CINXE.COM

Formule de Newton-Cotes — Wikipédia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="fr" dir="ltr"> <head> <meta charset="UTF-8"> <title>Formule de Newton-Cotes — Wikipédia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )frwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","janvier","février","mars","avril","mai","juin","juillet","août","septembre","octobre","novembre","décembre"],"wgRequestId":"53190273-988f-4247-8b98-a20f751515fa","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Formule_de_Newton-Cotes","wgTitle":"Formule de Newton-Cotes","wgCurRevisionId":208288141,"wgRevisionId":208288141,"wgArticleId":244763,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Article contenant un appel à traduction en anglais","Portail:Analyse/Articles liés","Portail:Mathématiques/Articles liés","Portail:Sciences/Articles liés","Intégration numérique","Isaac Newton"],"wgPageViewLanguage":"fr","wgPageContentLanguage":"fr","wgPageContentModel":"wikitext","wgRelevantPageName":"Formule_de_Newton-Cotes","wgRelevantArticleId":244763,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true, "wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"fr","pageLanguageDir":"ltr","pageVariantFallbacks":"fr"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":9000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q944241","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ArchiveLinks","ext.gadget.Wdsearch","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging", "ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=fr&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=fr&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=fr&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Simpson_rule.png/1200px-Simpson_rule.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="782"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Simpson_rule.png/800px-Simpson_rule.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="521"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Simpson_rule.png/640px-Simpson_rule.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="417"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Formule de Newton-Cotes — Wikipédia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//fr.m.wikipedia.org/wiki/Formule_de_Newton-Cotes"> <link rel="alternate" type="application/x-wiki" title="Modifier" href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (fr)"> <link rel="EditURI" type="application/rsd+xml" href="//fr.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://fr.wikipedia.org/wiki/Formule_de_Newton-Cotes"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr"> <link rel="alternate" type="application/atom+xml" title="Flux Atom de Wikipédia" href="/w/index.php?title=Sp%C3%A9cial:Modifications_r%C3%A9centes&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Formule_de_Newton-Cotes rootpage-Formule_de_Newton-Cotes skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Aller au contenu</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">masquer</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_principal" title="Accueil général [z]" accesskey="z"><span>Accueil</span></a></li><li id="n-thema" class="mw-list-item"><a href="/wiki/Portail:Accueil"><span>Portails thématiques</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Page_au_hasard" title="Affiche un article au hasard [x]" accesskey="x"><span>Article au hasard</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Contact"><span>Contact</span></a></li> </ul> </div> </div> <div id="p-Contribuer" class="vector-menu mw-portlet mw-portlet-Contribuer" > <div class="vector-menu-heading"> Contribuer </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-aboutwp" class="mw-list-item"><a href="/wiki/Aide:D%C3%A9buter"><span>Débuter sur Wikipédia</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aide:Accueil" title="Accès à l’aide"><span>Aide</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_de_la_communaut%C3%A9" title="À propos du projet, ce que vous pouvez faire, où trouver les informations"><span>Communauté</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Modifications_r%C3%A9centes" title="Liste des modifications récentes sur le wiki [r]" accesskey="r"><span>Modifications récentes</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikip%C3%A9dia:Accueil_principal" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="l&#039;encyclopédie libre" src="/static/images/mobile/copyright/wikipedia-tagline-fr.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Sp%C3%A9cial:Recherche" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Rechercher sur Wikipédia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Rechercher</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Rechercher sur Wikipédia" aria-label="Rechercher sur Wikipédia" autocapitalize="sentences" title="Rechercher sur Wikipédia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Spécial:Recherche"> </div> <button class="cdx-button cdx-search-input__end-button">Rechercher</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Outils personnels"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifier l&#039;apparence de la taille, de la largeur et de la couleur de la police de la page" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Apparence" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Apparence</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_fr.wikipedia.org&amp;uselang=fr" class=""><span>Faire un don</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&amp;returnto=Formule+de+Newton-Cotes" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire." class=""><span>Créer un compte</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Connexion&amp;returnto=Formule+de+Newton-Cotes" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o" class=""><span>Se connecter</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Plus d’options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Outils personnels" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Outils personnels</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utilisateur" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_fr.wikipedia.org&amp;uselang=fr"><span>Faire un don</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&amp;returnto=Formule+de+Newton-Cotes" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Créer un compte</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Connexion&amp;returnto=Formule+de+Newton-Cotes" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Se connecter</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages pour les contributeurs déconnectés <a href="/wiki/Aide:Premiers_pas" aria-label="En savoir plus sur la contribution"><span>en savoir plus</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_contributions" title="Une liste des modifications effectuées depuis cette adresse IP [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_discussions" title="La page de discussion pour les contributions depuis cette adresse IP [n]" accesskey="n"><span>Discussion</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Sommaire" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Sommaire</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">masquer</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Début</div> </a> </li> <li id="toc-Méthodologie" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Méthodologie"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Méthodologie</span> </div> </a> <button aria-controls="toc-Méthodologie-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Méthodologie</span> </button> <ul id="toc-Méthodologie-sublist" class="vector-toc-list"> <li id="toc-Application_pour_n_=_1" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Application_pour_n_=_1"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Application pour <i>n </i>= 1</span> </div> </a> <ul id="toc-Application_pour_n_=_1-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Premières_formules_de_Newton-Cotes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Premières_formules_de_Newton-Cotes"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Premières formules de Newton-Cotes</span> </div> </a> <ul