CINXE.COM

Search results for: solar cooling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: solar cooling</title> <meta name="description" content="Search results for: solar cooling"> <meta name="keywords" content="solar cooling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="solar cooling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="solar cooling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2335</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: solar cooling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2305</span> Numerical Analysis of Solar Cooling System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Allouache">Nadia Allouache</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Belmedani"> Mohamed Belmedani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy source is a sustainable, totally inexhaustible and environmentally friendly alternative to the fossil fuels available. It is a renewable and economical energy that can be harnessed sustainably over the long term and thus stabilizes energy costs. Solar cooling technologies have been developed to decrease the augmentation electricity consumption for air conditioning and to displace the peak load during hot summer days. A numerical analysis of thermal and solar performances of an annular finned adsorber, which is the most important component of the adsorption solar refrigerating system, is considered in this work. Different adsorbent/adsorbate pairs, such as activated carbon AC35/methanol, activated carbon AC35/ethanol, and activated carbon BPL/Ammoniac, are undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular finned adsorber. The Wilson and Dubinin- Astakhov models of the solid-adsorbate equilibrium are used to calculate the adsorbed quantity. The porous medium and the fins are contained in the annular space, and the adsorber is heated by solar energy. Effects of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The AC35/methanol pair is the best pair compared to BPL/Ammoniac and AC35/ethanol pairs in terms of system performance. The system performances are sensitive to the fin geometry. For the considered data measured for clear type days of July 2023 in Algeria and Morocco, the performances of the cooling system are very significant in Algeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20AC35-methanol%20pair" title="activated carbon AC35-methanol pair">activated carbon AC35-methanol pair</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20AC35-ethanol%20pair" title=" activated carbon AC35-ethanol pair"> activated carbon AC35-ethanol pair</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20BPL-ammoniac%20pair" title=" activated carbon BPL-ammoniac pair"> activated carbon BPL-ammoniac pair</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20finned%20adsorber" title=" annular finned adsorber"> annular finned adsorber</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20coefficients" title=" performance coefficients"> performance coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cooling%20system" title=" solar cooling system"> solar cooling system</a> </p> <a href="https://publications.waset.org/abstracts/183276/numerical-analysis-of-solar-cooling-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2304</span> Development of Typical Meteorological Year for Passive Cooling Applications Using World Weather Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser%20A.%20Al-Azri">Nasser A. Al-Azri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effectiveness of passive cooling techniques is assessed based on bioclimatic charts that require the typical meteorological year (TMY) for a specified location for their development. However, TMYs are not always available; mainly due to the scarcity of records of solar radiation which is an essential component used in developing common TMYs intended for general uses. Since solar radiation is not required in the development of the bioclimatic chart, this work suggests developing TMYs based solely on the relevant parameters. This approach improves the accuracy of the developed TMY since only the relevant parameters are considered and it also makes the development of the TMY more accessible since solar radiation data are not used. The presented paper will also discuss the development of the TMY from the raw data available at the NOAA-NCDC archive of world weather data and the construction of the bioclimatic charts for some randomly selected locations around the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioclimatic%20charts" title="bioclimatic charts">bioclimatic charts</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20cooling" title=" passive cooling"> passive cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=TMY" title=" TMY"> TMY</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20data" title=" weather data"> weather data</a> </p> <a href="https://publications.waset.org/abstracts/47614/development-of-typical-meteorological-year-for-passive-cooling-applications-using-world-weather-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2303</span> A Solar Heating System Performance on the Microclimate of an Agricultural Greenhouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui">Nora Arbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiment adopted a natural technique of heating and cooling an agricultural greenhouse to reduce the fuel consumption and CO2 emissions based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil positioned at the roof of the greenhouse. This experimental study is devoted to the performance evaluation of a solar heating system to improve the microclimate of a greenhouse during the cold period, especially in the Mediterranean climate. This integrated solar system for heating has a positive impact on the quality and quantity of the products under the study greenhouse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20system" title="solar system">solar system</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20greenhouse" title=" agricultural greenhouse"> agricultural greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/174386/a-solar-heating-system-performance-on-the-microclimate-of-an-agricultural-greenhouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2302</span> Effect of Key Parameters on Performances of an Adsorption Solar Cooling Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allouache%20Nadia">Allouache Nadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid adsorption cooling machines have been extensively studied recently. They constitute very attractive solutions recover important amount of industrial waste heat medium temperature and to use renewable energy sources such as solar energy. The development of the technology of these machines can be carried out by experimental studies and by mathematical modelisation. This last method allows saving time and money because it is suppler to use to simulate the variation of different parameters. The adsorption cooling machines consist essentially of an evaporator, a condenser and a reactor (object of this work) containing a porous medium, which is in our case the activated carbon reacting by adsorption with ammoniac. The principle can be described as follows: When the adsorbent (at temperature T) is in exclusive contact with vapour of adsorbate (at pressure P), an amount of adsorbate is trapped inside the micro-pores in an almost liquid state. This adsorbed mass m, is a function of T and P according to a divariant equilibrium m=f (T,P). Moreover, at constant pressure, m decreases as T increases, and at constant adsorbed mass P increases with T. This makes it possible to imagine