothermia" title="therapeutic hypothermia">therapeutic hypothermia</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing" title=" nursing"> nursing</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20care" title=" critical care"> critical care</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20care" title=" quality of care"> quality of care</a> </p> <a href="https://publications.waset.org/abstracts/85602/increase-of-completion-rate-of-nursing-care-during-therapeutic-hypothermia-in-critical-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1610</span> Maximising the Therapeutic Value of the Mental Capacity Act of Singapore for People Who Lack Legal Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenji%20Gwee">Kenji Gwee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Mental Capacity Act is a new legislation that allows for lasting powers of attorney and court-appointed deputies, in respect of people who lack legal capacity. While the UK Act, after which the Singapore Act is modeled, has been shown to be therapeutic to donors, the Singapore Act differs from its UK counterpart and it is unclear if the Singapore Act can be beneficial to donors as purported. The purpose of this study was to determine what the perceptions of three groups of stakeholders (patients, caregivers and psychiatrists) are about the aspects of the Mental Capacity Act that are therapeutic to donors. In addition, ways to increase the therapeutic value of the Act to donors are sought. A qualitative methodology was used and the research was guided by two theoretical frameworks: therapeutic jurisprudence and an interpretive constructive framework. Interviews with 12 psychiatrists, and focus groups with twenty three patients and seven caregivers showed agreement that, allowing donors to nominate more than one decision- maker, and whistle-blowing mechanisms for recourse for abuse, were therapeutic to donors. To further increase the therapeutic value of the Act, 2 suggestions were made: the Act should provide for (i) advanced healthcare directives- allowing donors to make advance decisions to refuse treatment, or cease existing treatment, and (ii) independent advocacy services- to have a case worker to represent people who have no family or friends and are thus unable to find suitable donees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mental%20Capacity%20Act" title="Mental Capacity Act">Mental Capacity Act</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20jurisprudence" title=" therapeutic jurisprudence"> therapeutic jurisprudence</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative%20methodology" title=" qualitative methodology"> qualitative methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20UK%20Act" title=" the UK Act "> the UK Act </a> </p> <a href="https://publications.waset.org/abstracts/7964/maximising-the-therapeutic-value-of-the-mental-capacity-act-of-singapore-for-people-who-lack-legal-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1609</span> In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20X.%20Tchomeni">B. X. Tchomeni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Alugongo"> A. A. Alugongo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Masu"> L. M. Masu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategies <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotor" title="rotor">rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=rubbing" title=" rubbing"> rubbing</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20force" title=" axial force"> axial force</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linear" title=" non linear"> non linear</a> </p> <a href="https://publications.waset.org/abstracts/15695/in-situ-modelling-of-lateral-torsional-vibration-of-a-rotor-stator-with-multiple-parametric-excitations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1608</span> The Utilisation of Storytelling as a Therapeutic Intervention by Educational Psychologists to Address Behavioural Challenges Relating to Grief of Adolescent Clients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laila%20Jeebodh%20Desai">Laila Jeebodh Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Storytelling as a therapeutic intervention entails the narrating of events by externalising emotions, thoughts and responses to life-changing events such as loss and grief. This creates the opportunity for clients to engage with psychologists by projecting various beliefs and challenges, such as grief, through a range of therapeutic modalities. This study conducts an inquiry into the ways in which storytelling can be utilised by educational psychologists with adolescent clients to address behavioural challenges relating to grief. This qualitative study therefore aims to facilitate an understanding of the use and benefits of storytelling as a therapeutic intervention. This has been achieved by examining interviews with four educational psychologists who have utilised storytelling as a therapeutic intervention with adolescent clients to overcome challenges with grief. The participants (educational psychologists) discussed case studies during interviews, which provided evidence of their practical administration of storytelling as a therapeutic intervention