id="toc-Premières_formules_de_Newton-Cotes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ordre_de_la_méthode" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ordre_de_la_méthode"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Ordre de la méthode</span> </div> </a> <ul id="toc-Ordre_de_la_méthode-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Convergence" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Convergence"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Convergence</span> </div> </a> <ul id="toc-Convergence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Références" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Références"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Références</span> </div> </a> <ul id="toc-Références-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Liens_externes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Liens_externes"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Liens externes</span> </div> </a> <ul id="toc-Liens_externes-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Sommaire" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Basculer la table des matières" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Basculer la table des matières</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Formule de Newton-Cotes</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Aller à un article dans une autre langue. Disponible en 18 langues." > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-18" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">18 langues</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B5%D9%8A%D8%BA_%D9%86%D9%8A%D9%88%D8%AA%D9%86-%D9%83%D9%88%D8%AA%D8%B3" title="صيغ نيوتن-كوتس – arabe" lang="ar" hreflang="ar" data-title="صيغ نيوتن-كوتس" data-language-autonym="العربية" data-language-local-name="arabe" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/F%C3%B3rmules_de_Newton-Cotes" title="Fórmules de Newton-Cotes – catalan" lang="ca" hreflang="ca" data-title="Fórmules de Newton-Cotes" data-language-autonym="Català" data-language-local-name="catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Newtonovy%E2%80%93Cotesovy_vzorce" title="Newtonovy–Cotesovy vzorce – tchèque" lang="cs" hreflang="cs" data-title="Newtonovy–Cotesovy vzorce" data-language-autonym="Čeština" data-language-local-name="tchèque" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Newton-Cotes-Formeln" title="Newton-Cotes-Formeln – allemand" lang="de" hreflang="de" data-title="Newton-Cotes-Formeln" data-language-autonym="Deutsch" data-language-local-name="allemand" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas" title="Newton–Cotes formulas – anglais" lang="en" hreflang="en" data-title="Newton–Cotes formulas" data-language-autonym="English" data-language-local-name="anglais" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/F%C3%B3rmulas_de_Newton-Cotes" title="Fórmulas de Newton-Cotes – espagnol" lang="es" hreflang="es" data-title="Fórmulas de Newton-Cotes" data-language-autonym="Español" data-language-local-name="espagnol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A0%D7%95%D7%A1%D7%97%D7%90%D7%95%D7%AA_%D7%A0%D7%99%D7%95%D7%98%D7%95%D7%9F-%D7%A7%D7%95%D7%98%D7%A1" title="נוסחאות ניוטון-קוטס – hébreu" lang="he" hreflang="he" data-title="נוסחאות ניוטון-קוטס" data-language-autonym="עברית" data-language-local-name="hébreu" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Newton%E2%80%93Cotes-formula" title="Newton–Cotes-formula – hongrois" lang="hu" hreflang="hu" data-title="Newton–Cotes-formula" data-language-autonym="Magyar" data-language-local-name="hongrois" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Formule_di_Newton-Cotes" title="Formule di Newton-Cotes – italien" lang="it" hreflang="it" data-title="Formule di Newton-Cotes" data-language-autonym="Italiano" data-language-local-name="italien" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E3%83%BB%E3%82%B3%E3%83%BC%E3%83%84%E3%81%AE%E5%85%AC%E5%BC%8F" title="ニュートン・コーツの公式 – japonais" lang="ja" hreflang="ja" data-title="ニュートン・コーツの公式" data-language-autonym="日本語" data-language-local-name="japonais" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%9A%E1%9E%BC%E1%9E%94%E1%9E%98%E1%9E%93%E1%9F%92%E1%9E%8F%E1%9E%89%E1%9E%BC%E1%9E%8F%E1%9E%BB%E1%9E%93-%E1%9E%80%E1%9E%BC%E1%9E%8F%E1%9F%92%E1%9E%9F" title="រូបមន្តញូតុន-កូត្ស – khmer" lang="km" hreflang="km" data-title="រូបមន្តញូតុន-កូត្ស" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%89%B4%ED%84%B4-%EC%BD%94%EC%B8%A0_%EA%B3%B5%EC%8B%9D" title="뉴턴-코츠 공식 – coréen" lang="ko" hreflang="ko" data-title="뉴턴-코츠 공식" data-language-autonym="한국어" data-language-local-name="coréen" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Formule_van_Newton-Cotes" title="Formule van Newton-Cotes – néerlandais" lang="nl" hreflang="nl" data-title="Formule van Newton-Cotes" data-language-autonym="Nederlands" data-language-local-name="néerlandais" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Metody_Newtona-Cotesa" title="Metody Newtona-Cotesa – polonais" lang="pl" hreflang="pl" data-title="Metody Newtona-Cotesa" data-language-autonym="Polski" data-language-local-name="polonais" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/F%C3%B3rmulas_de_Newton-Cotes" title="Fórmulas de Newton-Cotes – portugais" lang="pt" hreflang="pt" data-title="Fórmulas de Newton-Cotes" data-language-autonym="Português" data-language-local-name="portugais" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D1%8B_%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%B0_%E2%80%94_%D0%9A%D0%BE%D1%82%D1%81%D0%B0" title="Формулы Ньютона — Котса – russe" lang="ru" hreflang="ru" data-title="Формулы Ньютона — Котса" data-language-autonym="Русский" data-language-local-name="russe" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%8A%D1%83%D1%82%D0%BD-%D0%9A%D0%BE%D1%83%D1%82%D1%81_%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B5" title="Њутн-Коутс формуле – serbe" lang="sr" hreflang="sr" data-title="Њутн-Коутс формуле" data-language-autonym="Српски / srpski" data-language-local-name="serbe" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%89%9B%E9%A0%93-%E5%AF%87%E6%AC%A1%E5%85%AC%E5%BC%8F" title="牛頓-寇次公式 – chinois" lang="zh" hreflang="zh" data-title="牛頓-寇次公式" data-language-autonym="中文" data-language-local-name="chinois" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q944241#sitelinks-wikipedia" title="Modifier les liens interlangues" class="wbc-editpage">Modifier les liens</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espaces de noms"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Formule_de_Newton-Cotes" title="Voir le contenu de la page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussion:Formule_de_Newton-Cotes" rel="discussion" title="Discussion au sujet de cette page de contenu [t]" accesskey="t"><span>Discussion</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Modifier la variante de langue" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">français</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Affichages"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Formule_de_Newton-Cotes"><span>Lire</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=history" title="Historique des versions de cette page [h]" accesskey="h"><span>Voir l’historique</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Outils" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Outils</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Outils</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">masquer</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Plus d’options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Formule_de_Newton-Cotes"><span>Lire</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=history"><span>Voir l’historique</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Général </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_li%C3%A9es/Formule_de_Newton-Cotes" title="Liste des pages liées qui pointent sur celle-ci [j]" accesskey="j"><span>Pages liées</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Suivi_des_liens/Formule_de_Newton-Cotes" rel="nofollow" title="Liste des modifications récentes des pages appelées par celle-ci [k]" accesskey="k"><span>Suivi des pages liées</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Aide:Importer_un_fichier" title="Téléverser des