an ideal refrigerating cycle consisting of a period of heating/desorption/condensation followed by a period of cooling/adsorption/evaporation. Effect of key parameters on the machine performances are analysed and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon-ammoniac%20pair" title="activated carbon-ammoniac pair">activated carbon-ammoniac pair</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20key%20parameters" title=" effect of key parameters"> effect of key parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cooling%20machine" title=" solar cooling machine"> solar cooling machine</a> </p> <a href="https://publications.waset.org/abstracts/60103/effect-of-key-parameters-on-performances-of-an-adsorption-solar-cooling-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2301</span> Baseline Study for Performance Evaluation of New Generation Solar Insulation Films for Windows: A Test Bed in Singapore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priya%20Pawar">Priya Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rithika%20Susan%20Thomas"> Rithika Susan Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Blonkowski"> Emmanuel Blonkowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the solar geometry of Singapore, which lay within the geographical classification of equatorial tropics, there is a great deal of thermal energy transfer to the inside of the buildings. With changing face of economic development of cities like Singapore, more and more buildings are designed to be lightweight using transparent construction materials such as glass. Increased demand for energy efficiency and reduced cooling load demands make it important for building designer and operators to adopt new and non-invasive technologies to achieve building energy efficiency targets. A real time performance evaluation study was undertaken at School of Art Design and Media (SADM), Singapore, to determine the efficiency potential of a new generation solar insulation film. The building has a window to wall ratio (WWR) of 100% and is fitted with high performance (low emissivity) double glazed units. The empirical data collected was then used to calibrate a computerized simulation model to understand the annual energy consumption based on existing conditions (baseline performance). It was found that the correlations of various parameters such as solar irradiance, solar heat flux, and outdoor air-temperatures quantification are significantly important to determine the cooling load during a particular period of testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20insulation%20film" title="solar insulation film">solar insulation film</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20efficiency" title=" building energy efficiency"> building energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=tropics" title=" tropics"> tropics</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20load" title=" cooling load"> cooling load</a> </p> <a href="https://publications.waset.org/abstracts/78089/baseline-study-for-performance-evaluation-of-new-generation-solar-insulation-films-for-windows-a-test-bed-in-singapore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2300</span> Maximizing the Output of Solar Photovoltaic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipresh%20Mehta">Vipresh Mehta </a>, <a href="https://publications.waset.org/abstracts/search?q=Aman%20Abhishek"> Aman Abhishek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatin%20Batra"> Jatin Batra</a>, <a href="https://publications.waset.org/abstracts/search?q=Gautam%20Iyer"> Gautam Iyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Huge amount of solar radiation reaching the earth can be harnessed to provide electricity through Photo voltaic (PV) panels. The solar PV is an exciting technology but suffers from low efficiency. A study on low efficiency in multi MW solar power plants reveals that the electric yield of the PV modules is reduced due to reflection of the irradiation from the sun and when a module’s temperature is elevated, as there is decrease in the voltage and efficiency. We intend to alter the structure of the PV system, We also intend to improve the efficiency of the Solar Photo Voltaic Panels by active cooling to reduce the temperature losses considerably and decrease reflection losses to some extent. Reflectors/concentrators and anti-reflecting coatings are also used to intensify the amount of output produced from the system. Apart from this, transformer-less Grid-tied Inverter. And also, a T-LCL immitance circuit is used to reduce the harmonics and produce a constant output from the entire system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20panels" title="PV panels">PV panels</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20improvement" title=" efficiency improvement"> efficiency improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20cooling" title=" active cooling"> active cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=organic-inorganic%20hybrid%203D%20panel" title=" organic-inorganic hybrid 3D panel"> organic-inorganic hybrid 3D panel</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20water%20tunneling" title=" ground water tunneling"> ground water tunneling</a> </p> <a href="https://publications.waset.org/abstracts/26786/maximizing-the-output-of-solar-photovoltaic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">772</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2299</span> Energy Analysis of an Ejector Based Solar Assisted Trigeneration System for Dairy Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Ravindra">V. Ravindra</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Saikiran"> P. A. Saikiran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ramgopal"> M. Ramgopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an energy analysis of a solar assisted trigeneration system using an Ejector for dairy applications. The working fluid in the trigeneration loop is Supercritical CO₂. The trigeneration system is a combination of Brayton cycle and ejector based vapor compression refrigeration cycle. The heating and cooling outputs are used for simultaneous pasteurization and chilling of the milk. The electrical power is used to drive the auxiliary equipment in the dairy plant. A numerical simulation is done with Engineering Equation Solver (EES), and a parametric analysis is performed by varying the operating variables over a meaningful range. The results show that the overall performance index decreases with increase in ambient temperature. For an ejector based system, the compressor work and cooling output are significant output quantities. An increase in total mass flow rate of the refrigerant (primary + secondary) results in an increase in the compressor work and cooling output. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trigeneration" title="trigeneration">trigeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20thermal" title=" solar thermal"> solar thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20CO%E2%82%82" title=" supercritical CO₂"> supercritical CO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=ejector" title=" ejector"> ejector</a> </p> <a href="https://publications.waset.org/abstracts/93567/energy-analysis-of-an-ejector-based-solar-assisted-trigeneration-system-for-dairy-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2298</span> Review of Modern Gas turbine Blade Cooling Technologies used in Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Prasath%20Subramanian">Arun Prasath Subramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbine Inlet Temperature is an important parameter which determines the efficiency of a gas turbine engine. The increase in this parameter is limited by material constraints of the turbine blade.The modern Gas turbine blade has undergone a drastic change from a simple solid blade to a modern multi-pass blade with internal and external cooling techniques. This paper aims to introduce the reader the concept of turbine blade cooling, the classification of techniques and further explain some of the important internal cooling technologies used in a modern gas turbine blade along with the various factors that affect the cooling effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20blade" title="gas turbine blade">gas turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20technologies" title=" cooling technologies"> cooling technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20cooling" title=" internal cooling"> internal cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=pin-fin%20cooling" title=" pin-fin cooling"> pin-fin cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20impingement%20cooling" title=" jet impingement cooling"> jet impingement cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=rib%20turbulated%20cooling" title=" rib turbulated cooling"> rib turbulated cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20foam%20cooling" title=" metallic foam cooling"> metallic foam cooling</a> </p> <a href="https://publications.waset.org/abstracts/39117/review-of-modern-gas-turbine-blade-cooling-technologies-used-in-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2297</span> Solar System with Plate Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christer%20Frennfelt">Christer Frennfelt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar heating is the most environmentally friendly way to heat water. Brazed Plate Heat Exchangers (BPHEs) are a key component in many solar heating applications for harvesting solar energy into accumulator tanks, producing hot tap water, and heating pools. The combination of high capacity in a compact format, efficient heat transfer, and fast response makes the BPHE the ideal heat exchanger for solar thermal systems. Solar heating is common as a standalone heat source, and as an add-on heat source for boilers, heat pumps, or district heating systems. An accumulator provides the possibility to store heat, which enables combination of different heat sources to a larger extent. In turn this works as protection to reduced access to energy or increased energy prices. For example heat from solar panels is preferably stored during the day for use at night. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=district%20heating%20and%20cooling" title="district heating and cooling">district heating and cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20storage" title=" thermal storage"> thermal storage</a>, <a href="https://publications.waset.org/abstracts/search?q=brazed%20plate%20heat%20exchanger" title=" brazed plate heat exchanger"> brazed plate heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems" title=" solar domestic hot water and combisystems"> solar domestic hot water and combisystems</a> </p> <a href="https://publications.waset.org/abstracts/48183/solar-system-with-plate-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2296</span> Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Min%20Choi">Seok Min Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Bang"> Minho Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seuong%20Yun%20Kim"> Seuong Yun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungmin%20Lee"> Hyungmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Gu%20Joo"> Won-Gu Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Hee%20Cho"> Hyung Hee Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=matrix%20cooling" title="matrix cooling">matrix cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=rib" title=" rib"> rib</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a> </p> <a href="https://publications.waset.org/abstracts/80524/numerical-simulation-of-effect-of-various-rib-configurations-on-enhancing-heat-transfer-of-matrix-cooling-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2295</span> Theoretical Investigation of Thermal Properties of Nanofluids with Application to Solar Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reema%20Jain">Reema Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanofluids are emergent fluids that exhibit thermal properties superior than that of the conventional fluid. Nanofluids are suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest nanoparticle concentrations. Solar collectors are commonly used in areas such as industries, heating, and cooling for domestic purpose, thermal power plants, solar cooker, automobiles, etc. Performance and efficiency of solar collectors depend upon various factors like collector & receiver material, solar radiation intensity, nature of working fluid, etc. The properties of working fluid which flow through the collectors greatly affects its performance. In this research work, a theoretical effort has been made to enhance the efficiency and improve the performance of solar collector by using Nano fluids instead of conventional fluid like water as working fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title="nanofluids">nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a> </p> <a href="https://publications.waset.org/abstracts/58406/theoretical-investigation-of-thermal-properties-of-nanofluids-with-application-to-solar-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2294</span> Effect of Elevation and Wind Direction on Silicon Solar Panel Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20M.%20Homadi">Abdulrahman M. Homadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a great source of renewable energy, solar energy is considered to be one of the most important in the world, since it will be one of solutions cover the energy shortage in the future. Photovoltaic (PV) is the most popular and widely used among solar energy technologies. However, PV efficiency is fairly low and remains somewhat expensive. High temperature has a negative effect on PV efficiency and cooling system for these panels is vital, especially in warm weather conditions. This paper presents the results of a simulation study carried out on silicon solar cells to assess the effects of elevation on enhancing the efficiency of solar panels. The study included four different terrains. The study also took into account the direction of the wind hitting the solar panels. To ensure the simulation mimics reality, six silicon solar panels are designed in two columns and three rows, facing to the south at an angle of 30 <sup>o</sup>. The elevations are assumed to change from 10 meters to 200 meters. The results show that maximum increase in efficiency occurs when the wind comes from the north, hitting the back of the panels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20panels" title="solar panels">solar panels</a>, <a href="https://publications.waset.org/abstracts/search?q=elevation" title=" elevation"> elevation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20direction" title=" wind direction"> wind direction</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/51440/effect-of-elevation-and-wind-direction-on-silicon-solar-panel-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2293</span> Efficiency Validation of Hybrid Cooling Application in Hot and Humid Climate Houses of KSA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamil%20Hijazi">Jamil Hijazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stirling%20Howieson"> Stirling