incorporating integrated theoretical approaches through the use of blended therapeutic techniques. Behavioural challenges relating to grief were also predominant in the case study information provided by the participants. The participants further confirmed that the term ‘grief’ included different types of loss that were experienced among adolescent clients. The implications and recommendations of the findings encouraged the utilisation of storytelling as a therapeutic intervention with adolescent clients in addressing behavioural challenges related to grief, based on the outcome of the case studies discussed by the participants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=storytelling" title="storytelling">storytelling</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20intervention" title=" therapeutic intervention"> therapeutic intervention</a>, <a href="https://publications.waset.org/abstracts/search?q=adolescents" title=" adolescents"> adolescents</a>, <a href="https://publications.waset.org/abstracts/search?q=grief" title=" grief"> grief</a> </p> <a href="https://publications.waset.org/abstracts/32952/the-utilisation-of-storytelling-as-a-therapeutic-intervention-by-educational-psychologists-to-address-behavioural-challenges-relating-to-grief-of-adolescent-clients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1607</span> A Study of Applying the Use of Breathing Training to Palliative Care Patients, Based on the Bio-Psycho-Social Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenhsuan%20Lee">Wenhsuan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yachi%20Chang"> Yachi Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingyih%20Shih"> Yingyih Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In clinical practices, it is common that while facing the unknown progress of their disease, palliative care patients may easily feel anxious and depressed. These types of reactions are a cause of psychosomatic diseases and may also influence treatment results. However, the purpose of palliative care is to provide relief from all kinds of pains. Therefore, how to make patients more comfortable is an issue worth studying. This study adopted the “bio-psycho-social model” proposed by Engel and applied spontaneous breathing training, in the hope of seeing patients’ psychological state changes caused by their physiological state changes, improvements in their anxious conditions, corresponding adjustments of their cognitive functions, and further enhancement of their social functions and the social support system. This study will be a one-year study. Palliative care outpatients will be recruited and assigned to the experimental group or the control group for six outpatient visits (once a month), with 80 patients in each group. The patients of both groups agreed that this study can collect their physiological quantitative data using an HRV device before the first outpatient visit. They also agreed to answer the “Beck Anxiety Inventory (BAI)”, the “Taiwanese version of the WHOQOL-BREF questionnaire” before the first outpatient visit, to fill a self-report questionnaire after each outpatient visit, and to answer the “Beck Anxiety Inventory (BAI)”, the “Taiwanese version of the WHOQOL-BREF questionnaire” after the last outpatient visit. The patients of the experimental group agreed to receive the breathing training under HRV monitoring during the first outpatient visit of this study. Before each of the following three outpatient visits, they were required to fill a self-report questionnaire regarding their breathing practices after going home. After the outpatient visits, they were taught how to practice breathing through an HRV device and asked to practice it after going home. Later, based on the results from the HRV data analyses and the pre-tests and post-tests of the “Beck Anxiety Inventory (BAI)”, the “Taiwanese version of the WHOQOL-BREF questionnaire”, the influence of the breathing training in the bio, psycho, and social aspects were evaluated. The data collected through the self-report questionnaires of the patients of both groups were used to explore the possible interfering factors among the bio, psycho, and social changes. It is expected that this study will support the “bio-psycho-social model” proposed by Engel, meaning that bio, psycho, and social supports are closely related, and that breathing training helps to transform palliative care patients’ psychological feelings of anxiety and depression, to facilitate their positive interactions with others, and to improve the quality medical care for them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palliative%20care" title="palliative care">palliative care</a>, <a href="https://publications.waset.org/abstracts/search?q=breathing%20training" title=" breathing training"> breathing training</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-psycho-social%20model" title=" bio-psycho-social model"> bio-psycho-social model</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability" title=" heart rate variability"> heart rate variability</a> </p> <a href="https://publications.waset.org/abstracts/68027/a-study-of-applying-the-use-of-breathing-training-to-palliative-care-patients-based-on-the-bio-psycho-social-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1606</span> Comparing ITV Definitions From 4D CT-PET and Breath-Hold Technique with Abdominal Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20D.