fichiers [u]" accesskey="u"><span>Téléverser un fichier</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_sp%C3%A9ciales" title="Liste de toutes les pages spéciales [q]" accesskey="q"><span>Pages spéciales</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;oldid=208288141" title="Adresse permanente de cette version de cette page"><span>Lien permanent</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=info" title="Davantage d’informations sur cette page"><span>Informations sur la page</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Citer&amp;page=Formule_de_Newton-Cotes&amp;id=208288141&amp;wpFormIdentifier=titleform" title="Informations sur la manière de citer cette page"><span>Citer cette page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:UrlShortener&amp;url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FFormule_de_Newton-Cotes"><span>Obtenir l'URL raccourcie</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:QrCode&amp;url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FFormule_de_Newton-Cotes"><span>Télécharger le code QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimer / exporter </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Livre&amp;bookcmd=book_creator&amp;referer=Formule+de+Newton-Cotes"><span>Créer un livre</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:DownloadAsPdf&amp;page=Formule_de_Newton-Cotes&amp;action=show-download-screen"><span>Télécharger comme PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;printable=yes" title="Version imprimable de cette page [p]" accesskey="p"><span>Version imprimable</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Dans d’autres projets </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q944241" title="Lien vers l’élément dans le dépôt de données connecté [g]" accesskey="g"><span>Élément Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Apparence</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">masquer</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Un article de Wikipédia, l&#039;encyclopédie libre.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="fr" dir="ltr"><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fichier:Simpson_rule.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Simpson_rule.png/220px-Simpson_rule.png" decoding="async" width="220" height="143" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Simpson_rule.png/330px-Simpson_rule.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/Simpson_rule.png/440px-Simpson_rule.png 2x" data-file-width="3052" data-file-height="1989" /></a><figcaption>La courbe noire est la courbe représentative de la fonction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>. La surface orange représente une approximation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cac1fab0e1353f0e514fe66f83ff8c0fb3419fd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:10.752ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)dx}"></span> à l'aide d'une interpolation polynomiale aux points répartis uniformément <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a+b}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a+b}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1325e0aa44cdaf4b2e765a44c7109e6b9ed74e77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:5.904ex; height:5.343ex;" alt="{\displaystyle {\frac {a+b}{2}}}"></span>et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> (<a href="/wiki/M%C3%A9thode_de_Simpson" title="Méthode de Simpson">Méthode de Simpson</a>). Il s'agit d'un cas particulier de la formule de Newton-Cotes.</figcaption></figure> <p>En <a href="/wiki/Analyse_num%C3%A9rique" title="Analyse numérique">analyse numérique</a>, les <b>formules de Newton-Cotes</b>, du nom d'<a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> et de <a href="/wiki/Roger_Cotes" title="Roger Cotes">Roger Cotes</a>, servent au <a href="/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale" title="Calcul numérique d&#39;une intégrale">calcul numérique d'une intégrale</a> sur un intervalle réel <span class="texhtml">[<i>a</i>, <i>b</i>]</span>, ceci à l’aide d’une <a href="/wiki/Interpolation_polynomiale" title="Interpolation polynomiale">interpolation polynomiale</a> de la fonction en des points répartis uniformément. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Méthodologie"><span id="M.C3.A9thodologie"></span>Méthodologie</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;veaction=edit&amp;section=1" title="Modifier la section : Méthodologie" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=edit&amp;section=1" title="Modifier le code source de la section : Méthodologie"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>La fonction <span class="texhtml"><i>f</i></span> est évaluée en des points équidistants <span class="texhtml"><i>x<sub>i</sub> = a + i</i>Δ</span>, pour <span class="texhtml"><i>i </i>= 0, … , <i>n</i></span> et <span class="texhtml">Δ = (<i>b – a</i>)/<i>n</i></span>. La formule de degré <span class="texhtml"><i>n</i></span> est définie ainsi&#160;: </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)~{\rm {d}}x\approx \sum _{i=0}^{n}w_{i}\,f(x_{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>&#x2248;<!-- ≈ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)~{\rm {d}}x\approx \sum _{i=0}^{n}w_{i}\,f(x_{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ceb9cafdb3e63be6fccfebc78649ad587bb560df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.318ex; height:7.009ex;" alt="{\displaystyle \int _{a}^{b}f(x)~{\rm {d}}x\approx \sum _{i=0}^{n}w_{i}\,f(x_{i})}"></span></center> <p>où les <span class="texhtml"><i>w<sub>i</sub></i></span> sont appelés les <i>coefficients de <a href="/wiki/Quadrature_(math%C3%A9matiques)" title="Quadrature (mathématiques)">quadrature</a></i>. Ils se déduisent d'une <a href="/wiki/Interpolation_lagrangienne" title="Interpolation lagrangienne">base de polynômes de Lagrange</a> et sont indépendants de la fonction <span class="texhtml"><i>f</i></span>. </p><p>Plus précisément, si <span class="texhtml"><i>L</i>(<i>x</i>)</span> est l'interpolation lagrangienne aux points <span class="texhtml">(<i>x<sub>i</sub></i>, <i>f</i>(<i>x<sub>i</sub></i>))</span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l_{i}(X)=\prod _{j=0,j\neq i}^{n}{\frac {X-x_{j}}{x_{i}-x_{j}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>j</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l_{i}(X)=\prod _{j=0,j\neq i}^{n}{\frac {X-x_{j}}{x_{i}-x_{j}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9db12a219daef0d892c20a3548902ea75d334302" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:22.572ex; height:7.343ex;" alt="{\displaystyle l_{i}(X)=\prod _{j=0,j\neq i}^{n}{\frac {X-x_{j}}{x_{i}-x_{j}}}}"></span>, alors&#160;: </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\int _{a}^{b}f(x)~{\rm {d}}x\approx \int _{a}^{b}L(x)~{\rm {d}}x&amp;=\int _{a}^{b}\sum _{i=0}^{n}f(x_{i})\,l_{i}(x)~{\rm {d}}x\\&amp;=\sum _{i=0}^{n}\int _{a}^{b}f(x_{i})l_{i}(x)~{\rm {d}}x\\&amp;=\sum _{i=0}^{n}f(x_{i})\underbrace {\int _{a}^{b}l_{i}(x)~{\rm {d}}x} _{w_{i}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>&#x2248;<!-- ≈ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>L</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msub> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </munder> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\int _{a}^{b}f(x)~{\rm {d}}x\approx \int _{a}^{b}L(x)~{\rm {d}}x&amp;=\int _{a}^{b}\sum _{i=0}^{n}f(x_{i})\,l_{i}(x)~{\rm {d}}x\\&amp;=\sum _{i=0}^{n}\int _{a}^{b}f(x_{i})l_{i}(x)~{\rm {d}}x\\&amp;=\sum _{i=0}^{n}f(x_{i})\underbrace {\int _{a}^{b}l_{i}(x)~{\rm {d}}x} _{w_{i}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2a1f1c79a9885bd74847575cba81d1e0f86e553" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.3ex; margin-bottom: -0.204ex; width:51.301ex; height:24.176ex;" alt="{\displaystyle {\begin{aligned}\int _{a}^{b}f(x)~{\rm {d}}x\approx \int _{a}^{b}L(x)~{\rm {d}}x&amp;=\int _{a}^{b}\sum _{i=0}^{n}f(x_{i})\,l_{i}(x)~{\rm {d}}x\\&amp;=\sum _{i=0}^{n}\int _{a}^{b}f(x_{i})l_{i}(x)~{\rm {d}}x\\&amp;=\sum _{i=0}^{n}f(x_{i})\underbrace {\int _{a}^{b}l_{i}(x)~{\rm {d}}x} _{w_{i}}.