Howieson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing energy consumption and CO<sub>2</sub> emissions are probably the greatest challenge now facing mankind. From considerations surrounding global warming and CO<sub>2</sub> production, it has to be recognized that oil is a finite resource and the KSA like many other oil-rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground-cooling pipes in combination with the black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing cooling load and carbon emissions while providing all year-round thermal comfort in a typical Saudi Arabian urban housing block. Soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (DesignBuilder) that utilized the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/stack ventilation and radiant cooling pipes embed in floor). Initial simulation results suggest that careful &lsquo;ecological design&rsquo; combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20load" title="cooling load">cooling load</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20pipe%20cooling" title=" ground pipe cooling"> ground pipe cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20cooling%20strategy" title=" hybrid cooling strategy"> hybrid cooling strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=hydronic%20radiant%20systems" title=" hydronic radiant systems"> hydronic radiant systems</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20carbon%20emission" title=" low carbon emission"> low carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20designs" title=" passive designs"> passive designs</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/77411/efficiency-validation-of-hybrid-cooling-application-in-hot-and-humid-climate-houses-of-ksa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2292</span> Development and Analysis of Multigeneration System by Using Combined Solar and Geothermal Energy Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umar%20Khan">Muhammad Umar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Kumar"> Mahesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Neakakhtar"> Faraz Neakakhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although industrialization marks to the economy of a country yet it increases the pollution and temperature of the environment. The world is now shifting towards green energy because the utilization of fossil fuels is resulting in global warming. So we need to develop systems that can operate on renewable energy resources and have low heat losses. The combined solar and geothermal multigeneration system can solve this issue. Rather than making rankine cycle purely a solar-driven, heat from solar is used to drive vapour absorption cycle and reheated to generate power using geothermal reservoir. The results are displayed by using Engineering Equation Solver software, where inputs are varied to optimize the energy and exergy efficiencies of the system. The cooling effect is 348.2 KW, while the network output is 23.8 MW and reducing resultant emission of 105553 tons of CO₂ per year. This eco-friendly multigeneration system is capable of eliminating the use of fossil fuels and increasing the geothermal energy efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20effect" title="cooling effect">cooling effect</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title=" eco-friendly"> eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20loses" title=" heat loses"> heat loses</a>, <a href="https://publications.waset.org/abstracts/search?q=multigeneration%20system" title=" multigeneration system"> multigeneration system</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20output" title=" work output"> work output</a> </p> <a href="https://publications.waset.org/abstracts/92439/development-and-analysis-of-multigeneration-system-by-using-combined-solar-and-geothermal-energy-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2291</span> Design and Implementation of an Efficient Solar-Powered Pumping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mennatallah%20M.%20Fouad">Mennatallah M. Fouad</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hussein"> Omar Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamia%20A.%20Shihata"> Lamia A. Shihata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main problem in many rural areas is the absence of electricity and limited access to water. The novelty of this work lies in implementing a small-scale experimental setup for a solar-powered water pumping system with a battery back-up system. Cooling and cleaning of the PV panel are implemented to enhance its overall efficiency and output. Moreover, a simulation for a large scale solar-powered pumping system is performed using PVSyst software. Results of the experimental setup show that the PV system with a battery backup proved to be a feasible and viable system to operate the water pumping system. Excess water from the pumping system is used to cool and clean the PV panel and achieved an average percentage increase in the PV output by 21.8%. Simulation results have shown that the system provides adequate output to power the solar-powered system and saves 0.3 tons of CO₂ compared to conventional fossil fuels. It is recommended for hot countries to adopt this system, which would help in decreasing the dependence on the depleting fossil fuels, provide access to electricity to areas where there is no electricity supply and also provide a source of water for crop growth as well as decrease the carbon emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficient%20solar%20pumping" title="efficient solar pumping">efficient solar pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20cleaning" title=" PV cleaning"> PV cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20cooling" title=" PV cooling"> PV cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=PV-operated%20water%20pump" title=" PV-operated water pump"> PV-operated water pump</a> </p> <a href="https://publications.waset.org/abstracts/117406/design-and-implementation-of-an-efficient-solar-powered-pumping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2290</span> Heritage Buildings an Inspiration for Energy Conservation under Solar Control – a Case Study of Hadoti Region of India.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Chaturvedi">Abhinav Chaturvedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Joohi%20Chaturvedi"> Joohi Chaturvedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Renu%20Chaturvedi"> Renu Chaturvedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With rapid urbanization and growth of population, more buildings are require to be constructed to meet the increasing demand of the shelter. 80 % of the world population is living in developing countries, but the adequate energy supplied to only 30% of it. In India situation get little more difficult as majority of the villages of India are still deprived of energy. 