%20Esposito">R. D. Esposito</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Dorado%20Rodriguez"> P. Dorado Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Planes%20Meseguer"> D. Planes Meseguer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we compare the contour of Internal Target Volume (ITV), for Stereotactic Body Radiation Therapy (SBRT) of a patient affected by a single liver metastasis, obtained from two different patient data acquisition techniques. The first technique consists in a free breathing Computer Tomography (CT) scan acquisition, followed by exhalation breath-hold and inhalation breath-hold CT scans, all of them applying abdominal compression while the second technique consists in a free breathing 4D CT-PET (Positron Emission Tomography) scan. Results obtained with these two methods are consistent, which demonstrate that at least for this specific case, both techniques are adequate for ITV contouring in SBRT treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4D%20CT-PET" title="4D CT-PET">4D CT-PET</a>, <a href="https://publications.waset.org/abstracts/search?q=abdominal%20compression" title=" abdominal compression"> abdominal compression</a>, <a href="https://publications.waset.org/abstracts/search?q=ITV" title=" ITV"> ITV</a>, <a href="https://publications.waset.org/abstracts/search?q=SBRT" title=" SBRT"> SBRT</a> </p> <a href="https://publications.waset.org/abstracts/29648/comparing-itv-definitions-from-4d-ct-pet-and-breath-hold-technique-with-abdominal-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1605</span> Landfill Leachate: A Promising Substrate for Microbial Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayesh%20M.%20Sonawane">Jayesh M. Sonawane</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20C.%20Ghosh"> Prakash C. Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landfill leachate emerges as a promising feedstock for microbial fuel cells (MFCs). In the present investigation, direct air-breathing cathode-based MFCs are fabricated to investigate the potential of landfill leachate. Three MFCs that have different cathode areas are fabricated and investigated for 17 days under open circuit conditions. The maximum open circuit voltage (OCV) is observed to be as high as 1.29 V. The maximum cathode area specific power density achieved in the reactor is 1513 mW m<sup>-2</sup>. Further studies are under progress to understand the origin of high OCV obtained from landfill leachate-based MFCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cells" title="microbial fuel cells">microbial fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachate" title=" landfill leachate"> landfill leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=air-breathing%20cathode" title=" air-breathing cathode"> air-breathing cathode</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20study" title=" performance study"> performance study</a> </p> <a href="https://publications.waset.org/abstracts/60712/landfill-leachate-a-promising-substrate-for-microbial-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1604</span> Predictive Factors of Nasal Continuous Positive Airway Pressure (NCPAP) Therapy Success in Preterm Neonates with Hyaline Membrane Disease (HMD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Novutry%20Siregar">Novutry Siregar</a>, <a href="https://publications.waset.org/abstracts/search?q=Afdal"> Afdal</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilzon%20Taslim"> Emilzon Taslim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyaline Membrane Disease (HMD) is the main cause of respiratory failure in preterm neonates caused by surfactant deficiency. Nasal Continuous Positive Airway Pressure (NCPAP) is the therapy for HMD. The success of therapy is determined by gestational age, birth weight, HMD grade, time of NCAP administration, and time of breathing frequency recovery. The aim of this research is to identify the predictive factor of NCPAP therapy success in preterm neonates with HMD. This study used a cross-sectional design by using medical records of patients who were treated in the Perinatology of the Pediatric Department of Dr. M. Djamil Padang Central Hospital from January 2015 to December 2017. The samples were eighty-two neonates that were selected by using the total sampling technique. Data analysis was done by using the Chi-Square Test and the Multiple Logistic Regression Prediction Model. The results showed the success rate of NCPAP therapy reached 53.7%. Birth weight (p = 0.048, OR = 3.34 95% CI 1.01-11.07), HMD grade I (p = 0.018, OR = 4.95 CI 95% 1.31-18.68), HMD grade II (p = 0.044, OR = 5.52 95% CI 1.04-29.15), and time of breathing frequency recovery (p = 0,000, OR = 13.50 95% CI 3.58-50, 83) are the predictive factors of NCPAP therapy success in preterm neonates with HMD. The most significant predictive factor is the time of breathing frequency recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=predictive%20factors" title="predictive factors">predictive factors</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20success%20of%20therapy" title=" the success of therapy"> the success of therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=NCPAP" title=" NCPAP"> NCPAP</a>, <a href="https://publications.waset.org/abstracts/search?q=preterm%20neonates" title=" preterm neonates"> preterm neonates</a>, <a href="https://publications.waset.org/abstracts/search?q=HMD" title=" HMD"> HMD</a> </p> <a href="https://publications.waset.org/abstracts/179218/predictive-factors-of-nasal-continuous-positive-airway-pressure-ncpap-therapy-success-in-preterm-neonates-with-hyaline-membrane-disease-hmd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1603</span> A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20X.