\end{aligned}}}"></span></center> <p>Ainsi&#160;; <span style="display: block; margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{i}=\int _{a}^{b}\prod _{j=0,j\neq i}^{n}{\frac {x-x_{j}}{x_{i}-x_{j}}}~{\rm {d}}x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>j</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{i}=\int _{a}^{b}\prod _{j=0,j\neq i}^{n}{\frac {x-x_{j}}{x_{i}-x_{j}}}~{\rm {d}}x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef5532a4af78e838d40cc6ef7463f7b930a5e64e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:27.392ex; height:7.509ex;" alt="{\displaystyle w_{i}=\int _{a}^{b}\prod _{j=0,j\neq i}^{n}{\frac {x-x_{j}}{x_{i}-x_{j}}}~{\rm {d}}x.}"></span></span> Le <a href="/wiki/Int%C3%A9gration_par_changement_de_variable" title="Intégration par changement de variable">changement</a> de <a href="/wiki/Variable_(math%C3%A9matiques)" title="Variable (mathématiques)">variable</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y={\frac {x-a}{\Delta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y={\frac {x-a}{\Delta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc9410a037dfee24e076512ba849a1ad91d62e42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.49ex; height:5.176ex;" alt="{\displaystyle y={\frac {x-a}{\Delta }}}"></span> conduit à l'expression<sup id="cite_ref-Wolfram_1-0" class="reference"><a href="#cite_note-Wolfram-1"><span class="cite_crochet">[</span>1<span class="cite_crochet">]</span></a></sup>: <span style="display: block; margin-left:1.6em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{i}={\frac {(b-a)}{n}}{\frac {(-1)^{n-i}}{i!(n-i)!}}\int _{0}^{n}\prod _{k=0,k\neq i}^{n}(y-k)~{\rm {d}}y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mrow> </msup> </mrow> <mrow> <mi>i</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>k</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{i}={\frac {(b-a)}{n}}{\frac {(-1)^{n-i}}{i!(n-i)!}}\int _{0}^{n}\prod _{k=0,k\neq i}^{n}(y-k)~{\rm {d}}y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74cd096d8e2b76e385628ea9068a57a8084ac6b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:44.32ex; height:7.509ex;" alt="{\displaystyle w_{i}={\frac {(b-a)}{n}}{\frac {(-1)^{n-i}}{i!(n-i)!}}\int _{0}^{n}\prod _{k=0,k\neq i}^{n}(y-k)~{\rm {d}}y.}"></span></span> </p> <div class="mw-heading mw-heading3"><h3 id="Application_pour_n_=_1"><span id="Application_pour_n_.3D_1"></span>Application pour <i>n </i>= 1</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;veaction=edit&amp;section=2" title="Modifier la section : Application pour n = 1" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=edit&amp;section=2" title="Modifier le code source de la section : Application pour n = 1"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En calculant l'expression précédente lorsque <span class="texhtml"><i>n</i> = 1</span> et <span class="texhtml"><i>i</i> = 0</span>, on obtient </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}w_{0}&amp;=(b-a){\frac {(-1)^{1-0}}{0!\,(1-0)!}}\int _{0}^{1}\prod _{k=0,k\neq 0}^{1}(y-k)~{\rm {d}}y\\&amp;=-(b-a)\int _{0}^{1}(y-1)~{\rm {d}}y\\&amp;=-(b-a)\left[{\frac {(y-1)^{2}}{2}}\right]_{0}^{1}\\&amp;={\frac {b-a}{2}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>0</mn> </mrow> </msup> </mrow> <mrow> <mn>0</mn> <mo>!</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>k</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>y</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>y</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <msubsup> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}w_{0}&amp;=(b-a){\frac {(-1)^{1-0}}{0!\,(1-0)!}}\int _{0}^{1}\prod _{k=0,k\neq 0}^{1}(y-k)~{\rm {d}}y\\&amp;=-(b-a)\int _{0}^{1}(y-1)~{\rm {d}}y\\&amp;=-(b-a)\left[{\frac {(y-1)^{2}}{2}}\right]_{0}^{1}\\&amp;={\frac {b-a}{2}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6de6b93f5103b0a24b6f920e733e776aa6e16bc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.338ex; width:44.808ex; height:27.843ex;" alt="{\displaystyle {\begin{aligned}w_{0}&amp;=(b-a){\frac {(-1)^{1-0}}{0!\,(1-0)!}}\int _{0}^{1}\prod _{k=0,k\neq 0}^{1}(y-k)~{\rm {d}}y\\&amp;=-(b-a)\int _{0}^{1}(y-1)~{\rm {d}}y\\&amp;=-(b-a)\left[{\frac {(y-1)^{2}}{2}}\right]_{0}^{1}\\&amp;={\frac {b-a}{2}}.\end{aligned}}}"></span></dd></dl> <p>On obtient de la même manière <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{1}={\frac {b-a}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{1}={\frac {b-a}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b99f680f4c8ce97f1290f296eb96a43922f8a4ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.721ex; height:5.343ex;" alt="{\displaystyle w_{1}={\frac {b-a}{2}}}"></span>. On a ainsi retrouvé les coefficients de quadrature de la <a href="/wiki/M%C3%A9thode_des_trap%C3%A8zes" title="Méthode des trapèzes">méthode des trapèzes</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Premières_formules_de_Newton-Cotes"><span id="Premi.C3.A8res_formules_de_Newton-Cotes"></span>Premières formules de Newton-Cotes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;veaction=edit&amp;section=3" title="Modifier la section : Premières formules de Newton-Cotes" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=edit&amp;section=3" title="Modifier le code source de la section : Premières formules de Newton-Cotes"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Soit un intervalle <span class="texhtml">[<i>a</i>, <i>b</i>]</span> séparé en <i>n</i> intervalles de longueur <span class="texhtml">Δ = (<i>b – a</i>)/<i>n</i></span>. On note <span class="texhtml"><i>f<sub>i</sub></i> = <i>f</i>(<i>a + i</i> Δ)</span> et ξ un élément indéterminé de <span class="texhtml">]<i>a</i>, <i>b</i>[</span>. Les formules relatives aux premiers degrés sont résumées dans le tableau suivant&#160;: </p> <center> <table border="" cellpadding="5" cellspacing="0" align="center"> <tbody><tr align="center"> <td><b>Degré</b></td> <td><b>Nom commun</b></td> <td><b>Formule</b> </td> <td><b>Terme d'erreur</b> </td></tr> <tr align="center"> <td>1</td> <td><a href="/wiki/M%C3%A9thode_des_trap%C3%A8zes" title="Méthode des trapèzes">Méthode des trapèzes</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {b-a}{2}}(f_{0}+f_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {b-a}{2}}(f_{0}+f_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/898874be93dd6abb959fcbef070b3ddcb08c96f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.941ex; height:5.343ex;" alt="{\displaystyle {\frac {b-a}{2}}(f_{0}+f_{1})}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {(b-a)^{3}}{12}}\,f^{(2)}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>12</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {(b-a)^{3}}{12}}\,f^{(2)}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/832a38281b02d44403f66937c749653209eefe07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.456ex; height:5.843ex;" alt="{\displaystyle -{\frac {(b-a)^{3}}{12}}\,f^{(2)}(\xi )}"></span> </td></tr> <tr align="center"> <td>2</td> <td><a href="/wiki/M%C3%A9thode_de_Simpson" title="Méthode de Simpson">Méthode de Simpson 1/3</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {b-a}{6}}(f_{0}+4f_{1}+f_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>6</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mn>4</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {b-a}{6}}(f_{0}+4f_{1}+f_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d80da787700ee8d6df4377f5b2108594c8063f0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.137ex; height:5.343ex;" alt="{\displaystyle {\frac {b-a}{6}}(f_{0}+4f_{1}+f_{2})}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {(b-a)^{5}}{2880}}\,f^{(4)}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mn>2880</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {(b-a)^{5}}{2880}}\,f^{(4)}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d38ffd6cac3fce4da01d9ded54e22fbdb7602eab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.456ex; height:5.843ex;" alt="{\displaystyle -{\frac {(b-a)^{5}}{2880}}\,f^{(4)}(\xi )}"></span> </td></tr> <tr align="center"> <td>3</td> <td>Méthode de <a href="/wiki/Thomas_Simpson" title="Thomas Simpson">Simpson</a> 3/8 &#160; </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {b-a}{8}}(f_{0}+3f_{1}+3f_{2}+f_{3})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>8</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {b-a}{8}}(f_{0}+3f_{1}+3f_{2}+f_{3})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/576acf1c9916f415bcdc06ede2876e3687ab8776" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.333ex; height:5.343ex;" alt="{\displaystyle {\frac {b-a}{8}}(f_{0}+3f_{1}+3f_{2}+f_{3})}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {(b-a)^{5}}{6480}}\,f^{(4)}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mn>6480</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {(b-a)^{5}}{6480}}\,f^{(4)}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/713aaa869b1dd59e763743c8ec6f3cf92af97463" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.456ex; height:6.009ex;" alt="{\displaystyle -{\frac {(b-a)^{5}}{6480}}\,f^{(4)}(\xi )}"></span> </td></tr> <tr align="center"> <td>4</td> <td>Méthode de <a href="/wiki/George_Boole" title="George Boole">Boole</a>-<a href="/wiki/Yvon_Villarceau" class="mw-redirect" title="Yvon Villarceau">Villarceau</a> &#160; </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {b-a}{90}}(7f_{0}+32f_{1}+12f_{2}+32f_{3}+7f_{4})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>90</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>7</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mn>32</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>12</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mn>32</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mn>7</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {b-a}{90}}(7f_{0}+32f_{1}+12f_{2}+32f_{3}+7f_{4})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c0825d67febc5a0f8529b0cff79c65691119a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:39.342ex; height:5.343ex;" alt="{\displaystyle {\frac {b-a}{90}}(7f_{0}+32f_{1}+12f_{2}+32f_{3}+7f_{4})}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {(b-a)^{7}}{1935360}}\,f^{(6)}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> </mrow> <mn>1935360</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {(b-a)^{7}}{1935360}}\,f^{(6)}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07b326c85505d44cbb36f97f2e58fefa71da8248" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.662ex; height:5.843ex;" alt="{\displaystyle -{\frac {(b-a)^{7}}{1935360}}\,f^{(6)}(\xi )}"></span> </td></tr> <tr align="center"> <td>6</td> <td>Méthode de Weddle-Hardy &#160; </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {b-a}{840}}(41f_{0}+216f_{1}+27f_{2}+272f_{3}+27f_{4}+216f_{5}+41f_{6})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>840</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>41</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mn>216</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>27</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mn>272</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mn>27</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <mn>216</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>+</mo> <mn>41</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {b-a}{840}}(41f_{0}+216f_{1}+27f_{2}+272f_{3}+27f_{4}+216f_{5}+41f_{6})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5260cac3e4ef9e339a6160dbb8fec270d508fc9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:59.872ex; height:5.509ex;" alt="{\displaystyle {\frac {b-a}{840}}(41f_{0}+216f_{1}+27f_{2}+272f_{3}+27f_{4}+216f_{5}+41f_{6})}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {(b-a)^{9}}{1567641600}}\,f^{(8)}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msup> </mrow> <mn>1567641600</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {(b-a)^{9}}{1567641600}}\,f^{(8)}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d8a035b317a5e8db5bb8274896ce014b69eb996" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.149ex; height:6.009ex;" alt="{\displaystyle -{\frac {(b-a)^{9}}{1567641600}}\,f^{(8)}(\xi )}"></span> </td></tr> </tbody></table> </center> <p><br /> Les formules relatives aux degrés supérieurs sont donnés dans le tableau suivant&#160;: <br /> </p> <center> <table border="" cellpadding="5" cellspacing="0" align="center"> <tbody><tr align="center"> <td><b>Degré</b></td> <td><b>Nombre de points</b></td> <td><b>Formule</b> </td> <td><b>Terme d'erreur</b> </td></tr> <tr align="center"> <td>7</td> <td>Méthode à 8 points<sup id="cite_ref-Wolfram_1-1" class="reference"><a href="#cite_note-Wolfram-1"><span class="cite_crochet">[</span>1<span class="cite_crochet">]</span></a></sup> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {b-a}{17280}}(751(f_{0}+f_{7})+3577(f_{1}+f_{6})+1323(f_{2}+f_{5})+2989(f_{3}+f_{4}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>17280</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>751</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>3577</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1323</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2989</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {b-a}{17280}}(751(f_{0}+f_{7})+3577(f_{1}+f_{6})+1323(f_{2}+f_{5})+2989(f_{3}+f_{4}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/063f5095d80fae431d0b96e1cc2a47bca8718c1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:70.562ex; height:5.509ex;" alt="{\displaystyle {\frac {b-a}{17280}}(751(f_{0}+f_{7})+3577(f_{1}+f_{6})+1323(f_{2}+f_{5})+2989(f_{3}+f_{4}))}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {8183}{518400}}{\frac {(b-a)^{9}}{7^{9}}}\,f^{(8)}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>8183</mn> <mn>518400</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msup> </mrow> <msup> <mn>7</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>8</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {8183}{518400}}{\frac {(b-a)^{9}}{7^{9}}}\,f^{(8)}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2edfbc6ec36e3933515384664dd341244b853a00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.267ex; height:6.343ex;" alt="{\displaystyle -{\frac {8183}{518400}}{\frac {(b-a)^{9}}{7^{9}}}\,f^{(8)}(\xi )}"></span> </td></tr> <tr align="center"> <td>8</td> <td>Méthode à 9 points<sup id="cite_ref-Wolfram_1-2" class="reference"><a href="#cite_note-Wolfram-1"><span class="cite_crochet">[</span>1<span class="cite_crochet">]</span></a></sup> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {b-a}{28350}}(989(f_{0}+f_{8})+5888(f_{1}+f_{7})-928(f_{2}+f_{6})+10496(f_{3}+f_{5})-4540f_{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>28350</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>989</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>5888</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>928</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>10496</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>4540</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {b-a}{28350}}(989(f_{0}+f_{8})+5888(f_{1}+f_{7})-928(f_{2}+f_{6})+10496(f_{3}+f_{5})-4540f_{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/635a847c26bb985bbbd6e66657bd1140d2f93b90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:79.341ex; height:5.343ex;" alt="{\displaystyle {\frac {b-a}{28350}}(989(f_{0}+f_{8})+5888(f_{1}+f_{7})-928(f_{2}+f_{6})+10496(f_{3}+f_{5})-4540f_{4}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {2368}{467775}}{\frac {(b-a)^{11}}{8^{11}}}\,f^{(10)}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2368</mn> <mn>467775</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msup> </mrow> <msup> <mn>8</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>10</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {2368}{467775}}{\frac {(b-a)^{11}}{8^{11}}}\,f^{(10)}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e952672b264328bbfdd10639b59497fda205cf28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.911ex; height:6.343ex;" alt="{\displaystyle -{\frac {2368}{467775}}{\frac {(b-a)^{11}}{8^{11}}}\,f^{(10)}(\xi )}"></span> </td></tr> <tr align="center"> <td>9</td> <td>Méthode à 10 points<sup id="cite_ref-Wolfram_1-3" class="reference"><a href="#cite_note-Wolfram-1"><span class="cite_crochet">[</span>1<span