1/3 of the Indian household does not have energy supply. So there is big gap between energy demand and supply. Moreover India is producing around 65 % of the energy from Non – Renewable sources and 25 % of the Energy is imported in the form of oil and gas and only 10% of the total, is generated from other sources like solar power, wind power etc. Present modern structures are big energy consumers as they are consuming 40 % of the total energy in providing comfort conditions to the users, in from of heating and cooling,5 % in Building Construction, 20 % in transportation and 20 % in industrial process and 10 % in other processes. If we minimize this Heating and Cooling and lighting load of the building we can conserve huge amount of energy for the future. In history, buildings do not have artificial systems of cooling or heating. These buildings, especially in Hadoti Region which have Semi Arid Climatic conditions, are provided with Solar Passive Design Techniques that is the reason of comfort inside the buildings. So if we use some appropriate elements of these heritage structures, in our present age building design we can find some certain solution to energy crises. Present paper describes Various Solar Passive design techniques used in past, and the same could be used in present to reduce the consumption of energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title="energy conservation">energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoti%20region" title=" Hadoti region"> Hadoti region</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20passive%20design%20techniques" title=" solar passive design techniques "> solar passive design techniques </a>, <a href="https://publications.waset.org/abstracts/search?q=semi%20-%20arid%20climatic%20condition" title=" semi - arid climatic condition"> semi - arid climatic condition</a> </p> <a href="https://publications.waset.org/abstracts/25129/heritage-buildings-an-inspiration-for-energy-conservation-under-solar-control-a-case-study-of-hadoti-region-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2289</span> Electric Power Generation by Thermoelectric Cells and Parabolic Solar Concentrators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kianifar">A. Kianifar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Afzali"> M. Afzali</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Pishbin"> I. Pishbin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, design details, theoretical analysis and thermal performance analysis of a solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The thermoelectric device is attached to the absorber plate to convert concentrated solar energy directly into electric energy at the focus of the concentrator. A cooling channel (water cooled heat sink) is fitted to the cold side of the thermoelectric device to remove the waste heat and maintain a high temperature gradient across the device to improve conversion efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrator%20thermoelectric%20generator" title="concentrator thermoelectric generator">concentrator thermoelectric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=CTEG" title=" CTEG"> CTEG</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20cells" title=" thermoelectric cells"> thermoelectric cells</a> </p> <a href="https://publications.waset.org/abstracts/5606/electric-power-generation-by-thermoelectric-cells-and-parabolic-solar-concentrators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2288</span> Modelling of Air-Cooled Adiabatic Membrane-Based Absorber for Absorption Chillers Using Low Temperature Solar Heat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Venegas">M. Venegas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Vega"> M. De Vega</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Garc%C3%ADa-Hernando"> N. García-Hernando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Absorption cooling chillers have received growing attention over the past few decades as they allow the use of low-grade heat to produce the cooling effect. The combination of this technology with solar thermal energy in the summer period can reduce the electricity consumption peak due to air-conditioning. One of the main components, the absorber, is designed for simultaneous heat and mass transfer. Usually, shell and tubes heat exchangers are used, which are large and heavy. Cooling water from a cooling tower is conventionally used to extract the heat released during the absorption and condensation processes. These are clear inconvenient for the generalization of the absorption technology use, limiting its benefits in the contribution to the reduction in CO2 emissions, particularly for the H2O-LiBr solution which can work with low heat temperature sources as provided by solar panels. In the present work a promising new technology is under study, consisting in the use of membrane contactors in adiabatic microchannel mass exchangers. The configuration here proposed consists in one or several modules (depending on the cooling capacity of the chiller) that contain two vapour channels, separated from the solution by adjacent microporous membranes. The solution is confined in rectangular microchannels. A plastic or synthetic wall separates the solution channels between them. The solution entering the absorber is previously subcooled using ambient air. In this way, the need for a cooling tower is avoided. A model of the configuration proposed is developed based on mass and energy balances and some correlations were selected to predict the heat and mass transfer coefficients. The concentration and temperatures along the channels cannot be explicitly determined from the set of equations obtained. For this reason, the equations were implemented in a computer code using Engineering Equation Solver software, EES™. With the aim of minimizing the absorber volume to reduce the size of absorption cooling chillers, the ratio between the cooling power of the chiller and the absorber volume (R) is calculated. Its variation is shown along the solution channels, allowing its optimization for selected operating conditions. For the case considered the solution channel length is recommended to be lower than 3 cm. Maximum values of R obtained in this work are higher than the ones found in optimized horizontal falling film absorbers using the same solution. Results obtained also show the variation of R and the chiller efficiency (COP) for different ambient temperatures and desorption temperatures typically obtained using flat plate solar collectors. The configuration proposed of adiabatic membrane-based absorber using ambient air to subcool the solution is a good technology to reduce the size of the absorption chillers, allowing the use of low temperature solar heat and avoiding the need for cooling towers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20absorption" title="adiabatic absorption">adiabatic absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=air-cooled" title=" air-cooled"> air-cooled</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20thermal%20energy" title=" solar thermal energy"> solar thermal energy</a> </p> <a href="https://publications.waset.org/abstracts/67714/modelling-of-air-cooled-adiabatic-membrane-based-absorber-for-absorption-chillers-using-low-temperature-solar-heat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2287</span> Efficiency Improvement of Ternary Nanofluid Within a Solar Photovoltaic Unit Combined with Thermoelectric Considering Environmental Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Sheikholeslami">Mohsen Sheikholeslami</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Khalili"> Zahra Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ladan%20Momayez"> Ladan Momayez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impacts of environmental parameters and dust deposition on the efficiency of solar panel have been scrutinized in this article. To gain thermal output, trapezoidal cooling channel has been attached in the bottom of the panel incorporating ternary nanofluid. To produce working fluid, water has been mixed with Fe₃O₄-TiO₂-GO nanoparticles. Also, the arrangement of fins has been considered to grow the cooling rate of the silicon layer. The existence of a thermoelectric layer above the cooling channel leads to higher electrical output. Efficacy of ambient temperature (Ta), speed of wind (V𝓌ᵢₙ𝒹) and inlet