%20Tchomeni">B. X. Tchomeni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Alugongo"> A. A. Alugongo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Masu"> L. M. Masu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modelled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=a%20breathing%20crack" title="a breathing crack">a breathing crack</a>, <a href="https://publications.waset.org/abstracts/search?q=fault" title=" fault"> fault</a>, <a href="https://publications.waset.org/abstracts/search?q=FFT" title=" FFT"> FFT</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=orbit" title=" orbit"> orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor-stator%20rub" title=" rotor-stator rub"> rotor-stator rub</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a> </p> <a href="https://publications.waset.org/abstracts/37670/a-fault-analysis-cracked-rotor-to-stator-rub-and-unbalance-by-vibration-analysis-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1602</span> Implementation and Validation of Therapeutic Tourism Products for Families With Children With Autism Spectrum Disorder in Azores Islands: “Azores All in Blue” Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Rita%20Conde">Ana Rita Conde</a>, <a href="https://publications.waset.org/abstracts/search?q=Pilar%20Mota"> Pilar Mota</a>, <a href="https://publications.waset.org/abstracts/search?q=T%C3%A2nia%20Botelho"> Tânia Botelho</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzana%20Caldeira"> Suzana Caldeira</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Rego"> Isabel Rego</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Pacheco"> Jessica Pacheco</a>, <a href="https://publications.waset.org/abstracts/search?q=Osvaldo%20Silva"> Osvaldo Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81urea%20Sousa"> Áurea Sousa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tourism promotes well-being and health to children with ASD and their families. Literature indicates the need to provide tourist activities that integrate the therapeutic component, to promote the development and well-being of children with ASD. The study aims to implement tourist offers in Azores that integrate the therapeutic feature, assess their suitability and impact on the well-being and health of the child and caregivers. Using a mixed methodology, the study integrates families that experience and evaluate the impact of tourism products developed specifically for them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austism%20spectrum%20disorder" title="austism spectrum disorder">austism spectrum disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20tourism%20activities" title=" therapeutic tourism activities"> therapeutic tourism activities</a>, <a href="https://publications.waset.org/abstracts/search?q=well-being" title=" well-being"> well-being</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusive%20tourism" title=" inclusive tourism"> inclusive tourism</a> </p> <a href="https://publications.waset.org/abstracts/153205/implementation-and-validation-of-therapeutic-tourism-products-for-families-with-children-with-autism-spectrum-disorder-in-azores-islands-azores-all-in-blue-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1601</span> How Do You Blow Off Steam? : The Impact of Therapeutic Catharsis Seeking, Self-Construal, and Social Capital in Gaming Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hye%20Rim%20Lee">Hye Rim Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Eui%20Jun%20Jeong"> Eui Jun Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Woo%20Kim"> Ju Woo Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study will examine how the therapeutic factors (therapeutic catharsis-seeking and game-efficacy of the game player) and self-construal factors (independent and interdependent self-construal of the game player) as well as social capital factors (bonding and bridging social capital of the game player) affect trait aggression in the game. Results show that both therapeutic catharsis-seeking and game self-efficacy are particularly important to the players since they cause the game players’ aggressive tendencies to be greatly diminished. Independent self-construal reduces the level of the players’ aggression. Interestingly enough, the bonding social capital enhances the level of the players’ aggression, while individuals with bridging social capital did not show any significant effects. The results and implications will be discussed herein. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggression%20catharsis" title="aggression catharsis">aggression catharsis</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20self-efficacy" title=" game self-efficacy"> game self-efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=self-construal" title=" self-construal"> self-construal</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20capital" title=" social capital"> social capital</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20catharsis%20seeking" title=" therapeutic catharsis seeking"> therapeutic catharsis seeking</a> </p> <a href="https://publications.waset.org/abstracts/30921/how-do-you-blow-off-steam-the-impact-of-therapeutic-catharsis-seeking-self-construal-and-social-capital-in-gaming-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1600</span> Sonic Therapeutic Intervention for Preventing Financial Fraud: A Phenomenological Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasudev%20Das">Vasudev Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a global survey of more than 5,000 participants in 99 territories, PwC found a loss of $42 billion through fraud in the last 24 months. The specific problem is that private and public organizational leaders often do not understand the importance of sonic therapeutic intervention in preventing financial fraud. The study aimed to explore sonic therapeutic intervention practitioners' lived experiences regarding the value of sonic therapeutic intervention in preventing financial fraud. The data collection methods were semi-structured interviews of purposeful samples and documentary reviews, which were analyzed thematically. Four themes emerged from the analysis of interview transcription data: Sonic therapeutic intervention enabled self-control, pro-spiritual values, consequentiality mindset, and post-conventional consciousness. The itemized four themes helped non-engagement in financial fraud. Implications for positive social change include enhanced financial fraud management, more significant financial leadership, and result-oriented decision-taking in the financial market. Also, the study results can improve the increased de-escalation of anxiety/stress associated with defrauding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consciousness" title="consciousness">consciousness</a>, <a href="https://publications.waset.org/abstracts/search?q=consequentiality" title=" consequentiality"> consequentiality</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=reintegration" title=" reintegration"> reintegration</a> </p> <a href="https://publications.waset.org/abstracts/136308/sonic-therapeutic-intervention-for-preventing-financial-fraud-a-phenomenological-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1599</span> Therapeutic Potential of Cannabis in Cancer: Advances in Clinical Research and Pharmacogenomic Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boucha%C3%AFb%20Gazzaz">Bouchaïb Gazzaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20El%20Amri"> Hamid El Amri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hind%20Dehbi"> Hind Dehbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderraouf%20Hilali"> Abderraouf Hilali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical cannabis has been cultivated and used in many countries around the world. The story of the use of cannabis as a therapeutic agent is difficult to trace, in particular, because the laws regulating its production, distribution, possession, and consumption are relatively recent. Nowadays, in countries where it is authorized, medical cannabis is used in a very wide variety of illnesses and pathologies, particularly in cancer cures. Presently, cannabinoid receptor agonists (like nabilone and dronabinol) are used for reducing chemotherapy induced vomiting. This review aims to discuss a recent finding on the use of therapeutic cannabis in patients with cancer. First, this work addresses the progress made in the use of cannabinoids as therapeutic agent and their application in the treatment of different types of cancer. Secondly, a detailed analysis of the pharmacogenetic aspect of cannabis will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cannabinoids" title="cannabinoids">cannabinoids</a>, <a href="https://publications.waset.org/abstracts/search?q=endocannabinoids%20system" title=" endocannabinoids system"> endocannabinoids system</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20treatment" title=" cancer treatment"> cancer treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cannabinoid%20receptors" title=" cannabinoid receptors"> cannabinoid receptors</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20polymorphism" title=" genetic polymorphism"> genetic polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacogenomics" title=" pharmacogenomics"> pharmacogenomics</a> </p> <a href="https://publications.waset.org/abstracts/162592/therapeutic-potential-of-cannabis-in-cancer-advances-in-clinical-research-and-pharmacogenomic-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing&page=54">54</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing&page=55">55</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=therapeutic%20breathing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>