class="cite_crochet">]</span></a></sup> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {b-a}{89600}}(2857(f_{0}+f_{9})+15741(f_{1}+f_{8})+1080(f_{2}+f_{7})+19344(f_{3}+f_{6})+5778(f_{4}+f_{5}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>89600</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>2857</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>15741</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1080</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>19344</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>5778</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {b-a}{89600}}(2857(f_{0}+f_{9})+15741(f_{1}+f_{8})+1080(f_{2}+f_{7})+19344(f_{3}+f_{6})+5778(f_{4}+f_{5}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ecbabf0aa319ac99b71a6b17ab22c8ca5dfb4ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:90.576ex; height:5.343ex;" alt="{\displaystyle {\frac {b-a}{89600}}(2857(f_{0}+f_{9})+15741(f_{1}+f_{8})+1080(f_{2}+f_{7})+19344(f_{3}+f_{6})+5778(f_{4}+f_{5}))}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {519}{394240}}{\frac {(b-a)^{11}}{9^{10}}}\,f^{(10)}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>519</mn> <mn>394240</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msup> </mrow> <msup> <mn>9</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>10</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {519}{394240}}{\frac {(b-a)^{11}}{9^{10}}}\,f^{(10)}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37652a283f9e02fd993447933dcb80b5c62c77c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.911ex; height:6.343ex;" alt="{\displaystyle -{\frac {519}{394240}}{\frac {(b-a)^{11}}{9^{10}}}\,f^{(10)}(\xi )}"></span> </td></tr> <tr align="center"> <td>10</td> <td>Méthode à 11 points<sup id="cite_ref-Wolfram_1-4" class="reference"><a href="#cite_note-Wolfram-1"><span class="cite_crochet">[</span>1<span class="cite_crochet">]</span></a></sup> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {b-a}{598752}}(16067(f_{0}+f_{10})+106300(f_{1}+f_{9})-48525(f_{2}+f_{8})+272400(f_{3}+f_{7})-260550(f_{4}+f_{6})+427368f_{5})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mn>598752</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>16067</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>106300</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>48525</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>272400</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>260550</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>427368</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {b-a}{598752}}(16067(f_{0}+f_{10})+106300(f_{1}+f_{9})-48525(f_{2}+f_{8})+272400(f_{3}+f_{7})-260550(f_{4}+f_{6})+427368f_{5})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9e4128dddd15513b1edb1a289c16da0461680d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:111.544ex; height:5.509ex;" alt="{\displaystyle {\frac {b-a}{598752}}(16067(f_{0}+f_{10})+106300(f_{1}+f_{9})-48525(f_{2}+f_{8})+272400(f_{3}+f_{7})-260550(f_{4}+f_{6})+427368f_{5})}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {1346350}{326918592}}{\frac {(b-a)^{13}}{{10}^{13}}}\,f^{(12)}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1346350</mn> <mn>326918592</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msup> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>12</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {1346350}{326918592}}{\frac {(b-a)^{13}}{{10}^{13}}}\,f^{(12)}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d59764e63990bee48615afc01f3104ee9a67f78c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.398ex; height:6.343ex;" alt="{\displaystyle -{\frac {1346350}{326918592}}{\frac {(b-a)^{13}}{{10}^{13}}}\,f^{(12)}(\xi )}"></span> </td></tr> </tbody></table> </center> <div class="mw-heading mw-heading2"><h2 id="Ordre_de_la_méthode"><span id="Ordre_de_la_m.C3.A9thode"></span>Ordre de la méthode</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;veaction=edit&amp;section=4" title="Modifier la section : Ordre de la méthode" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=edit&amp;section=4" title="Modifier le code source de la section : Ordre de la méthode"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>L'<i><a href="/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Ordre_de_la_formule_de_quadrature_et_convergence" title="Calcul numérique d&#39;une intégrale">ordre</a></i> d'une formule de quadrature est définie comme le plus grand entier <span class="texhtml"><i>m</i></span> pour lequel la valeur calculée par la formule vaut exactement l'intégrale recherchée pour tout polynôme de degré inférieur ou égal à <span class="texhtml"><i>m</i></span>. </p><p>L'ordre de la formule de Newton-Cotes de degré <span class="texhtml"><i>n</i></span> est supérieur ou égal à <span class="texhtml"><i>n</i></span>, car on a alors <span class="texhtml"><i>L</i>=<i>f</i></span> pour tout <span class="texhtml"><i>f</i></span> polynôme de degré inférieur ou égal à <span class="texhtml"><i>n</i></span>. </p><p>On peut en fait montrer le résultat suivant<sup id="cite_ref-Demailly_2-0" class="reference"><a href="#cite_note-Demailly-2"><span class="cite_crochet">[</span>2<span class="cite_crochet">]</span></a></sup>: </p> <blockquote style="width:90%; border-left: solid #D0D0D0 1px; padding-left:1em;"> <p>Si <span class="texhtml"><i>n</i></span> est impair, alors la méthode de Newton-Cotes de degré <span class="texhtml"><i>n</i></span> est d'ordre <span class="texhtml"><i>n</i></span>. </p><p>Si <span class="texhtml"><i>n</i></span> est pair, alors la méthode de Newton-Cotes de degré <span class="texhtml"><i>n</i></span> est d'ordre <span class="texhtml"><i>n</i>+1</span>. </p> </blockquote> <p>L'ordre donne une indication de l'efficacité d'une formule de quadrature. Les formules de Newton-Cotes sont donc généralement utilisées pour des degrés pairs. </p> <div class="mw-heading mw-heading2"><h2 id="Convergence">Convergence</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;veaction=edit&amp;section=5" title="Modifier la section : Convergence" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=edit&amp;section=5" title="Modifier le code source de la section : Convergence"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Bien qu'une formule de Newton-Cotes puisse être établie pour n'importe quel degré, l'utilisation de degrés supérieurs peut causer des erreurs d'arrondi<sup id="cite_ref-Demailly_2-1" class="reference"><a href="#cite_note-Demailly-2"><span class="cite_crochet">[</span>2<span class="cite_crochet">]</span></a></sup>, et la convergence n’est pas assurée lorsque le degré augmente à cause du <a href="/wiki/Ph%C3%A9nom%C3%A8ne_de_Runge" title="Phénomène de Runge">phénomène de Runge</a>. Pour cette raison, il est généralement préférable de se restreindre aux premiers degrés, et d'utiliser des <a href="/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale#Formules_composites" title="Calcul numérique d&#39;une intégrale">formules composites</a> pour améliorer la précision de la formule de quadrature. Toutefois, la méthode de Newton-Cotes d'ordre 8 est employée dans le livre <i>Computer Methods for Mathematical Computations</i>, de Forsythe, Malcolm et Moler, qui a joui d'un succès certain dans les années 70 et 80. Elle y apparaît sous la forme d'une méthode adaptative&#160;: QUANC8<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite_crochet">[</span>3<span class="cite_crochet">]</span></a></sup>. </p> <div class="mw-heading mw-heading2"><h2 id="Références"><span id="R.C3.A9f.C3.A9rences"></span>Références</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;veaction=edit&amp;section=6" title="Modifier la section : Références" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=edit&amp;section=6" title="Modifier le code source de la section : Références"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="references-small decimal" style=""><div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Wolfram-1"><span class="mw-cite-backlink noprint">↑ <sup><a href="#cite_ref-Wolfram_1-0">a</a> <a href="#cite_ref-Wolfram_1-1">b</a> <a href="#cite_ref-Wolfram_1-2">c</a> <a href="#cite_ref-Wolfram_1-3">d</a> et <a href="#cite_ref-Wolfram_1-4">e</a></sup> </span><span class="reference-text"><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Newton-CotesFormulas.html">Weisstein, Eric W. "Newton-Cotes Formulas." From MathWorld--A Wolfram Web Resource</a></span> </li> <li id="cite_note-Demailly-2"><span class="mw-cite-backlink noprint">↑ <sup><a href="#cite_ref-Demailly_2-0">a</a> et <a href="#cite_ref-Demailly_2-1">b</a></sup> </span><span class="reference-text"><span class="ouvrage" id="Demailly2006"><span class="ouvrage" id="Jean-Pierre_Demailly2006"><a href="/wiki/Jean-Pierre_Demailly" title="Jean-Pierre Demailly">Jean-Pierre <span class="nom_auteur">Demailly</span></a>, <cite class="italique">Analyse numérique et équations différentielles</cite>, <a href="/wiki/EDP_Sciences" title="EDP Sciences">EDP Sciences</a>, <abbr class="abbr" title="collection">coll.