temperature (Tᵢₙ) and velocity (Vin) of ternary nanofluid on performance of PVT has been assessed. As Tin increases, electrical efficiency declines about 3.63%. Increase of ambient temperature makes thermal performance enhance about 33.46%. The PVT efficiency decreases about 13.14% and 16.6% with augment of wind speed and dust deposition. CO₂ mitigation has been reduced about 15.49% in presence of dust while it increases about 17.38% with growth of ambient temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20system" title="photovoltaic system">photovoltaic system</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20mitigation" title=" CO₂ mitigation"> CO₂ mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20nanofluid" title=" ternary nanofluid"> ternary nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20generator" title=" thermoelectric generator"> thermoelectric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20parameters" title=" environmental parameters"> environmental parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20cooling%20channel" title=" trapezoidal cooling channel"> trapezoidal cooling channel</a> </p> <a href="https://publications.waset.org/abstracts/172255/efficiency-improvement-of-ternary-nanofluid-within-a-solar-photovoltaic-unit-combined-with-thermoelectric-considering-environmental-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2286</span> Application of Electrochromic Glazing for Reducing Peak Cooling Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranojoy%20Dutta">Ranojoy Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HVAC equipment capacity has a direct impact on occupant comfort and energy consumption of a building. Glazing gains, especially in buildings with high window area, can be a significant contributor to the total peak load on the HVAC system, leading to over-sized systems that mostly operate at poor part load efficiency. In addition, radiant temperature, which largely drives occupant comfort in glazed perimeter zones, is often not effectively controlled despite the HVAC being designed to meet the air temperature set-point. This is due to short wave solar radiation transmitted through windows, that is not sensed by the thermostat until much later when the thermal mass in the room releases the absorbed solar heat to the indoor air. The implication of this phenomenon is increased cooling energy despite poor occupant comfort. EC glazing can significantly eliminate direct solar transmission through windows, reducing both the space cooling loads for the building and improving comfort for occupants near glazing. This paper will review the exact mechanism of how EC glazing would reduce the peak load under design day conditions, leading to reduced cooling capacity vs regular high-performance glazing. Since glazing heat transfer only affects the sensible load, system sizing will be evaluated both with and without the availability of a DOAS to isolate the downsizing potential of the primary cooling equipment when outdoor air is conditioned separately. Given the dynamic nature of glazing gains due to the sun’s movement, effective peak load mitigation with EC requires an automated control system that can predict solar movement and radiation levels so that the right tint state with the appropriate SHGC is utilized at any given time for a given façade orientation. Such an automated EC product will be evaluated for a prototype commercial office model situated in four distinct climate zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochromic%20glazing" title="electrochromic glazing">electrochromic glazing</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20sizing" title=" peak sizing"> peak sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=glazing%20load" title=" glazing load"> glazing load</a> </p> <a href="https://publications.waset.org/abstracts/117967/application-of-electrochromic-glazing-for-reducing-peak-cooling-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2285</span> Performance of a Solar Heating System on the Microclimate of an Agricultural Greenhouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nora%20Arbaoui">Nora Arbaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Tadili"> Rachid Tadili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilham%20Ihoume"> Ilham Ihoume</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change and its effects on low external temperatures in winter require great consumption of energy to improve the greenhouse microclimate and increase agricultural production. To reduce the amount of energy consumed, a solar system has been developed to heat an agricultural greenhouse. This system is based on a transfer fluid that will circulate inside the greenhouse through a solar copper coil positioned on the roof of the greenhouse. This thermal energy accumulated during the day will be stored to be released during the night to improve the greenhouse’s microclimate. The use of this solar heating system has resulted in an average increase in the greenhouse’s indoor temperature of 8.3°C compared to the outdoor environment. This improved temperature has created a more favorable climate for crops and has subsequently had a positive effect on their development, quality, and production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20system" title="solar system">solar system</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20greenhouse" title=" agricultural greenhouse"> agricultural greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a> </p> <a href="https://publications.waset.org/abstracts/161297/performance-of-a-solar-heating-system-on-the-microclimate-of-an-agricultural-greenhouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2284</span> An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asli%20Tiktas">Asli Tiktas</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Gunerhan"> Huseyin Gunerhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arif%20Hepbasli"> Arif Hepbasli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption%20technology" title=" absorption technology"> absorption technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Rankine%20cycle" title=" Rankine cycle"> Rankine cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=multigeneration%20energy%20system" title=" multigeneration energy system"> multigeneration energy system</a> </p> <a href="https://publications.waset.org/abstracts/184489/an-integrated-power-generation-system-design-developed-between-solar-energy-assisted-dual-absorption-cycles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2283</span> Performance of an Absorption Refrigerator Using a Solar Thermal Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abir%20Hmida">Abir Hmida</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihel%20Chekir"> Nihel Chekir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Ben%20Brahim"> Ammar Ben Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, we investigate the feasibility of a thermal solar driven cold room in Gabes, southern region of Tunisia. The cold room of 109 m<sup>3</sup> is refrigerated using an ammonia absorption machine. It is destined to preserve dates during the hot months of the year. A detailed study of the cold room leads previously to the estimation of the cooling load of the proposed storage room in the operating conditions of the region. The next step consists of the estimation of the required heat in the generator of the absorption machine to ensure the desired cold temperature. A thermodynamic analysis was accomplished and complete description of the system is determined. We propose, here, to provide the needed heat thermally from the sun by using vacuum tube collectors. We found that at least 21m&sup2; of solar collectors are necessary to accomplish the work of the solar cold room. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20room" title=" cold room"> cold room</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20tube" title=" vacuum tube"> vacuum tube</a> </p> <a href="https://publications.waset.org/abstracts/99221/performance-of-an-absorption-refrigerator-using-a-solar-thermal-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2282</span> Effect Of Shading In Evaporatively Cooled Greenhouses In The Mediterranean Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Katsoulas">Nikolaos Katsoulas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Faliagka"> Sofia Faliagka</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20Sapounas"> Athanasios Sapounas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greenhouse ventilation is an effective way to remove the extra heat from the greenhouse through air exchange between inside and outside when outside air temperature is lower. However, in the Mediterranean areas during summer, most of the day, the outside air temperature reaches values above 25 C; and natural ventilation can not remove the excess heat outside the greenhouse. Shade screens and whitewash are major existing measures used to reduce the greenhouse air temperature during summer by reducing the solar radiation entering the greenhouse. However, the greenhouse air temperature is reduced with a cost in radiation reduction. In addition, due to high air temperature values outside the greenhouse, generally, these systems are not sufficient for extracting the excess energy during sunny summer days and therefore, other cooling methods, such as forced ventilation combined with evaporative cooling, are needed. Evaporative cooling by means of pad and fan or fog systems is a common technique to reduce sensible heat load by increasing the latent heat fraction of dissipated energy. In most of the cases, the greenhouse growers, when all the above systems are available, apply both shading and evaporative cooling. If a movable screen is available, then the screen is usually activated when a certain radiation level is reached. It is not clear whether the shading screens should be used over the growth cycle or only during the most sensitive stages when the crops had a low leaf area and the canopy transpiration rate cannot significantly contribute to the greenhouse cooling. Furthermore, it is not clear which is the optimum radiation level that screen must be activated. This work aims to present the microclimate and cucumber crop physiological response and yield observed in two greenhouse compartments equipped with a pad and fan evaporative cooling system and a thermal/shading screen that is activated at different radiation levels: when the outside solar radiation reaches 700 or 900 W/m2. The greenhouse is located in Velestino, in Central Greece and the measurements are performed during the spring -summer period with the outside air temperature during summer reaching values up to 42C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microclimate" title="microclimate">microclimate</a>, <a href="https://publications.waset.org/abstracts/search?q=shading" title=" shading"> shading</a>, <a href="https://publications.waset.org/abstracts/search?q=screen" title=" screen"> screen</a>, <a href="https://publications.waset.org/abstracts/search?q=pad%20and%20fan" title=" pad and fan"> pad and fan</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a> </p> <a href="https://publications.waset.org/abstracts/175833/effect-of-shading-in-evaporatively-cooled-greenhouses-in-the-mediterranean-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2281</span> The Use of Solar Energy for Cold Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Allouache">Nadia Allouache</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Belmedani"> Mohamed Belmedani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> —It is imperative today to further explore alternatives to fossil fuels by promoting in particular renewable sources such as solar energy to produce cold. It is also important to carefully examine its current state as well as its future prospects in order to identify the best conditions to support its optimal development. Technologies linked to this alternative source fascinate their users because they seem magical in their ability to directly transform solar energy into cooling without resorting to polluting fuels such as those derived from hydrocarbons or other toxic substances. In addition, these not only allow significant savings in electricity, but can also help reduce the costs of electrical energy production when applied on a large scale. In this context, our study aims to analyze the performance of solar adsorption cooling systems by selecting the appropriate pair Adsorbent/Adsorbat. This paper presents a model describing the heat and mass transfer in tubular finned adsorber of solar adsorption refrigerating machine. The modelisation of the solar reactor take into account the heat and mass transfers phenomena. The reactor pressure is assumed to be uniform, the reactive reactor is characterized by an equivalent thermal conductivity and assumed to be at chemical and thermodynamic equilibrium. The numerical model is controlled by heat, mass and sorption equilibrium equations. Under the action of solar radiation, the mixture of adsorbent–adsorbate has a transitory behavior. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analyzed and discussed. The results show that, The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions. For the used working pairs, the increase of the fins number corresponds to the decreasing of the heat losses towards environmental and the increasing of heat transfer inside the adsorber. The system performances are sensitive to the evaporator and condenser temperatures. For the considered data measured for clear type days of may and july 2023 in Algeria and Tunisia, the performances of the cooling system are very significant in Algeria compared to Tunisia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent-adsorbate%20pair" title=" adsorbent-adsorbate pair"> adsorbent-adsorbate pair</a>, <a href="https://publications.waset.org/abstracts/search?q=finned%20reactor" title=" finned reactor"> finned reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/191114/the-use-of-solar-energy-for-cold-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2280</span> Experimental Study of Hydrothermal Properties of Cool Pavements to Mitigate Urban Heat Islands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Wardeh">Youssef Wardeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Kinab"> Elias Kinab</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Rahme"> Pierre Rahme</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilles%20Escadeillas"> Gilles Escadeillas</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Ginestet"> Stephane Ginestet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban heat islands designate a local phenomenon that appears in high density cities. This results in a rise ofambient temperature in the urban area compared to the neighboring rural area. Solar radiation plays an important role in this phenomenon since it is partially absorbed by the materials, especially roads and parking lots. Cool pavements constitute an innovative and promising technique to mitigate urban heat islands. The cool pavements studied in this work allow to limit the increase of the surface temperature, thanks to evaporation of the water conducted through capillary pores, from the humidified base to the