</abbr>&#160;«&#160;Grenoble Sciences&#160;», <time>2006</time>, 344&#160;<abbr class="abbr" title="pages">p.</abbr> <small style="line-height:1em;">(<a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Sp%C3%A9cial:Ouvrages_de_r%C3%A9f%C3%A9rence/978-2-7598-0112-1" title="Spécial:Ouvrages de référence/978-2-7598-0112-1"><span class="nowrap">978-2-7598-0112-1</span></a>, <a rel="nofollow" class="external text" href="https://books.google.fr/books?id=KwRJ5Vc5O-8C&amp;pg=PA63">lire en ligne</a>)</small>, <abbr class="abbr" title="page">p.</abbr>&#160;63<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analyse+num%C3%A9rique+et+%C3%A9quations+diff%C3%A9rentielles&amp;rft.pub=EDP+Sciences&amp;rft.aulast=Demailly&amp;rft.aufirst=Jean-Pierre&amp;rft.date=2006&amp;rft.pages=63&amp;rft.tpages=344&amp;rft.isbn=978-2-7598-0112-1&amp;rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+de+Newton-Cotes"></span></span></span>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink noprint"><a href="#cite_ref-3">↑</a> </span><span class="reference-text"><a rel="nofollow" class="external text" href="http://www.netlib.org/fmm/">Code source de QUANC8</a></span> </li> </ol></div> </div> <div class="mw-heading mw-heading2"><h2 id="Liens_externes">Liens externes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;veaction=edit&amp;section=7" title="Modifier la section : Liens externes" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_de_Newton-Cotes&amp;action=edit&amp;section=7" title="Modifier le code source de la section : Liens externes"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.math-linux.com/spip.php?article57">Formules de Newton-Cotes</a> sur Math-Linux.com</li> <li><span class="ouvrage" id="Weisstein"><span class="ouvrage" id="Eric_W._Weisstein"><abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> <a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Eric W. Weisstein</a>, «&#160;<a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Newton-CotesFormulas.html"><cite style="font-style:normal;" lang="en"><span class="lang-en" lang="en">Newton-Cotes Formulas</span></cite></a>&#160;», sur <span class="italique"><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></span></span></span></li></ul> <table class="navbox collapsible noprint autocollapse" style=""> <tbody><tr><th class="navbox-title" colspan="2" style=""><div style="float:left; width:6em; text-align:left"><div class="noprint plainlinks nowrap tnavbar" style="padding:0; font-size:xx-small; color:var(--color-emphasized, #000000);"><a href="/wiki/Mod%C3%A8le:Palette_Analyse_num%C3%A9rique" title="Modèle:Palette Analyse numérique"><abbr class="abbr" title="Voir ce modèle.">v</abbr></a>&#160;· <a class="external text" href="https://fr.wikipedia.org/w/index.php?title=Mod%C3%A8le:Palette_Analyse_num%C3%A9rique&amp;action=edit"><abbr class="abbr" title="Modifier ce modèle. Merci de prévisualiser avant de sauvegarder.">m</abbr></a></div></div><div style="font-size:110%"><a href="/wiki/Analyse_num%C3%A9rique" title="Analyse numérique">Analyse numérique</a></div></th> </tr> <tr> <th class="navbox-group" style="width: 17em"><a href="/wiki/Algorithme_de_recherche_d%27un_z%C3%A9ro_d%27une_fonction" title="Algorithme de recherche d&#39;un zéro d&#39;une fonction">Recherche de zéro</a></th> <td class="navbox-list" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Algorithme_de_Josephy-Newton" title="Algorithme de Josephy-Newton">Méthode de Josephy-Newton</a></li> <li><a href="/wiki/M%C3%A9thode_de_la_s%C3%A9cante" title="Méthode de la sécante">Méthode de la sécante</a></li> <li><a href="/wiki/M%C3%A9thode_de_Newton" title="Méthode de Newton">Méthode de Newton</a></li> <li><a href="/wiki/Point_fixe" title="Point fixe">Point fixe</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width: 17em"><a href="/wiki/Matrice_(math%C3%A9matiques)" title="Matrice (mathématiques)">Transformations de matrice</a></th> <td class="navbox-list navbox-even" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Matrice_de_Hessenberg" title="Matrice de Hessenberg">Matrice de Hessenberg</a></li> <li><a href="/wiki/D%C3%A9composition_LU" title="Décomposition LU">Décomposition LU</a></li> <li><a href="/wiki/Factorisation_de_Cholesky" title="Factorisation de Cholesky">Factorisation de Cholesky</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width: 17em">Résolutions de systèmes</th> <td class="navbox-list" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/M%C3%A9thode_de_Gauss-Seidel" title="Méthode de Gauss-Seidel">Méthode de Gauss-Seidel</a></li> <li><a href="/wiki/M%C3%A9thode_de_surrelaxation_successive" title="Méthode de surrelaxation successive">Méthode de surrelaxation successive (SOR)</a></li> <li><a href="/wiki/M%C3%A9thode_de_Jacobi" title="Méthode de Jacobi">Méthode de Jacobi</a></li> <li><a href="/wiki/D%C3%A9composition_QR" title="Décomposition QR">Décomposition QR</a></li> <li><a href="/wiki/D%C3%A9composition_LU" title="Décomposition LU">Décomposition LU</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width: 17em"><a href="/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale" title="Calcul numérique d&#39;une intégrale">Intégration numérique</a></th> <td class="navbox-list navbox-even" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/M%C3%A9thode_du_point_m%C3%A9dian" title="Méthode du point médian">Méthode du point médian</a></li> <li><a href="/wiki/M%C3%A9thode_des_trap%C3%A8zes" title="Méthode des trapèzes">Méthode des trapèzes</a></li> <li><a href="/wiki/M%C3%A9thode_de_Simpson" title="Méthode de Simpson">Méthode de Simpson</a></li> <li><a href="/wiki/M%C3%A9thodes_de_quadrature_de_Gauss" title="Méthodes de quadrature de Gauss">Méthodes de quadrature de Gauss</a></li> <li><a class="mw-selflink selflink">Formule de Newton-Cotes</a></li> <li><a href="/wiki/M%C3%A9thode_de_Romberg" title="Méthode de Romberg">Méthode de Romberg</a></li> <li><a href="/wiki/M%C3%A9thode_de_Monte-Carlo" title="Méthode de Monte-Carlo">Méthode de Monte-Carlo</a></li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width: 17em"><a href="/wiki/R%C3%A9solution_num%C3%A9rique_des_%C3%A9quations_diff%C3%A9rentielles" title="Résolution numérique des équations différentielles">Équations différentielles</a></th> <td class="navbox-list" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/M%C3%A9thode_d%27Euler" title="Méthode d&#39;Euler">Méthode d'Euler</a> (et <a href="/wiki/M%C3%A9thode_d%27Euler_semi-implicite" title="Méthode d&#39;Euler semi-implicite">semi-implicite</a>)</li> <li><a href="/wiki/M%C3%A9thode_de_Heun" title="Méthode de Heun">Méthode de Heun</a></li> <li><a href="/wiki/M%C3%A9thodes_de_Runge-Kutta" title="Méthodes de Runge-Kutta">Méthodes de Runge-Kutta</a></li> <li><a href="/wiki/Int%C3%A9gration_de_Verlet" title="Intégration de Verlet">Intégration de Verlet</a></li> <li><a href="/wiki/M%C3%A9thode_saute-mouton" title="Méthode saute-mouton">Leapfrog</a></li> <li><a href="/wiki/M%C3%A9thode_lin%C3%A9aire_%C3%A0_pas_multiples" title="Méthode linéaire à pas multiples">Méthode linéaire à pas multiples</a> (<a href="/wiki/M%C3%A9thodes_d%27Adams-Bashforth" title="Méthodes d&#39;Adams-Bashforth">Adams-Bashforth</a>, <a href="/w/index.php?title=Backward_differentiation_formula&amp;action=edit&amp;redlink=1" class="new" title="Backward differentiation formula (page inexistante)">backward differentiation formula</a>&#160;<a href="https://en.wikipedia.org/wiki/backward_differentiation_formula" class="extiw" title="en:backward differentiation formula"><span class="indicateur-langue" title="Article en anglais&#160;: «&#160;backward differentiation formula&#160;»">(en)</span></a>)</li></ul> </div></td> </tr> <tr> <th class="navbox-group" style="width: 17em"><a href="/wiki/Interpolation_num%C3%A9rique" title="Interpolation numérique">Interpolation numérique</a></th> <td