surface exposed to solar radiation. However, the performance or the cooling capacity of a pavement sometimes remained difficult to characterize. In this work, a new definition of the cooling capacity of a pavement is presented, and a correlation between the latter and the hydrothermal properties of cool pavements is revealed. Firstly, several porous concrete pavements were characterized through their hydrothermal properties, which can be related to the cooling effect, such as albedo, thermal conductivity, water absorption, etc. Secondly, these pavements initially saturated and continuously supplied with water through their bases, were exposed to external solar radiation during three sunny summer days, and their surface temperatures were measured. For draining pavements, a strong second-degreepolynomial correlation(R² = 0.945) was found between the cooling capacity and the term, which reflects the interconnection of capillary water to the surface. Moreover, it was noticed that the cooling capacity reaches its maximum for an optimal range of capillary pores for which the capillary rise is stronger than gravity. For non-draining pavements, a good negative linear correlation (R² = 0.828) was obtained between the cooling capacity and the term, which expresses the ability to heat the capillary water by the energystored far from the surface, and, therefore, the dominance of the evaporation process by diffusion. The latest tests showed that this process is, however, likely to be disturbed by the material resistance to the water vapor diffusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20heat%20islands" title="urban heat islands">urban heat islands</a>, <a href="https://publications.waset.org/abstracts/search?q=cool%20pavement" title=" cool pavement"> cool pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20capacity" title=" cooling capacity"> cooling capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20properties" title=" hydrothermal properties"> hydrothermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a> </p> <a href="https://publications.waset.org/abstracts/149078/experimental-study-of-hydrothermal-properties-of-cool-pavements-to-mitigate-urban-heat-islands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2279</span> Mathematical Modeling of District Cooling Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20Alghool">Dana Alghool</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20%20ElMekkawy"> Tarek ElMekkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Haouari"> Mohamed Haouari</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Elomari"> Adel Elomari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> District cooling systems have captured the attentions of many researchers recently due to the enormous benefits offered by such system in comparison with traditional cooling technologies. It is considered a major component of urban cities due to the significant reduction of energy consumption. This paper aims to find the optimal design and operation of district cooling systems by developing a mixed integer linear programming model to minimize the annual total system cost and satisfy the end-user cooling demand. The proposed model is experimented with different cooling demand scenarios. The results of the very high cooling demand scenario are only presented in this paper. A sensitivity analysis on different parameters of the model was performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annual%20Cooling%20Demand" title="Annual Cooling Demand">Annual Cooling Demand</a>, <a href="https://publications.waset.org/abstracts/search?q=Compression%20Chiller" title=" Compression Chiller"> Compression Chiller</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modeling" title=" Mathematical Modeling"> Mathematical Modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=District%20Cooling%20Systems" title=" District Cooling Systems"> District Cooling Systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Optimization" title=" Optimization"> Optimization</a> </p> <a href="https://publications.waset.org/abstracts/118677/mathematical-modeling-of-district-cooling-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2278</span> Efficiency Validation of Hybrid Geothermal and Radiant Cooling System Implementation in Hot and Humid Climate Houses of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamil%20Hijazi">Jamil Hijazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stirling%20Howieson"> Stirling Howieson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over one-quarter of the Kingdom of Saudi Arabia’s total oil production (2.8 million barrels a day) is used for electricity generation. The built environment is estimated to consume 77% of the total energy production. Of this amount, air conditioning systems consume about 80%. Apart from considerations surrounding global warming and CO2 production it has to be recognised that oil is a finite resource and the KSA like many other oil rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground cooling pipes in combination with black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing carbon emissions while providing all year round thermal comfort in a typical Saudi Arabian urban housing block. At the outset air and soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (Design Builder) that utilised the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/ stack ventilation and radiant cooling pipes embed in floor).Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20pipe" title=" ground pipe"> ground pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20cooling" title=" hybrid cooling"> hybrid cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20cooling" title=" radiative cooling"> radiative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/70805/efficiency-validation-of-hybrid-geothermal-and-radiant-cooling-system-implementation-in-hot-and-humid-climate-houses-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2277</span> A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ouzzane">Mohamed Ouzzane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Bady"> Mahmoud Bady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20cooling%20system" title="air cooling system">air cooling system</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigeration" title=" refrigeration"> refrigeration</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20ejector" title=" thermal ejector"> thermal ejector</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20compression" title=" thermal compression"> thermal compression</a> </p> <a href="https://publications.waset.org/abstracts/104177/a-theoretical-analysis-of-air-cooling-system-using-thermal-ejector-under-variable-generator-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2276</span> Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khoukhi">M. Khoukhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operating%20temperature" title="operating temperature">operating temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20insulation" title=" polystyrene insulation"> polystyrene insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20load" title=" cooling load"> cooling load</a> </p> <a href="https://publications.waset.org/abstracts/43335/change-of-the-thermal-conductivity-of-polystyrene-insulation-in-term-of-temperature-at-the-mid-thickness-of-the-insulation-material-impact-on-the-cooling-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=77">77</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=78">78</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solar%20cooling&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10