class="navbox-list navbox-even" style=""><div class="liste-horizontale"> <ul><li><a href="/wiki/Courbe_de_B%C3%A9zier" title="Courbe de Bézier">Courbe de Bézier</a></li> <li><a href="/wiki/Surface_de_B%C3%A9zier" title="Surface de Bézier">Surface de Bézier</a></li> <li><a href="/wiki/Spline" title="Spline">Spline</a></li> <li><a href="/wiki/B-spline" title="B-spline">B-spline</a></li> <li><a href="/wiki/NURBS" title="NURBS">NURBS</a></li> <li><a href="/wiki/Interpolation_polynomiale" title="Interpolation polynomiale">Interpolation polynomiale</a></li> <li><a href="/wiki/Interpolation_lagrangienne" title="Interpolation lagrangienne">Interpolation lagrangienne</a></li> <li><a href="/wiki/Interpolation_newtonienne" title="Interpolation newtonienne">Interpolation newtonienne</a></li> <li><a href="/wiki/Interpolation_d%27Hermite" title="Interpolation d&#39;Hermite">Interpolation d'Hermite</a></li> <li><a href="/wiki/Suite_de_polyn%C3%B4mes_orthogonaux" title="Suite de polynômes orthogonaux">Suite de polynômes orthogonaux</a></li> <li><a href="/wiki/Interpolation_bilin%C3%A9aire" title="Interpolation bilinéaire">Interpolation bilinéaire</a></li> <li><a href="/wiki/Interpolation_bicubique" title="Interpolation bicubique">Interpolation bicubique</a></li></ul> </div></td> </tr> </tbody></table> <ul id="bandeau-portail" class="bandeau-portail"><li><span class="bandeau-portail-element"><span class="bandeau-portail-icone"><span class="noviewer" typeof="mw:File"><a href="/wiki/Portail:Analyse" title="Portail de l&#39;analyse"><img alt="icône décorative" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/24px-Nuvola_apps_kmplot.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/36px-Nuvola_apps_kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/48px-Nuvola_apps_kmplot.svg.png 2x" data-file-width="400" data-file-height="400" /></a></span></span> <span class="bandeau-portail-texte"><a href="/wiki/Portail:Analyse" title="Portail:Analyse">Portail de l'analyse</a></span> </span></li> </ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐869cr Cached time: 20241125070036 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.184 seconds Real time usage: 0.457 seconds Preprocessor visited node count: 1555/1000000 Post‐expand include size: 29539/2097152 bytes Template argument size: 7519/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 1/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 5206/5000000 bytes Lua time usage: 0.059/10.000 seconds Lua memory usage: 3174390/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 193.435 1 -total 36.64% 70.883 1 Modèle:Références 33.29% 64.388 1 Modèle:Portail 31.54% 61.003 1 Modèle:Ouvrage 15.35% 29.698 1 Modèle:Suivi_des_biographies 14.19% 27.456 1 Modèle:Catégorisation_badges 10.17% 19.675 1 Modèle:Palette_Analyse_Numérique 8.09% 15.642 1 Modèle:Méta_palette_de_navigation 6.01% 11.627 1 Modèle:Mathworld 5.92% 11.451 29 Modèle:Math --> <!-- Saved in parser cache with key frwiki:pcache:idhash:244763-0!canonical and timestamp 20241125070036 and revision id 208288141. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Ce document provient de «&#160;<a dir="ltr" href="https://fr.wikipedia.org/w/index.php?title=Formule_de_Newton-Cotes&amp;oldid=208288141">https://fr.wikipedia.org/w/index.php?title=Formule_de_Newton-Cotes&amp;oldid=208288141</a>&#160;».</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Cat%C3%A9gorie:Accueil" title="Catégorie:Accueil">Catégories</a> : <ul><li><a href="/wiki/Cat%C3%A9gorie:Int%C3%A9gration_num%C3%A9rique" title="Catégorie:Intégration numérique">Intégration numérique</a></li><li><a href="/wiki/Cat%C3%A9gorie:Isaac_Newton" title="Catégorie:Isaac Newton">Isaac Newton</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Catégories cachées : <ul><li><a href="/wiki/Cat%C3%A9gorie:Article_contenant_un_appel_%C3%A0_traduction_en_anglais" title="Catégorie:Article contenant un appel à traduction en anglais">Article contenant un appel à traduction en anglais</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Analyse/Articles_li%C3%A9s" title="Catégorie:Portail:Analyse/Articles liés">Portail:Analyse/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Math%C3%A9matiques/Articles_li%C3%A9s" title="Catégorie:Portail:Mathématiques/Articles liés">Portail:Mathématiques/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Sciences/Articles_li%C3%A9s" title="Catégorie:Portail:Sciences/Articles liés">Portail:Sciences/Articles liés</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> La dernière modification de cette page a été faite le 29 septembre 2023 à 12:36.</li> <li id="footer-info-copyright"><span style="white-space: normal"><a href="/wiki/Wikip%C3%A9dia:Citation_et_r%C3%A9utilisation_du_contenu_de_Wikip%C3%A9dia" title="Wikipédia:Citation et réutilisation du contenu de Wikipédia">Droit d'auteur</a>&#160;: les textes sont disponibles sous <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr">licence Creative Commons attribution, partage dans les mêmes conditions</a>&#160;; d’autres conditions peuvent s’appliquer. Voyez les <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/fr">conditions d’utilisation</a> pour plus de détails, ainsi que les <a href="/wiki/Wikip%C3%A9dia:Cr%C3%A9dits_graphiques" title="Wikipédia:Crédits graphiques">crédits graphiques</a>. En cas de réutilisation des textes de cette page, voyez <a href="/wiki/Sp%C3%A9cial:Citer/Formule_de_Newton-Cotes" title="Spécial:Citer/Formule de Newton-Cotes">comment citer les auteurs et mentionner la licence</a>.<br /> Wikipedia® est une marque déposée de la <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, organisation de bienfaisance régie par le paragraphe <a href="/wiki/501c" title="501c">501(c)(3)</a> du code fiscal des États-Unis.</span><br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/fr">Politique de confidentialité</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:%C3%80_propos_de_Wikip%C3%A9dia">À propos de Wikipédia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Avertissements_g%C3%A9n%C3%A9raux">Avertissements</a></li> <li id="footer-places-contact"><a href="//fr.wikipedia.org/wiki/Wikipédia:Contact">Contact</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code de conduite</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Développeurs</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/fr.wikipedia.org">Statistiques</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Déclaration sur les témoins (cookies)</a></li> <li id="footer-places-mobileview"><a href="//fr.m.wikipedia.org/w/index.php?title=Formule_de_Newton-Cotes&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Version mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-869cr","wgBackendResponseTime":600,"wgPageParseReport":{"limitreport":{"cputime":"0.184","walltime":"0.457","ppvisitednodes":{"value":1555,"limit":1000000},"postexpandincludesize":{"value":29539,"limit":2097152},"templateargumentsize":{"value":7519,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":5206,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 193.435 1 -total"," 36.64% 70.883 1 Modèle:Références"," 33.29% 64.388 1 Modèle:Portail"," 31.54% 61.003 1 Modèle:Ouvrage"," 15.35% 29.698 1 Modèle:Suivi_des_biographies"," 14.19% 27.456 1 Modèle:Catégorisation_badges"," 10.17% 19.675 1 Modèle:Palette_Analyse_Numérique"," 8.09% 15.642 1 Modèle:Méta_palette_de_navigation"," 6.01% 11.627 1 Modèle:Mathworld"," 5.92% 11.451 29 Modèle:Math"]},"scribunto":{"limitreport-timeusage":{"value":"0.059","limit":"10.000"},"limitreport-memusage":{"value":3174390,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-869cr","timestamp":"20241125070036","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Formule de Newton-Cotes","url":"https:\/\/fr.wikipedia.org\/wiki\/Formule_de_Newton-Cotes","sameAs":"http:\/\/www.wikidata.org\/entity\/Q944241","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q944241","author":{"@type":"Organization","name":"Contributeurs aux projets Wikimedia"},"publisher":{"@type":"Organization","name":"Fondation Wikimedia, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-04-22T19:51:06Z","dateModified":"2023-09-29T11:36:29Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/08\/Simpson_rule.png"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10